SlideShare une entreprise Scribd logo
1  sur  78
 
 
Relationships ,[object Object],[object Object],[object Object],[object Object]
Intertidal Community
 
 
 
 
 
 
 
[object Object],[object Object],[object Object],[object Object],[object Object]
 
[object Object],[object Object],[object Object],[object Object],0 Chthamalus Balanus High tide Chthamalus realized niche Balanus realized niche Low tide Ocean Figure 37.2A
Niches: fundamental and realized ,[object Object],[object Object],[object Object],[object Object]
 
Modes of Competition ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
 
Predation
Fig. 54-6
 
 
 
 
 
 
 
Fig. 54-5 Canyon tree frog (a) Cryptic coloration (b) Aposematic coloration Poison dart frog (c) Batesian mimicry: A harmless species mimics a harmful one. Hawkmoth larva Green parrot snake Yellow jacket Cuckoo bee M üllerian mimicry: Two unpalatable species mimic each other. (d)
 
 
 
 
 
 
 
 
 
 
 
 
 
Diadema antillarium
 
Epinephelus striatus
 
 
 
 
 
 
 
 
Producers
Benthic non-motile consumers
Benthic motile consumers
Yellowstone Data Set
Cottonwoods
Willows
DBH
 
 
 
 
Figure 1-1.  The number of narrowleaf cottonwood trees established during 20-year intervals in a 9.5 km 2  area of the Lamar Valley, northern Yellowstone National Park. Ages were derived from size class data collected in 2001. Open bars represent numbers of cottonwoods on floodplain sites; closed bars are cottonwood numbers on meander sites (see “Student Instructions” for more information). The floodplain and meander tree populations were kept separate, because trees grow at different rates in these locations, requiring different age estimates based on tree diameter. The black bar represents an estimate of cottonwood seedling density on the entire study site in 2001, and is on a different scale (thousands vs. 50-60). The shaded area indicates expected numbers of cottonwoods in each age class under conditions of frequent/regular recruitment. From Beschta (2003).
Figure 1-2.  Twentieth century time series of the status of riparian willow communities on the Gallatin River, within and adjacent to northern Yellowstone National Park. Willow height and abundance were estimated from historical photographs as well as historical records and field measurements; “tall” willows are those  >  100 cm (but note that the shrub willows in this region may reach heights of 3 m or more under good conditions). The shaded region between dashed lines reflects the range of variability/uncertainty in the data, since they are based mainly on qualitative assessments as opposed to absolute measurements. After Ripple and Beschta (2004a).
what has happened to the woody riparian vegetation in these valleys?
Climatic factors  such as drought or low stream flows:  Cottonwood seedling establishment occurs most frequently in years with peak flows  >  290 m3/second, which is the peak flow for a 5-year return interval on the Lamar River and similar-sized streams in the Yellowstone area (Beschta 2003). Growth of existing riparian vegetation like willows may also be affected by the availability of shallow groundwater, and so it is possible that willow height could be suppressed during drought years or low stream-flow years. OR Biotic factors  such as over-browsing by ungulates (e.g. elk):  In their winter range, elk may switch from their preferred food (grass) to more nutritious woody plants like willow and cottonwood seedlings. In the setting of a National Park, where human hunting is not allowed, and in the absence of their natural predators (e.g. wolves), elk browsing might have a major impact on the vegetation.
Figure 2-1.  (a) Time series of annual peak flows for the Lamar River and the Clarks Fork River in Yellowstone National Park, for their periods of record. For these streams, 5-year peak flow events average ~ 290 m3/s (305 m3/s for Lamar River, 275 m3/s for Clarks Fork). From Beschta (2003). (b) Annual maximum snowpack depth, annual peak flow, and July streamflow from 1996-2002 in the upper Gallatin Basin of southwestern Montana, adjacent to Yellowstone National Park. The long-term average (from the 1930’s to 2002) for each variable is shown by the horizontal line. The shaded area in the figure represents a period of increasing willow height. From Ripple and Beschta (2004a).
Figure 2-2.  (a) Repeat photographs for an ungulate exclosure (inside the fenced area – note fence posts are ~3 m tall) in the Gallatin River basin adjacent to Yellowstone National Park, showing the status of willows within and outside of the exclosure during 1969 (winter), 1999 (spring), and 2003 (summer). (b) Percentage of willow leaders (= new shoots) browsed by elk, and average height (error bars = standard deviation) of willow leaders outside of the grazing exclosure shown above from 1998 to 2002. From Ripple and Beschta (2004a).
Figure 3 ,[object Object],[object Object],[object Object]
Figure 3. Twentieth century time series of (a) wolf populations and (b) elk population estimates and trend line for the Upper Gallatin Basin in the Yellowstone area. Shaded portions of a graph reflect uncertainty; elk census data are represented by closed diamonds. From Ripple and Beschta (2004a).
Figure 4-1 . Repeat photo pair showing riparian willow habitat on Blacktail Creek in the Yellowstone Northern Range: from 1996 (left), after 70 years of wolf extirpation; and in 2002 (right) after 7 years of wolf recovery. Notice the larger size and abundance of willows in 2002. From Ripple and Beschta (2004b).
Figure 4-2 . Repeat photo pair of upland willow habitat and browsing exclosure in the Gallatin River Basin, Yellowstone Northern Range: from 1995 ((a), top), after 70 years of wolf extirpation; and in 2003 ((b), bottom) after 8 years of wolf recovery. In this habitat, the difference in willow height inside and outside of the exclosure is the same in both photos; arrows indicate location of willows in and out of the exclosure. From Ripple and Beschta (2004a).
Figure 4-3 . Photo pair of aspen in riparian (A - top) vs. upland (B-bottom) habitat along the Lamar River in 2006. In riparian habitat there has been abundant recent recruitment of young aspen (3-4 m tall), while in an adjacent, more open upland there has been little recruitment (aspen <1 m tall). The dark, furrowed bark comprising approximately the lower 2.5m of aspen boles in (B) represents long-term damage due to bark stripping by elk. From Ripple & Beschta 2007. Ecology of Fear?
 
 
Figure S1. Cow (female) elk were killed less often than would be expected if wolf kills were random with respect to sex, while bull elk were killed more often than expected. Numbers within bars are the number of wolf kills observed (black bars) and the number expected on the basis of the population’s composition (shaded bars).  N  = 124 kills in the Gallatin Canyon population, with similar patterns reported for other populations in the Greater Yellowstone Ecosystem ( S4 ).

Contenu connexe

Tendances

Seminário 1 collins et all 2002_plant community (2)
Seminário 1 collins et all 2002_plant community (2)Seminário 1 collins et all 2002_plant community (2)
Seminário 1 collins et all 2002_plant community (2)Carlos Alberto Monteiro
 
Root experiment FORECOMAN
Root experiment FORECOMANRoot experiment FORECOMAN
Root experiment FORECOMANLiam Donnelly
 
Longleaf Pine Final Paper
Longleaf Pine Final PaperLongleaf Pine Final Paper
Longleaf Pine Final PaperKevin Willson
 
The Effect of Drought on Stomatal Conductance in the Biosphere 2
The Effect of Drought on Stomatal Conductance in the Biosphere 2The Effect of Drought on Stomatal Conductance in the Biosphere 2
The Effect of Drought on Stomatal Conductance in the Biosphere 2Justin Gay
 
Mawdsley & Carter 2015 - DC Bombus pensylvanicus - The Maryland Entomologist ...
Mawdsley & Carter 2015 - DC Bombus pensylvanicus - The Maryland Entomologist ...Mawdsley & Carter 2015 - DC Bombus pensylvanicus - The Maryland Entomologist ...
Mawdsley & Carter 2015 - DC Bombus pensylvanicus - The Maryland Entomologist ...Jonathan Mawdsley
 
Andy Gray - Alternatives for creating early seral forest openings
Andy Gray - Alternatives for creating early seral forest openingsAndy Gray - Alternatives for creating early seral forest openings
Andy Gray - Alternatives for creating early seral forest openingsEcoshare
 

Tendances (8)

Seminário 1 collins et all 2002_plant community (2)
Seminário 1 collins et all 2002_plant community (2)Seminário 1 collins et all 2002_plant community (2)
Seminário 1 collins et all 2002_plant community (2)
 
Voltas_et_al-2015-New_Phytologist
Voltas_et_al-2015-New_PhytologistVoltas_et_al-2015-New_Phytologist
Voltas_et_al-2015-New_Phytologist
 
Root experiment FORECOMAN
Root experiment FORECOMANRoot experiment FORECOMAN
Root experiment FORECOMAN
 
Longleaf Pine Final Paper
Longleaf Pine Final PaperLongleaf Pine Final Paper
Longleaf Pine Final Paper
 
The Effect of Drought on Stomatal Conductance in the Biosphere 2
The Effect of Drought on Stomatal Conductance in the Biosphere 2The Effect of Drought on Stomatal Conductance in the Biosphere 2
The Effect of Drought on Stomatal Conductance in the Biosphere 2
 
Acqua suolo foreste
Acqua suolo foresteAcqua suolo foreste
Acqua suolo foreste
 
Mawdsley & Carter 2015 - DC Bombus pensylvanicus - The Maryland Entomologist ...
Mawdsley & Carter 2015 - DC Bombus pensylvanicus - The Maryland Entomologist ...Mawdsley & Carter 2015 - DC Bombus pensylvanicus - The Maryland Entomologist ...
Mawdsley & Carter 2015 - DC Bombus pensylvanicus - The Maryland Entomologist ...
 
Andy Gray - Alternatives for creating early seral forest openings
Andy Gray - Alternatives for creating early seral forest openingsAndy Gray - Alternatives for creating early seral forest openings
Andy Gray - Alternatives for creating early seral forest openings
 

Similaire à Honors - Communities 1011

Honors ~ Populations 0910
Honors ~ Populations 0910Honors ~ Populations 0910
Honors ~ Populations 0910Michael Edgar
 
The Relationship Between the Understory Shrub Component of Coastal Redwoods
The Relationship Between the Understory Shrub Component of Coastal RedwoodsThe Relationship Between the Understory Shrub Component of Coastal Redwoods
The Relationship Between the Understory Shrub Component of Coastal Redwoods6D45520z848622K444
 
7_PDFsam_FBA_NEWS_70_WINTER_2016
7_PDFsam_FBA_NEWS_70_WINTER_20167_PDFsam_FBA_NEWS_70_WINTER_2016
7_PDFsam_FBA_NEWS_70_WINTER_2016Alex Seeney
 
Mark Salhany - Habitat Suitability Analysis Beaver
Mark Salhany - Habitat Suitability Analysis BeaverMark Salhany - Habitat Suitability Analysis Beaver
Mark Salhany - Habitat Suitability Analysis BeaverMark Salhany
 
Ghost forests global warming and the mountain pine beetle
Ghost forests global warming and the mountain pine beetleGhost forests global warming and the mountain pine beetle
Ghost forests global warming and the mountain pine beetleSimoneBoccuccia
 
The Role of Beaver in Southwest Montana
The Role of Beaver in Southwest MontanaThe Role of Beaver in Southwest Montana
The Role of Beaver in Southwest Montanaamychad
 
Capstone Project pgs 1-7
Capstone Project pgs 1-7Capstone Project pgs 1-7
Capstone Project pgs 1-7Steven Kelley
 
! 1!A Scientific Review of the Physiology of Pacific Salmo
! 1!A Scientific Review of the Physiology of Pacific Salmo! 1!A Scientific Review of the Physiology of Pacific Salmo
! 1!A Scientific Review of the Physiology of Pacific Salmotroutmanboris
 
11220141Community Ecology IStability, Resilience.docx
11220141Community Ecology IStability, Resilience.docx11220141Community Ecology IStability, Resilience.docx
11220141Community Ecology IStability, Resilience.docxhyacinthshackley2629
 
EcoSummit: Ecological Complexity and Sustainability, China 2007
EcoSummit: Ecological Complexity and Sustainability, China 2007 EcoSummit: Ecological Complexity and Sustainability, China 2007
EcoSummit: Ecological Complexity and Sustainability, China 2007 Dr. Amalesh Dhar
 
Ecologia de riachos e mata riparia
Ecologia de riachos e mata ripariaEcologia de riachos e mata riparia
Ecologia de riachos e mata ripariaLimnos Ufsc
 
Evolution of a new trait typically takes many generations. Yet a dra.pdf
Evolution of a new trait typically takes many generations. Yet a dra.pdfEvolution of a new trait typically takes many generations. Yet a dra.pdf
Evolution of a new trait typically takes many generations. Yet a dra.pdframizmemonahmedabado1
 
Fires & wolves yellowstone
Fires & wolves yellowstoneFires & wolves yellowstone
Fires & wolves yellowstoneMark McGinley
 
Final presentation MOF
Final presentation MOFFinal presentation MOF
Final presentation MOFjonbystedt
 
WNAN_75.3.281–290_Aflitto
WNAN_75.3.281–290_AflittoWNAN_75.3.281–290_Aflitto
WNAN_75.3.281–290_AflittoNicholas Aflitto
 

Similaire à Honors - Communities 1011 (20)

Honors ~ Populations 0910
Honors ~ Populations 0910Honors ~ Populations 0910
Honors ~ Populations 0910
 
The Relationship Between the Understory Shrub Component of Coastal Redwoods
The Relationship Between the Understory Shrub Component of Coastal RedwoodsThe Relationship Between the Understory Shrub Component of Coastal Redwoods
The Relationship Between the Understory Shrub Component of Coastal Redwoods
 
7_PDFsam_FBA_NEWS_70_WINTER_2016
7_PDFsam_FBA_NEWS_70_WINTER_20167_PDFsam_FBA_NEWS_70_WINTER_2016
7_PDFsam_FBA_NEWS_70_WINTER_2016
 
Mark Salhany - Habitat Suitability Analysis Beaver
Mark Salhany - Habitat Suitability Analysis BeaverMark Salhany - Habitat Suitability Analysis Beaver
Mark Salhany - Habitat Suitability Analysis Beaver
 
Ghost forests global warming and the mountain pine beetle
Ghost forests global warming and the mountain pine beetleGhost forests global warming and the mountain pine beetle
Ghost forests global warming and the mountain pine beetle
 
The Role of Beaver in Southwest Montana
The Role of Beaver in Southwest MontanaThe Role of Beaver in Southwest Montana
The Role of Beaver in Southwest Montana
 
Essay finished
Essay finishedEssay finished
Essay finished
 
DPerezThesis
DPerezThesisDPerezThesis
DPerezThesis
 
Capstone Project pgs 1-7
Capstone Project pgs 1-7Capstone Project pgs 1-7
Capstone Project pgs 1-7
 
! 1!A Scientific Review of the Physiology of Pacific Salmo
! 1!A Scientific Review of the Physiology of Pacific Salmo! 1!A Scientific Review of the Physiology of Pacific Salmo
! 1!A Scientific Review of the Physiology of Pacific Salmo
 
Grimaldo_et_al_2004
Grimaldo_et_al_2004Grimaldo_et_al_2004
Grimaldo_et_al_2004
 
11220141Community Ecology IStability, Resilience.docx
11220141Community Ecology IStability, Resilience.docx11220141Community Ecology IStability, Resilience.docx
11220141Community Ecology IStability, Resilience.docx
 
EcoSummit: Ecological Complexity and Sustainability, China 2007
EcoSummit: Ecological Complexity and Sustainability, China 2007 EcoSummit: Ecological Complexity and Sustainability, China 2007
EcoSummit: Ecological Complexity and Sustainability, China 2007
 
Ecologia de riachos e mata riparia
Ecologia de riachos e mata ripariaEcologia de riachos e mata riparia
Ecologia de riachos e mata riparia
 
Evolution of a new trait typically takes many generations. Yet a dra.pdf
Evolution of a new trait typically takes many generations. Yet a dra.pdfEvolution of a new trait typically takes many generations. Yet a dra.pdf
Evolution of a new trait typically takes many generations. Yet a dra.pdf
 
Fires & wolves yellowstone
Fires & wolves yellowstoneFires & wolves yellowstone
Fires & wolves yellowstone
 
Final presentation MOF
Final presentation MOFFinal presentation MOF
Final presentation MOF
 
final biog
final biogfinal biog
final biog
 
BIOL4120_Lect17.ppt
BIOL4120_Lect17.pptBIOL4120_Lect17.ppt
BIOL4120_Lect17.ppt
 
WNAN_75.3.281–290_Aflitto
WNAN_75.3.281–290_AflittoWNAN_75.3.281–290_Aflitto
WNAN_75.3.281–290_Aflitto
 

Plus de Michael Edgar

Honors ~ Cell cycle,mitosis and meiosis 1314
Honors ~ Cell cycle,mitosis and meiosis 1314Honors ~ Cell cycle,mitosis and meiosis 1314
Honors ~ Cell cycle,mitosis and meiosis 1314Michael Edgar
 
Honors ~ Cellular respiration & photosytnesis 1213
Honors ~ Cellular respiration & photosytnesis 1213Honors ~ Cellular respiration & photosytnesis 1213
Honors ~ Cellular respiration & photosytnesis 1213Michael Edgar
 
Honors ~ Cells & insulin and cell communication 1314
Honors ~ Cells & insulin and cell communication 1314Honors ~ Cells & insulin and cell communication 1314
Honors ~ Cells & insulin and cell communication 1314Michael Edgar
 
Honors - Carbon & organic compounds 1213
Honors - Carbon & organic compounds 1213Honors - Carbon & organic compounds 1213
Honors - Carbon & organic compounds 1213Michael Edgar
 
Honors Biology ~ Ecology 1314
Honors Biology ~ Ecology 1314Honors Biology ~ Ecology 1314
Honors Biology ~ Ecology 1314Michael Edgar
 
Honors ~ Photosynthesis1213
Honors ~ Photosynthesis1213Honors ~ Photosynthesis1213
Honors ~ Photosynthesis1213Michael Edgar
 
Honors ~ Cellular respiration 1213
Honors ~ Cellular respiration 1213Honors ~ Cellular respiration 1213
Honors ~ Cellular respiration 1213Michael Edgar
 
Honors - Cells, insulin, signaling and membranes 1213
Honors - Cells, insulin, signaling and membranes 1213Honors - Cells, insulin, signaling and membranes 1213
Honors - Cells, insulin, signaling and membranes 1213Michael Edgar
 
Honors - Organic compounds, enzymes and digestion 1213
Honors - Organic compounds, enzymes and digestion 1213Honors - Organic compounds, enzymes and digestion 1213
Honors - Organic compounds, enzymes and digestion 1213Michael Edgar
 
Honors BIology - Ecology 1213
Honors BIology - Ecology 1213Honors BIology - Ecology 1213
Honors BIology - Ecology 1213Michael Edgar
 
Honors biology chemistry and introduction 1213
Honors biology chemistry and introduction 1213Honors biology chemistry and introduction 1213
Honors biology chemistry and introduction 1213Michael Edgar
 
Honors - Cell cycle,mitosis and meiosis honors 1112
Honors - Cell cycle,mitosis and meiosis   honors 1112Honors - Cell cycle,mitosis and meiosis   honors 1112
Honors - Cell cycle,mitosis and meiosis honors 1112Michael Edgar
 
Biology - Cell cycle and mitosis 1112
Biology - Cell cycle and mitosis 1112Biology - Cell cycle and mitosis 1112
Biology - Cell cycle and mitosis 1112Michael Edgar
 
Honors - Cells & insulin, membrane and transport 1112b
Honors - Cells & insulin, membrane and transport 1112bHonors - Cells & insulin, membrane and transport 1112b
Honors - Cells & insulin, membrane and transport 1112bMichael Edgar
 
Biology - Cells, organic molecules, diffusion 1112
Biology - Cells, organic molecules, diffusion 1112Biology - Cells, organic molecules, diffusion 1112
Biology - Cells, organic molecules, diffusion 1112Michael Edgar
 
Biology ~ Populations 1112
Biology ~ Populations 1112Biology ~ Populations 1112
Biology ~ Populations 1112Michael Edgar
 
Biology ~ Ecosystems and communities 1112
Biology ~ Ecosystems and communities 1112Biology ~ Ecosystems and communities 1112
Biology ~ Ecosystems and communities 1112Michael Edgar
 

Plus de Michael Edgar (20)

Honors ~ Dna 1314
Honors ~ Dna 1314Honors ~ Dna 1314
Honors ~ Dna 1314
 
Honors ~ Cell cycle,mitosis and meiosis 1314
Honors ~ Cell cycle,mitosis and meiosis 1314Honors ~ Cell cycle,mitosis and meiosis 1314
Honors ~ Cell cycle,mitosis and meiosis 1314
 
Honors ~ Cellular respiration & photosytnesis 1213
Honors ~ Cellular respiration & photosytnesis 1213Honors ~ Cellular respiration & photosytnesis 1213
Honors ~ Cellular respiration & photosytnesis 1213
 
Honors ~ Cells & insulin and cell communication 1314
Honors ~ Cells & insulin and cell communication 1314Honors ~ Cells & insulin and cell communication 1314
Honors ~ Cells & insulin and cell communication 1314
 
Honors - Carbon & organic compounds 1213
Honors - Carbon & organic compounds 1213Honors - Carbon & organic compounds 1213
Honors - Carbon & organic compounds 1213
 
Honors Biology ~ Ecology 1314
Honors Biology ~ Ecology 1314Honors Biology ~ Ecology 1314
Honors Biology ~ Ecology 1314
 
Honors ~ DNA 1213
Honors ~ DNA 1213Honors ~ DNA 1213
Honors ~ DNA 1213
 
Honors ~ Photosynthesis1213
Honors ~ Photosynthesis1213Honors ~ Photosynthesis1213
Honors ~ Photosynthesis1213
 
Honors ~ Cellular respiration 1213
Honors ~ Cellular respiration 1213Honors ~ Cellular respiration 1213
Honors ~ Cellular respiration 1213
 
Honors - Cells, insulin, signaling and membranes 1213
Honors - Cells, insulin, signaling and membranes 1213Honors - Cells, insulin, signaling and membranes 1213
Honors - Cells, insulin, signaling and membranes 1213
 
Honors - Organic compounds, enzymes and digestion 1213
Honors - Organic compounds, enzymes and digestion 1213Honors - Organic compounds, enzymes and digestion 1213
Honors - Organic compounds, enzymes and digestion 1213
 
Honors BIology - Ecology 1213
Honors BIology - Ecology 1213Honors BIology - Ecology 1213
Honors BIology - Ecology 1213
 
Honors biology chemistry and introduction 1213
Honors biology chemistry and introduction 1213Honors biology chemistry and introduction 1213
Honors biology chemistry and introduction 1213
 
Honors - Dna 1112
Honors - Dna 1112Honors - Dna 1112
Honors - Dna 1112
 
Honors - Cell cycle,mitosis and meiosis honors 1112
Honors - Cell cycle,mitosis and meiosis   honors 1112Honors - Cell cycle,mitosis and meiosis   honors 1112
Honors - Cell cycle,mitosis and meiosis honors 1112
 
Biology - Cell cycle and mitosis 1112
Biology - Cell cycle and mitosis 1112Biology - Cell cycle and mitosis 1112
Biology - Cell cycle and mitosis 1112
 
Honors - Cells & insulin, membrane and transport 1112b
Honors - Cells & insulin, membrane and transport 1112bHonors - Cells & insulin, membrane and transport 1112b
Honors - Cells & insulin, membrane and transport 1112b
 
Biology - Cells, organic molecules, diffusion 1112
Biology - Cells, organic molecules, diffusion 1112Biology - Cells, organic molecules, diffusion 1112
Biology - Cells, organic molecules, diffusion 1112
 
Biology ~ Populations 1112
Biology ~ Populations 1112Biology ~ Populations 1112
Biology ~ Populations 1112
 
Biology ~ Ecosystems and communities 1112
Biology ~ Ecosystems and communities 1112Biology ~ Ecosystems and communities 1112
Biology ~ Ecosystems and communities 1112
 

Honors - Communities 1011

  • 1.  
  • 2.  
  • 3.
  • 5.  
  • 6.  
  • 7.  
  • 8.  
  • 9.  
  • 10.  
  • 11.  
  • 12.
  • 13.  
  • 14.
  • 15.
  • 16.  
  • 17.
  • 18.  
  • 19.  
  • 22.  
  • 23.  
  • 24.  
  • 25.  
  • 26.  
  • 27.  
  • 28.  
  • 29. Fig. 54-5 Canyon tree frog (a) Cryptic coloration (b) Aposematic coloration Poison dart frog (c) Batesian mimicry: A harmless species mimics a harmful one. Hawkmoth larva Green parrot snake Yellow jacket Cuckoo bee M üllerian mimicry: Two unpalatable species mimic each other. (d)
  • 30.  
  • 31.  
  • 32.  
  • 33.  
  • 34.  
  • 35.  
  • 36.  
  • 37.  
  • 38.  
  • 39.  
  • 40.  
  • 41.  
  • 42.  
  • 44.  
  • 46.  
  • 47.  
  • 48.  
  • 49.  
  • 50.  
  • 51.  
  • 52.  
  • 53.  
  • 60. DBH
  • 61.  
  • 62.  
  • 63.  
  • 64.  
  • 65. Figure 1-1. The number of narrowleaf cottonwood trees established during 20-year intervals in a 9.5 km 2 area of the Lamar Valley, northern Yellowstone National Park. Ages were derived from size class data collected in 2001. Open bars represent numbers of cottonwoods on floodplain sites; closed bars are cottonwood numbers on meander sites (see “Student Instructions” for more information). The floodplain and meander tree populations were kept separate, because trees grow at different rates in these locations, requiring different age estimates based on tree diameter. The black bar represents an estimate of cottonwood seedling density on the entire study site in 2001, and is on a different scale (thousands vs. 50-60). The shaded area indicates expected numbers of cottonwoods in each age class under conditions of frequent/regular recruitment. From Beschta (2003).
  • 66. Figure 1-2. Twentieth century time series of the status of riparian willow communities on the Gallatin River, within and adjacent to northern Yellowstone National Park. Willow height and abundance were estimated from historical photographs as well as historical records and field measurements; “tall” willows are those > 100 cm (but note that the shrub willows in this region may reach heights of 3 m or more under good conditions). The shaded region between dashed lines reflects the range of variability/uncertainty in the data, since they are based mainly on qualitative assessments as opposed to absolute measurements. After Ripple and Beschta (2004a).
  • 67. what has happened to the woody riparian vegetation in these valleys?
  • 68. Climatic factors such as drought or low stream flows: Cottonwood seedling establishment occurs most frequently in years with peak flows > 290 m3/second, which is the peak flow for a 5-year return interval on the Lamar River and similar-sized streams in the Yellowstone area (Beschta 2003). Growth of existing riparian vegetation like willows may also be affected by the availability of shallow groundwater, and so it is possible that willow height could be suppressed during drought years or low stream-flow years. OR Biotic factors such as over-browsing by ungulates (e.g. elk): In their winter range, elk may switch from their preferred food (grass) to more nutritious woody plants like willow and cottonwood seedlings. In the setting of a National Park, where human hunting is not allowed, and in the absence of their natural predators (e.g. wolves), elk browsing might have a major impact on the vegetation.
  • 69. Figure 2-1. (a) Time series of annual peak flows for the Lamar River and the Clarks Fork River in Yellowstone National Park, for their periods of record. For these streams, 5-year peak flow events average ~ 290 m3/s (305 m3/s for Lamar River, 275 m3/s for Clarks Fork). From Beschta (2003). (b) Annual maximum snowpack depth, annual peak flow, and July streamflow from 1996-2002 in the upper Gallatin Basin of southwestern Montana, adjacent to Yellowstone National Park. The long-term average (from the 1930’s to 2002) for each variable is shown by the horizontal line. The shaded area in the figure represents a period of increasing willow height. From Ripple and Beschta (2004a).
  • 70. Figure 2-2. (a) Repeat photographs for an ungulate exclosure (inside the fenced area – note fence posts are ~3 m tall) in the Gallatin River basin adjacent to Yellowstone National Park, showing the status of willows within and outside of the exclosure during 1969 (winter), 1999 (spring), and 2003 (summer). (b) Percentage of willow leaders (= new shoots) browsed by elk, and average height (error bars = standard deviation) of willow leaders outside of the grazing exclosure shown above from 1998 to 2002. From Ripple and Beschta (2004a).
  • 71.
  • 72. Figure 3. Twentieth century time series of (a) wolf populations and (b) elk population estimates and trend line for the Upper Gallatin Basin in the Yellowstone area. Shaded portions of a graph reflect uncertainty; elk census data are represented by closed diamonds. From Ripple and Beschta (2004a).
  • 73. Figure 4-1 . Repeat photo pair showing riparian willow habitat on Blacktail Creek in the Yellowstone Northern Range: from 1996 (left), after 70 years of wolf extirpation; and in 2002 (right) after 7 years of wolf recovery. Notice the larger size and abundance of willows in 2002. From Ripple and Beschta (2004b).
  • 74. Figure 4-2 . Repeat photo pair of upland willow habitat and browsing exclosure in the Gallatin River Basin, Yellowstone Northern Range: from 1995 ((a), top), after 70 years of wolf extirpation; and in 2003 ((b), bottom) after 8 years of wolf recovery. In this habitat, the difference in willow height inside and outside of the exclosure is the same in both photos; arrows indicate location of willows in and out of the exclosure. From Ripple and Beschta (2004a).
  • 75. Figure 4-3 . Photo pair of aspen in riparian (A - top) vs. upland (B-bottom) habitat along the Lamar River in 2006. In riparian habitat there has been abundant recent recruitment of young aspen (3-4 m tall), while in an adjacent, more open upland there has been little recruitment (aspen <1 m tall). The dark, furrowed bark comprising approximately the lower 2.5m of aspen boles in (B) represents long-term damage due to bark stripping by elk. From Ripple & Beschta 2007. Ecology of Fear?
  • 76.  
  • 77.  
  • 78. Figure S1. Cow (female) elk were killed less often than would be expected if wolf kills were random with respect to sex, while bull elk were killed more often than expected. Numbers within bars are the number of wolf kills observed (black bars) and the number expected on the basis of the population’s composition (shaded bars). N = 124 kills in the Gallatin Canyon population, with similar patterns reported for other populations in the Greater Yellowstone Ecosystem ( S4 ).

Notes de l'éditeur

  1. Figure 54.6 A West Indies manatee ( Trichechus manatus ) in Florida
  2. Figure 54.5 Examples of defensive coloration in animals