SlideShare une entreprise Scribd logo
1  sur  25
Cinemática vectorial ¿Qué estudia la cinemática vectorial?
Vector posición, itinerario y trayectoria y x x(t) y(t) Función itinerario: Si se elimina el parámetro  t  se obtiene la ecuación de la trayectoria: y  =  f (x) x  = f (t) y  = f (t) Son las ecuaciones paramétricas de la trayectoria A continuación veremos un ejemplo...
Vector posición, itinerario y trayectoria x  = 3 t y  = 2 t 2 Ejemplo 1. El itinerario de una partícula que se mueve en el plano x – y  es el siguiente:  0 < t < 5 s,  x : m Son las ecuaciones paramétricas de la trayectoria - Determinar la posición de la partícula en los instantes t = 1, 2, 3, 4 s ,[object Object],32 12 4 18 9 3 8 6 2 2 3 1 y (m) x (m) t (s)
Vector posición, itinerario y trayectoria ,[object Object],[object Object],[object Object],Si se elimina el parámetro  t  se obtiene la ecuación de la trayectoria Vector posición en t = 2 s Vector posición en t = 3 s
Vectores desplazamiento y Velocidad media y x Posición inicial  Velocidad media: ,[object Object],[object Object],[object Object],[object Object],Posición después de un intervalo   t Desplazamiento: En el ejemplo 1:
Velocidad instantánea El vector velocidad instantánea es tangente a la trayectoria. Nótese que el movimiento en el plano puede considerarse como la combinación de dos movimientos ortogonales.
Volvamos al ejemplo 1: - ¿Cuál es la velocidad instantánea de la partícula en función del tiempo? Puesto que: Entonces: - ¿Cuál es la velocidad de la partícula en el instante t = 2 s? - ¿Cuál es la velocidad de la partícula en el instante t = 3 s? Representemos estos vectores velocidad en el gráfico de la trayectoria...
Vectores velocidad Componentes: Módulo: Componentes: Módulo: Velocidad en t = 2 s Velocidad en t = 3 s
Aceleración media En el intervalo   t hay un cambio de velocidad: Se define la aceleración media como: Como: Por lo tanto el vector aceleración tiene la misma direccón que el vector   v.
Aceleración instantánea En el ejemplo 1 teníamos que la posición en función del tiempo era: Y la velocidad en función del tiempo: Entonces: - ¿Cuál es la aceleración en función del tiempo? La aceleración de la partícula es constante, apunta en la dirección del eje y y su módulo es 4 m/s 2 .
Lanzamiento de un proyectil v ox v x v y v oy y x En todo lanzamiento en que Es decir: Si consideramos que: se obtiene para el itinerario las siguientes ecuaciones: 
Ejemplo 2: Desde el origen se lanza un proyectil con una velocidad de 76,2 m/s, en una dirección que forma un ángulo de 66,8° con la horizontal. a) Determine la máxima altura y m  que alcanza el proyectil. en que  y o  = 0,  v o  = 76,2 m/s,    = 66,8° Pero para  y  máxima  v y  = 0  y, por lo tanto,  y, sustituyendo t en la ecuación para y, se obtiene: Reemplazando los datos:  y m  = 245,3 metros. Las ecuaciones para este movimiento son:
Continuación del ejemplo 2... b) ¿A qué distancia del origen cae el proyectil? (Alcance) La simetría indica que si demora  t ym   en alcanzar la máxima altura, demora el doble en llegar de vuelta al suelo. Por lo tanto: y reemplazando en la ecuación para x, o, lo que es igual: Reemplazando los datos,  x m  =  420,5  metros. Verifique que el alcance máximo se obtiene para un ángulo    = 45°
Movimiento circular uniforme y x P  r v Se trata de um MCU de un objeto P que se mueve en dirección contraria a los punteros del reloj. Nótese que  Velocidad angular Unidades de   : rad/s  o  s -1 Velocidad:  En que:
y x P  r v Tenemos, entonces que: Hagamos el producto punto entre estos dos vectores. Se obtiene: Es decir,  v   es perpendicular a  r  en todo instante. El módulo de  v  se obtiene haciendo el producto punto: Por lo tanto: y si consideramos que: en que  T  es el período del movimiento, obtenemos:
y x P  r v En resumen: Puesto que     = cte. en que  T  es el período del movimiento En un MCU, el itinerario es: y la velocidad en función del tiempo es: Además, se cumple que:
Ejemplo 3. En una prueba de resistencia,  un astronauta está sentado en una plataforma, a 4 metros del centro de giro. La plataforma está girando a razón de media vuelta/segundo. a) Anote los vectores posición y   velocidad del astronauta  en función del tiempo. pero, y  derivando obtenemos... en que b) Anote los valores de la rapidez del astronauta, su velocidad angular y el período de giro.
y x P  a v en que  T  es el período del movimiento Por lo tanto, el vector aceleración tiene dirección opuesta a  r , es decir, apunta siempre hacia el centro de giro.  Se le llama  aceleración centrípeta. Aceleración en el movimiento circular uniforme Pero Por lo tanto: a  = -  2   r Además se cumplen las siguientes relaciones:
Volvamos al ejemplo 3. En una prueba de resistencia, un astronauta está sentado en una plataforma, a 4 metros del centro de giro. La plataforma está girando a razón de media vuelta/segundo. c) Anote los vectores posición, velocidad y aceleración del astronauta en función del tiempo. d) ¿Cuánto vale el módulo de la aceleración centrípeta del astronauta?
y x r v Por lo tanto, en el instante t = 0.5 s... Sigamos con el ejemplo 3... f) Dibuje estos tres vectores. e) Anote los vectores posición, velocidad y aceleración del astronauta en el instante  t = 0.5 s. r  = 4 j (m) a v  =  -12.6 i   (m/s)   a   =  -39.5 j  (m/s 2 )
y x r  Movimiento circular no uniforme Las componentes de la velocidad son: y el módulo de la velocidad es: Derivando se obtienen las componentes de la aceleración:
Componentes tangencial y normal Definamos los siguientes vectores unitarios: Vector unitario tangente a la trayectoria. Vector unitario normal a la trayectoria. Componente tangencial de la aceleración Pero, Por lo tanto,
Componente normal de la aceleración (Aceleración centrípeta) Es decir, a Por lo tanto, el vector aceleración en componentes tangencial y normal es el siguiente:
Ejemplos de aplicación de: 1. Movimiento circular uniforme Puesto que: a y su módulo es 2. Objeto aumentando su rapidez en una trayectoria curva. En que  r  es el radio de curvatura de la trayectoria. a a a
 

Contenu connexe

Tendances

El Movimiento Circular Uniformemente Acelerado (MCUA - MCUV)
El Movimiento Circular Uniformemente Acelerado (MCUA - MCUV)El Movimiento Circular Uniformemente Acelerado (MCUA - MCUV)
El Movimiento Circular Uniformemente Acelerado (MCUA - MCUV)IlmaBetegon
 
Cinematica. ejercicios resueltos
Cinematica. ejercicios resueltosCinematica. ejercicios resueltos
Cinematica. ejercicios resueltosGogole
 
Energía rotacional y momentum angular
Energía rotacional y momentum angularEnergía rotacional y momentum angular
Energía rotacional y momentum angularYuri Milachay
 
2º problemas resueltos t 6 ley de gravitación universal
2º problemas resueltos t 6 ley de gravitación universal2º problemas resueltos t 6 ley de gravitación universal
2º problemas resueltos t 6 ley de gravitación universalMauricio Enrique Crespin Lopez
 
Ejercicios Cinemática
Ejercicios CinemáticaEjercicios Cinemática
Ejercicios CinemáticaKike Prieto
 
movimiento-parabolico-solucionario-serway
movimiento-parabolico-solucionario-serwaymovimiento-parabolico-solucionario-serway
movimiento-parabolico-solucionario-serwayCristian Balderrama
 
Problemas resueltos-cap-4-fisica-serway
Problemas resueltos-cap-4-fisica-serwayProblemas resueltos-cap-4-fisica-serway
Problemas resueltos-cap-4-fisica-serwayJamil Agualongo
 
Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Luis Ajanel
 
Física serway capítulo 2 problemas resueltos
Física serway capítulo 2   problemas resueltosFísica serway capítulo 2   problemas resueltos
Física serway capítulo 2 problemas resueltosJorge Rojas
 
Informe de velocidad media, velocidad instantanea y aceleracion fisica i
Informe de velocidad media, velocidad instantanea y aceleracion fisica iInforme de velocidad media, velocidad instantanea y aceleracion fisica i
Informe de velocidad media, velocidad instantanea y aceleracion fisica ialfredojaimesrojas
 
movimiento en un plano
movimiento en un planomovimiento en un plano
movimiento en un planoYorley Torrez
 
Informe n°4 péndulo simple (Laboratorio de Física)
Informe n°4 péndulo simple (Laboratorio de Física)Informe n°4 péndulo simple (Laboratorio de Física)
Informe n°4 péndulo simple (Laboratorio de Física)Jennifer Jimenez
 
Periodo del pendulo simple
Periodo del pendulo simplePeriodo del pendulo simple
Periodo del pendulo simplemavictorayo
 
Coordenadas cilindricas y esfericas
Coordenadas cilindricas y esfericasCoordenadas cilindricas y esfericas
Coordenadas cilindricas y esfericasPSM Valencia
 
Analisis Grafico Del Movimiento Velocidad Vs Tiempo
Analisis Grafico Del Movimiento Velocidad Vs TiempoAnalisis Grafico Del Movimiento Velocidad Vs Tiempo
Analisis Grafico Del Movimiento Velocidad Vs TiempoElba Sepúlveda
 

Tendances (20)

El Movimiento Circular Uniformemente Acelerado (MCUA - MCUV)
El Movimiento Circular Uniformemente Acelerado (MCUA - MCUV)El Movimiento Circular Uniformemente Acelerado (MCUA - MCUV)
El Movimiento Circular Uniformemente Acelerado (MCUA - MCUV)
 
Movimiento Armónico Simple
Movimiento Armónico Simple Movimiento Armónico Simple
Movimiento Armónico Simple
 
Cinematica. ejercicios resueltos
Cinematica. ejercicios resueltosCinematica. ejercicios resueltos
Cinematica. ejercicios resueltos
 
Informe de fissica lab 4 mru
Informe de fissica lab 4   mruInforme de fissica lab 4   mru
Informe de fissica lab 4 mru
 
Energía rotacional y momentum angular
Energía rotacional y momentum angularEnergía rotacional y momentum angular
Energía rotacional y momentum angular
 
2º problemas resueltos t 6 ley de gravitación universal
2º problemas resueltos t 6 ley de gravitación universal2º problemas resueltos t 6 ley de gravitación universal
2º problemas resueltos t 6 ley de gravitación universal
 
Fisica Cinematica
Fisica  CinematicaFisica  Cinematica
Fisica Cinematica
 
Ejercicios Cinemática
Ejercicios CinemáticaEjercicios Cinemática
Ejercicios Cinemática
 
movimiento-parabolico-solucionario-serway
movimiento-parabolico-solucionario-serwaymovimiento-parabolico-solucionario-serway
movimiento-parabolico-solucionario-serway
 
Problemas resueltos-cap-4-fisica-serway
Problemas resueltos-cap-4-fisica-serwayProblemas resueltos-cap-4-fisica-serway
Problemas resueltos-cap-4-fisica-serway
 
Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2
 
Física serway capítulo 2 problemas resueltos
Física serway capítulo 2   problemas resueltosFísica serway capítulo 2   problemas resueltos
Física serway capítulo 2 problemas resueltos
 
Informe de velocidad media, velocidad instantanea y aceleracion fisica i
Informe de velocidad media, velocidad instantanea y aceleracion fisica iInforme de velocidad media, velocidad instantanea y aceleracion fisica i
Informe de velocidad media, velocidad instantanea y aceleracion fisica i
 
movimiento en un plano
movimiento en un planomovimiento en un plano
movimiento en un plano
 
Informe n°4 péndulo simple (Laboratorio de Física)
Informe n°4 péndulo simple (Laboratorio de Física)Informe n°4 péndulo simple (Laboratorio de Física)
Informe n°4 péndulo simple (Laboratorio de Física)
 
Periodo del pendulo simple
Periodo del pendulo simplePeriodo del pendulo simple
Periodo del pendulo simple
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Coordenadas cilindricas y esfericas
Coordenadas cilindricas y esfericasCoordenadas cilindricas y esfericas
Coordenadas cilindricas y esfericas
 
Tema 1 CinemáTica Pdf
Tema 1 CinemáTica PdfTema 1 CinemáTica Pdf
Tema 1 CinemáTica Pdf
 
Analisis Grafico Del Movimiento Velocidad Vs Tiempo
Analisis Grafico Del Movimiento Velocidad Vs TiempoAnalisis Grafico Del Movimiento Velocidad Vs Tiempo
Analisis Grafico Del Movimiento Velocidad Vs Tiempo
 

Similaire à Cinematica vectorial web

La cinemática de la partícula
La cinemática de la partículaLa cinemática de la partícula
La cinemática de la partículanuriainformatica
 
tema 1 de fisica de la universidad para estudio de los temas.pdf
tema 1 de fisica de la universidad para estudio de los temas.pdftema 1 de fisica de la universidad para estudio de los temas.pdf
tema 1 de fisica de la universidad para estudio de los temas.pdfAlbertoMerinoRomero
 
Apuntes fy q 4eso francisco herreros tapia
Apuntes fy q 4eso francisco herreros tapiaApuntes fy q 4eso francisco herreros tapia
Apuntes fy q 4eso francisco herreros tapiaPlácido Cobo
 
Contenido unidad ii
Contenido unidad iiContenido unidad ii
Contenido unidad iililaarias
 
Cinemática
CinemáticaCinemática
Cinemáticaicano7
 
Jdjshshjajabjsjsbsuusbshsjsjbdjdjdjdndjdd
JdjshshjajabjsjsbsuusbshsjsjbdjdjdjdndjddJdjshshjajabjsjsbsuusbshsjsjbdjdjdjdndjdd
Jdjshshjajabjsjsbsuusbshsjsjbdjdjdjdndjddcamposchavez923
 
Cap 1 cinemática de partículas
Cap 1 cinemática de partículasCap 1 cinemática de partículas
Cap 1 cinemática de partículasjcpinos1993
 
Tema 5. cinemática del punto material
Tema 5. cinemática del punto materialTema 5. cinemática del punto material
Tema 5. cinemática del punto materialLoli Méndez
 
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...daisy_hernandez
 

Similaire à Cinematica vectorial web (20)

La cinemática de la partícula
La cinemática de la partículaLa cinemática de la partícula
La cinemática de la partícula
 
Cap 2 Movimiento en una dimension parte 1
Cap 2 Movimiento en una dimension parte 1Cap 2 Movimiento en una dimension parte 1
Cap 2 Movimiento en una dimension parte 1
 
Cinemática
CinemáticaCinemática
Cinemática
 
tema 1 de fisica de la universidad para estudio de los temas.pdf
tema 1 de fisica de la universidad para estudio de los temas.pdftema 1 de fisica de la universidad para estudio de los temas.pdf
tema 1 de fisica de la universidad para estudio de los temas.pdf
 
Apuntes fy q 4eso francisco herreros tapia
Apuntes fy q 4eso francisco herreros tapiaApuntes fy q 4eso francisco herreros tapia
Apuntes fy q 4eso francisco herreros tapia
 
Material de apoyo fisica basica
Material de apoyo fisica basicaMaterial de apoyo fisica basica
Material de apoyo fisica basica
 
Contenido unidad ii
Contenido unidad iiContenido unidad ii
Contenido unidad ii
 
Cinemática
CinemáticaCinemática
Cinemática
 
Cinemática, Física A
Cinemática, Física ACinemática, Física A
Cinemática, Física A
 
Jdjshshjajabjsjsbsuusbshsjsjbdjdjdjdndjdd
JdjshshjajabjsjsbsuusbshsjsjbdjdjdjdndjddJdjshshjajabjsjsbsuusbshsjsjbdjdjdjdndjdd
Jdjshshjajabjsjsbsuusbshsjsjbdjdjdjdndjdd
 
Cinematica 2022 I.pdf
Cinematica 2022 I.pdfCinematica 2022 I.pdf
Cinematica 2022 I.pdf
 
CINEMÁTICA OJO.pptx
CINEMÁTICA OJO.pptxCINEMÁTICA OJO.pptx
CINEMÁTICA OJO.pptx
 
Cap 1 cinemática de partículas
Cap 1 cinemática de partículasCap 1 cinemática de partículas
Cap 1 cinemática de partículas
 
Tema 5. cinemática del punto material
Tema 5. cinemática del punto materialTema 5. cinemática del punto material
Tema 5. cinemática del punto material
 
Cinematica en dos dimensiones
Cinematica en dos dimensionesCinematica en dos dimensiones
Cinematica en dos dimensiones
 
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
Aplicación de ecuaciones vectoriales paramétricas para la determinación de la...
 
I-Cinemática. 4-Problemas
I-Cinemática. 4-ProblemasI-Cinemática. 4-Problemas
I-Cinemática. 4-Problemas
 
El movimiento en una direccion
El movimiento en una direccionEl movimiento en una direccion
El movimiento en una direccion
 
magnitudes cinemáticas
magnitudes cinemáticasmagnitudes cinemáticas
magnitudes cinemáticas
 
F01 cinematica
F01 cinematicaF01 cinematica
F01 cinematica
 

Plus de Moisés Galarza Espinoza

MECÁNICA DE FLUIDOS- PROPIEDADES DE LOS FLUIDOS
MECÁNICA DE FLUIDOS- PROPIEDADES DE LOS FLUIDOSMECÁNICA DE FLUIDOS- PROPIEDADES DE LOS FLUIDOS
MECÁNICA DE FLUIDOS- PROPIEDADES DE LOS FLUIDOSMoisés Galarza Espinoza
 
MECÁNICA DE FLUIDOS-ELEMENTOS DE MECÁNICA DE FLUIDOS
MECÁNICA DE FLUIDOS-ELEMENTOS DE MECÁNICA DE FLUIDOSMECÁNICA DE FLUIDOS-ELEMENTOS DE MECÁNICA DE FLUIDOS
MECÁNICA DE FLUIDOS-ELEMENTOS DE MECÁNICA DE FLUIDOSMoisés Galarza Espinoza
 
Introduccion a la estructura fuerzas y momento
Introduccion a la estructura   fuerzas y momentoIntroduccion a la estructura   fuerzas y momento
Introduccion a la estructura fuerzas y momentoMoisés Galarza Espinoza
 

Plus de Moisés Galarza Espinoza (20)

Mecanica de fluidos hidrocinematica
Mecanica de fluidos  hidrocinematicaMecanica de fluidos  hidrocinematica
Mecanica de fluidos hidrocinematica
 
Movimiento Amortiguado
Movimiento AmortiguadoMovimiento Amortiguado
Movimiento Amortiguado
 
Movimiento Oscilatorio y Aplicaciones
Movimiento Oscilatorio y AplicacionesMovimiento Oscilatorio y Aplicaciones
Movimiento Oscilatorio y Aplicaciones
 
MECÁNICA DE FLUIDOS- PROPIEDADES DE LOS FLUIDOS
MECÁNICA DE FLUIDOS- PROPIEDADES DE LOS FLUIDOSMECÁNICA DE FLUIDOS- PROPIEDADES DE LOS FLUIDOS
MECÁNICA DE FLUIDOS- PROPIEDADES DE LOS FLUIDOS
 
MECANICA DE FLUIDOS-SEMANA 1
MECANICA DE FLUIDOS-SEMANA 1MECANICA DE FLUIDOS-SEMANA 1
MECANICA DE FLUIDOS-SEMANA 1
 
MECÁNICA DE FLUIDOS-ELEMENTOS DE MECÁNICA DE FLUIDOS
MECÁNICA DE FLUIDOS-ELEMENTOS DE MECÁNICA DE FLUIDOSMECÁNICA DE FLUIDOS-ELEMENTOS DE MECÁNICA DE FLUIDOS
MECÁNICA DE FLUIDOS-ELEMENTOS DE MECÁNICA DE FLUIDOS
 
Movimiento oscilatorio semana 2
Movimiento oscilatorio semana 2Movimiento oscilatorio semana 2
Movimiento oscilatorio semana 2
 
Elasticidad semana 1
Elasticidad  semana 1Elasticidad  semana 1
Elasticidad semana 1
 
Elasticidad semana 1
Elasticidad  semana 1Elasticidad  semana 1
Elasticidad semana 1
 
Mecánica de fluidos-sistema de unidades
Mecánica de fluidos-sistema de unidades Mecánica de fluidos-sistema de unidades
Mecánica de fluidos-sistema de unidades
 
Mecánica de fluidos semana 1
Mecánica de fluidos semana 1Mecánica de fluidos semana 1
Mecánica de fluidos semana 1
 
VECTORES Y CINEMATICA
VECTORES Y CINEMATICAVECTORES Y CINEMATICA
VECTORES Y CINEMATICA
 
Introduccion a la estructura fuerzas y momento
Introduccion a la estructura   fuerzas y momentoIntroduccion a la estructura   fuerzas y momento
Introduccion a la estructura fuerzas y momento
 
Corriente eléctrica
Corriente eléctricaCorriente eléctrica
Corriente eléctrica
 
Electrización fuerza eléctrica
Electrización   fuerza eléctricaElectrización   fuerza eléctrica
Electrización fuerza eléctrica
 
Corriente eléctrica
Corriente eléctricaCorriente eléctrica
Corriente eléctrica
 
Electrización fuerza eléctrica
Electrización   fuerza eléctricaElectrización   fuerza eléctrica
Electrización fuerza eléctrica
 
Cap 3 ley de gauss
Cap 3 ley de gaussCap 3 ley de gauss
Cap 3 ley de gauss
 
Practica fuerzas nº5
Practica fuerzas nº5Practica fuerzas nº5
Practica fuerzas nº5
 
Practica calificada fisica i.b
Practica calificada  fisica  i.bPractica calificada  fisica  i.b
Practica calificada fisica i.b
 

Cinematica vectorial web

  • 1. Cinemática vectorial ¿Qué estudia la cinemática vectorial?
  • 2. Vector posición, itinerario y trayectoria y x x(t) y(t) Función itinerario: Si se elimina el parámetro t se obtiene la ecuación de la trayectoria: y = f (x) x = f (t) y = f (t) Son las ecuaciones paramétricas de la trayectoria A continuación veremos un ejemplo...
  • 3.
  • 4.
  • 5.
  • 6. Velocidad instantánea El vector velocidad instantánea es tangente a la trayectoria. Nótese que el movimiento en el plano puede considerarse como la combinación de dos movimientos ortogonales.
  • 7. Volvamos al ejemplo 1: - ¿Cuál es la velocidad instantánea de la partícula en función del tiempo? Puesto que: Entonces: - ¿Cuál es la velocidad de la partícula en el instante t = 2 s? - ¿Cuál es la velocidad de la partícula en el instante t = 3 s? Representemos estos vectores velocidad en el gráfico de la trayectoria...
  • 8. Vectores velocidad Componentes: Módulo: Componentes: Módulo: Velocidad en t = 2 s Velocidad en t = 3 s
  • 9. Aceleración media En el intervalo  t hay un cambio de velocidad: Se define la aceleración media como: Como: Por lo tanto el vector aceleración tiene la misma direccón que el vector  v.
  • 10. Aceleración instantánea En el ejemplo 1 teníamos que la posición en función del tiempo era: Y la velocidad en función del tiempo: Entonces: - ¿Cuál es la aceleración en función del tiempo? La aceleración de la partícula es constante, apunta en la dirección del eje y y su módulo es 4 m/s 2 .
  • 11. Lanzamiento de un proyectil v ox v x v y v oy y x En todo lanzamiento en que Es decir: Si consideramos que: se obtiene para el itinerario las siguientes ecuaciones: 
  • 12. Ejemplo 2: Desde el origen se lanza un proyectil con una velocidad de 76,2 m/s, en una dirección que forma un ángulo de 66,8° con la horizontal. a) Determine la máxima altura y m que alcanza el proyectil. en que y o = 0, v o = 76,2 m/s,  = 66,8° Pero para y máxima v y = 0 y, por lo tanto, y, sustituyendo t en la ecuación para y, se obtiene: Reemplazando los datos: y m = 245,3 metros. Las ecuaciones para este movimiento son:
  • 13. Continuación del ejemplo 2... b) ¿A qué distancia del origen cae el proyectil? (Alcance) La simetría indica que si demora t ym en alcanzar la máxima altura, demora el doble en llegar de vuelta al suelo. Por lo tanto: y reemplazando en la ecuación para x, o, lo que es igual: Reemplazando los datos, x m = 420,5 metros. Verifique que el alcance máximo se obtiene para un ángulo  = 45°
  • 14. Movimiento circular uniforme y x P  r v Se trata de um MCU de un objeto P que se mueve en dirección contraria a los punteros del reloj. Nótese que Velocidad angular Unidades de  : rad/s o s -1 Velocidad: En que:
  • 15. y x P  r v Tenemos, entonces que: Hagamos el producto punto entre estos dos vectores. Se obtiene: Es decir, v es perpendicular a r en todo instante. El módulo de v se obtiene haciendo el producto punto: Por lo tanto: y si consideramos que: en que T es el período del movimiento, obtenemos:
  • 16. y x P  r v En resumen: Puesto que  = cte. en que T es el período del movimiento En un MCU, el itinerario es: y la velocidad en función del tiempo es: Además, se cumple que:
  • 17. Ejemplo 3. En una prueba de resistencia, un astronauta está sentado en una plataforma, a 4 metros del centro de giro. La plataforma está girando a razón de media vuelta/segundo. a) Anote los vectores posición y velocidad del astronauta en función del tiempo. pero, y derivando obtenemos... en que b) Anote los valores de la rapidez del astronauta, su velocidad angular y el período de giro.
  • 18. y x P  a v en que T es el período del movimiento Por lo tanto, el vector aceleración tiene dirección opuesta a r , es decir, apunta siempre hacia el centro de giro. Se le llama aceleración centrípeta. Aceleración en el movimiento circular uniforme Pero Por lo tanto: a = -  2 r Además se cumplen las siguientes relaciones:
  • 19. Volvamos al ejemplo 3. En una prueba de resistencia, un astronauta está sentado en una plataforma, a 4 metros del centro de giro. La plataforma está girando a razón de media vuelta/segundo. c) Anote los vectores posición, velocidad y aceleración del astronauta en función del tiempo. d) ¿Cuánto vale el módulo de la aceleración centrípeta del astronauta?
  • 20. y x r v Por lo tanto, en el instante t = 0.5 s... Sigamos con el ejemplo 3... f) Dibuje estos tres vectores. e) Anote los vectores posición, velocidad y aceleración del astronauta en el instante t = 0.5 s. r = 4 j (m) a v = -12.6 i (m/s) a = -39.5 j (m/s 2 )
  • 21. y x r  Movimiento circular no uniforme Las componentes de la velocidad son: y el módulo de la velocidad es: Derivando se obtienen las componentes de la aceleración:
  • 22. Componentes tangencial y normal Definamos los siguientes vectores unitarios: Vector unitario tangente a la trayectoria. Vector unitario normal a la trayectoria. Componente tangencial de la aceleración Pero, Por lo tanto,
  • 23. Componente normal de la aceleración (Aceleración centrípeta) Es decir, a Por lo tanto, el vector aceleración en componentes tangencial y normal es el siguiente:
  • 24. Ejemplos de aplicación de: 1. Movimiento circular uniforme Puesto que: a y su módulo es 2. Objeto aumentando su rapidez en una trayectoria curva. En que r es el radio de curvatura de la trayectoria. a a a
  • 25.