SlideShare une entreprise Scribd logo
1  sur  19
MATHEMATICS-I
CONTENTS
   Ordinary Differential Equations of First Order and First Degree
   Linear Differential Equations of Second and Higher Order
   Mean Value Theorems
   Functions of Several Variables
   Curvature, Evolutes and Envelopes
   Curve Tracing
   Applications of Integration
   Multiple Integrals
   Series and Sequences
   Vector Differentiation and Vector Operators
   Vector Integration
   Vector Integral Theorems
   Laplace transforms
TEXT BOOKS
   A text book of Engineering Mathematics, Vol-I
    T.K.V.Iyengar, B.Krishna Gandhi and Others,
    S.Chand & Company
   A text book of Engineering Mathematics,
    C.Sankaraiah, V.G.S.Book Links
   A text book of Engineering Mathematics, Shahnaz A
    Bathul, Right Publishers
   A text book of Engineering Mathematics,
    P.Nageshwara Rao, Y.Narasimhulu & N.Prabhakar
    Rao, Deepthi Publications
REFERENCES
 A text book of Engineering Mathematics,
  B.V.Raman, Tata Mc Graw Hill
 Advanced Engineering Mathematics, Irvin
  Kreyszig, Wiley India Pvt. Ltd.
 A text Book of Engineering Mathematics,
  Thamson Book collection
UNIT-V

  CHAPTER-I:APPLICATIONS OF
        INTEGRATION
CHAPTER-II:MULTIPLE INTEGRALS
UNIT HEADER
  Name of the Course: B.Tech
      Code No:07A1BS02
      Year/Branch: I Year
CSE,IT,ECE,EEE,ME,CIVIL,AERO
          Unit No: V
        No. of slides:17
UNIT INDEX
                        UNIT-V
S. No.          Module          Lecture   PPT Slide No.
                                No.
  1      Introduction, Length, L1-5       8-11
         Volume and Surface
         area
  2      Multiple integrals,    L6-10     12-15
         Change of order of
         integration
  3      Triple integration ,   L11-12    16-19
         Change in triple
         integration
Lecture-1
 APPLICATIONS OF INTEGRATION
 Here we study some important applications of
  integration like Length of arc, Volume,
  Surface area etc.,
 RECTIFICATION: The process of finding the
  length of an arc of the curve is called
  rectification.
 Length of an arc S=∫[1+(dy/dx)2]1/2
Lecture-2
           LENGTH OF
       CURVE(RECTIFICATION)
 The process of finding the length of an arc of
  the curve is called rectification. We can find
  length of the curve in Cartesian form, Polar
  form and Parametric form.
 Length of curve in cartesian form: S= ∫[1+
  (dy/dx)2]1/2
 Length of curve in parametric form:

   S=∫√(dx/dθ)2+(dy/dθ)2 dθ
Lecture-3
                ARC LENGTH
 Polar form:
 If r=f(θ) and θ=a, θ=b then
  S=∫√r2+(dr/dθ)2 dθ
 If θ=f(r) and r=r1 , r=r2 then
  S=∫√1+r2(dθ/dr)2 dr
Lecture-4
                   VOLUME
 If a plane area R is revolved about a fixed line
  L in its plane, a solid is generated. Such a solid
  is known as solid of revolution and its volume
  is called volume of revolution. The line L
  about which the region R is revolved is called
  the axis of revolution.Volume of the solid can
  be found in 3 different forms Cartesian form,
  Polar form and Parametric form.
 Volume of the solid about x-axis= ∫пy2dx
Lecture-5
       FORMULAE FOR VOLUME
 Cartesian form:
  Volume of the solid about x-axis=∫пy2dx
   Volume of the solid about y-axis=∫пx2dy
 Volume of the solid about any
  axis=∫п(AR)2d(OR)

 Volume bounded by two curves=
  ∫п(y12-y22)dx
Lecture-6
              SURFACE AREA
 The surface area of the solid generated by the
  revolution about the x-axis of the area
  bounded by the curve y=f(x).We can find
  revolution about x-axis,y-axis,initial line, pole
  and about any axis.
 Example: The Surface area generated by the
  circle x2+y2=16 about its diameter is 64π
Lecture-7
        MULTIPLE INTEGRALS
 Let y=f(x) be a function of   one variable
  defined and bounded on [a,b]. Let [a,b] be
  divided into n subintervals by points x 0,…,xn
  such that a=x0,……….xn=b. The generalization
  of this definition ;to two dimensions is called a
  double integral and to three dimensions is
  called a triple integral.
Lecture-8
         DOUBLE INTEGRALS
 Double integrals over a region R may be
  evaluated by two successive integrations.
  Suppose the region R cannot be represented by
  those inequalities, and the region R can be
  subdivided into finitely many portions which
  have that property, we may integrate f(x,y)
  over each portion separately and add the
  results. This will give the value of the double
  integral.
Lecture-9
     CHANGE OF VARIABLES IN
        DOUBLE INTEGRAL
 Sometimes the evaluation of a double or triple
  integral with its present form may not be
  simple to evaluate. By choice of an appropriate
  coordinate system, a given integral can be
  transformed into a simpler integral involving
  the new variables. In this case we assume that
  x=r cosθ, y=r sinθ and dxdy=rdrdθ
Lecture-10
           CHANGE OF ORDER OF
              INTEGRATION
   Here change of order of integration implies that the
    change of limits of integration. If the region of
    integration consists of a vertical strip and slide along
    x-axis then in the changed order a horizontal strip and
    slide along y-axis then in the changed order a
    horizontal strip and slide along y-axis are to be
    considered and vice-versa. Sometimes we may have
    to split the region of integration and express the given
    integral as sum of the integrals over these sub-
    regions. Sometimes as commented above, the
    evaluation gets simplified due to the change of order
    of integration. Always it is better to draw a rough
    sketch of region of integration.
Lecture-11
           TRIPLE INTEGRALS
 The triple integral is evaluated as the repeated
  integral where the limits of z are z 1 , z2 which
  are either constants or functions of x and y; the
  y limits y1 , y2 are either constants or functions
  of x; the x limits x1, x2 are constants. First
  f(x,y,z) is integrated w.r.t. z between z limits
  keeping x and y are fixed. The resulting
  expression is integrated w.r.t. y between y
  limits keeping x constant. The result is finally
  integrated w.r.t. x from x1 to x2.
Lecture-12
CHANGE OF VARIABLES IN TRIPLE
         INTEGRAL
   In problems having symmetry with respect to a point
    O, it would be convenient to use spherical
    coordinates with this point chosen as origin. Here we
    assume that x=r sinθ cosф, y=r sinθ sinф, z=r cosθ
    and dxdydz=r2 sinθ drdθdф
   Example: By the method of change of variables in
    triple integral the volume of the portion of the sphere
    x2+y2+z2=a2 lying inside the cylinder x2+y2=ax is
    2a3/9(3π-4)

Contenu connexe

Tendances

Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalinishalini singh
 
Cylindrical and Spherical Coordinates System
Cylindrical and Spherical Coordinates SystemCylindrical and Spherical Coordinates System
Cylindrical and Spherical Coordinates SystemJezreel David
 
cylinderical and sperical co ordinate systems
cylinderical and sperical co ordinate systems cylinderical and sperical co ordinate systems
cylinderical and sperical co ordinate systems GK Arunachalam
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcardsyunyun2313
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Muhammad Luthfan
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vectorJobins George
 
divergence of vector and divergence theorem
divergence of vector and divergence theoremdivergence of vector and divergence theorem
divergence of vector and divergence theoremAbhishekLalkiya
 
Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)Fazeel Sajid
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Sonendra Kumar Gupta
 
Introduction to coordinate geometry
Introduction to coordinate geometryIntroduction to coordinate geometry
Introduction to coordinate geometryjoannahstevens
 
CLASS X MATHS
CLASS X MATHS CLASS X MATHS
CLASS X MATHS Rc Os
 
Applications of integration
Applications of integrationApplications of integration
Applications of integrationcaldny
 
Analytical Geometry in three dimension
Analytical Geometry in three dimensionAnalytical Geometry in three dimension
Analytical Geometry in three dimensionSwathiSundari
 
Three dimensional space dfs
Three dimensional space dfsThree dimensional space dfs
Three dimensional space dfsFarhana Shaheen
 

Tendances (20)

Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalini
 
Cylindrical and Spherical Coordinates System
Cylindrical and Spherical Coordinates SystemCylindrical and Spherical Coordinates System
Cylindrical and Spherical Coordinates System
 
cylinderical and sperical co ordinate systems
cylinderical and sperical co ordinate systems cylinderical and sperical co ordinate systems
cylinderical and sperical co ordinate systems
 
Integration Ppt
Integration PptIntegration Ppt
Integration Ppt
 
Application of integrals flashcards
Application of integrals flashcardsApplication of integrals flashcards
Application of integrals flashcards
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
 
returika
returikareturika
returika
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vector
 
divergence of vector and divergence theorem
divergence of vector and divergence theoremdivergence of vector and divergence theorem
divergence of vector and divergence theorem
 
Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)Spherical Co-ordinate system (Applications)
Spherical Co-ordinate system (Applications)
 
Trapezoidal rule
Trapezoidal rule Trapezoidal rule
Trapezoidal rule
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...
 
Introduction to coordinate geometry
Introduction to coordinate geometryIntroduction to coordinate geometry
Introduction to coordinate geometry
 
CLASS X MATHS
CLASS X MATHS CLASS X MATHS
CLASS X MATHS
 
Akshay
AkshayAkshay
Akshay
 
Polar Curves
Polar CurvesPolar Curves
Polar Curves
 
Applications of integration
Applications of integrationApplications of integration
Applications of integration
 
Analytical Geometry in three dimension
Analytical Geometry in three dimensionAnalytical Geometry in three dimension
Analytical Geometry in three dimension
 
calculus Ppt
calculus Pptcalculus Ppt
calculus Ppt
 
Three dimensional space dfs
Three dimensional space dfsThree dimensional space dfs
Three dimensional space dfs
 

Similaire à M1 unit v-jntuworld

M1 unit iv-jntuworld
M1 unit iv-jntuworldM1 unit iv-jntuworld
M1 unit iv-jntuworldmrecedu
 
M1 unit vii-jntuworld
M1 unit vii-jntuworldM1 unit vii-jntuworld
M1 unit vii-jntuworldmrecedu
 
Multiple Integrals_1.pptx
Multiple Integrals_1.pptxMultiple Integrals_1.pptx
Multiple Integrals_1.pptxhackerboy66
 
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....loniyakrishn
 
M1 unit iii-jntuworld
M1 unit iii-jntuworldM1 unit iii-jntuworld
M1 unit iii-jntuworldmrecedu
 
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Mahmood Adel
 
Application Of vector Integration and all
Application Of vector Integration and allApplication Of vector Integration and all
Application Of vector Integration and allMalikUmarKhakh
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-IIIKundan Kumar
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vectorshabdrang
 
Computer graphics unit 4th
Computer graphics unit 4thComputer graphics unit 4th
Computer graphics unit 4thTEJVEER SINGH
 
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...Toshiyuki Shimono
 
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
MA101-Lecturenotes(2019-20)-Module 13 (1).pdfMA101-Lecturenotes(2019-20)-Module 13 (1).pdf
MA101-Lecturenotes(2019-20)-Module 13 (1).pdfvasusingh34
 

Similaire à M1 unit v-jntuworld (20)

M1 unit iv-jntuworld
M1 unit iv-jntuworldM1 unit iv-jntuworld
M1 unit iv-jntuworld
 
M1 unit vii-jntuworld
M1 unit vii-jntuworldM1 unit vii-jntuworld
M1 unit vii-jntuworld
 
multiple intrigral lit
multiple intrigral litmultiple intrigral lit
multiple intrigral lit
 
Multiple Integrals_1.pptx
Multiple Integrals_1.pptxMultiple Integrals_1.pptx
Multiple Integrals_1.pptx
 
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
Activity 1 (Directional Derivative and Gradient with minimum 3 applications)....
 
M1 unit iii-jntuworld
M1 unit iii-jntuworldM1 unit iii-jntuworld
M1 unit iii-jntuworld
 
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
Dokumen.tips mathematics ii-institute-of-aeronautical-engineering-pptpdfadvan...
 
Application Of vector Integration and all
Application Of vector Integration and allApplication Of vector Integration and all
Application Of vector Integration and all
 
Chapter 4 Integration
Chapter 4  IntegrationChapter 4  Integration
Chapter 4 Integration
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
 
Chatper 15
Chatper 15Chatper 15
Chatper 15
 
Emfbook
EmfbookEmfbook
Emfbook
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
 
Computer graphics unit 4th
Computer graphics unit 4thComputer graphics unit 4th
Computer graphics unit 4th
 
D4 trigonometrypdf
D4 trigonometrypdfD4 trigonometrypdf
D4 trigonometrypdf
 
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...Interpreting Multiple Regressionvia an Ellipse Inscribed in a Square Extensi...
Interpreting Multiple Regression via an Ellipse Inscribed in a Square Extensi...
 
1807.02591v3.pdf
1807.02591v3.pdf1807.02591v3.pdf
1807.02591v3.pdf
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Transformations
TransformationsTransformations
Transformations
 
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
MA101-Lecturenotes(2019-20)-Module 13 (1).pdfMA101-Lecturenotes(2019-20)-Module 13 (1).pdf
MA101-Lecturenotes(2019-20)-Module 13 (1).pdf
 

Plus de mrecedu

Brochure final
Brochure finalBrochure final
Brochure finalmrecedu
 
Filters unit iii
Filters unit iiiFilters unit iii
Filters unit iiimrecedu
 
Attenuator unit iv
Attenuator unit ivAttenuator unit iv
Attenuator unit ivmrecedu
 
Two port networks unit ii
Two port networks unit iiTwo port networks unit ii
Two port networks unit iimrecedu
 
Unit4 (2)
Unit4 (2)Unit4 (2)
Unit4 (2)mrecedu
 
Unit5 (2)
Unit5 (2)Unit5 (2)
Unit5 (2)mrecedu
 
Unit6 jwfiles
Unit6 jwfilesUnit6 jwfiles
Unit6 jwfilesmrecedu
 
Unit3 jwfiles
Unit3 jwfilesUnit3 jwfiles
Unit3 jwfilesmrecedu
 
Unit2 jwfiles
Unit2 jwfilesUnit2 jwfiles
Unit2 jwfilesmrecedu
 
Unit1 jwfiles
Unit1 jwfilesUnit1 jwfiles
Unit1 jwfilesmrecedu
 
Unit7 jwfiles
Unit7 jwfilesUnit7 jwfiles
Unit7 jwfilesmrecedu
 
M1 unit vi-jntuworld
M1 unit vi-jntuworldM1 unit vi-jntuworld
M1 unit vi-jntuworldmrecedu
 
M1 unit ii-jntuworld
M1 unit ii-jntuworldM1 unit ii-jntuworld
M1 unit ii-jntuworldmrecedu
 
M1 unit i-jntuworld
M1 unit i-jntuworldM1 unit i-jntuworld
M1 unit i-jntuworldmrecedu
 
M1 unit viii-jntuworld
M1 unit viii-jntuworldM1 unit viii-jntuworld
M1 unit viii-jntuworldmrecedu
 
Unit vii
Unit viiUnit vii
Unit viimrecedu
 

Plus de mrecedu (20)

Brochure final
Brochure finalBrochure final
Brochure final
 
Unit i
Unit iUnit i
Unit i
 
Filters unit iii
Filters unit iiiFilters unit iii
Filters unit iii
 
Attenuator unit iv
Attenuator unit ivAttenuator unit iv
Attenuator unit iv
 
Two port networks unit ii
Two port networks unit iiTwo port networks unit ii
Two port networks unit ii
 
Unit 8
Unit 8Unit 8
Unit 8
 
Unit4 (2)
Unit4 (2)Unit4 (2)
Unit4 (2)
 
Unit5
Unit5Unit5
Unit5
 
Unit4
Unit4Unit4
Unit4
 
Unit5 (2)
Unit5 (2)Unit5 (2)
Unit5 (2)
 
Unit6 jwfiles
Unit6 jwfilesUnit6 jwfiles
Unit6 jwfiles
 
Unit3 jwfiles
Unit3 jwfilesUnit3 jwfiles
Unit3 jwfiles
 
Unit2 jwfiles
Unit2 jwfilesUnit2 jwfiles
Unit2 jwfiles
 
Unit1 jwfiles
Unit1 jwfilesUnit1 jwfiles
Unit1 jwfiles
 
Unit7 jwfiles
Unit7 jwfilesUnit7 jwfiles
Unit7 jwfiles
 
M1 unit vi-jntuworld
M1 unit vi-jntuworldM1 unit vi-jntuworld
M1 unit vi-jntuworld
 
M1 unit ii-jntuworld
M1 unit ii-jntuworldM1 unit ii-jntuworld
M1 unit ii-jntuworld
 
M1 unit i-jntuworld
M1 unit i-jntuworldM1 unit i-jntuworld
M1 unit i-jntuworld
 
M1 unit viii-jntuworld
M1 unit viii-jntuworldM1 unit viii-jntuworld
M1 unit viii-jntuworld
 
Unit vii
Unit viiUnit vii
Unit vii
 

Dernier

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 

Dernier (20)

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 

M1 unit v-jntuworld

  • 2. CONTENTS  Ordinary Differential Equations of First Order and First Degree  Linear Differential Equations of Second and Higher Order  Mean Value Theorems  Functions of Several Variables  Curvature, Evolutes and Envelopes  Curve Tracing  Applications of Integration  Multiple Integrals  Series and Sequences  Vector Differentiation and Vector Operators  Vector Integration  Vector Integral Theorems  Laplace transforms
  • 3. TEXT BOOKS  A text book of Engineering Mathematics, Vol-I T.K.V.Iyengar, B.Krishna Gandhi and Others, S.Chand & Company  A text book of Engineering Mathematics, C.Sankaraiah, V.G.S.Book Links  A text book of Engineering Mathematics, Shahnaz A Bathul, Right Publishers  A text book of Engineering Mathematics, P.Nageshwara Rao, Y.Narasimhulu & N.Prabhakar Rao, Deepthi Publications
  • 4. REFERENCES  A text book of Engineering Mathematics, B.V.Raman, Tata Mc Graw Hill  Advanced Engineering Mathematics, Irvin Kreyszig, Wiley India Pvt. Ltd.  A text Book of Engineering Mathematics, Thamson Book collection
  • 5. UNIT-V CHAPTER-I:APPLICATIONS OF INTEGRATION CHAPTER-II:MULTIPLE INTEGRALS
  • 6. UNIT HEADER Name of the Course: B.Tech Code No:07A1BS02 Year/Branch: I Year CSE,IT,ECE,EEE,ME,CIVIL,AERO Unit No: V No. of slides:17
  • 7. UNIT INDEX UNIT-V S. No. Module Lecture PPT Slide No. No. 1 Introduction, Length, L1-5 8-11 Volume and Surface area 2 Multiple integrals, L6-10 12-15 Change of order of integration 3 Triple integration , L11-12 16-19 Change in triple integration
  • 8. Lecture-1 APPLICATIONS OF INTEGRATION  Here we study some important applications of integration like Length of arc, Volume, Surface area etc.,  RECTIFICATION: The process of finding the length of an arc of the curve is called rectification.  Length of an arc S=∫[1+(dy/dx)2]1/2
  • 9. Lecture-2 LENGTH OF CURVE(RECTIFICATION)  The process of finding the length of an arc of the curve is called rectification. We can find length of the curve in Cartesian form, Polar form and Parametric form.  Length of curve in cartesian form: S= ∫[1+ (dy/dx)2]1/2  Length of curve in parametric form: S=∫√(dx/dθ)2+(dy/dθ)2 dθ
  • 10. Lecture-3 ARC LENGTH  Polar form:  If r=f(θ) and θ=a, θ=b then S=∫√r2+(dr/dθ)2 dθ  If θ=f(r) and r=r1 , r=r2 then S=∫√1+r2(dθ/dr)2 dr
  • 11. Lecture-4 VOLUME  If a plane area R is revolved about a fixed line L in its plane, a solid is generated. Such a solid is known as solid of revolution and its volume is called volume of revolution. The line L about which the region R is revolved is called the axis of revolution.Volume of the solid can be found in 3 different forms Cartesian form, Polar form and Parametric form.  Volume of the solid about x-axis= ∫пy2dx
  • 12. Lecture-5 FORMULAE FOR VOLUME  Cartesian form: Volume of the solid about x-axis=∫пy2dx Volume of the solid about y-axis=∫пx2dy  Volume of the solid about any axis=∫п(AR)2d(OR)  Volume bounded by two curves= ∫п(y12-y22)dx
  • 13. Lecture-6 SURFACE AREA  The surface area of the solid generated by the revolution about the x-axis of the area bounded by the curve y=f(x).We can find revolution about x-axis,y-axis,initial line, pole and about any axis.  Example: The Surface area generated by the circle x2+y2=16 about its diameter is 64π
  • 14. Lecture-7 MULTIPLE INTEGRALS  Let y=f(x) be a function of one variable defined and bounded on [a,b]. Let [a,b] be divided into n subintervals by points x 0,…,xn such that a=x0,……….xn=b. The generalization of this definition ;to two dimensions is called a double integral and to three dimensions is called a triple integral.
  • 15. Lecture-8 DOUBLE INTEGRALS  Double integrals over a region R may be evaluated by two successive integrations. Suppose the region R cannot be represented by those inequalities, and the region R can be subdivided into finitely many portions which have that property, we may integrate f(x,y) over each portion separately and add the results. This will give the value of the double integral.
  • 16. Lecture-9 CHANGE OF VARIABLES IN DOUBLE INTEGRAL  Sometimes the evaluation of a double or triple integral with its present form may not be simple to evaluate. By choice of an appropriate coordinate system, a given integral can be transformed into a simpler integral involving the new variables. In this case we assume that x=r cosθ, y=r sinθ and dxdy=rdrdθ
  • 17. Lecture-10 CHANGE OF ORDER OF INTEGRATION  Here change of order of integration implies that the change of limits of integration. If the region of integration consists of a vertical strip and slide along x-axis then in the changed order a horizontal strip and slide along y-axis then in the changed order a horizontal strip and slide along y-axis are to be considered and vice-versa. Sometimes we may have to split the region of integration and express the given integral as sum of the integrals over these sub- regions. Sometimes as commented above, the evaluation gets simplified due to the change of order of integration. Always it is better to draw a rough sketch of region of integration.
  • 18. Lecture-11 TRIPLE INTEGRALS  The triple integral is evaluated as the repeated integral where the limits of z are z 1 , z2 which are either constants or functions of x and y; the y limits y1 , y2 are either constants or functions of x; the x limits x1, x2 are constants. First f(x,y,z) is integrated w.r.t. z between z limits keeping x and y are fixed. The resulting expression is integrated w.r.t. y between y limits keeping x constant. The result is finally integrated w.r.t. x from x1 to x2.
  • 19. Lecture-12 CHANGE OF VARIABLES IN TRIPLE INTEGRAL  In problems having symmetry with respect to a point O, it would be convenient to use spherical coordinates with this point chosen as origin. Here we assume that x=r sinθ cosф, y=r sinθ sinф, z=r cosθ and dxdydz=r2 sinθ drdθdф  Example: By the method of change of variables in triple integral the volume of the portion of the sphere x2+y2+z2=a2 lying inside the cylinder x2+y2=ax is 2a3/9(3π-4)