SlideShare une entreprise Scribd logo
1  sur  213
CAN AND NETWORK COMMUNICATIONS 49
Objectives ,[object Object],[object Object],[object Object]
Objectives  ,[object Object],[object Object],[object Object]
MODULE COMMUNICATIONS AND NETWORKS
Module Communications and Networks ,[object Object],[object Object],[object Object]
Module Communications and Networks ,[object Object],[object Object],[object Object],[object Object]
Module Communications and Networks ,[object Object],[object Object],[object Object],[object Object],[object Object]
Figure 49-1   Module communications makes controlling multiple electrical devices and accessories easier by utilizing simple low-current switches to signal another module, which does the actual switching of the current to the device.
Network Fundamentals ,[object Object],[object Object],[object Object]
NETWORK FUNDAMENTALS
Network Fundamentals ,[object Object],[object Object],[object Object]
Network Fundamentals ,[object Object],[object Object],[object Object]
Network Fundamentals ,[object Object],[object Object]
Network Fundamentals ,[object Object],[object Object],[object Object],[object Object],[object Object]
Network Fundamentals ,[object Object],[object Object],[object Object]
Network Fundamentals ,[object Object],[object Object],[object Object]
Network Fundamentals ,[object Object],[object Object],[object Object],[object Object]
Network Fundamentals ,[object Object],[object Object],[object Object]
Figure 49-2   A network allows all modules to communicate with other modules.
Network Fundamentals ,[object Object],[object Object],[object Object],[object Object]
Network Fundamentals ,[object Object],[object Object],[object Object]
MODULE COMMUNICATIONS CONFIGURATION
Module Communications Configuration ,[object Object],[object Object],[object Object]
Figure 49-3   A ring link network reduces the number of wires it takes to interconnect all of the modules.
Module Communications Configuration ,[object Object],[object Object],[object Object]
Module Communications Configuration ,[object Object],[object Object],[object Object],[object Object]
Module Communications Configuration ,[object Object],[object Object],[object Object]
Module Communications Configuration ,[object Object],[object Object],[object Object],?
Figure 49-4   In a star link network, all of the modules are connected using splice packs.
Module Communications Configuration ,[object Object],[object Object],[object Object]
Module Communications Configuration ,[object Object],[object Object],[object Object]
NETWORK COMMUNICATIONS CLASSIFICATIONS
Network Communications Classifications ,[object Object],[object Object],[object Object],[object Object]
Network Communications Classifications ,[object Object],[object Object],[object Object]
Network Communications Classifications ,[object Object],[object Object],[object Object]
Network Communications Classifications ,[object Object],[object Object],[object Object]
Network Communications Classifications ,[object Object],[object Object],[object Object]
Network Communications Classifications ,[object Object],[object Object],[object Object]
Network Communications Classifications ,[object Object]
Figure 49-5   A typical BUS system showing module CAN communications and twisted pairs of wire.
GENERAL MOTORS COMMUNICATIONS PROTOCOLS
General Motors Communications Protocols ,[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object],[object Object],?
Figure 49-6   UART serial data master control module is connected to the data link connector at pin 9.
General Motors Communications Protocols ,[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
Figure 49-7   The E & C serial data is connected to the data link connector (DLC) at pin 14.
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object]
Figure 49-8   Class 2 serial data communication is accessible at the data link connector (DLC) at pin 2.
General Motors Communications Protocols ,[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
Figure 49-9   Keyword 82 operates at a rate of 8,192 bps, similar to UART, and keyword 2000 operates at a baud rate of 10,400 bps (the same as a Class 2 communicator).
General Motors Communications Protocols ,[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object]
General Motors Communications Protocols ,[object Object],[object Object],[object Object],?
Figure 49-10   GMLAN uses pins at terminals 6 and 14.
Figure 49-11   A twisted pair is used by several different network communications protocols to reduce interference that can be induced in the wiring from nearby electromagnetic sources.
General Motors Communications Protocols  ,[object Object],[object Object]
Figure 49-12   A CANdi module will flash the green LED rapidly if communication is detected.
FORD NETWORK COMMUNICATIONS PROTOCOLS
Ford Network Communications Protocols ,[object Object],[object Object]
Ford Network Communications Protocols ,[object Object],[object Object]
Figure 49-13   A Ford OBD-I diagnostic link connector showing that SCP communication uses terminals in cavities 1 (upper left) and 3 (lower left).
Ford Network Communications Protocols ,[object Object],[object Object],[object Object]
Ford Network Communications Protocols ,[object Object],[object Object]
Ford Network Communications Protocols ,[object Object],[object Object]
Ford Network Communications Protocols ,[object Object],[object Object]
Figure 49-14   A scan tool can be used to check communications with the SCP BUS through terminals 2 and 10 and to the other modules connected to terminal 7 of the data link connector (DLC).
Figure 49-15   Many Fords use UBP module communications along with CAN.
CHRYSLER COMMUNICATIONS PROTOCOLS
Chrysler Communications Protocols ,[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],?
Figure 49-16   CCD signals are labeled plus and minus and use a twisted pair of wires. Notice that terminals 3 and 11 of the data link connector are used to access the CCD BUS from a scan tool. Pin 16 is used to supply 12 volts to the scan tool.
Chrysler Communications Protocols  ,[object Object],[object Object],[object Object]
Figure 49-17   The differential voltage for the CCD BUS is created by using resistors in a module.
Chrysler Communications Protocols ,[object Object],[object Object],[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],[object Object]
Figure 49-18   Many Chrysler vehicles use both SCI and CCD for module communication.
Chrysler Communications Protocols ,[object Object],[object Object]
Chrysler Communications Protocols ,[object Object],[object Object],[object Object]
CONTROLLER AREA NETWORK
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Figure 49-19   CAN uses a differential type of module communication where the voltage on one wire is the equal but opposite voltage on the other wire. When no communication is occurring, both wires have 2.5 volts applied. When communication is occurring, CAN H (high) goes up 1 volt to 3.5 volts and CAN L (low) goes down 1 volt to 1.5 volts.
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object],[object Object],[object Object]
Figure 49-20   A typical (generic) system showing how the CAN BUS is connected to various electrical accessories and systems in the vehicle.
Controller Area Network ,[object Object],[object Object],[object Object]
Controller Area Network ,[object Object],[object Object]
HONDA/TOYOTA COMMUNICATIONS
Honda/Toyota Communications ,[object Object],[object Object]
Figure 49-21   A DLC from a pre-CAN Acura. It shows terminals in cavities 4, 5 (grounds), 7, 10, 14, and 16 (B+).
Honda/Toyota Communications  ,[object Object]
Figure 49-22   A Honda scan display showing a B and two U codes, all indicating a BUS-related problem(s).
EUROPEAN BUS COMMUNICATIONS
European BUS Communications ,[object Object],[object Object]
European BUS Communications ,[object Object],[object Object]
Figure 49-23   A typical 38-cavity diagnostic connector as found on many BMW and Mercedes vehicles under the hood. The use of a breakout box (BOB) connected to this connector can often be used to gain access to module BUS information.
European BUS Communications ,[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object]
European BUS Communications ,[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],?
Figure 49-24   A breakout box (BOB) used to access the BUS terminals while using a scan tool to activate the modules. This breakout box is equipped with LEDs that light when circuits are active.
European BUS Communications ,[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object]
European BUS Communications ,[object Object],[object Object],[object Object],[object Object]
NETWORK COMMUNICATIONS DIAGNOSIS
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Figure 49-25   This Honda scan tool allows the technician to turn on individual lights and operate individual power windows and other accessories that are connected to the BUS system.
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Figure 49-26   Modules used in a General Motors vehicle can be “pinged” using a Tech 2 scan tool.
Network Communications Diagnosis ,[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Figure 49-27   Checking the terminating resistors using an ohmmeter at the DLC.
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object]
Figure 49-28   Use front-probe terminals to access the data link connector. Always follow the specified back-probe and front-probe procedures as found in service information.
Network Communications Diagnosis  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Network Communications Diagnosis  ,[object Object],[object Object],[object Object],[object Object],[object Object]
Figure 49-29 (a)  Data is sent in packets, so it is normal to see activity then a flat line between messages.
Figure 49-29 (b)   A CAN BUS should show voltages that are opposite when there is normal communications. CAN H (high) circuit should go from 2.5 volts at rest to 3.5 volts when active. The CAN L (low) circuit goes from 2.5 volts at rest to 1.5 volts when active.
Network Communications Diagnosis ,[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object]
Network Communications Diagnosis ,[object Object],[object Object],[object Object],[object Object],?
OBD-II DATA LINK CONNECTOR
OBD-II Data Link Connector ,[object Object],[object Object],[object Object],[object Object]
Figure 49-30   A 16 pin OBD-II DLC with terminals identified. Scan tools use the power pin (16) and ground pin (4) for power so that a separate cigarette lighter plug is not necessary on OBD-II vehicles.
OBD-II Data Link Connector ,[object Object],[object Object],[object Object]
OBD-II Data Link Connector ,[object Object],[object Object],[object Object]
OBD-II Data Link Connector ,[object Object],[object Object],[object Object]
OBD-II Data Link Connector ,[object Object],[object Object],[object Object]
OBD-II Data Link Connector ,[object Object],[object Object],[object Object]
OBD-II Data Link Connector ,[object Object],[object Object]
OBD-II Data Link Connector ,[object Object],[object Object]
OBD-II Data Link Connector ,[object Object],[object Object],[object Object]
OBD-II Data Link Connector ,[object Object],[object Object],[object Object]
Figure 49-31   This schematic of a Chevrolet Equinox shows that the vehicle uses a GMLAN BUS (DLC pins 6 and 14), plus a Class 2 (pin 2) and UART.
FREQUENTLY ASKED QUESTION ,[object Object],[object Object],? BACK TO  PRESENTATION
FREQUENTLY ASKED QUESTION ,[object Object],[object Object],? BACK TO  PRESENTATION
FREQUENTLY ASKED QUESTION ,[object Object],[object Object],? BACK TO  PRESENTATION ,[object Object]
FREQUENTLY ASKED QUESTION ,[object Object],[object Object],? BACK TO  PRESENTATION
FREQUENTLY ASKED QUESTION ,[object Object],[object Object],? BACK TO  PRESENTATION ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
TECH TIP ,[object Object],[object Object],BACK TO  PRESENTATION ,[object Object],[object Object],[object Object],[object Object],[object Object]
REAL WORLD FIX ,[object Object],[object Object],BACK TO  PRESENTATION ,[object Object],[object Object]
FREQUENTLY ASKED QUESTION ,[object Object],[object Object],? BACK TO  PRESENTATION ,[object Object],[object Object],[object Object],[object Object]
TECH TIP ,[object Object],[object Object],BACK TO  PRESENTATION ,[object Object]

Contenu connexe

Tendances

Air brake system of railways
Air brake system of railwaysAir brake system of railways
Air brake system of railwaysShraddha Mahabare
 
Vehicle dynamics - Chapter 2 (Road Loads)
Vehicle dynamics - Chapter 2 (Road Loads)Vehicle dynamics - Chapter 2 (Road Loads)
Vehicle dynamics - Chapter 2 (Road Loads)Nizam Anuar
 
FTL cabliado mercedes benz.pdf
FTL cabliado mercedes benz.pdfFTL cabliado mercedes benz.pdf
FTL cabliado mercedes benz.pdfchristianvilca11
 
Automotive System presentation
Automotive System presentationAutomotive System presentation
Automotive System presentationKEERTIKRISHNAN1
 
Aerodynamic cars
Aerodynamic carsAerodynamic cars
Aerodynamic carsDeepak Jha
 
Vehicle aerodynamics – effects of side winds
Vehicle aerodynamics – effects of side windsVehicle aerodynamics – effects of side winds
Vehicle aerodynamics – effects of side windsRam Pranav
 
Automobile safety system
Automobile safety systemAutomobile safety system
Automobile safety systemSRINIVASAN R
 
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...Automotive Systems course (Module 06) - Power Transmission Systems in road ve...
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...Mário Alves
 
Electronic Control Unit(ECU)
Electronic Control Unit(ECU)Electronic Control Unit(ECU)
Electronic Control Unit(ECU)Ankul Gupta
 
air suspension system
air suspension systemair suspension system
air suspension systemIndra Pal
 
Air suspension in Railway coaches
Air suspension in Railway coachesAir suspension in Railway coaches
Air suspension in Railway coachesSrinivasaRao Guduru
 
Volvo g746 b motor grader service repair manual
Volvo g746 b motor grader service repair manualVolvo g746 b motor grader service repair manual
Volvo g746 b motor grader service repair manualfjsekkskem
 
Anti lock braking system
Anti lock braking systemAnti lock braking system
Anti lock braking systemAkash Singh
 

Tendances (20)

Air brake system of railways
Air brake system of railwaysAir brake system of railways
Air brake system of railways
 
Electronic stability control
Electronic stability controlElectronic stability control
Electronic stability control
 
Vehicle dynamics - Chapter 2 (Road Loads)
Vehicle dynamics - Chapter 2 (Road Loads)Vehicle dynamics - Chapter 2 (Road Loads)
Vehicle dynamics - Chapter 2 (Road Loads)
 
The diesel locomotive
The diesel locomotiveThe diesel locomotive
The diesel locomotive
 
Antilock Braking System
Antilock Braking SystemAntilock Braking System
Antilock Braking System
 
FTL cabliado mercedes benz.pdf
FTL cabliado mercedes benz.pdfFTL cabliado mercedes benz.pdf
FTL cabliado mercedes benz.pdf
 
Diagrama electrico peugeot 206
Diagrama electrico peugeot 206Diagrama electrico peugeot 206
Diagrama electrico peugeot 206
 
Automotive System presentation
Automotive System presentationAutomotive System presentation
Automotive System presentation
 
dr ecus null-1.pdf
dr ecus null-1.pdfdr ecus null-1.pdf
dr ecus null-1.pdf
 
Aerodynamic cars
Aerodynamic carsAerodynamic cars
Aerodynamic cars
 
Vehicle aerodynamics – effects of side winds
Vehicle aerodynamics – effects of side windsVehicle aerodynamics – effects of side winds
Vehicle aerodynamics – effects of side winds
 
Automobile safety system
Automobile safety systemAutomobile safety system
Automobile safety system
 
10 retarders
10 retarders10 retarders
10 retarders
 
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...Automotive Systems course (Module 06) - Power Transmission Systems in road ve...
Automotive Systems course (Module 06) - Power Transmission Systems in road ve...
 
Electronic Control Unit(ECU)
Electronic Control Unit(ECU)Electronic Control Unit(ECU)
Electronic Control Unit(ECU)
 
air suspension system
air suspension systemair suspension system
air suspension system
 
Air suspension in Railway coaches
Air suspension in Railway coachesAir suspension in Railway coaches
Air suspension in Railway coaches
 
Volvo g746 b motor grader service repair manual
Volvo g746 b motor grader service repair manualVolvo g746 b motor grader service repair manual
Volvo g746 b motor grader service repair manual
 
Anti lock braking system
Anti lock braking systemAnti lock braking system
Anti lock braking system
 
Chap70
Chap70Chap70
Chap70
 

Similaire à Halderman ch049 lecture

scada
scadascada
scadaedzam
 
Ieeepro techno solutions ieee embedded project - multi channel remote contr...
Ieeepro techno solutions   ieee embedded project - multi channel remote contr...Ieeepro techno solutions   ieee embedded project - multi channel remote contr...
Ieeepro techno solutions ieee embedded project - multi channel remote contr...srinivasanece7
 
Ieeepro techno solutions ieee embedded project - multi channel remote contr...
Ieeepro techno solutions   ieee embedded project - multi channel remote contr...Ieeepro techno solutions   ieee embedded project - multi channel remote contr...
Ieeepro techno solutions ieee embedded project - multi channel remote contr...srinivasanece7
 
Bus Data Acquisition and Remote Monitoring System Using Gsm & Can
Bus Data Acquisition and Remote Monitoring System Using Gsm & CanBus Data Acquisition and Remote Monitoring System Using Gsm & Can
Bus Data Acquisition and Remote Monitoring System Using Gsm & CanIOSR Journals
 
rohvjhgggghhgggggdtyffttyg_46218827462.pdf
rohvjhgggghhgggggdtyffttyg_46218827462.pdfrohvjhgggghhgggggdtyffttyg_46218827462.pdf
rohvjhgggghhgggggdtyffttyg_46218827462.pdfRobinKumar260480
 
Controller Area Network (Basic Level Presentation)
Controller Area Network (Basic Level Presentation)Controller Area Network (Basic Level Presentation)
Controller Area Network (Basic Level Presentation)Vikas Kumar
 
POWER LINE COMMUNICATION FOR VEHICLE
POWER LINE COMMUNICATION FOR VEHICLEPOWER LINE COMMUNICATION FOR VEHICLE
POWER LINE COMMUNICATION FOR VEHICLEIRJET Journal
 
Controller Area Network (CAN) Different Types
Controller Area Network (CAN) Different TypesController Area Network (CAN) Different Types
Controller Area Network (CAN) Different TypesFebinShaji9
 
Automotive Networks : A Review
Automotive Networks : A ReviewAutomotive Networks : A Review
Automotive Networks : A ReviewIJAEMSJORNAL
 
Wireless_communications_on_the_topic_by_WC
Wireless_communications_on_the_topic_by_WCWireless_communications_on_the_topic_by_WC
Wireless_communications_on_the_topic_by_WC1da20ec020ec
 
Application of NarrowBand Power Line Communication in Medium Voltage Smart Di...
Application of NarrowBand Power Line Communication in Medium Voltage Smart Di...Application of NarrowBand Power Line Communication in Medium Voltage Smart Di...
Application of NarrowBand Power Line Communication in Medium Voltage Smart Di...IRJET Journal
 
J1939 elektronik automotive_200809_pressarticle_en
J1939 elektronik automotive_200809_pressarticle_enJ1939 elektronik automotive_200809_pressarticle_en
J1939 elektronik automotive_200809_pressarticle_enJoko Setio Purnomo
 
Lecture 3 -_internet_infrastructure_updated_2011
Lecture 3 -_internet_infrastructure_updated_2011Lecture 3 -_internet_infrastructure_updated_2011
Lecture 3 -_internet_infrastructure_updated_2011Serious_SamSoul
 
IRM GROUP 2 CHAPTER 2
IRM GROUP 2 CHAPTER 2IRM GROUP 2 CHAPTER 2
IRM GROUP 2 CHAPTER 2Rexon Calub
 

Similaire à Halderman ch049 lecture (20)

scada
scadascada
scada
 
Ieeepro techno solutions ieee embedded project - multi channel remote contr...
Ieeepro techno solutions   ieee embedded project - multi channel remote contr...Ieeepro techno solutions   ieee embedded project - multi channel remote contr...
Ieeepro techno solutions ieee embedded project - multi channel remote contr...
 
Ieeepro techno solutions ieee embedded project - multi channel remote contr...
Ieeepro techno solutions   ieee embedded project - multi channel remote contr...Ieeepro techno solutions   ieee embedded project - multi channel remote contr...
Ieeepro techno solutions ieee embedded project - multi channel remote contr...
 
Bus Data Acquisition and Remote Monitoring System Using Gsm & Can
Bus Data Acquisition and Remote Monitoring System Using Gsm & CanBus Data Acquisition and Remote Monitoring System Using Gsm & Can
Bus Data Acquisition and Remote Monitoring System Using Gsm & Can
 
rohvjhgggghhgggggdtyffttyg_46218827462.pdf
rohvjhgggghhgggggdtyffttyg_46218827462.pdfrohvjhgggghhgggggdtyffttyg_46218827462.pdf
rohvjhgggghhgggggdtyffttyg_46218827462.pdf
 
Controller Area Network (Basic Level Presentation)
Controller Area Network (Basic Level Presentation)Controller Area Network (Basic Level Presentation)
Controller Area Network (Basic Level Presentation)
 
Dl34689693
Dl34689693Dl34689693
Dl34689693
 
POWER LINE COMMUNICATION FOR VEHICLE
POWER LINE COMMUNICATION FOR VEHICLEPOWER LINE COMMUNICATION FOR VEHICLE
POWER LINE COMMUNICATION FOR VEHICLE
 
Controller Area Network (CAN) Different Types
Controller Area Network (CAN) Different TypesController Area Network (CAN) Different Types
Controller Area Network (CAN) Different Types
 
11.chapters
11.chapters11.chapters
11.chapters
 
Automotive Networks : A Review
Automotive Networks : A ReviewAutomotive Networks : A Review
Automotive Networks : A Review
 
Autotronics.pptx
Autotronics.pptxAutotronics.pptx
Autotronics.pptx
 
Wireless_communications_on_the_topic_by_WC
Wireless_communications_on_the_topic_by_WCWireless_communications_on_the_topic_by_WC
Wireless_communications_on_the_topic_by_WC
 
Application of NarrowBand Power Line Communication in Medium Voltage Smart Di...
Application of NarrowBand Power Line Communication in Medium Voltage Smart Di...Application of NarrowBand Power Line Communication in Medium Voltage Smart Di...
Application of NarrowBand Power Line Communication in Medium Voltage Smart Di...
 
Epma 013
Epma 013Epma 013
Epma 013
 
J1939 elektronik automotive_200809_pressarticle_en
J1939 elektronik automotive_200809_pressarticle_enJ1939 elektronik automotive_200809_pressarticle_en
J1939 elektronik automotive_200809_pressarticle_en
 
Networking
NetworkingNetworking
Networking
 
How cable modems work
How cable modems workHow cable modems work
How cable modems work
 
Lecture 3 -_internet_infrastructure_updated_2011
Lecture 3 -_internet_infrastructure_updated_2011Lecture 3 -_internet_infrastructure_updated_2011
Lecture 3 -_internet_infrastructure_updated_2011
 
IRM GROUP 2 CHAPTER 2
IRM GROUP 2 CHAPTER 2IRM GROUP 2 CHAPTER 2
IRM GROUP 2 CHAPTER 2
 

Plus de mcfalltj

Halderman ch108 lecture
Halderman ch108 lectureHalderman ch108 lecture
Halderman ch108 lecturemcfalltj
 
Halderman ch107 lecture
Halderman ch107 lectureHalderman ch107 lecture
Halderman ch107 lecturemcfalltj
 
Halderman ch106 lecture
Halderman ch106 lectureHalderman ch106 lecture
Halderman ch106 lecturemcfalltj
 
Halderman ch105 lecture
Halderman ch105 lectureHalderman ch105 lecture
Halderman ch105 lecturemcfalltj
 
Halderman ch103 lecture
Halderman ch103 lectureHalderman ch103 lecture
Halderman ch103 lecturemcfalltj
 
Halderman ch101 lecture
Halderman ch101 lectureHalderman ch101 lecture
Halderman ch101 lecturemcfalltj
 
Halderman ch099 lecture
Halderman ch099 lectureHalderman ch099 lecture
Halderman ch099 lecturemcfalltj
 
Halderman ch097 lecture
Halderman ch097 lectureHalderman ch097 lecture
Halderman ch097 lecturemcfalltj
 
Halderman ch096 lecture
Halderman ch096 lectureHalderman ch096 lecture
Halderman ch096 lecturemcfalltj
 
Halderman ch092 lecture
Halderman ch092 lectureHalderman ch092 lecture
Halderman ch092 lecturemcfalltj
 

Plus de mcfalltj (20)

Chap71
Chap71Chap71
Chap71
 
Chap72
Chap72Chap72
Chap72
 
Chap73
Chap73Chap73
Chap73
 
Chap74
Chap74Chap74
Chap74
 
Chap75
Chap75Chap75
Chap75
 
Chap76
Chap76Chap76
Chap76
 
Chap78
Chap78Chap78
Chap78
 
Chap80
Chap80Chap80
Chap80
 
Chap81
Chap81Chap81
Chap81
 
Chap82
Chap82Chap82
Chap82
 
Halderman ch108 lecture
Halderman ch108 lectureHalderman ch108 lecture
Halderman ch108 lecture
 
Halderman ch107 lecture
Halderman ch107 lectureHalderman ch107 lecture
Halderman ch107 lecture
 
Halderman ch106 lecture
Halderman ch106 lectureHalderman ch106 lecture
Halderman ch106 lecture
 
Halderman ch105 lecture
Halderman ch105 lectureHalderman ch105 lecture
Halderman ch105 lecture
 
Halderman ch103 lecture
Halderman ch103 lectureHalderman ch103 lecture
Halderman ch103 lecture
 
Halderman ch101 lecture
Halderman ch101 lectureHalderman ch101 lecture
Halderman ch101 lecture
 
Halderman ch099 lecture
Halderman ch099 lectureHalderman ch099 lecture
Halderman ch099 lecture
 
Halderman ch097 lecture
Halderman ch097 lectureHalderman ch097 lecture
Halderman ch097 lecture
 
Halderman ch096 lecture
Halderman ch096 lectureHalderman ch096 lecture
Halderman ch096 lecture
 
Halderman ch092 lecture
Halderman ch092 lectureHalderman ch092 lecture
Halderman ch092 lecture
 

Halderman ch049 lecture

  • 1. CAN AND NETWORK COMMUNICATIONS 49
  • 2.
  • 3.
  • 5.
  • 6.
  • 7.
  • 8. Figure 49-1 Module communications makes controlling multiple electrical devices and accessories easier by utilizing simple low-current switches to signal another module, which does the actual switching of the current to the device.
  • 9.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19. Figure 49-2 A network allows all modules to communicate with other modules.
  • 20.
  • 21.
  • 23.
  • 24. Figure 49-3 A ring link network reduces the number of wires it takes to interconnect all of the modules.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29. Figure 49-4 In a star link network, all of the modules are connected using splice packs.
  • 30.
  • 31.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40. Figure 49-5 A typical BUS system showing module CAN communications and twisted pairs of wire.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46. Figure 49-6 UART serial data master control module is connected to the data link connector at pin 9.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53. Figure 49-7 The E & C serial data is connected to the data link connector (DLC) at pin 14.
  • 54.
  • 55.
  • 56.
  • 57. Figure 49-8 Class 2 serial data communication is accessible at the data link connector (DLC) at pin 2.
  • 58.
  • 59.
  • 60.
  • 61. Figure 49-9 Keyword 82 operates at a rate of 8,192 bps, similar to UART, and keyword 2000 operates at a baud rate of 10,400 bps (the same as a Class 2 communicator).
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72. Figure 49-10 GMLAN uses pins at terminals 6 and 14.
  • 73. Figure 49-11 A twisted pair is used by several different network communications protocols to reduce interference that can be induced in the wiring from nearby electromagnetic sources.
  • 74.
  • 75. Figure 49-12 A CANdi module will flash the green LED rapidly if communication is detected.
  • 77.
  • 78.
  • 79. Figure 49-13 A Ford OBD-I diagnostic link connector showing that SCP communication uses terminals in cavities 1 (upper left) and 3 (lower left).
  • 80.
  • 81.
  • 82.
  • 83.
  • 84. Figure 49-14 A scan tool can be used to check communications with the SCP BUS through terminals 2 and 10 and to the other modules connected to terminal 7 of the data link connector (DLC).
  • 85. Figure 49-15 Many Fords use UBP module communications along with CAN.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92. Figure 49-16 CCD signals are labeled plus and minus and use a twisted pair of wires. Notice that terminals 3 and 11 of the data link connector are used to access the CCD BUS from a scan tool. Pin 16 is used to supply 12 volts to the scan tool.
  • 93.
  • 94. Figure 49-17 The differential voltage for the CCD BUS is created by using resistors in a module.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104. Figure 49-18 Many Chrysler vehicles use both SCI and CCD for module communication.
  • 105.
  • 106.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116. Figure 49-19 CAN uses a differential type of module communication where the voltage on one wire is the equal but opposite voltage on the other wire. When no communication is occurring, both wires have 2.5 volts applied. When communication is occurring, CAN H (high) goes up 1 volt to 3.5 volts and CAN L (low) goes down 1 volt to 1.5 volts.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127. Figure 49-20 A typical (generic) system showing how the CAN BUS is connected to various electrical accessories and systems in the vehicle.
  • 128.
  • 129.
  • 131.
  • 132. Figure 49-21 A DLC from a pre-CAN Acura. It shows terminals in cavities 4, 5 (grounds), 7, 10, 14, and 16 (B+).
  • 133.
  • 134. Figure 49-22 A Honda scan display showing a B and two U codes, all indicating a BUS-related problem(s).
  • 136.
  • 137.
  • 138. Figure 49-23 A typical 38-cavity diagnostic connector as found on many BMW and Mercedes vehicles under the hood. The use of a breakout box (BOB) connected to this connector can often be used to gain access to module BUS information.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145. Figure 49-24 A breakout box (BOB) used to access the BUS terminals while using a scan tool to activate the modules. This breakout box is equipped with LEDs that light when circuits are active.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 154.
  • 155.
  • 156.
  • 157. Figure 49-25 This Honda scan tool allows the technician to turn on individual lights and operate individual power windows and other accessories that are connected to the BUS system.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163. Figure 49-26 Modules used in a General Motors vehicle can be “pinged” using a Tech 2 scan tool.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171. Figure 49-27 Checking the terminating resistors using an ohmmeter at the DLC.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184. Figure 49-28 Use front-probe terminals to access the data link connector. Always follow the specified back-probe and front-probe procedures as found in service information.
  • 185.
  • 186.
  • 187. Figure 49-29 (a) Data is sent in packets, so it is normal to see activity then a flat line between messages.
  • 188. Figure 49-29 (b) A CAN BUS should show voltages that are opposite when there is normal communications. CAN H (high) circuit should go from 2.5 volts at rest to 3.5 volts when active. The CAN L (low) circuit goes from 2.5 volts at rest to 1.5 volts when active.
  • 189.
  • 190.
  • 191.
  • 192. OBD-II DATA LINK CONNECTOR
  • 193.
  • 194. Figure 49-30 A 16 pin OBD-II DLC with terminals identified. Scan tools use the power pin (16) and ground pin (4) for power so that a separate cigarette lighter plug is not necessary on OBD-II vehicles.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.
  • 204. Figure 49-31 This schematic of a Chevrolet Equinox shows that the vehicle uses a GMLAN BUS (DLC pins 6 and 14), plus a Class 2 (pin 2) and UART.
  • 205.
  • 206.
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.

Notes de l'éditeur

  1. Figure 49-1 Module communications makes controlling multiple electrical devices and accessories easier by utilizing simple low-current switches to signal another module, which does the actual switching of the current to the device.
  2. Figure 49-2 A network allows all modules to communicate with other modules.
  3. Figure 49-3 A ring link network reduces the number of wires it takes to interconnect all of the modules.
  4. Figure 49-4 In a star link network, all of the modules are connected using splice packs.
  5. Figure 49-5 A typical BUS system showing module CAN communications and twisted pairs of wire.
  6. Figure 49-6 UART serial data master control module is connected to the data link connector at pin 9.
  7. Figure 49-7 The E & C serial data is connected to the data link connector (DLC) at pin 14.
  8. Figure 49-8 Class 2 serial data communication is accessible at the data link connector (DLC) at pin 2.
  9. Figure 49-9 Keyword 82 operates at a rate of 8,192 bps, similar to UART, and keyword 2000 operates at a baud rate of 10,400 bps (the same as a Class 2 communicator).
  10. Figure 49-10 GMLAN uses pins at terminals 6 and 14.
  11. Figure 49-11 A twisted pair is used by several different network communications protocols to reduce interference that can be induced in the wiring from nearby electromagnetic sources.
  12. Figure 49-12 A CANdi module will flash the green LED rapidly if communication is detected.
  13. Figure 49-13 A Ford OBD-I diagnostic link connector showing that SCP communication uses terminals in cavities 1 (upper left) and 3 (lower left).
  14. Figure 49-14 A scan tool can be used to check communications with the SCP BUS through terminals 2 and 10 and to the other modules connected to terminal 7 of the data link connector (DLC).
  15. Figure 49-15 Many Fords use UBP module communications along with CAN.
  16. Figure 49-16 CCD signals are labeled plus and minus and use a twisted pair of wires. Notice that terminals 3 and 11 of the data link connector are used to access the CCD BUS from a scan tool. Pin 16 is used to supply 12 volts to the scan tool.
  17. Figure 49-17 The differential voltage for the CCD BUS is created by using resistors in a module.
  18. Figure 49-18 Many Chrysler vehicles use both SCI and CCD for module communication.
  19. Figure 49-19 CAN uses a differential type of module communication where the voltage on one wire is the equal but opposite voltage on the other wire. When no communication is occurring, both wires have 2.5 volts applied. When communication is occurring, CAN H (high) goes up 1 volt to 3.5 volts and CAN L (low) goes down 1 volt to 1.5 volts.
  20. Figure 49-20 A typical (generic) system showing how the CAN BUS is connected to various electrical accessories and systems in the vehicle.
  21. Figure 49-21 A DLC from a pre-CAN Acura. It shows terminals in cavities 4, 5 (grounds), 7, 10, 14, and 16 (B+).
  22. Figure 49-22 A Honda scan display showing a B and two U codes, all indicating a BUS-related problem(s).
  23. Figure 49-23 A typical 38-cavity diagnostic connector as found on many BMW and Mercedes vehicles under the hood. The use of a breakout box (BOB) connected to this connector can often be used to gain access to module BUS information.
  24. Figure 49-24 A breakout box (BOB) used to access the BUS terminals while using a scan tool to activate the modules. This breakout box is equipped with LEDs that light when circuits are active.
  25. Figure 49-25 This Honda scan tool allows the technician to turn on individual lights and operate individual power windows and other accessories that are connected to the BUS system.
  26. Figure 49-26 Modules used in a General Motors vehicle can be “pinged” using a Tech 2 scan tool.
  27. Figure 49-27 Checking the terminating resistors using an ohmmeter at the DLC.
  28. Figure 49-28 Use front-probe terminals to access the data link connector. Always follow the specified back-probe and front-probe procedures as found in service information.
  29. Figure 49-29 (a) Data is sent in packets, so it is normal to see activity then a flat line between messages.
  30. Figure 49-29 (b) A CAN BUS should show voltages that are opposite when there is normal communications. CAN H (high) circuit should go from 2.5 volts at rest to 3.5 volts when active. The CAN L (low) circuit goes from 2.5 volts at rest to 1.5 volts when active.
  31. Figure 49-30 A 16 pin OBD-II DLC with terminals identified. Scan tools use the power pin (16) and ground pin (4) for power so that a separate cigarette lighter plug is not necessary on OBD-II vehicles.
  32. Figure 49-31 This schematic of a Chevrolet Equinox shows that the vehicle uses a GMLAN BUS (DLC pins 6 and 14), plus a Class 2 (pin 2) and UART.