SlideShare a Scribd company logo
1 of 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DNA Replication
 
 
 
 
 
 
Exonuclease
 
 
Fig. 16-UN5
Fig. 16-13 Topoisomerase Helicase Primase Single-strand binding proteins RNA primer 5  5  5  3  3  3 
 
Fig. 16-16b6 Template strand 5  5  3  3  RNA primer 3  5  5  3  1 1 3  3  5  5  Okazaki fragment 1 2 3  3  5  5  1 2 3  3  5  5  1 2 5  5  3  3  Overall direction of replication
 
Fig. 16-16a Overview Origin of replication Leading strand Leading strand Lagging strand Lagging strand Overall directions of replication 1 2
Helicase
Topoisomerase and Helicase
 
 
 
 
Fig. 20-3-1 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1
Fig. 20-3-2 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. 2 One possible combination
Fig. 20-3-3 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1 One possible combination Recombinant DNA molecule DNA ligase seals strands. 3 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. 2
Fig. 20-9a Mixture of DNA mol- ecules of different sizes Power source Longer molecules Shorter molecules Gel Anode Cathode TECHNIQUE 1 2 Power source – + + –
Fig. 20-9b RESULTS
 
Fig. 20-10 Normal allele Sickle-cell allele Large fragment (b)  Electrophoresis of restriction fragments   from normal and sickle-cell alleles 201 bp 175 bp 376 bp (a)  Dde I  restriction sites in normal and   sickle-cell alleles of   -globin gene Normal   -globin allele Sickle-cell mutant   -globin allele Dde I Large fragment Large fragment 376 bp 201 bp 175 bp Dde I Dde I Dde I Dde I Dde I Dde I
 
Restriction Enzyme Lab ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Transcription and Translation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gene Regulation
Fig. 18-6 DNA Signal Gene NUCLEUS Chromatin modification Chromatin Gene available for transcription Exon Intron Tail RNA Cap RNA processing Primary transcript mRNA in nucleus Transport to cytoplasm mRNA in cytoplasm Translation CYTOPLASM Degradation of mRNA Protein processing Polypeptide Active protein Cellular function Transport to cellular destination Degradation of protein Transcription
Fig. 18-8-1 Enhancer (distal control elements) Proximal control elements Poly-A signal sequence Termination region Downstream Promoter Upstream DNA Exon Exon Exon Intron Intron
Fig. 18-8-2 Enhancer (distal control elements) Proximal control elements Poly-A signal sequence Termination region Downstream Promoter Upstream DNA Exon Exon Exon Intron Intron Cleaved 3   end of primary transcript Primary RNA transcript Poly-A signal Transcription 5  Exon Exon Exon Intron Intron
Fig. 18-8-3 Enhancer (distal control elements) Proximal control elements Poly-A signal sequence Termination region Downstream Promoter Upstream DNA Exon Exon Exon Intron Intron Exon Exon Exon Intron Intron Cleaved 3   end of primary transcript Primary RNA transcript Poly-A signal Transcription 5  RNA processing Intron RNA Coding segment mRNA 5   Cap 5   UTR Start codon Stop codon 3   UTR Poly-A tail 3 
Fig. 18-9-1 Enhancer TATA box Promoter Activators DNA Gene Distal control element
Fig. 18-9-2 Enhancer TATA box Promoter Activators DNA Gene Distal control element Group of mediator proteins DNA-bending protein General transcription factors
Fig. 18-9-3 Enhancer TATA box Promoter Activators DNA Gene Distal control element Group of mediator proteins DNA-bending protein General transcription factors RNA polymerase  II RNA polymerase  II Transcription initiation complex RNA synthesis
Fig. 18-10 Control elements Enhancer Available activators Albumin gene (b) Lens cell Crystallin gene expressed Available activators LENS CELL NUCLEUS LIVER CELL NUCLEUS Crystallin gene Promoter (a) Liver cell Crystallin gene not expressed Albumin gene expressed Albumin gene not expressed
Fig. 18-2 Regulation of gene expression trpE  gene trpD  gene trpC  gene trpB  gene trpA  gene (b) Regulation of enzyme production (a) Regulation of enzyme activity Enzyme 1 Enzyme 2 Enzyme 3 Tryptophan Precursor Feedback inhibition
Fig. 18-3a Polypeptide subunits that make up enzymes for tryptophan synthesis (a) Tryptophan absent, repressor inactive, operon on DNA mRNA 5  Protein Inactive repressor RNA polymerase Regulatory gene Promoter Promoter trp  operon Genes of operon Operator Stop codon Start codon mRNA trpA 5  3  trpR trpE trpD trpC trpB A B C D E
Fig. 18-3b-1 (b) Tryptophan present, repressor active, operon off Tryptophan (corepressor) No RNA made Active repressor mRNA Protein DNA
Fig. 18-3b-2 (b) Tryptophan present, repressor active, operon off Tryptophan (corepressor) No RNA made Active repressor mRNA Protein DNA
Fig. 18-4a (a) Lactose absent, repressor active, operon off DNA Protein Active repressor RNA polymerase Regulatory gene Promoter Operator mRNA 5  3  No RNA made lac I lacZ
Fig. 18-4b (b) Lactose present, repressor inactive, operon on mRNA Protein DNA mRNA 5  Inactive repressor Allolactose (inducer) 5  3  RNA polymerase Permease Transacetylase lac  operon  -Galactosidase lacY lacZ lacA lac I
Fig. 18-5 (b) Lactose present, glucose present (cAMP level low): little  lac  mRNA synthesized cAMP DNA Inactive  lac repressor Allolactose Inactive CAP lac I CAP-binding site Promoter Active CAP Operator lacZ RNA polymerase binds and transcribes Inactive  lac repressor lacZ Operator Promoter DNA CAP-binding site lac I RNA polymerase less likely to bind Inactive CAP (a) Lactose present, glucose scarce (cAMP level high): abundant  lac  mRNA synthesized
Genetic Engineering & Cloning
mtDNA  Theories, Molecular Basis and Real-World Application
 
 
“ The Other Genome” mtDNA
Endosymbiotic Theory
 
 
 
 
 
 
 
DNA Laboratory at Milton Academy ,[object Object],[object Object],[object Object],[object Object]
mtDNA Control Region
 
Polymerase Chain Reaction
PCR http:// www.dnalc.org/resources/spotlight/index.html
 
Taq  DNA Polymerase
Fig. 20-8a 5  Genomic DNA TECHNIQUE Target sequence 3  3  5 
Fig. 20-8b Cycle 1 yields 2 molecules Denaturation Annealing Extension Primers New nucleo- tides 3  5  3 2 5  3  1
Fig. 20-8c Cycle 2 yields 4 molecules
Fig. 20-8d Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence
http:// www.youtube.com/watch?v =CQEaX3MiDow   http:// www.youtube.com/watch?v =x5yPkxCLads&feature=related
Gel Electrophoresis
DNA Sequencing
Kate Bator Connor Johnson
Fig. 20-12 DNA (template strand) TECHNIQUE RESULTS DNA (template  strand) DNA  polymerase Primer Deoxyribonucleotides Shortest Dideoxyribonucleotides (fluorescently tagged) Labeled strands Longest Shortest labeled strand Longest labeled strand Laser Direction of movement of strands Detector Last base of longest labeled strand Last base of shortest labeled strand dATP dCTP dTTP dGTP ddATP ddCTP ddTTP ddGTP
Fig. 20-12a DNA (template strand) TECHNIQUE DNA  polymerase Primer Deoxyribonucleotides Dideoxyribonucleotides (fluorescently tagged) dATP dCTP dTTP dGTP ddATP ddCTP ddTTP ddGTP
Fig. 20-12b TECHNIQUE RESULTS DNA (template  strand) Shortest Labeled strands Longest Shortest labeled strand Longest labeled strand Laser Direction of movement of strands Detector Last base of longest labeled strand Last base of shortest labeled strand
mtDNA Sequence http://www.dnalc.org/view/15979-A-mitochondrial-DNA-sequence.html
RNAi
 
RNA Induced Silencing Complex
 
 
Vascular Endothelial Growth Factor
Cloning
Fig. 20-4-1 Bacterial cell Bacterial  plasmid lacZ  gene Hummingbird  cell Gene of interest Hummingbird  DNA fragments Restriction site Sticky ends amp R  gene TECHNIQUE
Fig. 20-4-2 Bacterial cell Bacterial  plasmid lacZ  gene Hummingbird  cell Gene of interest Hummingbird  DNA fragments Restriction site Sticky ends amp R  gene TECHNIQUE Recombinant plasmids Nonrecombinant  plasmid
Fig. 20-4-3 Bacterial cell Bacterial  plasmid lacZ  gene Hummingbird  cell Gene of interest Hummingbird  DNA fragments Restriction site Sticky ends amp R  gene TECHNIQUE Recombinant plasmids Nonrecombinant  plasmid Bacteria carrying plasmids
Fig. 20-4-4 Bacterial cell Bacterial  plasmid lacZ  gene Hummingbird  cell Gene of interest Hummingbird  DNA fragments Restriction site Sticky ends amp R  gene TECHNIQUE Recombinant plasmids Nonrecombinant  plasmid Bacteria carrying plasmids RESULTS Colony carrying non- recombinant plasmid with intact  lacZ  gene One of many bacterial clones Colony carrying recombinant  plasmid with disrupted  lacZ  gene

More Related Content

What's hot

Transcription of DNA to RNA full description only on Slide share by Naeem Ullah
Transcription of DNA to RNA full description only on Slide share by Naeem UllahTranscription of DNA to RNA full description only on Slide share by Naeem Ullah
Transcription of DNA to RNA full description only on Slide share by Naeem UllahYo yo Nody khan
 
DNA & Protein Synthesis Jeopardy
DNA & Protein Synthesis JeopardyDNA & Protein Synthesis Jeopardy
DNA & Protein Synthesis Jeopardycallanm
 
281 lec19 euk_translation
281 lec19 euk_translation281 lec19 euk_translation
281 lec19 euk_translationhhalhaddad
 
Eukaryotic translation pathway
Eukaryotic translation pathwayEukaryotic translation pathway
Eukaryotic translation pathwaySukhvir Kaur Ph.D
 
section 5, chapter 4
section 5, chapter 4section 5, chapter 4
section 5, chapter 4Michael Walls
 
Eukaryotic translation
Eukaryotic translationEukaryotic translation
Eukaryotic translationkamilKhan63
 
Divakaran Molecular level of Eukaryotic translation
Divakaran Molecular level of Eukaryotic translationDivakaran Molecular level of Eukaryotic translation
Divakaran Molecular level of Eukaryotic translationaishudiva
 
Puton bosc2010 bio_python-modules-rna
Puton bosc2010 bio_python-modules-rnaPuton bosc2010 bio_python-modules-rna
Puton bosc2010 bio_python-modules-rnaBOSC 2010
 
Characterization of the phi29 Bacteriophage Nanomotor
Characterization of the phi29 Bacteriophage NanomotorCharacterization of the phi29 Bacteriophage Nanomotor
Characterization of the phi29 Bacteriophage Nanomotorpcpchic
 
Critical components of p et,pcdna and cmv expression vectors
Critical components of p et,pcdna and cmv expression vectorsCritical components of p et,pcdna and cmv expression vectors
Critical components of p et,pcdna and cmv expression vectorsRashmi Rawat
 
Hoofdstuk 17 2008 deel 1
Hoofdstuk 17 2008 deel 1Hoofdstuk 17 2008 deel 1
Hoofdstuk 17 2008 deel 1guest29b928
 
Nuclear export of mRNA
Nuclear export of mRNANuclear export of mRNA
Nuclear export of mRNAADITIBAGDI
 
Defense of thesis presentation
Defense of thesis presentationDefense of thesis presentation
Defense of thesis presentationDanil Koovely
 

What's hot (19)

Transcription of DNA to RNA full description only on Slide share by Naeem Ullah
Transcription of DNA to RNA full description only on Slide share by Naeem UllahTranscription of DNA to RNA full description only on Slide share by Naeem Ullah
Transcription of DNA to RNA full description only on Slide share by Naeem Ullah
 
DNA & Protein Synthesis Jeopardy
DNA & Protein Synthesis JeopardyDNA & Protein Synthesis Jeopardy
DNA & Protein Synthesis Jeopardy
 
281 lec19 euk_translation
281 lec19 euk_translation281 lec19 euk_translation
281 lec19 euk_translation
 
Translation
TranslationTranslation
Translation
 
Eukaryotic translation pathway
Eukaryotic translation pathwayEukaryotic translation pathway
Eukaryotic translation pathway
 
Transcription
TranscriptionTranscription
Transcription
 
section 5, chapter 4
section 5, chapter 4section 5, chapter 4
section 5, chapter 4
 
Eukaryotic translation
Eukaryotic translationEukaryotic translation
Eukaryotic translation
 
Divakaran Molecular level of Eukaryotic translation
Divakaran Molecular level of Eukaryotic translationDivakaran Molecular level of Eukaryotic translation
Divakaran Molecular level of Eukaryotic translation
 
26 transl
26 transl26 transl
26 transl
 
Puton bosc2010 bio_python-modules-rna
Puton bosc2010 bio_python-modules-rnaPuton bosc2010 bio_python-modules-rna
Puton bosc2010 bio_python-modules-rna
 
Feb. 2011
Feb. 2011Feb. 2011
Feb. 2011
 
Feb. 2011
Feb. 2011Feb. 2011
Feb. 2011
 
Characterization of the phi29 Bacteriophage Nanomotor
Characterization of the phi29 Bacteriophage NanomotorCharacterization of the phi29 Bacteriophage Nanomotor
Characterization of the phi29 Bacteriophage Nanomotor
 
Critical components of p et,pcdna and cmv expression vectors
Critical components of p et,pcdna and cmv expression vectorsCritical components of p et,pcdna and cmv expression vectors
Critical components of p et,pcdna and cmv expression vectors
 
Hoofdstuk 17 2008 deel 1
Hoofdstuk 17 2008 deel 1Hoofdstuk 17 2008 deel 1
Hoofdstuk 17 2008 deel 1
 
Bioinformatica
BioinformaticaBioinformatica
Bioinformatica
 
Nuclear export of mRNA
Nuclear export of mRNANuclear export of mRNA
Nuclear export of mRNA
 
Defense of thesis presentation
Defense of thesis presentationDefense of thesis presentation
Defense of thesis presentation
 

Similar to Honors ~ DNA 1011

Similar to Honors ~ DNA 1011 (20)

Honors ~ DNA 1213
Honors ~ DNA 1213Honors ~ DNA 1213
Honors ~ DNA 1213
 
Hoofdstuk 17 2008 deel 2
Hoofdstuk 17 2008 deel 2Hoofdstuk 17 2008 deel 2
Hoofdstuk 17 2008 deel 2
 
Ap Chap 18 Pp
Ap Chap 18 PpAp Chap 18 Pp
Ap Chap 18 Pp
 
Systems Microbiology
Systems MicrobiologySystems Microbiology
Systems Microbiology
 
Ch 7 dna structure and function blank sp 2018
Ch 7 dna structure and function blank sp 2018Ch 7 dna structure and function blank sp 2018
Ch 7 dna structure and function blank sp 2018
 
Motiffs
MotiffsMotiffs
Motiffs
 
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx
356 MHR • Calculus and Vectors • Chapter 6Eighth pages.docx
 
Transcription
TranscriptionTranscription
Transcription
 
Protein synthesis with turning point
Protein synthesis with turning pointProtein synthesis with turning point
Protein synthesis with turning point
 
Microbial genetics translation
Microbial genetics translationMicrobial genetics translation
Microbial genetics translation
 
Footprint
FootprintFootprint
Footprint
 
Transcription
TranscriptionTranscription
Transcription
 
19_21Translation
19_21Translation19_21Translation
19_21Translation
 
translation.pdf_20240403_214559_0000.pptx
translation.pdf_20240403_214559_0000.pptxtranslation.pdf_20240403_214559_0000.pptx
translation.pdf_20240403_214559_0000.pptx
 
RNAProcessingCh12.pdf
RNAProcessingCh12.pdfRNAProcessingCh12.pdf
RNAProcessingCh12.pdf
 
Transcription dna2011
Transcription dna2011Transcription dna2011
Transcription dna2011
 
transcription in prokaryotes and RNA polymerase of prokaryotes
transcription in prokaryotes and RNA polymerase of prokaryotestranscription in prokaryotes and RNA polymerase of prokaryotes
transcription in prokaryotes and RNA polymerase of prokaryotes
 
Transcription, mechanism
Transcription, mechanismTranscription, mechanism
Transcription, mechanism
 
DNA Transcription and RNA Processing
DNA Transcription and RNA Processing DNA Transcription and RNA Processing
DNA Transcription and RNA Processing
 
Synthesis of proteins__regulation_11
Synthesis of proteins__regulation_11Synthesis of proteins__regulation_11
Synthesis of proteins__regulation_11
 

More from Michael Edgar

Honors ~ Cell cycle,mitosis and meiosis 1314
Honors ~ Cell cycle,mitosis and meiosis 1314Honors ~ Cell cycle,mitosis and meiosis 1314
Honors ~ Cell cycle,mitosis and meiosis 1314Michael Edgar
 
Honors ~ Cellular respiration & photosytnesis 1213
Honors ~ Cellular respiration & photosytnesis 1213Honors ~ Cellular respiration & photosytnesis 1213
Honors ~ Cellular respiration & photosytnesis 1213Michael Edgar
 
Honors ~ Cells & insulin and cell communication 1314
Honors ~ Cells & insulin and cell communication 1314Honors ~ Cells & insulin and cell communication 1314
Honors ~ Cells & insulin and cell communication 1314Michael Edgar
 
Honors - Carbon & organic compounds 1213
Honors - Carbon & organic compounds 1213Honors - Carbon & organic compounds 1213
Honors - Carbon & organic compounds 1213Michael Edgar
 
Honors Biology ~ Ecology 1314
Honors Biology ~ Ecology 1314Honors Biology ~ Ecology 1314
Honors Biology ~ Ecology 1314Michael Edgar
 
Honors ~ Photosynthesis1213
Honors ~ Photosynthesis1213Honors ~ Photosynthesis1213
Honors ~ Photosynthesis1213Michael Edgar
 
Honors ~ Cellular respiration 1213
Honors ~ Cellular respiration 1213Honors ~ Cellular respiration 1213
Honors ~ Cellular respiration 1213Michael Edgar
 
Honors - Cells, insulin, signaling and membranes 1213
Honors - Cells, insulin, signaling and membranes 1213Honors - Cells, insulin, signaling and membranes 1213
Honors - Cells, insulin, signaling and membranes 1213Michael Edgar
 
Honors - Organic compounds, enzymes and digestion 1213
Honors - Organic compounds, enzymes and digestion 1213Honors - Organic compounds, enzymes and digestion 1213
Honors - Organic compounds, enzymes and digestion 1213Michael Edgar
 
Honors BIology - Ecology 1213
Honors BIology - Ecology 1213Honors BIology - Ecology 1213
Honors BIology - Ecology 1213Michael Edgar
 
Honors biology chemistry and introduction 1213
Honors biology chemistry and introduction 1213Honors biology chemistry and introduction 1213
Honors biology chemistry and introduction 1213Michael Edgar
 
Honors - Cell cycle,mitosis and meiosis honors 1112
Honors - Cell cycle,mitosis and meiosis   honors 1112Honors - Cell cycle,mitosis and meiosis   honors 1112
Honors - Cell cycle,mitosis and meiosis honors 1112Michael Edgar
 
Biology - Cell cycle and mitosis 1112
Biology - Cell cycle and mitosis 1112Biology - Cell cycle and mitosis 1112
Biology - Cell cycle and mitosis 1112Michael Edgar
 
Honors - Cells & insulin, membrane and transport 1112b
Honors - Cells & insulin, membrane and transport 1112bHonors - Cells & insulin, membrane and transport 1112b
Honors - Cells & insulin, membrane and transport 1112bMichael Edgar
 
Biology - Cells, organic molecules, diffusion 1112
Biology - Cells, organic molecules, diffusion 1112Biology - Cells, organic molecules, diffusion 1112
Biology - Cells, organic molecules, diffusion 1112Michael Edgar
 
Biology ~ Populations 1112
Biology ~ Populations 1112Biology ~ Populations 1112
Biology ~ Populations 1112Michael Edgar
 
Biology ~ Ecosystems and communities 1112
Biology ~ Ecosystems and communities 1112Biology ~ Ecosystems and communities 1112
Biology ~ Ecosystems and communities 1112Michael Edgar
 
Honors ~ Carbon, organic compounds and digestion 1112
Honors ~ Carbon, organic compounds and digestion 1112Honors ~ Carbon, organic compounds and digestion 1112
Honors ~ Carbon, organic compounds and digestion 1112Michael Edgar
 
Honors ~ Ecosystems 1112
Honors ~ Ecosystems 1112Honors ~ Ecosystems 1112
Honors ~ Ecosystems 1112Michael Edgar
 

More from Michael Edgar (20)

Honors ~ Cell cycle,mitosis and meiosis 1314
Honors ~ Cell cycle,mitosis and meiosis 1314Honors ~ Cell cycle,mitosis and meiosis 1314
Honors ~ Cell cycle,mitosis and meiosis 1314
 
Honors ~ Cellular respiration & photosytnesis 1213
Honors ~ Cellular respiration & photosytnesis 1213Honors ~ Cellular respiration & photosytnesis 1213
Honors ~ Cellular respiration & photosytnesis 1213
 
Honors ~ Cells & insulin and cell communication 1314
Honors ~ Cells & insulin and cell communication 1314Honors ~ Cells & insulin and cell communication 1314
Honors ~ Cells & insulin and cell communication 1314
 
Honors - Carbon & organic compounds 1213
Honors - Carbon & organic compounds 1213Honors - Carbon & organic compounds 1213
Honors - Carbon & organic compounds 1213
 
Honors Biology ~ Ecology 1314
Honors Biology ~ Ecology 1314Honors Biology ~ Ecology 1314
Honors Biology ~ Ecology 1314
 
Honors ~ Photosynthesis1213
Honors ~ Photosynthesis1213Honors ~ Photosynthesis1213
Honors ~ Photosynthesis1213
 
Honors ~ Cellular respiration 1213
Honors ~ Cellular respiration 1213Honors ~ Cellular respiration 1213
Honors ~ Cellular respiration 1213
 
Honors - Cells, insulin, signaling and membranes 1213
Honors - Cells, insulin, signaling and membranes 1213Honors - Cells, insulin, signaling and membranes 1213
Honors - Cells, insulin, signaling and membranes 1213
 
Honors - Organic compounds, enzymes and digestion 1213
Honors - Organic compounds, enzymes and digestion 1213Honors - Organic compounds, enzymes and digestion 1213
Honors - Organic compounds, enzymes and digestion 1213
 
Honors BIology - Ecology 1213
Honors BIology - Ecology 1213Honors BIology - Ecology 1213
Honors BIology - Ecology 1213
 
Honors biology chemistry and introduction 1213
Honors biology chemistry and introduction 1213Honors biology chemistry and introduction 1213
Honors biology chemistry and introduction 1213
 
Honors - Dna 1112
Honors - Dna 1112Honors - Dna 1112
Honors - Dna 1112
 
Honors - Cell cycle,mitosis and meiosis honors 1112
Honors - Cell cycle,mitosis and meiosis   honors 1112Honors - Cell cycle,mitosis and meiosis   honors 1112
Honors - Cell cycle,mitosis and meiosis honors 1112
 
Biology - Cell cycle and mitosis 1112
Biology - Cell cycle and mitosis 1112Biology - Cell cycle and mitosis 1112
Biology - Cell cycle and mitosis 1112
 
Honors - Cells & insulin, membrane and transport 1112b
Honors - Cells & insulin, membrane and transport 1112bHonors - Cells & insulin, membrane and transport 1112b
Honors - Cells & insulin, membrane and transport 1112b
 
Biology - Cells, organic molecules, diffusion 1112
Biology - Cells, organic molecules, diffusion 1112Biology - Cells, organic molecules, diffusion 1112
Biology - Cells, organic molecules, diffusion 1112
 
Biology ~ Populations 1112
Biology ~ Populations 1112Biology ~ Populations 1112
Biology ~ Populations 1112
 
Biology ~ Ecosystems and communities 1112
Biology ~ Ecosystems and communities 1112Biology ~ Ecosystems and communities 1112
Biology ~ Ecosystems and communities 1112
 
Honors ~ Carbon, organic compounds and digestion 1112
Honors ~ Carbon, organic compounds and digestion 1112Honors ~ Carbon, organic compounds and digestion 1112
Honors ~ Carbon, organic compounds and digestion 1112
 
Honors ~ Ecosystems 1112
Honors ~ Ecosystems 1112Honors ~ Ecosystems 1112
Honors ~ Ecosystems 1112
 

Honors ~ DNA 1011

  • 1.  
  • 2.  
  • 3.  
  • 4.  
  • 5.  
  • 6.  
  • 7.  
  • 8.  
  • 9.  
  • 10.  
  • 11.  
  • 12.  
  • 13.  
  • 14.  
  • 15.  
  • 17.  
  • 18.  
  • 19.  
  • 20.  
  • 21.  
  • 22.  
  • 24.  
  • 25.  
  • 27. Fig. 16-13 Topoisomerase Helicase Primase Single-strand binding proteins RNA primer 5  5  5  3  3  3 
  • 28.  
  • 29. Fig. 16-16b6 Template strand 5  5  3  3  RNA primer 3  5  5  3  1 1 3  3  5  5  Okazaki fragment 1 2 3  3  5  5  1 2 3  3  5  5  1 2 5  5  3  3  Overall direction of replication
  • 30.  
  • 31. Fig. 16-16a Overview Origin of replication Leading strand Leading strand Lagging strand Lagging strand Overall directions of replication 1 2
  • 34.  
  • 35.  
  • 36.  
  • 37.  
  • 38. Fig. 20-3-1 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1
  • 39. Fig. 20-3-2 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. 2 One possible combination
  • 40. Fig. 20-3-3 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1 One possible combination Recombinant DNA molecule DNA ligase seals strands. 3 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. 2
  • 41. Fig. 20-9a Mixture of DNA mol- ecules of different sizes Power source Longer molecules Shorter molecules Gel Anode Cathode TECHNIQUE 1 2 Power source – + + –
  • 43.  
  • 44. Fig. 20-10 Normal allele Sickle-cell allele Large fragment (b) Electrophoresis of restriction fragments from normal and sickle-cell alleles 201 bp 175 bp 376 bp (a) Dde I restriction sites in normal and sickle-cell alleles of  -globin gene Normal  -globin allele Sickle-cell mutant  -globin allele Dde I Large fragment Large fragment 376 bp 201 bp 175 bp Dde I Dde I Dde I Dde I Dde I Dde I
  • 45.  
  • 46.
  • 48.  
  • 49.  
  • 50.  
  • 51.  
  • 52.  
  • 53.  
  • 54.  
  • 55.  
  • 56.  
  • 57.  
  • 58.  
  • 59.  
  • 60.  
  • 61.  
  • 62.  
  • 63.  
  • 64.  
  • 65.  
  • 66.  
  • 67.  
  • 68.  
  • 69.  
  • 71. Fig. 18-6 DNA Signal Gene NUCLEUS Chromatin modification Chromatin Gene available for transcription Exon Intron Tail RNA Cap RNA processing Primary transcript mRNA in nucleus Transport to cytoplasm mRNA in cytoplasm Translation CYTOPLASM Degradation of mRNA Protein processing Polypeptide Active protein Cellular function Transport to cellular destination Degradation of protein Transcription
  • 72. Fig. 18-8-1 Enhancer (distal control elements) Proximal control elements Poly-A signal sequence Termination region Downstream Promoter Upstream DNA Exon Exon Exon Intron Intron
  • 73. Fig. 18-8-2 Enhancer (distal control elements) Proximal control elements Poly-A signal sequence Termination region Downstream Promoter Upstream DNA Exon Exon Exon Intron Intron Cleaved 3  end of primary transcript Primary RNA transcript Poly-A signal Transcription 5  Exon Exon Exon Intron Intron
  • 74. Fig. 18-8-3 Enhancer (distal control elements) Proximal control elements Poly-A signal sequence Termination region Downstream Promoter Upstream DNA Exon Exon Exon Intron Intron Exon Exon Exon Intron Intron Cleaved 3  end of primary transcript Primary RNA transcript Poly-A signal Transcription 5  RNA processing Intron RNA Coding segment mRNA 5  Cap 5  UTR Start codon Stop codon 3  UTR Poly-A tail 3 
  • 75. Fig. 18-9-1 Enhancer TATA box Promoter Activators DNA Gene Distal control element
  • 76. Fig. 18-9-2 Enhancer TATA box Promoter Activators DNA Gene Distal control element Group of mediator proteins DNA-bending protein General transcription factors
  • 77. Fig. 18-9-3 Enhancer TATA box Promoter Activators DNA Gene Distal control element Group of mediator proteins DNA-bending protein General transcription factors RNA polymerase II RNA polymerase II Transcription initiation complex RNA synthesis
  • 78. Fig. 18-10 Control elements Enhancer Available activators Albumin gene (b) Lens cell Crystallin gene expressed Available activators LENS CELL NUCLEUS LIVER CELL NUCLEUS Crystallin gene Promoter (a) Liver cell Crystallin gene not expressed Albumin gene expressed Albumin gene not expressed
  • 79. Fig. 18-2 Regulation of gene expression trpE gene trpD gene trpC gene trpB gene trpA gene (b) Regulation of enzyme production (a) Regulation of enzyme activity Enzyme 1 Enzyme 2 Enzyme 3 Tryptophan Precursor Feedback inhibition
  • 80. Fig. 18-3a Polypeptide subunits that make up enzymes for tryptophan synthesis (a) Tryptophan absent, repressor inactive, operon on DNA mRNA 5  Protein Inactive repressor RNA polymerase Regulatory gene Promoter Promoter trp operon Genes of operon Operator Stop codon Start codon mRNA trpA 5  3  trpR trpE trpD trpC trpB A B C D E
  • 81. Fig. 18-3b-1 (b) Tryptophan present, repressor active, operon off Tryptophan (corepressor) No RNA made Active repressor mRNA Protein DNA
  • 82. Fig. 18-3b-2 (b) Tryptophan present, repressor active, operon off Tryptophan (corepressor) No RNA made Active repressor mRNA Protein DNA
  • 83. Fig. 18-4a (a) Lactose absent, repressor active, operon off DNA Protein Active repressor RNA polymerase Regulatory gene Promoter Operator mRNA 5  3  No RNA made lac I lacZ
  • 84. Fig. 18-4b (b) Lactose present, repressor inactive, operon on mRNA Protein DNA mRNA 5  Inactive repressor Allolactose (inducer) 5  3  RNA polymerase Permease Transacetylase lac operon  -Galactosidase lacY lacZ lacA lac I
  • 85. Fig. 18-5 (b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized cAMP DNA Inactive lac repressor Allolactose Inactive CAP lac I CAP-binding site Promoter Active CAP Operator lacZ RNA polymerase binds and transcribes Inactive lac repressor lacZ Operator Promoter DNA CAP-binding site lac I RNA polymerase less likely to bind Inactive CAP (a) Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized
  • 87. mtDNA Theories, Molecular Basis and Real-World Application
  • 88.  
  • 89.  
  • 90. “ The Other Genome” mtDNA
  • 92.  
  • 93.  
  • 94.  
  • 95.  
  • 96.  
  • 97.  
  • 98.  
  • 99.
  • 101.  
  • 104.  
  • 105. Taq DNA Polymerase
  • 106. Fig. 20-8a 5  Genomic DNA TECHNIQUE Target sequence 3  3  5 
  • 107. Fig. 20-8b Cycle 1 yields 2 molecules Denaturation Annealing Extension Primers New nucleo- tides 3  5  3 2 5  3  1
  • 108. Fig. 20-8c Cycle 2 yields 4 molecules
  • 109. Fig. 20-8d Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence
  • 110. http:// www.youtube.com/watch?v =CQEaX3MiDow http:// www.youtube.com/watch?v =x5yPkxCLads&feature=related
  • 113. Kate Bator Connor Johnson
  • 114. Fig. 20-12 DNA (template strand) TECHNIQUE RESULTS DNA (template strand) DNA polymerase Primer Deoxyribonucleotides Shortest Dideoxyribonucleotides (fluorescently tagged) Labeled strands Longest Shortest labeled strand Longest labeled strand Laser Direction of movement of strands Detector Last base of longest labeled strand Last base of shortest labeled strand dATP dCTP dTTP dGTP ddATP ddCTP ddTTP ddGTP
  • 115. Fig. 20-12a DNA (template strand) TECHNIQUE DNA polymerase Primer Deoxyribonucleotides Dideoxyribonucleotides (fluorescently tagged) dATP dCTP dTTP dGTP ddATP ddCTP ddTTP ddGTP
  • 116. Fig. 20-12b TECHNIQUE RESULTS DNA (template strand) Shortest Labeled strands Longest Shortest labeled strand Longest labeled strand Laser Direction of movement of strands Detector Last base of longest labeled strand Last base of shortest labeled strand
  • 118. RNAi
  • 119.  
  • 121.  
  • 122.  
  • 125. Fig. 20-4-1 Bacterial cell Bacterial plasmid lacZ gene Hummingbird cell Gene of interest Hummingbird DNA fragments Restriction site Sticky ends amp R gene TECHNIQUE
  • 126. Fig. 20-4-2 Bacterial cell Bacterial plasmid lacZ gene Hummingbird cell Gene of interest Hummingbird DNA fragments Restriction site Sticky ends amp R gene TECHNIQUE Recombinant plasmids Nonrecombinant plasmid
  • 127. Fig. 20-4-3 Bacterial cell Bacterial plasmid lacZ gene Hummingbird cell Gene of interest Hummingbird DNA fragments Restriction site Sticky ends amp R gene TECHNIQUE Recombinant plasmids Nonrecombinant plasmid Bacteria carrying plasmids
  • 128. Fig. 20-4-4 Bacterial cell Bacterial plasmid lacZ gene Hummingbird cell Gene of interest Hummingbird DNA fragments Restriction site Sticky ends amp R gene TECHNIQUE Recombinant plasmids Nonrecombinant plasmid Bacteria carrying plasmids RESULTS Colony carrying non- recombinant plasmid with intact lacZ gene One of many bacterial clones Colony carrying recombinant plasmid with disrupted lacZ gene