SlideShare a Scribd company logo
1 of 80
Exponents
Frank Ma © 2011
Exponents
We write the quantity A multiplied to itself N times as AN,
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy)
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5)
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
AN
AK = AN – K
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
Example C.
AN
AK = AN – K
56
52
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
Example C.
AN
AK = AN – K
56
52 =
(5)(5)(5)(5)(5)(5)
(5)(5)
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
Example C.
AN
AK = AN – K
56
52 =
(5)(5)(5)(5)(5)(5)
(5)(5)
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Example A.
43 = (4)(4)(4) = 64
(xy)2= (xy)(xy) = x2y2
xy2 = (x)(yy)
–x2 = –(xx)
base
exponent
Exponents
Multiplication Rule: ANAK =AN+K
Example B.
a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57
b. x5y7x4y6 = x5x4y7y6 = x9y13
Rules of Exponents
Division Rule:
Example C.
AN
AK = AN – K
56
52 =
(5)(5)(5)(5)(5)(5)
(5)(5)
= 56 – 2 = 54
We write the quantity A multiplied to itself N times as AN, i.e.
A x A x A ….x A = AN
Power Rule: (AN)K = ANK
Exponents
Power Rule: (AN)K = ANK
Example D. (34)5
Exponents
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34)
Exponents
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4
Exponents
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1
A1
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1A1
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0A1
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since =
1
AK
A0
AK
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K1
AK
A0
AK
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
a. 30
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
b. 3–2
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32b. 3–2 =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9b. 3–2 = =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
b. 3–2 = =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
=
b. 3–2 = =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
In general ( )–Ka
b = ( )K
b
a
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
In general ( )–Ka
b = ( )K
b
a
d. ( )–22
5
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
In general ( )–Ka
b = ( )K
b
a
d. ( )–22
5
= ( )25
2
Power Rule: (AN)K = ANK
Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320
Exponents
Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule.
A1
A1
0-Power Rule: A0 = 1
Since = = A0 – K = A–K, we get the negative-power Rule.
1
AK
A0
AK
Negative-Power Rule: A–K =
1
AK
Example E. Simplify
1
32
1
9
c. ( )–12
5
=
1
2/5
= 1*
5
2
=
5
2
b. 3–2 = =
a. 30 = 1
In general ( )–Ka
b = ( )K
b
a
d. ( )–22
5
= ( )2 =
25
4
5
2
e. 3–1 – 40 * 2–2 =
Exponents
e. 3–1 – 40 * 2–2 =
1
3
Exponents
e. 3–1 – 40 * 2–2 =
1
3
– 1*
Exponents
e. 3–1 – 40 * 2–2 =
1
3
– 1*
1
22
Exponents
e. 3–1 – 40 * 2–2 =
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
Exponents
e. 3–1 – 40 * 2–2 =
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents.
e. 3–1 – 40 * 2–2 =
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
Example F. Simplify 3–2 x4 y–6 x–8 y 23
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
= x4 – 8 y–6+23
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
9
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
= x4 – 8 y–6+23
= x–4 y17
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
9
1
9
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
= x4 – 8 y–6+23
= x–4 y17
= y17
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
9
1
9
1
9x4
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
e. 3–1 – 40 * 2–2 =
Exponents
Although the negative power means to reciprocate,
for problems of collecting exponents, we do not reciprocate
the negative exponents. Instead we add or subtract them
using the multiplication and division rules first.
= x4 – 8 y–6+23
= x–4 y17
= y17
=
Example F. Simplify 3–2 x4 y–6 x–8 y 23
3–2 x4 y–6 x–8 y23
= 3–2 x4 x–8 y–6 y23
1
9
1
9
1
9x4
y17
9x4
1
3
– 1*
1
22 = 1
3
– 1
4
= 1
12
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
=
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
3–2x6y–6
3–5x3y–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
= = 3–2 – (–5) x6 – 3 y–6 – (–3)
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
3–2x6y–6
3–5x3y–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
= = 3–2 – (–5) x6 – 3 y–6 – (–3)
= 33 x3 y–3=
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
3–2x6y–6
3–5x3y–3
Exponents
Example G. Simplify using the rules for exponents.
Leave the answer in positive exponents only.
23x–8
26 x–3
23x–8
26x–3
= 23 – 6 x–8 – (–3 )
= 2–3 x–5
=
23
1
x5
1
* = 8x5
1
Example H. Simplify
(3x–2y3)–2 x2
3–5x–3(y–1x2)3
=
3–2x4y–6x2
3–5x–3y–3 x6 =
= = 3–2 – (–5) x6 – 3 y–6 – (–3)
= 33 x3 y–3=
27 x3
(3x–2y3)–2 x2
3–5x–3(y–1x2)3 3–5x–3x6y–3
3–2x4x2y–6
3–2x6y–6
3–5x3y–3
y3
Ex. A. Write the numbers without the negative exponents and
compute the answers.
1. 2–1 2. –2–2 3. 2–3 4. (–3)–2 5. 3–3
6. 5–2 7. 4–3 8. 1
2
( )
–3
9. 2
3
( )
–1
10. 3
2
( )
–2
11. 2–1* 3–2 12. 2–2+ 3–1 13. 2* 4–1– 50 * 3–1
14. 32 * 6–1– 6 * 2–3 15. 2–2* 3–1 + 80 * 2–1
Ex. B. Combine the exponents. Leave the answers in positive
exponents–but do not reciprocate the negative exponents until
the final step.
16. x3x5 17. x–3x5 18. x3x–5 19. x–3x–5
20. x4y2x3y–4 21. y–3x–2 y–4x4 22. 22x–3xy2x32–5
23. 32y–152–2x5y2x–9 24. 42x252–3y–34 x–41y–11
25. x2(x3)5 26. (x–3)–5x –6 27. x4(x3y–5) –3y–8
Exponents
x–8
x–3
B. Combine the exponents. Leave the answers in positive
exponents–but do not reciprocate the negative exponents until
the final step.
28. x8
x–329.
x–8
x330. y6x–8
x–2y331.
x6x–2y–8
y–3x–5y232.
2–3x6y–8
2–5y–5x233.
3–2y2x4
2–3x3y–234.
4–1(x3y–2)–2
2–3(y–5x2)–135.
6–2 y2(x4y–3)–1
9–1(x3y–2)–4y236.
C. Combine the exponents as much as possible.
38. 232x 39. 3x+23x 40. ax–3ax+5
41. (b2)x+1b–x+3 42. e3e2x+1e–x
43. e3e2x+1e–x
44. How would you make sense of 23 ?
2

More Related Content

What's hot

4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressionsmath123a
 
4.5 calculation with log and exp
4.5 calculation with log and exp4.5 calculation with log and exp
4.5 calculation with log and expmath260
 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functionsmath265
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivativesmath265
 
1.1 exponents
1.1 exponents1.1 exponents
1.1 exponentsmath260
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-xmath123b
 
5.2 arithmetic sequences
5.2 arithmetic sequences5.2 arithmetic sequences
5.2 arithmetic sequencesmath123c
 
3.1 methods of division
3.1 methods of division3.1 methods of division
3.1 methods of divisionmath260
 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoringmath123a
 
4 4polynomial operations
4 4polynomial operations4 4polynomial operations
4 4polynomial operationsmath123a
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp xmath260
 
1.3 rational expressions
1.3 rational expressions1.3 rational expressions
1.3 rational expressionsmath123b
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1math265
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressionsalg1testreview
 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalitiesmath123c
 
3.2 more on log and exponential equations
3.2 more on log and exponential equations3.2 more on log and exponential equations
3.2 more on log and exponential equationsmath123c
 
1.5 notation and algebra of functions
1.5 notation and algebra of functions1.5 notation and algebra of functions
1.5 notation and algebra of functionsmath123c
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulasalg1testreview
 
5 6 substitution and factoring formulas
5 6 substitution and factoring formulas5 6 substitution and factoring formulas
5 6 substitution and factoring formulasmath123a
 

What's hot (20)

4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressions
 
43literal equations
43literal equations43literal equations
43literal equations
 
4.5 calculation with log and exp
4.5 calculation with log and exp4.5 calculation with log and exp
4.5 calculation with log and exp
 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functions
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivatives
 
1.1 exponents
1.1 exponents1.1 exponents
1.1 exponents
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
 
5.2 arithmetic sequences
5.2 arithmetic sequences5.2 arithmetic sequences
5.2 arithmetic sequences
 
3.1 methods of division
3.1 methods of division3.1 methods of division
3.1 methods of division
 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoring
 
4 4polynomial operations
4 4polynomial operations4 4polynomial operations
4 4polynomial operations
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp x
 
1.3 rational expressions
1.3 rational expressions1.3 rational expressions
1.3 rational expressions
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalities
 
3.2 more on log and exponential equations
3.2 more on log and exponential equations3.2 more on log and exponential equations
3.2 more on log and exponential equations
 
1.5 notation and algebra of functions
1.5 notation and algebra of functions1.5 notation and algebra of functions
1.5 notation and algebra of functions
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas
 
5 6 substitution and factoring formulas
5 6 substitution and factoring formulas5 6 substitution and factoring formulas
5 6 substitution and factoring formulas
 

Similar to 1exponents

5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notationelem-alg-sample
 
4 1exponents
4 1exponents4 1exponents
4 1exponentsmath123a
 
1 0 exponents (optional)
1 0 exponents (optional)1 0 exponents (optional)
1 0 exponents (optional)math123b
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-xmath123b
 
1.1 exponents yz
1.1 exponents yz1.1 exponents yz
1.1 exponents yzmath260
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yzmath260
 
1.1 exponents y
1.1 exponents y1.1 exponents y
1.1 exponents ymath260
 
0. exponents y
0. exponents y0. exponents y
0. exponents ymath123c
 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functionsdionesioable
 
Ch1 sets and_logic(1)
Ch1 sets and_logic(1)Ch1 sets and_logic(1)
Ch1 sets and_logic(1)Kwonpyo Ko
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
 
Truth, deduction, computation lecture g
Truth, deduction, computation   lecture gTruth, deduction, computation   lecture g
Truth, deduction, computation lecture gVlad Patryshev
 
Probability and Entanglement
Probability and EntanglementProbability and Entanglement
Probability and EntanglementGunn Quznetsov
 

Similar to 1exponents (20)

5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notation
 
4 1exponents
4 1exponents4 1exponents
4 1exponents
 
1 0 exponents (optional)
1 0 exponents (optional)1 0 exponents (optional)
1 0 exponents (optional)
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
 
43exponents
43exponents43exponents
43exponents
 
1.1 exponents yz
1.1 exponents yz1.1 exponents yz
1.1 exponents yz
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yz
 
WEEK-1.pdf
WEEK-1.pdfWEEK-1.pdf
WEEK-1.pdf
 
1.1 exponents y
1.1 exponents y1.1 exponents y
1.1 exponents y
 
0. exponents y
0. exponents y0. exponents y
0. exponents y
 
Module 2 exponential functions
Module 2   exponential functionsModule 2   exponential functions
Module 2 exponential functions
 
Ch1 sets and_logic(1)
Ch1 sets and_logic(1)Ch1 sets and_logic(1)
Ch1 sets and_logic(1)
 
Algebra
AlgebraAlgebra
Algebra
 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
 
Truth, deduction, computation lecture g
Truth, deduction, computation   lecture gTruth, deduction, computation   lecture g
Truth, deduction, computation lecture g
 
Math
MathMath
Math
 
Probability and Entanglement
Probability and EntanglementProbability and Entanglement
Probability and Entanglement
 
1105 ch 11 day 5
1105 ch 11 day 51105 ch 11 day 5
1105 ch 11 day 5
 
MATHS SYMBOLS - OTHER OPERATIONS (2)
MATHS SYMBOLS - OTHER OPERATIONS (2)MATHS SYMBOLS - OTHER OPERATIONS (2)
MATHS SYMBOLS - OTHER OPERATIONS (2)
 
1.7
1.71.7
1.7
 

More from math123a

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eqmath123a
 
38 equations of lines-x
38 equations of lines-x38 equations of lines-x
38 equations of lines-xmath123a
 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-xmath123a
 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-xmath123a
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2math123a
 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii expmath123a
 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-iimath123a
 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problemsmath123a
 
Soluiton i
Soluiton iSoluiton i
Soluiton imath123a
 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-samplemath123a
 
Sample fin
Sample finSample fin
Sample finmath123a
 
12 4- sample
12 4- sample12 4- sample
12 4- samplemath123a
 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ansmath123a
 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpgmath123a
 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-formmath123a
 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optionalmath123a
 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractionsmath123a
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcdmath123a
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractionsmath123a
 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplicationmath123a
 

More from math123a (20)

1 numbers and factors eq
1 numbers and factors eq1 numbers and factors eq
1 numbers and factors eq
 
38 equations of lines-x
38 equations of lines-x38 equations of lines-x
38 equations of lines-x
 
37 more on slopes-x
37 more on slopes-x37 more on slopes-x
37 more on slopes-x
 
36 slopes of lines-x
36 slopes of lines-x36 slopes of lines-x
36 slopes of lines-x
 
123a ppt-all-2
123a ppt-all-2123a ppt-all-2
123a ppt-all-2
 
7 inequalities ii exp
7 inequalities ii exp7 inequalities ii exp
7 inequalities ii exp
 
115 ans-ii
115 ans-ii115 ans-ii
115 ans-ii
 
14 2nd degree-equation word problems
14 2nd degree-equation word problems14 2nd degree-equation word problems
14 2nd degree-equation word problems
 
Soluiton i
Soluiton iSoluiton i
Soluiton i
 
123a test4-sample
123a test4-sample123a test4-sample
123a test4-sample
 
Sample fin
Sample finSample fin
Sample fin
 
12 4- sample
12 4- sample12 4- sample
12 4- sample
 
F12 2 -ans
F12 2 -ansF12 2 -ans
F12 2 -ans
 
F12 1-ans-jpg
F12 1-ans-jpgF12 1-ans-jpg
F12 1-ans-jpg
 
Sample1 v2-jpg-form
Sample1 v2-jpg-formSample1 v2-jpg-form
Sample1 v2-jpg-form
 
3 6 introduction to sets-optional
3 6 introduction to sets-optional3 6 introduction to sets-optional
3 6 introduction to sets-optional
 
1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions1 f5 addition and subtraction of fractions
1 f5 addition and subtraction of fractions
 
1 f4 lcm and lcd
1 f4 lcm and lcd1 f4 lcm and lcd
1 f4 lcm and lcd
 
1 f2 fractions
1 f2 fractions1 f2 fractions
1 f2 fractions
 
1 f7 on cross-multiplication
1 f7 on cross-multiplication1 f7 on cross-multiplication
1 f7 on cross-multiplication
 

Recently uploaded

Kanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment BookingKanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment BookingNitya salvi
 
𓀤Call On 6297143586 𓀤 Park Street Call Girls In All Kolkata 24/7 Provide Call...
𓀤Call On 6297143586 𓀤 Park Street Call Girls In All Kolkata 24/7 Provide Call...𓀤Call On 6297143586 𓀤 Park Street Call Girls In All Kolkata 24/7 Provide Call...
𓀤Call On 6297143586 𓀤 Park Street Call Girls In All Kolkata 24/7 Provide Call...rahim quresi
 
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...ritikasharma
 
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceBorum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceDamini Dixit
 
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...ritikasharma
 
Sonagachi ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Rea...
Sonagachi ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Rea...Sonagachi ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Rea...
Sonagachi ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Rea...rahim quresi
 
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)amitlee9823
 
📞 Contact Number 8617697112 VIP Ganderbal Call Girls
📞 Contact Number 8617697112 VIP Ganderbal Call Girls📞 Contact Number 8617697112 VIP Ganderbal Call Girls
📞 Contact Number 8617697112 VIP Ganderbal Call GirlsNitya salvi
 
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...ritikasharma
 
VIP Model Call Girls Budhwar Peth ( Pune ) Call ON 8005736733 Starting From 5...
VIP Model Call Girls Budhwar Peth ( Pune ) Call ON 8005736733 Starting From 5...VIP Model Call Girls Budhwar Peth ( Pune ) Call ON 8005736733 Starting From 5...
VIP Model Call Girls Budhwar Peth ( Pune ) Call ON 8005736733 Starting From 5...SUHANI PANDEY
 
Top Rated Kolkata Call Girls Dum Dum ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
Top Rated Kolkata Call Girls Dum Dum ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...Top Rated Kolkata Call Girls Dum Dum ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
Top Rated Kolkata Call Girls Dum Dum ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...ritikasharma
 
Hire 💕 8617697112 North Sikkim Call Girls Service Call Girls Agency
Hire 💕 8617697112 North Sikkim Call Girls Service Call Girls AgencyHire 💕 8617697112 North Sikkim Call Girls Service Call Girls Agency
Hire 💕 8617697112 North Sikkim Call Girls Service Call Girls AgencyNitya salvi
 
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.Nitya salvi
 
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...ritikasharma
 
Model Call Girls In Pazhavanthangal WhatsApp Booking 7427069034 call girl ser...
Model Call Girls In Pazhavanthangal WhatsApp Booking 7427069034 call girl ser...Model Call Girls In Pazhavanthangal WhatsApp Booking 7427069034 call girl ser...
Model Call Girls In Pazhavanthangal WhatsApp Booking 7427069034 call girl ser... Shivani Pandey
 
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...ritikasharma
 
Top Rated Pune Call Girls Dhayari ⟟ 6297143586 ⟟ Call Me For Genuine Sex Ser...
Top Rated  Pune Call Girls Dhayari ⟟ 6297143586 ⟟ Call Me For Genuine Sex Ser...Top Rated  Pune Call Girls Dhayari ⟟ 6297143586 ⟟ Call Me For Genuine Sex Ser...
Top Rated Pune Call Girls Dhayari ⟟ 6297143586 ⟟ Call Me For Genuine Sex Ser...Call Girls in Nagpur High Profile
 
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...hotbabesbook
 
(TOP CLASS) Call Girls In Nungambakkam Phone 7427069034 Call Girls Model With...
(TOP CLASS) Call Girls In Nungambakkam Phone 7427069034 Call Girls Model With...(TOP CLASS) Call Girls In Nungambakkam Phone 7427069034 Call Girls Model With...
(TOP CLASS) Call Girls In Nungambakkam Phone 7427069034 Call Girls Model With... Shivani Pandey
 
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRLBhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRLNitya salvi
 

Recently uploaded (20)

Kanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment BookingKanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
 
𓀤Call On 6297143586 𓀤 Park Street Call Girls In All Kolkata 24/7 Provide Call...
𓀤Call On 6297143586 𓀤 Park Street Call Girls In All Kolkata 24/7 Provide Call...𓀤Call On 6297143586 𓀤 Park Street Call Girls In All Kolkata 24/7 Provide Call...
𓀤Call On 6297143586 𓀤 Park Street Call Girls In All Kolkata 24/7 Provide Call...
 
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
 
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort ServiceBorum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
Borum Call Girls Service ☎ ️93326-06886 ❤️‍🔥 Enjoy 24/7 Escort Service
 
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
 
Sonagachi ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Rea...
Sonagachi ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Rea...Sonagachi ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Rea...
Sonagachi ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Rea...
 
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
📞 Contact Number 8617697112 VIP Ganderbal Call Girls
📞 Contact Number 8617697112 VIP Ganderbal Call Girls📞 Contact Number 8617697112 VIP Ganderbal Call Girls
📞 Contact Number 8617697112 VIP Ganderbal Call Girls
 
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
 
VIP Model Call Girls Budhwar Peth ( Pune ) Call ON 8005736733 Starting From 5...
VIP Model Call Girls Budhwar Peth ( Pune ) Call ON 8005736733 Starting From 5...VIP Model Call Girls Budhwar Peth ( Pune ) Call ON 8005736733 Starting From 5...
VIP Model Call Girls Budhwar Peth ( Pune ) Call ON 8005736733 Starting From 5...
 
Top Rated Kolkata Call Girls Dum Dum ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
Top Rated Kolkata Call Girls Dum Dum ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...Top Rated Kolkata Call Girls Dum Dum ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
Top Rated Kolkata Call Girls Dum Dum ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
 
Hire 💕 8617697112 North Sikkim Call Girls Service Call Girls Agency
Hire 💕 8617697112 North Sikkim Call Girls Service Call Girls AgencyHire 💕 8617697112 North Sikkim Call Girls Service Call Girls Agency
Hire 💕 8617697112 North Sikkim Call Girls Service Call Girls Agency
 
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.
❤Personal Whatsapp Number Keylong Call Girls 8617697112 💦✅.
 
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...
Hotel And Home Service Available Kolkata Call Girls Diamond Harbour ✔ 6297143...
 
Model Call Girls In Pazhavanthangal WhatsApp Booking 7427069034 call girl ser...
Model Call Girls In Pazhavanthangal WhatsApp Booking 7427069034 call girl ser...Model Call Girls In Pazhavanthangal WhatsApp Booking 7427069034 call girl ser...
Model Call Girls In Pazhavanthangal WhatsApp Booking 7427069034 call girl ser...
 
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...
Book Sex Workers Available Kolkata Call Girls Service Airport Kolkata ✔ 62971...
 
Top Rated Pune Call Girls Dhayari ⟟ 6297143586 ⟟ Call Me For Genuine Sex Ser...
Top Rated  Pune Call Girls Dhayari ⟟ 6297143586 ⟟ Call Me For Genuine Sex Ser...Top Rated  Pune Call Girls Dhayari ⟟ 6297143586 ⟟ Call Me For Genuine Sex Ser...
Top Rated Pune Call Girls Dhayari ⟟ 6297143586 ⟟ Call Me For Genuine Sex Ser...
 
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
 
(TOP CLASS) Call Girls In Nungambakkam Phone 7427069034 Call Girls Model With...
(TOP CLASS) Call Girls In Nungambakkam Phone 7427069034 Call Girls Model With...(TOP CLASS) Call Girls In Nungambakkam Phone 7427069034 Call Girls Model With...
(TOP CLASS) Call Girls In Nungambakkam Phone 7427069034 Call Girls Model With...
 
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRLBhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
 

1exponents

  • 2. Exponents We write the quantity A multiplied to itself N times as AN,
  • 3. Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 4. base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 5. Example A. 43 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 6. Example A. 43 = (4)(4)(4) = 64 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 7. Example A. 43 = (4)(4)(4) = 64 (xy)2 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 8. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 9. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 10. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 11. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 12. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 13. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 14. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 15. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 16. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 17. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 18. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 19. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 20. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 21. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: AN AK = AN – K We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 22. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: Example C. AN AK = AN – K 56 52 We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 23. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: Example C. AN AK = AN – K 56 52 = (5)(5)(5)(5)(5)(5) (5)(5) We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 24. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: Example C. AN AK = AN – K 56 52 = (5)(5)(5)(5)(5)(5) (5)(5) We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 25. Example A. 43 = (4)(4)(4) = 64 (xy)2= (xy)(xy) = x2y2 xy2 = (x)(yy) –x2 = –(xx) base exponent Exponents Multiplication Rule: ANAK =AN+K Example B. a. 5354 = (5*5*5)(5*5*5*5) = 53+4 = 57 b. x5y7x4y6 = x5x4y7y6 = x9y13 Rules of Exponents Division Rule: Example C. AN AK = AN – K 56 52 = (5)(5)(5)(5)(5)(5) (5)(5) = 56 – 2 = 54 We write the quantity A multiplied to itself N times as AN, i.e. A x A x A ….x A = AN
  • 26. Power Rule: (AN)K = ANK Exponents
  • 27. Power Rule: (AN)K = ANK Example D. (34)5 Exponents A1
  • 28. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) Exponents
  • 29. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 Exponents
  • 30. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents
  • 31. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 A1 A1
  • 32. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1A1 A1
  • 33. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0A1 A1
  • 34. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1
  • 35. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1
  • 36. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = 1 AK A0 AK
  • 37. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K1 AK A0 AK
  • 38. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK
  • 39. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK
  • 40. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify a. 30
  • 41. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify a. 30 = 1
  • 42. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify b. 3–2 a. 30 = 1
  • 43. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32b. 3–2 = a. 30 = 1
  • 44. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9b. 3–2 = = a. 30 = 1
  • 45. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 b. 3–2 = = a. 30 = 1
  • 46. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = b. 3–2 = = a. 30 = 1
  • 47. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1
  • 48. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1 In general ( )–Ka b = ( )K b a
  • 49. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1 In general ( )–Ka b = ( )K b a d. ( )–22 5
  • 50. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1 In general ( )–Ka b = ( )K b a d. ( )–22 5 = ( )25 2
  • 51. Power Rule: (AN)K = ANK Example D. (34)5 = (34)(34)(34)(34)(34) = 34+4+4+4+4 = 34*5 = 320 Exponents Since = 1 = A1 – 1 = A0, we obtain the 0-power Rule. A1 A1 0-Power Rule: A0 = 1 Since = = A0 – K = A–K, we get the negative-power Rule. 1 AK A0 AK Negative-Power Rule: A–K = 1 AK Example E. Simplify 1 32 1 9 c. ( )–12 5 = 1 2/5 = 1* 5 2 = 5 2 b. 3–2 = = a. 30 = 1 In general ( )–Ka b = ( )K b a d. ( )–22 5 = ( )2 = 25 4 5 2
  • 52. e. 3–1 – 40 * 2–2 = Exponents
  • 53. e. 3–1 – 40 * 2–2 = 1 3 Exponents
  • 54. e. 3–1 – 40 * 2–2 = 1 3 – 1* Exponents
  • 55. e. 3–1 – 40 * 2–2 = 1 3 – 1* 1 22 Exponents
  • 56. e. 3–1 – 40 * 2–2 = 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12 Exponents
  • 57. e. 3–1 – 40 * 2–2 = 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12 Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents.
  • 58. e. 3–1 – 40 * 2–2 = 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12 Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first.
  • 59. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. Example F. Simplify 3–2 x4 y–6 x–8 y 23 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 60. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 61. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 62. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. = x4 – 8 y–6+23 Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 9 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 63. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. = x4 – 8 y–6+23 = x–4 y17 Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 9 1 9 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 64. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. = x4 – 8 y–6+23 = x–4 y17 = y17 Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 9 1 9 1 9x4 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 65. e. 3–1 – 40 * 2–2 = Exponents Although the negative power means to reciprocate, for problems of collecting exponents, we do not reciprocate the negative exponents. Instead we add or subtract them using the multiplication and division rules first. = x4 – 8 y–6+23 = x–4 y17 = y17 = Example F. Simplify 3–2 x4 y–6 x–8 y 23 3–2 x4 y–6 x–8 y23 = 3–2 x4 x–8 y–6 y23 1 9 1 9 1 9x4 y17 9x4 1 3 – 1* 1 22 = 1 3 – 1 4 = 1 12
  • 66. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3
  • 67. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3
  • 68. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 )
  • 69. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5
  • 70. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1
  • 71. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3
  • 72. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 (3x–2y3)–2 x2 3–5x–3(y–1x2)3
  • 73. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 (3x–2y3)–2 x2 3–5x–3(y–1x2)3
  • 74. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6
  • 75. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = = (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6 3–2x6y–6 3–5x3y–3
  • 76. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = = = 3–2 – (–5) x6 – 3 y–6 – (–3) (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6 3–2x6y–6 3–5x3y–3
  • 77. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = = = 3–2 – (–5) x6 – 3 y–6 – (–3) = 33 x3 y–3= (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6 3–2x6y–6 3–5x3y–3
  • 78. Exponents Example G. Simplify using the rules for exponents. Leave the answer in positive exponents only. 23x–8 26 x–3 23x–8 26x–3 = 23 – 6 x–8 – (–3 ) = 2–3 x–5 = 23 1 x5 1 * = 8x5 1 Example H. Simplify (3x–2y3)–2 x2 3–5x–3(y–1x2)3 = 3–2x4y–6x2 3–5x–3y–3 x6 = = = 3–2 – (–5) x6 – 3 y–6 – (–3) = 33 x3 y–3= 27 x3 (3x–2y3)–2 x2 3–5x–3(y–1x2)3 3–5x–3x6y–3 3–2x4x2y–6 3–2x6y–6 3–5x3y–3 y3
  • 79. Ex. A. Write the numbers without the negative exponents and compute the answers. 1. 2–1 2. –2–2 3. 2–3 4. (–3)–2 5. 3–3 6. 5–2 7. 4–3 8. 1 2 ( ) –3 9. 2 3 ( ) –1 10. 3 2 ( ) –2 11. 2–1* 3–2 12. 2–2+ 3–1 13. 2* 4–1– 50 * 3–1 14. 32 * 6–1– 6 * 2–3 15. 2–2* 3–1 + 80 * 2–1 Ex. B. Combine the exponents. Leave the answers in positive exponents–but do not reciprocate the negative exponents until the final step. 16. x3x5 17. x–3x5 18. x3x–5 19. x–3x–5 20. x4y2x3y–4 21. y–3x–2 y–4x4 22. 22x–3xy2x32–5 23. 32y–152–2x5y2x–9 24. 42x252–3y–34 x–41y–11 25. x2(x3)5 26. (x–3)–5x –6 27. x4(x3y–5) –3y–8 Exponents
  • 80. x–8 x–3 B. Combine the exponents. Leave the answers in positive exponents–but do not reciprocate the negative exponents until the final step. 28. x8 x–329. x–8 x330. y6x–8 x–2y331. x6x–2y–8 y–3x–5y232. 2–3x6y–8 2–5y–5x233. 3–2y2x4 2–3x3y–234. 4–1(x3y–2)–2 2–3(y–5x2)–135. 6–2 y2(x4y–3)–1 9–1(x3y–2)–4y236. C. Combine the exponents as much as possible. 38. 232x 39. 3x+23x 40. ax–3ax+5 41. (b2)x+1b–x+3 42. e3e2x+1e–x 43. e3e2x+1e–x 44. How would you make sense of 23 ? 2