5 mca-tstp 2

931 vues

Publié le

0 commentaire
1 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

Aucun téléchargement
Vues
Nombre de vues
931
Sur SlideShare
0
Issues des intégrations
0
Intégrations
16
Actions
Partages
0
Téléchargements
12
Commentaires
0
J’aime
1
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

5 mca-tstp 2

  1. 1. Mécanique des structures Caractéristiques géométriques des sections TS Chapitre 5 - Caractéristiques géométriques des sections SOMMAIRE I - Centre de gravité................................................................................................................. 64 1°/ Définition.................................................................................................................................... 64 2°/ Théorèmes de Guldin................................................................................................................ 65 II - Moment statique d’une surface plane par rapport à un axe de son plan....................... 66 1°/ Définition.................................................................................................................................... 66 2°/ Moment statique dans un système d’axes orthonormés ........................................................ 66 3°/ Moment statique des surfaces composées................................................................................ 66 III - Moment quadratique d’une surface plane par rapport à un axe de son plan .............. 66 1°/ Définition.................................................................................................................................... 67 2°/ Théorème de Huygens............................................................................................................... 67 3°/ Moment quadratique des surfaces composées........................................................................ 68 4°/ Rayon de giration ...................................................................................................................... 68 IV - Applications...................................................................................................................... 68 1°/ Moment statique d’un rectangle par rapport à un de ses côtés. ........................................... 68 2°/ Moment quadratique d’un rectangle par rapport à un de ses côtés..................................... 68 3°/ Moment quadratique d’un rectangle par rapport aux axes de symétrie. ............................ 69 Formulaire Centre de gravité.................................................................................................. 70 Formulaire Moment quadratique........................................................................................... 71 Page 63 / 106
  2. 2. Mécanique des structures Caractéristiques géométriques des sections TS I - CENTRE DE GRAVITE x y z O M1 G Mi Mn 1°/ Définition Considérons, dans l’espace, un solide comme étant constitué d’un ensemble de n points matériels M1, M2, …, Mi, …, Mn, de masse respective dm1, dm2, …, dmi, …, dmn. Ce solide est de volume V. Par définition, le centre de gravité de l’ensemble des n points est le point G tel que : 0dm.GM V i =∫ G est aussi appelé centre de masse. Pour déterminer la position de G dans le repère (O, x, y, z), il faut mettre cette définition sous une forme plus facile à exploiter : OGOMOMGOGM iii −=+= ( ) 0dm.OGOM V i =−⇒ ∫ 0dm.OGdm.OM VV i =−⇔ ∫∫ 0dmOGdm.OM VV i =−⇔ ∫∫ 0m.OGdm.OM V i =−⇔ ∫ m dm.OM OG V i∫=⇔ (1) Soient xi, yi et zi les coordonnées du point Mi. On obtient à partir de la relation (1) les coordonnées xG, yG et zG du centre de gravité G : m dm.x x V i G ∫= m dm.y y V i G ∫= m dm.z z V i G ∫= → Cas où le matériau est homogène : cte=ρ avec Vm ρ= et dVdm ρ= . La relation devient : V dV.x x V i G ∫= V dV.y y V i G ∫= V dV.z z V i G ∫= Les coordonnées du centre de gravité sont alors indépendantes de la nature du matériau. → Cas où le solide est d’épaisseur constante e : V = e.S et dV = e.dS, avec S la surface du solide. La relation devient : S dS.x x S i G ∫∫= S dS.y y S i G ∫∫= S dS.z z S i G ∫∫= Dans ce cas, G est appelé centre de surface. Page 64 / 106
  3. 3. Mécanique des structures Caractéristiques géométriques des sections TS Propriété : Si un solide possède un plan, un axe, ou un centre de symétrie, son centre de gravité est situé respectivement dans le plan de symétrie, sur l'axe de symétrie ou au centre de symétrie. 2°/ Théorèmes de Guldin. 1er théorème : « La surface engendrée par une ligne plane tournant autour d’un axe de son plan mais ne le traversant pas est égale au produit de la longueur de la ligne par la longueur de la circonférence décrite par le centre de gravité de cette ligne. » Exemple : Détermination du centre de gravité d’un demi-cerceau : R G ZG Surface décrite par la rotation du demi-cerceau = 4 π R² Longueur de la ligne = π × R Circonférence décrite par G = 2 π zG ⇒ 4 π R² = π R × 2 π zG π =⇔ R2 zG 2ème théorème : « Le volume engendré par une surface plane tournant autour d’un axe de son plan mais ne le traversant pas est égale au produit de la surface par la longueur de la circonférence décrite par le centre de gravité de cette ligne. » Exemple : Détermination du centre de gravité d’une plaque semi circulaire : R G ZG Volume engendré par la rotation de la plaque = 3 R 3 4 π Surface du demi disque = 2 R2 π ⇒ 3 R 3 4 π = 2 R2 π × 2 π zG π =⇔ 3 R4 zG REMARQUE : Les théorèmes de Guldin ne peuvent pas servir à la détermination des centres de gravité des volumes. Page 65 / 106
  4. 4. Mécanique des structures Caractéristiques géométriques des sections TS II - MOMENT STATIQUE D’UNE SURFACE PLANE PAR RAPPORT A UN AXE DE SON PLAN. 1°/ Définition Mi S dSi ri Δ Considérons une surface plane S constituée de n points matériels M1, M2, …, Mi, …, Mn, de surface élémentaire dS1, dS2, …, dSi, …, dSn et un axe Δ situé dans son plan. Théorème 1 : le moment statique d’une surface plane par rapport à un axe situé dans son plan est égal au produit de la surface par la distance de son centre de gravité à l’axe considéré. On appelle moment statique de la surface S par rapport à l’axe Δ la quantité : ( ) ∫∫=Δ S i dSrSW ri étant la distance de dSi à Δ. 2°/ Moment statique dans un système d’axes orthonormés Théorème 2 : le moment statique d’une surface plane par rapport à un axe (O, x) de son plan est égal au produit de la surface par la coordonnée yG du centre de cette surface. Soit dans un repère (O, x, y) : ( ) S.ySW G)x,O( = et ( ) S.xSW G)y,O( = Démonstration : Moment statique de la surface plane S par rapport à l’axe (O, x) : S x y O Mi dSi yi ( ) ( ) S.ySW S dS.y y dSySW Gx S i G S ix =⇒ ⎪ ⎪ ⎭ ⎪⎪ ⎬ ⎫ = = ∫∫ ∫∫ Théorème 3 : le moment statique d’une surface plane par rapport à un axe de son plan passant par le centre de cette surface est nul. La démonstration est évidente : si 0yG = alors ( ) 0SW )x,O( = 3°/ Moment statique des surfaces composées Le moment statique d’une surface S, composées de plusieurs surfaces S1, S2, …, Sn, est égal à la somme arithmétique des moments statiques des n surfaces : ( ) ( ) ( ) ( )n21 SW...SWSWSW ΔΔΔΔ +++= Page 66 / 106
  5. 5. Mécanique des structures Caractéristiques géométriques des sections TS III - MOMENT QUADRATIQUE D’UNE SURFACE PLANE PAR RAPPORT A UN AXE DE SON PLAN 1°/ Définition Considérons toujours la même surface plane S constituée de n points matériels Mi, de surface élémentaire dSi, et un axe Δ situé dans son plan. On appelle moment quadratique de la surface S par rapport à l’axe Δ la quantité : Mi S dSi ri Δ ( ) ∫∫=Δ S 2 i dSrSI ri étant la distance de dSi à Δ. Dans un repère orthonormé (O, x, y) : et( ) ( ) ∫∫= S 2 ix,O dSySI ( )( ) ∫∫= S 2 iy,O dSxSI 2°/ Théorème de Huygens Théorème de Huygens : « Le moment quadratique d’une surface plane S par rapport à un axe quelconque Δ de son plan est égal au moment quadratique de cette surface par rapport à un axe ΔG parallèle à Δ et passant par le centre de gravité G de la surface S, augmenté du produit de l’aire de la surface S par le carré de la distance entre les deux axes. » Gir Mi S dSi ΔG d G Δ Théorème de Huygens : ( ) ( ) 2 d.SSISI G += ΔΔ Démonstration : Par définition : ( ) ∫∫=Δ S 2 i dSrSI Remplaçons ri par sa valeur drr Gii += : ( ) ( )∫∫ +=⇒ Δ S 2 i dSdrSI G ( ) ( )∫∫ ++=⇔ Δ S 2 i 2 i dSddr2rSI GG ( ) ∫∫ ∫∫∫∫ ++=⇔ Δ S S 2 S i 2 i dSddS.rd2dS.rSI GG ( ) ( ) 2 S S i d.SSISI considéréetionsecladesurfaceSdS gravitédecentredudéfinition0dS.r G G +=⇒ ⎪⎭ ⎪ ⎬ ⎫ = = ΔΔ ∫∫ ∫∫ Page 67 / 106
  6. 6. Mécanique des structures Caractéristiques géométriques des sections TS Remarque : le moment quadratique caractérise l’aptitude d’une section à tourner autour d’un axe : - plus le moment quadratique est grand, plus la section a du mal à tourner autour de l’axe, - plus l’axe s’éloigne du centre de gravité, plus le moment quadratique est grand. 3°/ Moment quadratique des surfaces composées Le moment quadratique d’une surface S, composées de plusieurs surfaces S1, S2, …, Sn, est égal à la somme arithmétique des moments quadratiques des n surfaces : ( ) ( ) ( ) ( )n21 SI...SISISI ΔΔΔΔ +++= 4°/ Rayon de giration Il est défini comme la racine carrée du moment d’inertie divisée par l’aire S de la surface : S I i x x = ou , de mêmeSiI 2 xx ⋅= S I i y y = ou .SiI 2 yy ⋅= IV - APPLICATIONS 1°/ Moment statique d’un rectangle par rapport à un de ses côtés. Par définition : ( ) S.ydSySW G S 2 i)x,O( == ∫∫ ici, S = b × h et 2 h yG = , d’où ( ) 2 bh SW 2 )x,O( = 2°/ Moment quadratique d’un rectangle par rapport à un de ses côtés. ( )( ) ∫∫ ∫∫∫∫ === S h 0 2 b 0 2 i S 2 ix,O dyydxdy.dxydSySI [ ]∫ == b 0 b 0 bxdx 3 h 3 y dyy 3h 0 3 h 0 2 =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ =∫ d’où ( )( ) 3 bh SI 3 x,O = x y h b G O b x y h G x’ y’ x y dS O Page 68 / 106
  7. 7. Mécanique des structures Caractéristiques géométriques des sections TS 3°/ Moment quadratique d’un rectangle par rapport aux axes de symétrie. On applique le théorème d’Huygens : ( ) ( ) 2 d.SSISI G += ΔΔ ⇒ ( ) ( ) 2 G)'x,G()x,O( y.SSISI += ⇔ ( ) ( ) 2 G)x,O()'x,G( y.SSISI −= ⇔ ( ) 23 )'x,G( 2 h ).bh( 3 bh SI ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −= ⇔ ( ) 12 bh SI 3 )'x,G( = Page 69 / 106
  8. 8. Mécanique des structures Caractéristiques géométriques des sections TS FORMULAIRE : CENTRE DE GRAVITE Page 70 / 106
  9. 9. Mécanique des structures Caractéristiques géométriques des sections TS FORMULAIRE : MOMENT QUADRATIQUE Page 71 / 106

×