SlideShare une entreprise Scribd logo
1  sur  53
Télécharger pour lire hors ligne
SECTION 6-2
Parallelograms
Friday, May 2, 14
Essential Questions
How do you recognize and apply properties of the sides and
angles of parallelograms?
How do you recognize and apply properties of the diagonals of
parallelograms?
Friday, May 2, 14
Vocabulary
1. Parallelogram:
Friday, May 2, 14
Vocabulary
1. Parallelogram: A quadrilateral that has two pairs of parallel sides
Friday, May 2, 14
Properties and Theorems
6.3 - Opposite Sides:
6.4 - Opposite Angles:
6.5 - Consecutive Angles:
6.6 - Right Angles:
Friday, May 2, 14
Properties and Theorems
6.3 - Opposite Sides: If a quadrilateral is a parallelogram, then its
opposite sides are congruent
6.4 - Opposite Angles:
6.5 - Consecutive Angles:
6.6 - Right Angles:
Friday, May 2, 14
Properties and Theorems
6.3 - Opposite Sides: If a quadrilateral is a parallelogram, then its
opposite sides are congruent
6.4 - Opposite Angles: If a quadrilateral is a parallelogram, then its
opposite angles are congruent
6.5 - Consecutive Angles:
6.6 - Right Angles:
Friday, May 2, 14
Properties and Theorems
6.3 - Opposite Sides: If a quadrilateral is a parallelogram, then its
opposite sides are congruent
6.4 - Opposite Angles: If a quadrilateral is a parallelogram, then its
opposite angles are congruent
6.5 - Consecutive Angles: If a quadrilateral is a parallelogram, then its
consecutive angles are supplementary
6.6 - Right Angles:
Friday, May 2, 14
Properties and Theorems
6.3 - Opposite Sides: If a quadrilateral is a parallelogram, then its
opposite sides are congruent
6.4 - Opposite Angles: If a quadrilateral is a parallelogram, then its
opposite angles are congruent
6.5 - Consecutive Angles: If a quadrilateral is a parallelogram, then its
consecutive angles are supplementary
6.6 - Right Angles: If a quadrilateral has one right angle, then it has four
right angles
Friday, May 2, 14
Properties and Theorems
6.7 - Bisecting Diagonals:
6.8 - Triangles from Diagonals:
Friday, May 2, 14
Properties and Theorems
6.7 - Bisecting Diagonals: If a quadrilateral is a parallelogram, then its
diagonals bisect each other
6.8 - Triangles from Diagonals:
Friday, May 2, 14
Properties and Theorems
6.7 - Bisecting Diagonals: If a quadrilateral is a parallelogram, then its
diagonals bisect each other
6.8 - Triangles from Diagonals: If a quadrilateral is a parallelogram, then
each diagonal separates the parallelogram into two congruent
triangles
Friday, May 2, 14
Example 1
In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches.
Find each measure.
a. AD
b. m∠C
c. m∠D
Friday, May 2, 14
Example 1
In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches.
Find each measure.
a. AD 15 inches
b. m∠C
c. m∠D
Friday, May 2, 14
Example 1
In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches.
Find each measure.
a. AD 15 inches
b. m∠C = 180 − 32
c. m∠D
Friday, May 2, 14
Example 1
In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches.
Find each measure.
a. AD 15 inches
b. m∠C = 180 − 32 = 148°
c. m∠D
Friday, May 2, 14
Example 1
In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches.
Find each measure.
a. AD 15 inches
b. m∠C = 180 − 32 = 148°
c. m∠D = 32°
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r b. s
c. t
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
b. s
c. t
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
4r = 18
b. s
c. t
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
4r = 18
r = 4.5
b. s
c. t
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
4r = 18
r = 4.5
b. s
ZV = VX c. t
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
4r = 18
r = 4.5
b. s
ZV = VX
8s = 7s + 3
c. t
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
4r = 18
r = 4.5
b. s
ZV = VX
8s = 7s + 3
s = 3
c. t
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
4r = 18
r = 4.5
b. s
ZV = VX
8s = 7s + 3
s = 3
c. t
m∠VWX = m∠VYZ
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
4r = 18
r = 4.5
b. s
ZV = VX
8s = 7s + 3
s = 3
c. t
m∠VWX = m∠VYZ
2t = 18
Friday, May 2, 14
Example 2
If WXYZ is a parallelogram, find the value of the indicated variable.
m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°,
WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18
a. r
WX = ZY
4r = 18
r = 4.5
b. s
ZV = VX
8s = 7s + 3
s = 3
c. t
m∠VWX = m∠VYZ
2t = 18 t = 9
Friday, May 2, 14
Example 3
What are the coordinates of the intersection of the diagonals of
parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)?
Friday, May 2, 14
Example 3
What are the coordinates of the intersection of the diagonals of
parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)?
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
Friday, May 2, 14
Example 3
What are the coordinates of the intersection of the diagonals of
parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)?
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
M(MP) =
−3+ 5
2
,
0 + 4
2
⎛
⎝⎜
⎞
⎠⎟
Friday, May 2, 14
Example 3
What are the coordinates of the intersection of the diagonals of
parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)?
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
M(MP) =
−3+ 5
2
,
0 + 4
2
⎛
⎝⎜
⎞
⎠⎟ =
2
2
,
4
2
⎛
⎝⎜
⎞
⎠⎟
Friday, May 2, 14
Example 3
What are the coordinates of the intersection of the diagonals of
parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)?
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
M(MP) =
−3+ 5
2
,
0 + 4
2
⎛
⎝⎜
⎞
⎠⎟ =
2
2
,
4
2
⎛
⎝⎜
⎞
⎠⎟ = 1,2( )
Friday, May 2, 14
Example 3
What are the coordinates of the intersection of the diagonals of
parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)?
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
M(MP) =
−3+ 5
2
,
0 + 4
2
⎛
⎝⎜
⎞
⎠⎟ =
2
2
,
4
2
⎛
⎝⎜
⎞
⎠⎟ = 1,2( )
M(NR) =
−1+ 3
2
,
3+1
2
⎛
⎝⎜
⎞
⎠⎟
Friday, May 2, 14
Example 3
What are the coordinates of the intersection of the diagonals of
parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)?
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
M(MP) =
−3+ 5
2
,
0 + 4
2
⎛
⎝⎜
⎞
⎠⎟ =
2
2
,
4
2
⎛
⎝⎜
⎞
⎠⎟ = 1,2( )
M(NR) =
−1+ 3
2
,
3+1
2
⎛
⎝⎜
⎞
⎠⎟ =
2
2
,
4
2
⎛
⎝⎜
⎞
⎠⎟
Friday, May 2, 14
Example 3
What are the coordinates of the intersection of the diagonals of
parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)?
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
M(MP) =
−3+ 5
2
,
0 + 4
2
⎛
⎝⎜
⎞
⎠⎟ =
2
2
,
4
2
⎛
⎝⎜
⎞
⎠⎟ = 1,2( )
M(NR) =
−1+ 3
2
,
3+1
2
⎛
⎝⎜
⎞
⎠⎟ =
2
2
,
4
2
⎛
⎝⎜
⎞
⎠⎟ = 1,2( )
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
1. ABCD is a parallelogram, AC and BD are diagonals,
P is the intersection of AC and BD
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
1. ABCD is a parallelogram, AC and BD are diagonals,
P is the intersection of AC and BD
1. Given
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
1. ABCD is a parallelogram, AC and BD are diagonals,
P is the intersection of AC and BD
1. Given
2. AB is parallel to CD
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
1. ABCD is a parallelogram, AC and BD are diagonals,
P is the intersection of AC and BD
1. Given
2. Definition of parallelogram2. AB is parallel to CD
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
1. ABCD is a parallelogram, AC and BD are diagonals,
P is the intersection of AC and BD
1. Given
2. Definition of parallelogram
3. ∠BAC ≅ ∠DCA, ∠BDC ≅ ∠DBA
2. AB is parallel to CD
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
1. ABCD is a parallelogram, AC and BD are diagonals,
P is the intersection of AC and BD
1. Given
2. Definition of parallelogram
3. ∠BAC ≅ ∠DCA, ∠BDC ≅ ∠DBA
2. AB is parallel to CD
3.Alt. int. ∠’s of parallel lines ≅
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
1. ABCD is a parallelogram, AC and BD are diagonals,
P is the intersection of AC and BD
1. Given
2. Definition of parallelogram
3. ∠BAC ≅ ∠DCA, ∠BDC ≅ ∠DBA
2. AB is parallel to CD
3.Alt. int. ∠’s of parallel lines ≅
4. AB ≅ CD
Friday, May 2, 14
Example 4
Given ABCD, AC and BD are diagonals, P is the intersection of AC
and BD, prove that AC and BD bisect each other.
1. ABCD is a parallelogram, AC and BD are diagonals,
P is the intersection of AC and BD
1. Given
2. Definition of parallelogram
3. ∠BAC ≅ ∠DCA, ∠BDC ≅ ∠DBA
2. AB is parallel to CD
3.Alt. int. ∠’s of parallel lines ≅
4. AB ≅ CD 4. Opposite sides of parallelograms ≅
Friday, May 2, 14
Example 4
Friday, May 2, 14
Example 4
5. ∆APB ≅ ∆CPD
Friday, May 2, 14
Example 4
5. ∆APB ≅ ∆CPD 5.ASA
Friday, May 2, 14
Example 4
5. ∆APB ≅ ∆CPD 5.ASA
6. AP ≅ CP, DP ≅ BP
Friday, May 2, 14
Example 4
5. ∆APB ≅ ∆CPD 5.ASA
6. AP ≅ CP, DP ≅ BP 6. CPCTC
Friday, May 2, 14
Example 4
5. ∆APB ≅ ∆CPD 5.ASA
6. AP ≅ CP, DP ≅ BP 6. CPCTC
7. AC and BD bisect each other
Friday, May 2, 14
Example 4
5. ∆APB ≅ ∆CPD 5.ASA
6. AP ≅ CP, DP ≅ BP 6. CPCTC
7. AC and BD bisect each other 7. Def. of bisect
Friday, May 2, 14
Problem Set
Friday, May 2, 14
Problem Set
p. 403 #1-23 odd, 27-35 odd, 43, 51, 57
“The best way to predict the future is to invent it.” - Alan Kay
Friday, May 2, 14

Contenu connexe

Tendances (19)

Geometry Section 4-5 1112
Geometry Section 4-5 1112Geometry Section 4-5 1112
Geometry Section 4-5 1112
 
Geometry Section 2-7 1112
Geometry Section 2-7 1112Geometry Section 2-7 1112
Geometry Section 2-7 1112
 
Geometry Section 4-6 1112
Geometry Section 4-6 1112Geometry Section 4-6 1112
Geometry Section 4-6 1112
 
Geometry unit 6.4
Geometry unit 6.4Geometry unit 6.4
Geometry unit 6.4
 
Geometry unit 6.5
Geometry unit 6.5Geometry unit 6.5
Geometry unit 6.5
 
Geometry unit 6.2.2
Geometry unit 6.2.2Geometry unit 6.2.2
Geometry unit 6.2.2
 
Geometry unit 6.6
Geometry unit 6.6Geometry unit 6.6
Geometry unit 6.6
 
Geometry Section 1-3 1112
Geometry Section 1-3 1112Geometry Section 1-3 1112
Geometry Section 1-3 1112
 
Geometry unit 6.2
Geometry unit 6.2Geometry unit 6.2
Geometry unit 6.2
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
 
Geometry Section 1-5 1112
Geometry Section 1-5 1112Geometry Section 1-5 1112
Geometry Section 1-5 1112
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
 
6.progressions
6.progressions6.progressions
6.progressions
 
8.7 coordinate proof with quadrilaterals
8.7 coordinate proof with quadrilaterals8.7 coordinate proof with quadrilaterals
8.7 coordinate proof with quadrilaterals
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
 
5.4 use medians and altitudes
5.4 use medians and altitudes5.4 use medians and altitudes
5.4 use medians and altitudes
 
Geometry Section 4-2
Geometry Section 4-2Geometry Section 4-2
Geometry Section 4-2
 
Geometry Section 4-3
Geometry Section 4-3Geometry Section 4-3
Geometry Section 4-3
 
Module 3 triangle congruence
Module 3   triangle congruenceModule 3   triangle congruence
Module 3 triangle congruence
 

En vedette (19)

Geometry Section 3-1 1112
Geometry Section 3-1 1112Geometry Section 3-1 1112
Geometry Section 3-1 1112
 
Geometry Section 3-4 1112
Geometry Section 3-4 1112Geometry Section 3-4 1112
Geometry Section 3-4 1112
 
Geometry Section 3-6 1112
Geometry Section 3-6 1112Geometry Section 3-6 1112
Geometry Section 3-6 1112
 
Geometry Section 3-3 1112
Geometry Section 3-3 1112Geometry Section 3-3 1112
Geometry Section 3-3 1112
 
Geometry Section 3-2 1112
Geometry Section 3-2 1112Geometry Section 3-2 1112
Geometry Section 3-2 1112
 
Geometry Section 3-5 1112
Geometry Section 3-5 1112Geometry Section 3-5 1112
Geometry Section 3-5 1112
 
Geometry Section 5-3 11-12
Geometry Section 5-3 11-12Geometry Section 5-3 11-12
Geometry Section 5-3 11-12
 
Geometry Section 5-4 1112
Geometry Section 5-4 1112Geometry Section 5-4 1112
Geometry Section 5-4 1112
 
Geometry Section 5-1 1112
Geometry Section 5-1 1112Geometry Section 5-1 1112
Geometry Section 5-1 1112
 
Geometry section 4-1 1112
Geometry section 4-1 1112Geometry section 4-1 1112
Geometry section 4-1 1112
 
Geometry Section 5-2 1112
Geometry Section 5-2 1112Geometry Section 5-2 1112
Geometry Section 5-2 1112
 
Geometry Section 2-8 1112
Geometry Section 2-8 1112Geometry Section 2-8 1112
Geometry Section 2-8 1112
 
Geometry Section 2-5 1112
Geometry Section 2-5 1112Geometry Section 2-5 1112
Geometry Section 2-5 1112
 
Geometry Section 2-2 1112
Geometry Section 2-2 1112Geometry Section 2-2 1112
Geometry Section 2-2 1112
 
Geometry Section 2-3 1112
Geometry Section 2-3 1112Geometry Section 2-3 1112
Geometry Section 2-3 1112
 
Geometry Section 5-5 1112
Geometry Section 5-5 1112Geometry Section 5-5 1112
Geometry Section 5-5 1112
 
Geometry Section 2-6
Geometry Section 2-6Geometry Section 2-6
Geometry Section 2-6
 
Geometry Section 2-4 1112
Geometry Section 2-4 1112Geometry Section 2-4 1112
Geometry Section 2-4 1112
 
Geometry Section 2-1 1112
Geometry Section 2-1 1112Geometry Section 2-1 1112
Geometry Section 2-1 1112
 

Similaire à Geometry Section 6-2 1112

March09 March13
March09 March13March09 March13
March09 March13
jschendel
 
Chapter 5 unit f 001
Chapter 5 unit f 001Chapter 5 unit f 001
Chapter 5 unit f 001
jbianco9910
 
8.5 congruent polygons 1
8.5 congruent polygons 18.5 congruent polygons 1
8.5 congruent polygons 1
bweldon
 
Similarity day 1 sss, sas, aa
Similarity day 1  sss, sas, aaSimilarity day 1  sss, sas, aa
Similarity day 1 sss, sas, aa
jbianco9910
 
Coordinategeometry1 1
Coordinategeometry1 1Coordinategeometry1 1
Coordinategeometry1 1
TGTMATH
 
Coordinategeometry1 1
Coordinategeometry1 1Coordinategeometry1 1
Coordinategeometry1 1
TGTMATH
 

Similaire à Geometry Section 6-2 1112 (20)

Geosection6 2-120410225858-phpapp02
Geosection6 2-120410225858-phpapp02Geosection6 2-120410225858-phpapp02
Geosection6 2-120410225858-phpapp02
 
March09 March13
March09 March13March09 March13
March09 March13
 
March09 March13
March09 March13March09 March13
March09 March13
 
9.5 Kites and Trapezoids
9.5 Kites and Trapezoids9.5 Kites and Trapezoids
9.5 Kites and Trapezoids
 
Module 3 similarity
Module 3   similarityModule 3   similarity
Module 3 similarity
 
powerpoints congruence.pptx
powerpoints congruence.pptxpowerpoints congruence.pptx
powerpoints congruence.pptx
 
Online Unit 2.pptx
Online Unit 2.pptxOnline Unit 2.pptx
Online Unit 2.pptx
 
Chapter 5 unit f 001
Chapter 5 unit f 001Chapter 5 unit f 001
Chapter 5 unit f 001
 
Geosection6 5-120423162405-phpapp02
Geosection6 5-120423162405-phpapp02Geosection6 5-120423162405-phpapp02
Geosection6 5-120423162405-phpapp02
 
CEM REVIEWER
CEM REVIEWERCEM REVIEWER
CEM REVIEWER
 
QUADRILATERALS.pptx
QUADRILATERALS.pptxQUADRILATERALS.pptx
QUADRILATERALS.pptx
 
Geometry Section 4-2
Geometry Section 4-2Geometry Section 4-2
Geometry Section 4-2
 
8.5 congruent polygons 1
8.5 congruent polygons 18.5 congruent polygons 1
8.5 congruent polygons 1
 
Geometry unit 1.3
Geometry unit 1.3Geometry unit 1.3
Geometry unit 1.3
 
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
Calculating the Angle between Projections of Vectors via Geometric (Clifford)...
 
Transformación de coordenadas
Transformación de coordenadasTransformación de coordenadas
Transformación de coordenadas
 
1. ejercicios
1. ejercicios1. ejercicios
1. ejercicios
 
Similarity day 1 sss, sas, aa
Similarity day 1  sss, sas, aaSimilarity day 1  sss, sas, aa
Similarity day 1 sss, sas, aa
 
Coordinategeometry1 1
Coordinategeometry1 1Coordinategeometry1 1
Coordinategeometry1 1
 
Coordinategeometry1 1
Coordinategeometry1 1Coordinategeometry1 1
Coordinategeometry1 1
 

Plus de Jimbo Lamb

Plus de Jimbo Lamb (20)

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2
 
Algebra 2 Section 4-3
Algebra 2 Section 4-3Algebra 2 Section 4-3
Algebra 2 Section 4-3
 
Geometry Section 4-5
Geometry Section 4-5Geometry Section 4-5
Geometry Section 4-5
 

Dernier

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 

Dernier (20)

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 

Geometry Section 6-2 1112

  • 2. Essential Questions How do you recognize and apply properties of the sides and angles of parallelograms? How do you recognize and apply properties of the diagonals of parallelograms? Friday, May 2, 14
  • 4. Vocabulary 1. Parallelogram: A quadrilateral that has two pairs of parallel sides Friday, May 2, 14
  • 5. Properties and Theorems 6.3 - Opposite Sides: 6.4 - Opposite Angles: 6.5 - Consecutive Angles: 6.6 - Right Angles: Friday, May 2, 14
  • 6. Properties and Theorems 6.3 - Opposite Sides: If a quadrilateral is a parallelogram, then its opposite sides are congruent 6.4 - Opposite Angles: 6.5 - Consecutive Angles: 6.6 - Right Angles: Friday, May 2, 14
  • 7. Properties and Theorems 6.3 - Opposite Sides: If a quadrilateral is a parallelogram, then its opposite sides are congruent 6.4 - Opposite Angles: If a quadrilateral is a parallelogram, then its opposite angles are congruent 6.5 - Consecutive Angles: 6.6 - Right Angles: Friday, May 2, 14
  • 8. Properties and Theorems 6.3 - Opposite Sides: If a quadrilateral is a parallelogram, then its opposite sides are congruent 6.4 - Opposite Angles: If a quadrilateral is a parallelogram, then its opposite angles are congruent 6.5 - Consecutive Angles: If a quadrilateral is a parallelogram, then its consecutive angles are supplementary 6.6 - Right Angles: Friday, May 2, 14
  • 9. Properties and Theorems 6.3 - Opposite Sides: If a quadrilateral is a parallelogram, then its opposite sides are congruent 6.4 - Opposite Angles: If a quadrilateral is a parallelogram, then its opposite angles are congruent 6.5 - Consecutive Angles: If a quadrilateral is a parallelogram, then its consecutive angles are supplementary 6.6 - Right Angles: If a quadrilateral has one right angle, then it has four right angles Friday, May 2, 14
  • 10. Properties and Theorems 6.7 - Bisecting Diagonals: 6.8 - Triangles from Diagonals: Friday, May 2, 14
  • 11. Properties and Theorems 6.7 - Bisecting Diagonals: If a quadrilateral is a parallelogram, then its diagonals bisect each other 6.8 - Triangles from Diagonals: Friday, May 2, 14
  • 12. Properties and Theorems 6.7 - Bisecting Diagonals: If a quadrilateral is a parallelogram, then its diagonals bisect each other 6.8 - Triangles from Diagonals: If a quadrilateral is a parallelogram, then each diagonal separates the parallelogram into two congruent triangles Friday, May 2, 14
  • 13. Example 1 In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches. Find each measure. a. AD b. m∠C c. m∠D Friday, May 2, 14
  • 14. Example 1 In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches. Find each measure. a. AD 15 inches b. m∠C c. m∠D Friday, May 2, 14
  • 15. Example 1 In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches. Find each measure. a. AD 15 inches b. m∠C = 180 − 32 c. m∠D Friday, May 2, 14
  • 16. Example 1 In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches. Find each measure. a. AD 15 inches b. m∠C = 180 − 32 = 148° c. m∠D Friday, May 2, 14
  • 17. Example 1 In ABCD, suppose m∠B = 32°, CD = 80 inches, and BC = 15 inches. Find each measure. a. AD 15 inches b. m∠C = 180 − 32 = 148° c. m∠D = 32° Friday, May 2, 14
  • 18. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r b. s c. t Friday, May 2, 14
  • 19. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY b. s c. t Friday, May 2, 14
  • 20. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY 4r = 18 b. s c. t Friday, May 2, 14
  • 21. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY 4r = 18 r = 4.5 b. s c. t Friday, May 2, 14
  • 22. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY 4r = 18 r = 4.5 b. s ZV = VX c. t Friday, May 2, 14
  • 23. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY 4r = 18 r = 4.5 b. s ZV = VX 8s = 7s + 3 c. t Friday, May 2, 14
  • 24. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY 4r = 18 r = 4.5 b. s ZV = VX 8s = 7s + 3 s = 3 c. t Friday, May 2, 14
  • 25. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY 4r = 18 r = 4.5 b. s ZV = VX 8s = 7s + 3 s = 3 c. t m∠VWX = m∠VYZ Friday, May 2, 14
  • 26. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY 4r = 18 r = 4.5 b. s ZV = VX 8s = 7s + 3 s = 3 c. t m∠VWX = m∠VYZ 2t = 18 Friday, May 2, 14
  • 27. Example 2 If WXYZ is a parallelogram, find the value of the indicated variable. m∠VWX = (2t)°, m∠VYX = 40°, m∠VYZ =18°, WX = 4r, ZV = 8s, VX = 7s + 3, ZY =18 a. r WX = ZY 4r = 18 r = 4.5 b. s ZV = VX 8s = 7s + 3 s = 3 c. t m∠VWX = m∠VYZ 2t = 18 t = 9 Friday, May 2, 14
  • 28. Example 3 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)? Friday, May 2, 14
  • 29. Example 3 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)? M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ Friday, May 2, 14
  • 30. Example 3 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)? M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ M(MP) = −3+ 5 2 , 0 + 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ Friday, May 2, 14
  • 31. Example 3 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)? M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ M(MP) = −3+ 5 2 , 0 + 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 2 2 , 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ Friday, May 2, 14
  • 32. Example 3 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)? M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ M(MP) = −3+ 5 2 , 0 + 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 2 2 , 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 1,2( ) Friday, May 2, 14
  • 33. Example 3 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)? M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ M(MP) = −3+ 5 2 , 0 + 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 2 2 , 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 1,2( ) M(NR) = −1+ 3 2 , 3+1 2 ⎛ ⎝⎜ ⎞ ⎠⎟ Friday, May 2, 14
  • 34. Example 3 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)? M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ M(MP) = −3+ 5 2 , 0 + 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 2 2 , 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 1,2( ) M(NR) = −1+ 3 2 , 3+1 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 2 2 , 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ Friday, May 2, 14
  • 35. Example 3 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices M(−3, 0), N(−1, 3), P(5, 4) , and R(3, 1)? M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ M(MP) = −3+ 5 2 , 0 + 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 2 2 , 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 1,2( ) M(NR) = −1+ 3 2 , 3+1 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 2 2 , 4 2 ⎛ ⎝⎜ ⎞ ⎠⎟ = 1,2( ) Friday, May 2, 14
  • 36. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. Friday, May 2, 14
  • 37. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. 1. ABCD is a parallelogram, AC and BD are diagonals, P is the intersection of AC and BD Friday, May 2, 14
  • 38. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. 1. ABCD is a parallelogram, AC and BD are diagonals, P is the intersection of AC and BD 1. Given Friday, May 2, 14
  • 39. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. 1. ABCD is a parallelogram, AC and BD are diagonals, P is the intersection of AC and BD 1. Given 2. AB is parallel to CD Friday, May 2, 14
  • 40. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. 1. ABCD is a parallelogram, AC and BD are diagonals, P is the intersection of AC and BD 1. Given 2. Definition of parallelogram2. AB is parallel to CD Friday, May 2, 14
  • 41. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. 1. ABCD is a parallelogram, AC and BD are diagonals, P is the intersection of AC and BD 1. Given 2. Definition of parallelogram 3. ∠BAC ≅ ∠DCA, ∠BDC ≅ ∠DBA 2. AB is parallel to CD Friday, May 2, 14
  • 42. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. 1. ABCD is a parallelogram, AC and BD are diagonals, P is the intersection of AC and BD 1. Given 2. Definition of parallelogram 3. ∠BAC ≅ ∠DCA, ∠BDC ≅ ∠DBA 2. AB is parallel to CD 3.Alt. int. ∠’s of parallel lines ≅ Friday, May 2, 14
  • 43. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. 1. ABCD is a parallelogram, AC and BD are diagonals, P is the intersection of AC and BD 1. Given 2. Definition of parallelogram 3. ∠BAC ≅ ∠DCA, ∠BDC ≅ ∠DBA 2. AB is parallel to CD 3.Alt. int. ∠’s of parallel lines ≅ 4. AB ≅ CD Friday, May 2, 14
  • 44. Example 4 Given ABCD, AC and BD are diagonals, P is the intersection of AC and BD, prove that AC and BD bisect each other. 1. ABCD is a parallelogram, AC and BD are diagonals, P is the intersection of AC and BD 1. Given 2. Definition of parallelogram 3. ∠BAC ≅ ∠DCA, ∠BDC ≅ ∠DBA 2. AB is parallel to CD 3.Alt. int. ∠’s of parallel lines ≅ 4. AB ≅ CD 4. Opposite sides of parallelograms ≅ Friday, May 2, 14
  • 46. Example 4 5. ∆APB ≅ ∆CPD Friday, May 2, 14
  • 47. Example 4 5. ∆APB ≅ ∆CPD 5.ASA Friday, May 2, 14
  • 48. Example 4 5. ∆APB ≅ ∆CPD 5.ASA 6. AP ≅ CP, DP ≅ BP Friday, May 2, 14
  • 49. Example 4 5. ∆APB ≅ ∆CPD 5.ASA 6. AP ≅ CP, DP ≅ BP 6. CPCTC Friday, May 2, 14
  • 50. Example 4 5. ∆APB ≅ ∆CPD 5.ASA 6. AP ≅ CP, DP ≅ BP 6. CPCTC 7. AC and BD bisect each other Friday, May 2, 14
  • 51. Example 4 5. ∆APB ≅ ∆CPD 5.ASA 6. AP ≅ CP, DP ≅ BP 6. CPCTC 7. AC and BD bisect each other 7. Def. of bisect Friday, May 2, 14
  • 53. Problem Set p. 403 #1-23 odd, 27-35 odd, 43, 51, 57 “The best way to predict the future is to invent it.” - Alan Kay Friday, May 2, 14