SlideShare une entreprise Scribd logo
1  sur  167
‫‪ - munthear@gmail.com‬الدكتور المهندس محمد منذر القادري -‬
‫تحدٌات ......‬
                      ‫• تقلبات سوق الكهرباء تدعو الشركات إلى إعادة التقٌٌم النوعً للكهرباء.‬
‫• نمو الطلب على الطاقة غالبا ما ٌسبق التزوٌد خصوصا مع األسالٌب الجدٌدة لتولٌد الكهرباء‬
                     ‫وانتظار الشركات نتائج األبحاث لمعرفة إلى أٌن ستؤول مشاكل عدم التنظٌم.‬
‫•الطاقة الرخٌصة المولدة من الطاقة النووٌة أو من الفحم أو المحطات المائٌة هً لٌست حلوال‬
‫سهلة للغاٌة لخصوصٌات البٌئة, أنظمة نقل الطاقة مصممة لنقل استطاعات محددة, وإن بناء‬
                                                      ‫إمكانات إضافٌة ٌتطلب 01 سنوات.‬
       ‫• جودة القدرة فً تغٌرات سوق الكهرباء تخلق مشكالت إضافٌة للشركات ومراكز البحث.‬
       ‫• تسوٌة موضوع جودة القدرة ٌبدأ بتحدٌد االستطاعات المستهلكة على الشبكات الكهربائٌة.‬
      ‫• األجهزة الجدٌدة هً أكثر حساسٌة لمشكلة القدرة الناجمة عن زٌادة سرعة وكثافة الدارات‬
                                                                                 ‫التكاملٌة.‬
        ‫• كلفة مشاكل القدرة اآلن وصلت إلى آالف الدوالرات فً الدقٌقة فً العدٌد من الشركات.‬

                       ‫الدكتور المهندس محمد منذر القادري-‬
                       ‫‪munthear@gmail.com‬‬
‫هل تعلم أن؟‬

                 ‫أجهزة الكومبٌوتر النظامٌة عرضة إلضطرابات كهربائٌة مدمرة أكثر من 521 مرة كل شهر!‬

                  ‫إنقطاع التغذٌة لمدة ساعة ٌكلف مالكً شبكات الكومبٌوتر المتوسطة النظامٌة 000,81£!‬

                                    ‫إنقطاع التغذٌة لمدة ساعة ٌكلف قطاع النقل والمواصالت 000,09£!‬
                                  ‫ٌكلف مراكز البورصة الكبٌرة ‪!£6.5 million‬‬
                      ‫000,05£!‬   ‫ٌكلف استرجاع ‪ one megabyte‬من المعطٌات‬

                                                             ‫أن ثلث المعطٌات تفقد بسبب مشاكل القدرة!‬

                                                 ‫نصف أعطال الحواسب بسبب مشاكل التغذٌة الكهربائٌة!‬

                      ‫رداءة التغذٌة الكهربائٌة ٌكلف قطاع األعمال فً أمرٌكا أكثر من ‪ $26 billion‬كل سنة!‬

‫نقال عن ‪ Silicon Valley Power‬أن كلفة انقطاع التغذٌة عن ‪ Sun Microsystems‬أكثر من ‪ $1 million‬كل دقٌقة.‬

                             ‫الدكتور المهندس محمد منذر القادري-‬
                             ‫‪munthear@gmail.com‬‬
‫أنواع إضطرابات القدرة الكهربائٌة‬
                      ‫إنقطاع كامل للتوتر‬
                                                                                    ‫حالة عابرة‬

                           ‫إنقطاع لحظً‬



                                                                               ‫جهوط إبرٌة, مسمارٌة, نبضٌة‬
                          ‫إزدٌاد مؤقت‬



                           ‫إرتفاع جهد‬
                                                                                ‫تغٌرات فً التردد‬


                          ‫هبوط مؤقت‬
                                                                                        ‫توافقٌات‬


                         ‫إنخفاض جهد‬                                                  ‫ضجٌج تردد عالً‬


                                                    ‫‪Power Factor‬‬           ‫معامل القدرة المنخفض‬
                                       ‫عدم توازن األطوار الثالثة ‪Unbalance On three-phase systems‬‬
‫‪, three-phase motors with 5% voltage unbalance exhibit 25% decrease‬‬
‫نسب إضطرابات التغذٌة‬
‫إحصائٌات جدٌدة‬

                                        ‫النسب القٌاسٌة للتشوهات فً الشبكات األمرٌكٌة‬




              Electrical Noise
                 & Transients
                   62.6/Month
                       48.79%


                                                                                      Spikes
                                                                                  Transients
                                                                                  50.7/Month
                                                                                      39.52%
                                                          Sags, Surges
-‫الدكتور المهندس محمد منذر القادري‬       Mains
                                       Failures
                                                           & Brownouts
                                                             14.4/Month
munthear@gmail.com                   0.6/Month                   11.22%
                                         0.47%
‫‪Elements of a Power Quality Problem‬‬
                         ‫عناصر ردائة القدرة‬

‫التولٌد‬                     ‫النقل‬                           ‫التوزٌع‬                ‫المستهلك‬



  ‫المرسل‬                            ‫قناة الربط‬                                ‫المستقبل‬
 ‫( المنبع)‬                           ‫(الشبكة)‬                                 ‫(الحمل)‬


‫إي تغٌر فً تردد أو قٌمة أو شكل موجة الجهد ٌسمى اضطرابا فً خط الشبكة ‪ ,line disturbance power‬وهذا ٌسب‬
                                                                   ‫مشاكل فً تشغٌل األجهزة الكهربائٌة.‬
                                                   ‫أسباب حدوث اإلضراب فً الشبكة ٌنسب إلى ثالثة عناصر‬




                       ‫الدكتور المهندس محمد منذر القادري-‬
                       ‫‪munthear@gmail.com‬‬
‫مىببع الخغزيت : ‪Source‬‬
          ‫جهذ ثببج: / حردد ثببج )‪DC, 1-Phase/ 3-Phase AC ( 50 / 60 hz‬‬

               ‫مىببغ صغٍرة : رٌبح / خالٌب ضىئٍت /مذخراث / خالٌب انىقىد‬

                                   ‫مىبع مخىسطت : دٌسل /حىربٍه غبزي‬

                                   ‫مىببغ كبٍرة : مبئٍت / حرارٌت / وىوٌت‬

                                                          ‫األحمبل: ‪Load‬‬
                                              ‫أمثهت ػهى األحمبل ومخطهببث حشغٍههب:‬
                     ‫مشبرٌغ كهراكٍمبوٌبث: ‪Low DC Voltage, High Current‬‬
                    ‫أفران ححرٌضٍت: ‪1-phase , High Frequency, AC 50hz‬‬
                                         ‫أدواث حشغٍم: ‪Variable DC Voltage‬‬
‫مشبرٌغ حسخخذو محركبث: ‪Variable Voltage Variable Frequency ( VVVF) AC‬‬
                    ‫أحمبل حىاسٍب: )‪Un-interrupted Power Supply ( UPS‬‬
      ‫أوظمت حسود انطبئراث : )‪Variable Speed Constant Frequency ( VSCF‬‬
                                   ‫أوظمت انخىحر انؼبنً انمسخمر : / ‪AC/ DC & DC‬‬
‫أسباب ردائة القدرة الكهربائٌة‬


                                 ‫األحمال اللخطٌة‬   ‫•‬
                                ‫منابع التوافقٌات‬   ‫•‬
                                 ‫منابع اإلرتعاش‬    ‫•‬
                                   ‫منابع ‪sage‬‬      ‫•‬
                               ‫المبدالت المختلفة‬   ‫•‬




   ‫الدكتور المهندس محمد منذر القادري-‬
   ‫‪munthear@gmail.com‬‬
‫طرق الترابط ‪coupling methods‬‬




          ‫الترابط المنقول‬                                                       ‫الترابط المشع‬




 ‫الترابط من خالل ممانعة مشتركة: ٌحدث عندما ٌمر تٌار دارتٌن من خالل ممانعة مشتركة واحدة , مثال ممانعة األرضً.‬
                                                     ‫وباتالً فإن الجهدالهابط على الممانعة ٌؤثر على كال الدارتٌن.‬
‫الحقول الكهرامغناطٌسٌة المشعة تحدث بسبب آالت لحام القوس الكهربائً والصواعق أو أحمال متقطعة أو محطات إرسال‬
                                                                                    ‫إذاعً أو محطات رادار‬




                           ‫الدكتور المهندس محمد منذر القادري-‬
                           ‫‪munthear@gmail.com‬‬
‫تداخل ‪RFI EMI‬‬

                  ‫التداخل الكهرامغناطٌسً )‪Electromagnetic Interference (EMI‬‬
                  ‫تداخل التردد الرادٌوي ‪Interference (RFI) Radio Frequency‬‬
‫- التداخل الكهرمغناطٌسً أو الرادٌوي عادة ماٌكون بتردد ٌزٌد عن ‪ 100khz‬وٌنتقل كما األمواج‬
‫الرادٌوٌة . وبالتالً فإن خطوط القدرة وكبالتها الغٌر محجبة تسلك سلوك هوائً إستقبال ومنه تعمل‬
                                             ‫على إدخال هذه األمواج إلى األنظمة الكهربائٌة.‬
                 ‫- ‪ٌ EMI/RFI‬مكن أن ٌحدث عن طرٌق الترابط السعوي أو الترابط التحرٌضً‬

      ‫- بعض أنماط إضطرابات الجهد مثل الضجٌج والحاالت العابرة تحدث إما كإضطراب نمط‬
                 ‫عادي ‪normal mode‬أوكإضطراب نمط مشترك ‪.common mode‬‬
          ‫- إضطراب النمط العادي أو المتعارض ‪A normal or transverse mode‬هو‬
         ‫عبارة عن فرق فً الجهد غٌر مرغوب به ٌخلق بٌن خطٌن دارة ٌحمالن تٌارا , مثال فً‬
                                     ‫دارة تغذٌة إحادٌة الطور المعنٌان هما الحٌادي وخط الفاز.‬
       ‫- إضطراب النمط المشترك ‪ A common mode disturbance‬هو فرق جهد غٌر‬
      ‫مرغوب به بٌن جمٌع الخطوط الحاملة للتٌار وخط األرضً. وهً تتضمن نبضات وضجٌج‬
                                                       ‫‪ EMIRFI‬بالنسبة لألرضً.‬
‫من أٌن تأتً إضطرابات التغذٌة الكهربائٌة؟‬



                                       ‫‪ ‬تجهٌزات المعامل‬
                                      ‫‪ ‬تجهٌزات المكاتب‬
                            ‫‪ ‬المكٌفات الكهربائٌة والمصاعد‬
‫من أٌن تأتً اإلضطرابات الكهربائٌة‬




                                     ‫اصطدام الطٌور بخططوط التوتر العالً ‪O/H lines‬‬        ‫•‬
                                                 ‫تأثٌرالرٌاح على خطوط التوتر العالً.‬     ‫•‬
                                         ‫معظم الصواعق تقع على خطوط التوتر العالً.‬        ‫•‬
                                         ‫إنهٌار بعض المعدات الكهربائٌة ( محوالت ...)‬     ‫•‬
                                                                       ‫أخطاء عملٌاتٌة.‬   ‫•‬
                                                                         ‫عناصر مسٌئة:‬    ‫•‬
                                                                ‫– إعادة اإلغالق اآللً‬
‫الدكتور المهندس محمد منذر القادري-‬                   ‫– تقفً العطل ‪Fault tracing‬‬
‫‪munthear@gmail.com‬‬
‫الحلول‬
                                            ‫- تحسٌن نوعٌة الكهرباء هذا ٌتضمن‬
             Uninterruptible power supplies ‫• وحدات التغذٌة عدٌمة اإلنقطاع‬
                       Power conditioning ‫• منظمات الجهد  مكٌفات القدرة‬
            transient voltage surge suppressor ‫• مخمد هضبة الجهد العابرة‬
                                                           RFI Filter ‫• مرشح‬
                                             Line Filters ‫• مرشح جهد الشبكة‬
                                      Isolation Transformer ‫• محول العزل‬
                           Power Factor Correction ‫• تصحٌح معامل القدرة‬
    generation Backup emergency and on-site‫• الطوارئ اإلحتٌاطً والتولٌد الجاهز‬
                                                        .shielding ‫• التحجٌب‬
                                                     .Grounding ‫• التأرٌض‬
-‫الدكتور المهندس محمد منذر القادري‬
munthear@gmail.com
ITIC ‫منحنً السماحٌة للتوتر وفق‬

                  ITIC Voltage Tolerance Curve




                                    EQUIPMENT DAMAGE RISK




                                        EQUIPMENT MALFUNCTION




ITIC (Information Technology Industry Council) formally CBEMA curve
‫منحنً السماحٌة فً الصناعة‬
SEMI F47 voltage immunity standard
SEMI, the industry association for the semiconductor industry, has developed two voltage sag immunity
standards.
•SEMI F47 sets out the required voltage sag tolerance for semiconductor fab equipment.
•SEMI F42 explains how to test compliance with SEMI F47. (PSL helped write SEMI F42.)
You can purchase copies of these standards from SEMI for $50 each, or you can quickly and easily obtain a free
set of Application Notes on a CD-ROM from PSL -- just send us an e-mail at FreeCD@PowerStandards.com with
your name and address. (Trouble with this link? Just give us a call at +1-510-658-9600 and we'll take care of it.)
In essence, SEMI F47 requires that semiconductor processing equipment tolerate voltage sags on their ac power
line. Specifically, they must tolerate sags to 50% for up to 200 ms, sags to 70% for up to 0.5 seconds, and sags to
80% for up to one second. In addition to these requirements, SEMI F47 recommends that equipment tolerate sags
to 0% for one cycle, sags to 80% for 10 seconds, and continuous sags to 90%, but these are not part of the
requirements.
SEMI F47 suggests that semiconductor manufacturers may use this sag standard when procuring equipment.
Major semiconductor manufacturers are beginning to take this approach, including Intel, Texas Instruments,
Motorola, IBM, and others.
SEMI F42 explains how to test compliance with F47. It describes safety procedures, processing modes, test
sequences, phase connections, and reporting requirements.
SEMI F42 also distinguishes between testing equipment for "characterization" (determining the depth and duration
of sags that equipment can tolerate) and "compliance" (a pass/fail test determining if equipment complies with the
requirements and recommendations of SEMI F47).
PSL's sag generators are designed specifically to test according to SEMI F47 and SEMI F42
Voltage sags(dips) and swells




            A typical voltage sag


‫فترة الهبوط تستمر من 01 مٌلً ثانٌة إلى عدة ثوان‬
Sag
Voltage sags -- or dips which are the same thing -- are brief reductions in voltage, typically lasting from a
cycle to a second or so, or tens of milliseconds to hundreds of milliseconds. Voltage swells are brief
increases in voltage over the same time range.
(Longer periods of low or high voltage are referred to as "undervoltage" or "overvoltage".)
Voltage sags are caused by abrupt increases in loads such as short circuits or faults, motors starting, or
electric heaters turning on, or they are caused by abrupt increases in source impedance, typically caused by
a loose connection.
 Voltage swells are almost always caused by an abrupt reduction in load on a circuit with a poor or damaged
voltage regulator, although they can also be caused by a damaged or loose neutral connection.
A typical voltage sag.
Voltage sags are the most common power disturbance. At a typical industrial site, it is not unusual to see
several sags per year at the service entrance, and far more at equipment terminals.
Voltage sags can arrive from the utility; however, in most cases, the majority of sags are generated inside a
building. For example, in residential wiring, the most common cause of voltage sags is the starting current
drawn by refrigerator and air conditioning motors.
Sags do not generally disturb incandescent or fluorescent lighting, motors, or heaters. However, some
electronic equipment lacks sufficient internal energy storage and, therefore, cannot ride through sags in the
supply voltage. Equipment may be able to ride through very brief, deep sags, or it may be able to ride through
longer but shallower sags.
‫‪Sources of Sags‬‬                   ‫أسباب غور التوتر‬

                                                    ‫إقالع أحمال كبٌرة‬   ‫•‬
                                                 ‫– محركات كبٌرة جدا‬

                                                        ‫هبوط الشبكة‬     ‫•‬
                                                     ‫– أحمال كبٌرة .‬
                                                    ‫– حدوث أعطال.‬

      ‫أزمنة إزالة العطل على المغذٌات فً محطات التوزٌع: ‪5 to15 cycles‬‬    ‫•‬

                                  ‫مجال ضعف التوتر ‪20 to 50% Sag‬‬         ‫•‬



         ‫الدكتور المهندس محمد منذر القادري-‬
         ‫‪munthear@gmail.com‬‬
voltage sags ‫أسباب‬

Voltage sags are brief reductions in the voltage on ac power systems. (The American "sag"
and the British "dip" have exactly the same meaning, and may be used interchangeably.)
How brief? Between 1/2 cycle and a few seconds. Disturbances that last less than 1/2 cycle
are commonly called "low frequency transients"; voltage reductions that last longer than a
few seconds are commonly called "undervoltage." Power systems have non-zero
impedances, so every increase in current causes a corresponding reduction in voltage.
Usually, these reductions are small enough that the voltage remains within normal
tolerances. But when there is a large increase in current, or when the system impedance is
high, the voltage can drop significantly. So conceptually, there are two sources of voltage
sags:
•Large increases in current
•Increases in system impedance
As a practical matter, most voltage sags are caused by increases in current. It is convenient
to think of the power system as a tree, with your sensitive load connected to one of the
twigs. Any voltage sag on the trunk of the tree, or on a branch leading out to your twig, will
cause a voltage sag at your load. But a short circuit out on a distant branch can cause the
trunk voltage to diminish, so even faults in a distant part of the tree can cause a sag at your
load.
It is important to understand the source of the voltage sags before trying to
eliminate them, because the wrong solution can actually make the problem worse.
For example, if you install a ferro-resonant transformer as a voltage regulator, or a
battery-operated UPS (a reasonable and common approach), but inadvertently
install it upstream from the motor that is causing your voltage sags, the voltage
sags will get worse, not better.
In most cases, the correct solution is to adjust the equipment so that it is less
sensitive to voltage sags.
Sag sensitivity - Five ways equipment fails during voltage sags
CBEMA curve - voltage sag depth and duration at world-wide semiconductor plants



                          -‫الدكتور المهندس محمد منذر القادري‬
                          munthear@gmail.com
‫إرتفاع أو إنخفاض التوتر‬



High or Low Voltages Sustained high and low voltages are
usually caused by the distribution system. This system of
wires and transformers that connects all electrical loads to
the utility generators has impedance. This impedance
causes the voltage to drop when current flows through the
system. The further you are from the power source and the
more current drawn, the more the voltage will drop. To
maintain the voltage as best they can, the utility will increase
the voltage so customers close to the power source will
have higher than nominal voltage while the furthest
customers will have lower than nominal voltage (maybe
much lower). Because the utility will only increase the
voltage by a certain amount, and because additional voltage
drop is caused in the user’s building wiring, voltages are
Most voltage sags originate within your facility. The three most common causes of facility-sourced
voltage sags are:
•Starting a large load, such as a motor or resistive heater. Electric motors typically draw 150%
to 500% of their operating current as they come up to speed. Resisitive heaters typically draw
150% of their rated current until they warm up.
•Loose or defective wiring, such as insufficiently tightened box screws on power conductors.
This effective increases your system impedance, and exaggerates the effect of current increases.
•Faults or short circuits elsewhere in your facility. Although the fault will be quickly removed by
a fuse or a circuit breaker, they will drag the voltage down until the protective device operates,
which can take anywhere from a few cycles to a few seconds.
Experts can identify the specific source of a voltage sag with an advanced power quality monitor,
such as those found at PQMonitoring.com. Voltage sags can also originate on your utility's
electric power system. The most common types of utility-sourced voltage sags are:
•Faults on distant circuits, which cause a corresponding reduction in voltage on your circuit.
Typically, these faults are removed by "reclosers", or self-resetting circuit breakers. These
reclosers typically delay 1 to 5 seconds before self-resetting. If the fault is still present when the
recloser resets, you may see a series of voltage sags, spaced 1 to 5 seconds apart. Faults on
utility systems may be phase-to-phase, or phase-to-earth; depending on the transformers
between you and the fault, you will see different levels of voltage reduction.
• Voltage regulator failures are far less common. Utilities have automated systems to adjust
voltage (typically using power factor correction capacitors, or tap switching transformers), and
these systems do occasionally fail.
‫ كحالة عابرة‬overvaltage ‫تجاوز الجهد‬




Example capacitor switching transient


     -‫الدكتور المهندس محمد منذر القادري‬
     munthear@gmail.com
The reasons for these categories were explained as follows:
    •The 90% level provides an indication of performance for the most sensitive equipment.
    •The 80% level corresponds to an important break point on the ITI curve and some sensitive
    equipment may be susceptible to even short sags at this level.
    •The 70% level corresponds to the sensitivity level of a wide group of industrial and
    commercial equipment and is probably the most important performance level to specify.
    •The 50% level is important, especially for the semiconductor industry, since they have
    adopted a standard that specifies ride through at this level.
    •Interruptions affect all customers so it is important to specify this level separately. These will
    usually have longer durations than the voltage sags.
    •The first range of durations is up to 0.2 seconds (12 cycles at 60 Hz). This is the range
    specified by the semiconductor industry that equipment should be able to ride through sags as
    long as the minimum voltage is above 50%.
    •The second range is up to 0.5 seconds. This corresponds to the specification in the ITIC
    standard for equipment ride through as long as the minimum voltage is above 70%. It is also
    an important break point in the definition of sag durations in IEEE 1159 (instantaneous vs.
    momentary).
    •The third duration range is up to 3 seconds. This is an important break point in IEEE 1159
    and in IEC standards (momentary to temporary).
    •The final duration is up to one minute. Events longer than one minute are characterized as
    long duration events and are part of the system voltage regulation performance, rather than
    voltage sags.
voltage sag sensitivity

Why does equipment fail when there are voltage sags on ac power systems? There is one obvious way, and
four not-so-obvious ways.
 1. Equipment fails because there isn't enough voltage. This is the obvious way -- if there is not enough
voltage on the ac power system to provide the energy that the equipment needs, it is going to fail. Actually, the
problem is slightly more subtle. In a typical sensitive load, the ac voltage is rectified and coverted to pulsed dc.
With a bridge rectifier, the pulsing will typically be either twice the power line frequency (for single-phase loads)
or six times the power line frequency (for three-phase loads). This pulsing DC is stored in a filter capacitor,
which in turn supplies smooth DC as raw material for the rest of the power supply: regulators, etc.
If the DC supplied by the filter capacitor drops below some critical level, the regulators will not be able to deliver
their designed voltage, and the system will fail. Note that the filter capacitor always stores energy, so there is
always an ability to ride through some sags -- after all, the ac power system delivers zero voltage 100 or 120
times each second! But with a deep enough sag that lasts long enough, the filter capacitor voltage will drop
below a critical level.
2. Equipment fails because an undervoltage circuit trips. Careful system designers may include a circuit
that monitors the ac power system for adequate voltage. But "adequate voltage" may not be well defined, or
understood. For example, if the sensitive system is running at half load, it may be able to operate at only 70%
ac voltage, even though it may be specified to operate with 90% - 110% ac voltage. So the voltage sags to
70%; the equipment can operate without a problem; but the undervoltage monitor may decide to shut the
system down.
3. Equipment fails because an unbalance relay trips.On three-phase systems, voltage sags are often
asymmetrical (they affect one or two phases more than the remaining phases). Three-phase motors and
transformers can be damaged by sustained voltage unbalance; it can cause the transformer or motor to
overheat. So it makes sense to put in an unbalance relay, which is a device that shuts down the system if the
voltage unbalance exceeds some threshold, typically a few percent.
But a voltage sag that causes 20-50% unbalance for a second or two is never going to cause a motor or
transformer to overheat. It just doesn't last long enough. Still, unbalance relays with inadequate delays can
cause the sensitive system to shut down, even for a brief voltage sag.
4. A quick-acting relay shuts the system down, typically in the EMO circuit. The EMO (emergency off)
circuit in an industrial load typically consists of a normally-closed switch that can disconnect power to a
latched relay coil. If the relay operates quickly enough, it may interpret a brief voltage sag as an operator
hitting the EMO switch. The whole system will shut down unnecessarily.
5. A reset circuit may incorrectly trip at the end of the voltage sag. This is the most subtle problem
caused by voltage sags. Many electronic reset circuits are designed to operate at "power up" -- when you
first turn on the equipment, these circuits will ensure that the microprocessors all start up properly, the
latches are all properly initialized, the displays are in their correct mode, etc. These circuits are difficult to
design, because they must operate correctly when power is uncertain.
One common design detects a sudden increase in voltage, which always happens when you turn the
equipment on. Unfortunately, it also happens at the end of a voltage sag. If the reset circuit misinterprets the
end of a voltage sag, the equipment will operate perfectly during the voltage sag, but will abruptly reset itself
when the voltage returns to normal.
To make this problem even more difficult, it is quite common for different parts of a system to have different
reset circuits, so it is possible for one part of the system to be reset even when the rest of the system is not.
Without a sag generator with a good data acquisition system, this problem is very difficult to detect and
solve.
‫تنظٌم التوتر‬

The term "voltage regulation" is used to discuss long-term variations in voltage. It does not include short term
variations, which are generally called sags, dips, or swells.
The ability of equipment to handle steady state voltage variations varies from equipment to equipment. The
steady state voltage variation limits for equipment is usually part of the equipment specifications. The
Information Technology Industry Council (ITIC) specifies equipment withstand recommendations for IT
equipment according to the ITI Curve (formerly the CBEMA curve). The 1996 ITI Curve specifies that equipment
should be able to withstand voltage variations within +/- 10% (variations that last longer than 10 seconds).
Voltage regulation standards in North America vary from state to state and utility to utility. The national standard
in the U.S.A. is ANSI C84.1. Voltage regulation requirements are defined in two categories:
•Range A is for normal conditions and the required regulation is +/- 5% on a 120 volt base at the service
entrance (for services above 600 volts, the required regulation is -2.5% to +5%).
•Range B is for short durations or unusual conditions. The allowable range for these conditions is -8.3% to
+5.8%. A specific definition of these conditions is not provided.
Voltage regulation requirements from ANSI C84.1. This is not a universal standard; it is only used in North
America.
Other countries have different standards. For example, IEC 61000-2-2 mentions that the normal operational
tolerances are +/- 10% of the declared voltage. This is the basis of requirements for voltage regulation in EN
50160 for the European Community. EN 50160 requires that voltage regulation be within +/- 10% for 95% of the
10 minute samples in a one week period, and that all 10 minute samples be within -15% to +10%, excluding
voltage dips.
voltage sag ‫كٌف نحسن من المناعة ضد‬

1. Find and fix the problem.
2. 2. Add a power quality relay.
3. 3. Switch power supply settings.
4. Connect your single-phase power supply phase-to-phase.
5. Reduce the load on your power supply.
6. Increase the rating of your power supply.
7. Use a three-phase power supply instead of a single-phase supply.
8. Run your power supply from a DC bus.
9. Change the trip settings.
10. Slow the relay down.
11. Get rid of the voltage sag itself.



                     -‫الدكتور المهندس محمد منذر القادري‬
                     munthear@gmail.com
‫ اإلرتفاع /اإلنخفاض‬Sags / Surges


Sags / Surges are short duration changes in voltage level.
Sags (low voltage) are much more common than surges
(high voltage). Starting electric motors and other
equipment, ground faults, undersized power systems, and
lightning all produce voltage sags.
Surges may be generated when large electrical loads are
shut off.




               -‫الدكتور المهندس محمد منذر القادري‬
               munthear@gmail.com
Surge ‫إندفاع هضبة التوتر‬

•   EN61000-4-5
•   Performance Criteria B
•   The surge waveform simulates the transients induced onto the AC
    power line by lightning events
•   The wave-shape is 1.2/50 S open circuit voltage through a 2 ohm
    resistor (line to line) or 12 ohm resistor (line to ground). The short
    circuit current wave-form is 8/20S




                    -‫الدكتور المهندس محمد منذر القادري‬
                    munthear@gmail.com
‫‪ surge‬ماذا تعنً؟‬
‫‪ Surge ‬هً رشقة قصٌر من الجهد ( جهود دفقٌة أو هضبة جهد) تعرض‬
‫الحمل إلى االف الفولت. وتكون أحٌانا على شكل نبضة مسمارٌة وأحٌانا على‬
                                        ‫شكل حالة عابرة‬
       ‫‪ ‬فترة قصٌرة ‪Short Duration --- Microseconds‬‬
                                   ‫‪ ‬طاقة عالٌة ‪High Energy‬‬
                    ‫‪ ‬مولدة خارجٌا ‪Externally Generated‬‬
                      ‫‪ ‬مولدة داخلٌا ‪Internally Generated‬‬
‫هضبة الجهد ‪ Surges‬هً‬
                                             ‫نبضة زمنها أكبر من 4.8 مٌلً ثانٌة‬     ‫•‬
                                                  ‫توصف بالموجة المربعة أو األسٌة‬   ‫•‬
                                          ‫عادة ما تترافق بمنبع ذو ممانعة منخفضة‬    ‫•‬
‫إرتفاع الهضبة فً %09 من الحاالت ٌكون أقل من ضعفً قٌمة الجهد التشغٌل االسمً.‬        ‫•‬
‫من أٌن تأتً ‪Surges‬؟‬

                                                     ‫النوع المولد خارجٌا:‬
        ‫‪ ‬المدمرة – ‪ Destructive‬من الجو مثل الصواعق‬
          ‫‪ ‬المعطلة – ‪ Disruptive‬فصل الشبكة الكهربائٌة‬
                                                  ‫النوع المولد داخلٌا:‬
‫‪ ‬مسٌئة – ‪Degradative‬األحمال التحرٌضٌة وأجهزة التقطٌع‬




             ‫الدكتور المهندس محمد منذر القادري-‬
             ‫‪munthear@gmail.com‬‬
‫ماهً المشاكل التً تسببها ‪surges‬؟‬


                ‫‪ ‬عطل مباشر في التجهيزات قد تسب تلف ‪.IC‬‬
‫‪ ‬هضبة الجهد المسٌئة ‪ degradative surges‬قد تسبب أعطال غٌر قابلة للشرح.‬
       ‫‪ ‬فشل أداء بعض األجهزة بسبب ترابط ‪ surges‬مع خطوط معطٌات.‬




                    ‫الدكتور المهندس محمد منذر القادري-‬
                    ‫‪munthear@gmail.com‬‬
‫08% من األعطال الناجمة عن رداءة القدرة هً‬
  ‫بسبب الجهود اإلبرٌة و‪ surge‬المولدة داخلٌا‬




            ‫الدكتور المهندس محمد منذر القادري-‬
            ‫‪munthear@gmail.com‬‬
‫ماهً وسائل الحماٌة من‬surge ‫؟‬



 A high voltage relief valve

 It insulates during normal operation

 It clamps voltage by diverting excess current to

ground during a surge
 It is basically a variable resistor

 Acts like an open circuit with high impedance normally

 During a surge it acts like a short circuit with low

impedance
‫تقنٌات الحماٌة من ‪Surge‬‬


                          ‫انمهفبث‬    ‫-‬
                  ‫األوببٍب انغبزٌت‬   ‫-‬
               ‫مقىمبث انسٍهٍىٍىو‬     ‫-‬
                ‫انفبٌرسخىر‪MOV‬‬        ‫-‬
‫ثىبئٍبث ‪ Avalanche‬انسهكىوٍت‪SAD‬‬       ‫-‬
                         ‫انمكثفبث‬    ‫-‬


‫الدكتور المهندس محمد منذر القادري-‬
‫‪munthear@gmail.com‬‬
‫خواص العناصر‬
         ‫مقىمبث انسٍهٍىٍىو‬                                     ‫انمكثفبث‬
      ‫‪ surge ‬قذرة ػبنٍت‬                           ‫‪ surge ‬قذرة ػبنٍت‬
‫‪ ‬جهذ إقفبل ػبنً ‪clamping‬‬                             ‫‪ ‬حخسن طبقت كبٍرة‬
           ‫‪ ‬اسخجببت بطٍئت‬                         ‫‪ ‬حخصرف كذارة قصر‬


            ‫األوببٍب انغبزٌت‬                                    ‫انمهفبث‬
       ‫‪ surge ‬قذرة ػبنٍت‬                           ‫‪ surge ‬قذرة ػبنٍت‬
            ‫‪ ‬اسخجببت بطٍئت‬                            ‫‪ ‬حخسن قذرة كبٍرة‬
                 ‫‪ ‬غٍر ثببخت‬                      ‫‪ ‬حخصرف كذارة مفخىحت‬




             ‫الدكتور المهندس محمد منذر القادري-‬
             ‫‪munthear@gmail.com‬‬
‫خواص العناصر‬


          ‫ثىبئٍبث ‪ Avalanche‬انسهكىوٍت‪SAD‬‬
            ‫‪ ‬إسخجببت سشيعت للغبيت أصغش مه‪1 nsec‬‬
                        ‫‪ surge ‬لذسة مىخفضت‬
                          ‫‪ ‬حخميذ صغيشة مسبحت‬

                      ‫فبٌرسخىر أكسٍذ مؼذن ‪MOV‬‬
                 ‫‪ ‬اسخجببت سشيعت مه مشحبت ‪1 nsec‬‬
                     ‫‪ ‬جهذ إلفبل محكم ‪clamping‬‬
                             ‫‪ surge ‬عبليت لذسة‬




‫الدكتور المهندس محمد منذر القادري-‬
‫‪munthear@gmail.com‬‬
‫الحاالت العابرة & الجهودالنبضٌة واإلبرٌة‬

Impulses, Spikes & Transients are all names used to describe very
short duration, high amplitude voltage pulses on the power lines.
These voltage pulses often reach 6,000 volts. They are caused by
lightning that strikes on or near the power lines, utility switching, static
electricity, and switching electrical devices on or off.
 Impulses damage all types of electronic and electrical equipment. The
high voltage levels puncture or weaken insulation. The fast rate of
voltage change stresses the turn-to-turn insulation of windings in
motors, transformers, solenoids, etc. The damage may not cause
immediate failure. Often the equipment is weakened and may fail days
or weeks after the event. Besides equipment damage, impulses cause
machine resets, data processing errors, and other apparently random
malfunctions.


                    -‫الدكتور المهندس محمد منذر القادري‬
                    munthear@gmail.com
Transient ‫ماهً الحالة العابرة‬


•     Definition: an unanticipated change in voltage
      caused by a unpredictable occurrence.
•     One must differentiate between a voltage
      transient and a power surge.
•     Transients can be categorized in 4 basic threats.
    –    Lightning.
    –    Nuclear electromagnetic pulse.
    –    Electrostatic Discharge.
    –    Inductive switching.
‫الحالة العابرة‬

      ‫القدرة النظامٌة .‪50Hz‬‬




‫‪Transient‬‬
‫‪waveform‬‬
‫الحالة العابرة هً‬

                                          ‫نبضة زمنها أقل من 4.8 مٌلً ثانٌة‬     ‫•‬
        ‫توصف بالموجة الجٌبٌة أو األسٌة عادة ما تترافق بمنبع ذو ممانعة عالٌة.‬   ‫•‬
‫قٌمتها تتراوح بٌن بضع مٌلً فولت و 00081 فولت بشروط التشغٌل الطبٌعٌة.‬           ‫•‬


                                      ‫حىصيفهب وفك المعيبس 2-4-00016 ‪IEC‬‬
‫كٌف نخمد الحالة العابرة‬



                                              : ‫ٌجب األخذ بعٌن اإلعتبار اإلرشادات التالٌة‬

– TVS Parameters

   • Stand-off Voltage (Vwm) >= Operating Voltage (Vop)

   • Peak Pulse Current (Ippm) >= Source Transient Current (Is)

   • Clamping Voltage (Vc)         =< Voltage Withstand (Vws)




                   -‫الدكتور المهندس محمد منذر القادري‬
                   munthear@gmail.com
‫لماذا‬TVSS‫؟‬
  Increasing Awareness of power quality
 Increased speed and density of integrated circuits

 Microprocessor based electronics throughout facility
 Conversion from analog to digital

 Switch-mode power supplies




                -‫الدكتور المهندس محمد منذر القادري‬
                munthear@gmail.com
‫منحنً خواص ‪TVS‬‬
TVS‫مكثفات متناهٌة الصغر‬




            •   Available from 3volt to 24volt in
                unidirectional and bidirectional
                configurations
            •   GBLC series
‫ ذات سعات صغٌرة جدا‬TVS ‫مصفوفات‬




                  •   Can be utilized for unidirectional
                      common mode and bidirectional
                      common mode or differential mode
                      protection applications
‫ متناهٌة الصغر‬TVS ‫مصفوفات‬




                  •   SLVU2.8-4
                       –   4 lines of protection
‫إرتعاش الجهود المتناوبة‬


                 AC Voltage Flicker
• “Flicker” is the effect caused when a large load current is
  switched, creating a short-duration dip in the AC voltage (e.g.
  refrigerator, when compressor switches on the lights dim
  momentarily)
• Can only be measured with a custom-built test equipment -
  but could be evaluated using a light bulb connected to the
  same AC outlet ?
‫اإلرتعاش‬        ‫‪Flicker‬‬

‫اإلرتعاش مشكلة خاصة جدا وتهم اإلنسان العادي . وهً ال تقع تحت مصطلح تغٌرات الجهد.‬
                            ‫اإلنسان حساس جدا إلرتعاش اإلضاءة الناجم عن تموج الجهد.‬




                   ‫الدكتور المهندس محمد منذر القادري-‬
                   ‫‪munthear@gmail.com‬‬
Brownouts ‫إنخفاض الجهد‬



Brownouts are intentional under-voltages instituted by the
utility. When power demand exceeds the capacity of the
utility generators, the utility lowers the voltage to all or
some customers. This reduces the load on the generators
so they won’t burn out, but causes even more acute
equipment malfunctions and damage.




                -‫الدكتور المهندس محمد منذر القادري‬
                munthear@gmail.com
‫عدم توازن األطوار‬




Three Phase Voltage Unbalance simply means the voltages on a three-phase system are
not equal.
Utilities generate three-phase AC power because it is produced and distributed at lower cost
than single phase AC or DC power, and because three phases are needed to produce
steady torque in AC generators and motors. To power single phase loads, any two of the
three power wires are connected. Voltage unbalance is usually caused by connecting more
single phase loads to one of the three phases. This situation produces unbalanced load
currents, uneven voltage drops, and thus, unbalanced voltages.
For three-phase loads, a voltage unbalance of one or two percent is usually not a problem.
However, larger voltage unbalances can cause many problems. For example, three-phase
motors with 5% voltage unbalance exhibit 25% decrease in torque, 50% increase in losses,
40% increase in temperature, and a whopping 80% decrease in life. In transmitter
applications, voltage unbalance causes severe ripple in high voltage power supplies,
straining the power supply filtering and increasing AM noise.
‫معامل القدرة‬

                                ( PF ) Power factor ‫• معامل القدرة‬
                                         PF = kW / kVA –
                                   ‫– معامل القدرة للمحرك متأخر‬
– 100HP motor, 460V, 93% eff, 119A                      : ‫- مثال‬
    •   (100HP x 0.746kW/HP) / 0.93 = 80.2kW
    •   119A x 460V x 1.73 / 1000 = 94.8kVA
    •   PF = 80.2kW / 94.8kVA = 84.6% @ FL
    •   But … at actual load, more like 70% or less




                   -‫الدكتور المهندس محمد منذر القادري‬
                   munthear@gmail.com
ElectroMagnetic Compatibility              ‫المالئمة الكهرامغناطٌسٌة‬




• All electronic equipment is capable of radiating and absorbing
  radio frequency (RF) energy.

• The principle behind ElectroMagnetic Compatibility is that
  equipment should limit radiation to below a specified level, and
  be able to withstand a certain level of incident RF radiation.

• The levels are given in the EMC regulations.
   – BS EN 55022 (Computers)
   – BS EN 55020 (Radio & TV)

• These are only a guide as circumstances vary for each location.
EMC ‫1-إعتبارات‬



• Good RF house keeping is vital . . .

• Spurious outputs from transmitters
   – Along with unintended leakage wanted RF.

• Too much power radiated.
   – Leading to excessive field strength.

• Only use as much power necessary to make the contact.
   – This will reduce the EMC potential

• Your set-up
   – Mode used, Antenna location, Antenna type used (Next session).
EMC ‫2-إعتبارات‬



• Considerations . . .

• Filters used (EMC session-2)
   – Ferrite ring, High Pass, Low Pass, Band Pass Notch.

• Poor immunity of affected device
   – Age, construction and use of equipment..

• Proximity for affected item.
   – Coupling / Connections, Location.

• Good Quality Coax
   – Quality connectors, soldered correctly and water tight.
RF Earths           ‫تأرٌض التردد الرادٌوي‬



                             “Mains Earth” ‫• التستخدم أرضً القدرة‬
– Provide a separate earth point consisting of several copper
  rods in the ground and a thick copper wire to the equipment
– Earth outer of coax cable as it enters any building.
– Do not use water / gas pipes as they may not be truly earthed.




              -‫الدكتور المهندس محمد منذر القادري‬
              munthear@gmail.com
EMC ‫ و‬RFI ‫ و‬EMI ‫ما هو‬
 Electromagnetic Interference (EMI) ً‫• التداخل الكهرامغناطٌس‬
  – Any electromagnetic disturbance that interrupts,
    obstructs, or otherwise degrades or limits the
    effective performance of electronics/electrical
    equipment
      Radio Frequency Interference (RFI) ‫• التداخل الرادٌوي‬
  – In general, extraneous energy, from natural or
    man-made sources, that impedes the reception of
    desired signals.
Electromagnetic Compatibility (EMC) ‫• المالئمة الكهرامغناطٌسٌة‬
  – A device is compatible with its electromagnetic
    (EM) environment and it does not emit levels of EM
    energy that cause electromagnetic interference
    (EMI) in other devices in the vicinity.
EMI ‫مسببات‬

                                                                            ‫المنابع‬   •
              Signal / Power energy in EM fields ‫– حقول كهرامغناطٌسً لخطوط القدرة‬
Reflections from un-terminated transmission lines ‫– إنعكاس من تهاٌات خطوط إرسال‬
                           Electrostatic Discharges (ESD) ً‫– تفرٌغ كهراستاتٌك‬


                                                                              ‫• التربط‬
                       Inductive / Capacitive coupling ً‫ترابط سعوي أو تحرٌض‬     –
                          Common impedance coupling ‫ترابط بممانعة مشتركة‬        –
                       Radiated electromagnetic fields ‫حقل كهرامغناطٌسً مشع‬     –


                                                                        ‫المستقبالت‬    •
                    Unnecessarily high bandwidth ‫– عرض مجال واسع غٌر مرغوب‬
                                     Low noise margins ‫– هامش ضجٌج منخفض‬
‫تقنٌات تخفٌض ‪EMI‬‬


                                                    ‫• تخمٌد منابع اإلشعاع‬
                                                ‫موافقة خطوط اإلرسال‬   ‫–‬
                          ‫تخمٌد عناصر اإلشارة الرادٌوٌة الغٌر ضروري‬   ‫–‬
                                       ‫تخفٌض مستوٌات الجهد والتٌار‬    ‫–‬
‫مرشح مسالم على خطوط التغذٌة وعلى خطوط اإلشارة وعلى نبضات النزامن‬      ‫–‬


                                                        ‫• تخفٌض الترابط‬
                                ‫– توضع للعناصر وتوزٌع مسار الخطوط.‬
                                                        ‫– التحجٌب.‬
                                                        ‫– تأرٌض .‬


   ‫الدكتور المهندس محمد منذر القادري-‬
   ‫‪munthear@gmail.com‬‬
‫كٌف تعمل المرشحات على تخفٌض ‪EMI‬‬
  ‫1‪V‬‬
‫‪-1/1V‬‬   ‫‪Int Z‬‬                   ‫1‪R‬‬
          ‫05‬                   ‫001‬
                                                                  ‫ٌخمد مرشح التمرٌر المنخفض‬
‫‪1mHz‬‬
                         ‫1‪C‬‬
                                                               ‫توافقٌات اإلشارة التً هً أعلى من‬
                ‫‪TVS‬‬



                                      ‫2‪C‬‬
                                                              ‫القطع )‪ (fc‬من أجل اإلختبار نختار‬




                                            ‫‪TVS‬‬
                        ‫‪20pf‬‬         ‫‪20pf‬‬         ‫‪50 Load‬‬
                                                                ‫1‪ D‬و2‪ D‬من نوع دٌود ‪ TV‬ذو‬
                                                               ‫سعة وصلة ‪ ,20pF‬سوف ‪TVS‬‬
                                                                   ‫تحمً من الحالة العابرة وتخمد‬
                                                            ‫اإلشارات الغٌر مرغوبة التً فوق تردد‬
                                                                                           ‫القطع‬




                                                        ‫الدكتور المهندس محمد منذر القادري-‬
                                                        ‫‪munthear@gmail.com‬‬
‫المرشح بوجود تحرٌضٌات طفٌلٌة‬
                         ‫1‪R‬‬
                         ‫001‬

‫1‪+ Vs‬‬            ‫1‪C‬‬                      ‫2‪C‬‬

          ‫‪15pF‬‬




                                 ‫‪15pF‬‬
                                                                    ‫‪RL‬‬
 ‫‪2.5V‬‬                                                               ‫05‬
‫-‬                                                     ‫‪TVS‬‬
                                                      ‫2‪D‬‬
                   ‫50.‬




                                          ‫50.‬
  ‫‪TVS‬‬      ‫1‪L‬‬
   ‫1‪D‬‬                             ‫2‪L‬‬




                       ‫المكثفبث 1‪ C‬و2‪ C‬هي مكثفبث الىصلت الذيىداث ‪L1 , TVS‬‬
                ‫و 2‪ L‬هي ححشيضيبث وبشئت مه حىصيالث الذاسة المطبىعت ‪. PCB‬‬
                                   ‫المششح سىف يخمذ اإلشبساث الخي فىق حشدد المطع‬
        ‫والذيىداث ‪ TVS‬سىف ححمي مه الىبضبث اإلبشيت الىبجمت مه الحبلت العببشة.‬
‫‪EMIF6-100LFC‬‬                  ‫مثال‬

      ‫إن ‪ EMIF6-100FC‬هى عببسة عه مششح ‪ EMI‬رو 6‬
        ‫خطىط مع حمبيت مه الحبالث العببشة ضمه ششيحت واحذة‬
ESD ‫المناعة ضد تفرٌغ الشحنة الساكنة‬


• EN61000-4-2
• Performance Criteria B
• ESD events create high-speed transients that can:
       • Permanently damage ICs
       • Cause false resets or other spurious reactions
       • The performance criteria is B - so some degradation in
         performance is permitted during the test but the device MUST
         recover without user intervention.
• ESD events caused by people discharging directly to the
  product or to nearby objects
‫توضع عناصر دارة صحٌح‬



                                         ‫حافظ على جعل مسارات نبضات التزامن أقصر ما ٌمكن.‬      ‫‪‬‬
          ‫حاول إبعاد مسارات نبضات التزامن بعٌدة ما ٌكمن عن حواف البطاقة اإللكترونٌة ‪.PCB‬‬      ‫‪‬‬
       ‫دعم الدارة بمكثفات إزالة الترابط الرادٌوي وخصوصا على الدارات المتكاملة التً تعمل على‬   ‫‪‬‬
                                                ‫التقطٌع وحاول وصلها أقرب ماٌمكن من أرجل .‬
‫إن مكثفات إزالة الترابط فعالة فقط فً الترددات حتى ‪ ,100MHz‬فً الترددات األعلى من ذلك ٌتم‬       ‫‪‬‬
       ‫تحقٌق إزالة الترابط بجعل وحدات التغذٌة أقرب ما ٌكون ومن خالل صفائح معدنٌة مؤرضة.‬
     ‫الخطوط الحاملة لنبضات التزامن ٌجب وصل نهاٌاتها بمقومات عندما طولها ثالثة أضعاف زمن‬       ‫‪‬‬
     ‫صعودها لحماٌتها من الطنٌن على خطوطهاألن ممانعة المسار ال تساوي المصدر مقسومة على‬
                                                                                     ‫الحمل.‬
                                                                   ‫.‪tr = rise time in nS‬‬      ‫‪‬‬
‫توضع عناصر دارة صحٌح‬



   Provide filtering on all interface ports (including AC & DC power )
   RF caps to a “clean” ground (typically chassis), common mode chokes or ferrite
    beads make ideal circuit elements
   Include the filter components on ALL signal lines, including ground (especially
    where the ground is a digital signal ground)
I/O Interfaces                      ‫التداخل بٌن الخرج والدخل‬


   If possible, use PCB connectors with metal back shells as these can
    prevent high frequency signals radiated from the board from coupling
    onto the signal lines after the filter
   Shields ideally terminate 360 to the enclosure (NOT to digital ground).
   Shielded cables should have the shield terminated to the enclosure at the
    “noisy” end(s) - single ended grounding at rf does not work
   Never use pigtails to terminate shields - at best they make a shielded
    cable ineffective, at worst they can increase emissions.
      XLR cables are not designed for effective use of the shields - if you
        cannot terminate the shield directly to chassis (because of low frequency
        ground loops) tie to chassis using ceramic capacitors (alternatively create
        a capacitor on the PCB)
‫الحلول الوقائٌة‬


•   ‫ الحصانة من اإلشعاع‬Radiated Immunity
     – Solve problems in a similar manner to radiated emissions
     – Restrict bandwidths
     – Add common mode filtering to audio inputs
     – Pay particular attention to high-gain stages - make sure they are
        provided with adequate rf decoupling
• ‫ الحالة العابرة السرٌعة‬Fast Transients
     – Transzorbs on I/O lines, filtering, enclosure design all have an
       effect
• ‫ إنبعاث الجهد‬Surge
     – Power supply design could incorporate MoVs line-to-line (line-to-
       ground typically prohibited by Safety standard)
     – AC line filters can reduce surge effects.
‫فلتر ‪EMI‬‬   ‫مثال:‬




‫الشبكة‬                          ‫الجهاز‬
‫الكهربائٌة‬
‫مبهي الخىافميبث ؟‬




                ‫+‬                               ‫=‬


                                  ‫)‪sin(5x‬‬
‫)‪f(x) = sin(x‬‬            ‫= )‪f(x‬‬     ‫5‬                    ‫)‪f(x) = sin(x) + sin(5x‬‬
                                                                           ‫5‬




                    ‫الدكتور المهندس محمد منذر القادري-‬
                    ‫‪munthear@gmail.com‬‬
‫التشوه التوافقً‬


 ‫التشوه التوافقً هو تشوه فً شكل الموجةالجٌبٌة . ٌحدث بسبب مرور تٌارات أحمال‬
 ‫غٌر جٌبٌة فً ممانعة مشتركة فً نظام التوزٌع الذي بدوره ٌؤدي إلى خلق جهد غٌر‬
                                                   ‫جٌبً على خطوط التوزٌع.‬
‫إن وحدات التغذٌة وأنظمة قٌادة المحركات التً تعتمد أنصاف النواقل وتٌارات مغنطة‬
                                        ‫المحوالت جمٌعها تسبب تشوهات توفقٌة.‬
‫تشوهات الجهد هذه قد تؤذي أو تخل فً أداء العدٌد من األجهزة المصولة على خطوط‬
                                                            ‫الشبكة المشوهة.‬


                    ‫الدكتور المهندس محمد منذر القادري-‬
                    ‫‪munthear@gmail.com‬‬
‫اآلثار الضارة للتشوه التوافقً‬


‫• ضجٌج سمعً وإهتزاز مٌكانٌكً فً التجهٌزات الكهرومغناطٌسٌة كالمحوالت والمحركات و لوحات‬
                                                                        ‫الحماٌة (القواطع).‬
                           ‫• إرتفاع الحرارة فً المحوالت والمولدات والكبالت ومكثفات التعوٌض.‬
                                         ‫• سوء أداء بعض تجهٌزات التحكم اإللكترونٌة الحساسة.‬
                                                         ‫• فتح قواطع الحماٌة بشكل غٌر مبرر.‬
                                                ‫• إرتجاف اإلضاءة وشاشات التلفزة والحواسٌب.‬
                                                           ‫• تشوه الصوت فً األنظمة الصوتٌة.‬
                                                        ‫• إنخفاض عامل اإلستطاعة الغٌر مفسر.‬
                                ‫• تحمٌل الزائد للناقل الحٌادي خصوصا عند وجود التوافقٌة الثالثة.‬

                         ‫الدكتور المهندس محمد منذر القادري-‬
                         ‫‪munthear@gmail.com‬‬
‫مصادر التوافقٌات & اإلرتعاش‬

                                  ‫• العناصر الفٌرومغناطٌسٌة‬
                             ‫– المحوالت(اإلشباع , الالخطٌة).‬
                                  ‫• عناصر القوس الكهربائً‬
                                      ‫– مصابٌح الفلورٌسانت.‬
                             ‫– أجهزة اللحام بالقوس الكهربائً.‬
                                    ‫– أفران القوس الكهربائً.‬
                             ‫• العناصر اإللكترونٌة المفتاحٌة‬




   ‫الدكتور المهندس محمد منذر القادري-‬
   ‫‪munthear@gmail.com‬‬
Conquering Harmonic Resonance can be accomplished by:


(1) adding or subtracting capacitance from the system to move the
parallel resonance frequency to one that is not deleterious;
(2) adding tuned harmonic suppression reactors in series with the
capacitor to prevent resonance; (3) altering the size of non-linear
devices. It is important that the tuned frequency, for the 5th harmonic,
be at approximately the 4.7th harmonic to account for tolerance in
manufacturing and to remove the largest offending portion of the 5th
harmonic. Parallel resonance will occur around the 4th harmonic, at a
much lower amplitude and in an area that does no harm to the
system or capacitor. Tuning lower than 282 Hz is not efficient in
removing large portions of the offending harmonic




       -‫الدكتور المهندس محمد منذر القادري‬
       munthear@gmail.com
‫تطبٌق تصحٌح عامل القدرة فً بٌئة مشوه توافقٌا‬
where: h = harmonic order




KVAsc : available short circuit at point of capacitor bank installation
KVAR =capacitor bank size




           -‫الدكتور المهندس محمد منذر القادري‬
           munthear@gmail.com
‫دارة إزالة الرنٌن‬
‫منظمات زاوٌة الطور‬

                                                                    ‫مثال: مخفتات اإلضاءة‬   ‫•‬

                                                                      ‫‪lamp dimmer circuit‬‬




                                                                                ‫تعلٌقات:‬   ‫•‬
                                  ‫– ٌمكن تخفٌض تشوهات التٌار باستخدام ملف خانق مناسب‬
‫– إن ‪THD‬و ‪ EMI‬المشع ٌكون بأقل قٌمته عند زاوٌة قدح °0 و °081 (صفر أو كامل التوتر)‬
                ‫– إن ‪THD‬و ‪ EMI‬المشع ٌكون بأعلى قٌمته عند زاوٌة قدح °09 (نصف التوتر)‬
‫أشكبل أمىاج مخفج اإلضبءة‬
‫طيف مىجت الخيبس لمخفج اإلضبءة‬

• High frequency components which lead to EMI are reduced by the choke.
‫المقومات وحٌدة الطور‬

                                         ‫مثال: وحدات تغذٌة الحواسب, شواحن البطارٌات‬




                Typical computer power supply front-end
•   The rectifier conducts only when the line voltage magnitude exceeds the
    capacitor voltage.
•   The capacitor gets charged by drawing current at the peak of the voltage
    cycle and gets discharges slowly into the switching regulator between the
    voltage peaks.
•   Thus the circuit draws short pulses of current during line voltage peaks.
‫التٌار المستجر من وحدة تغذٌة الحاسب‬
‫تٌار الحٌادي فً جسر تقوٌم ثالثً الطور‬




 ‫الدكتور المهندس محمد منذر القادري-‬
 ‫‪munthear@gmail.com‬‬
Sequence Classification of Harmonics




• In AC systems, the current
  and voltage waveforms have
  rotational symmetry.
   – even harmonics will not be
     present.
• Power system harmonics are
  hence predominantly the
  odd, i.e 3rd, 5th, 7th, etc.
‫مقوم ثالثً الطور‬
                      Six-pulse Rectifier




• Used in motor drives, traction, electrochemical plants, etc.
• The high inductance in the dc side causes the dc current, Id to
  be essentially constant.
‫ مقوم ثالثً الطور‬Six-pulse Rectifier




• The Fourier series for the line current for a diode rectifier is:

             2 3              1         1           1           1              
ia ( t)     
                 Id   
                      
                       sin t  sin5 t  sin 7 t  sin 11 t  sin 13 t  ...
                               5         7          11          13              

• For symmetrical ideal triggering, only harmonics of the order
  6n±1 are present in the AC side currents.

• The presence of source reactance and commutation effects lead
  to smoother current waveforms.



                         -‫الدكتور المهندس محمد منذر القادري‬
                         munthear@gmail.com
Supply voltage and current waveforms for three-phase bridge
                with highly inductive load
Twelve-pulse Rectifier (cont.)

•   Used in high power motor drives, traction, hvdc converters, etc.
•   The Fourier series for the line current for a twelve-pulse diode rectifier is:


                           2 3                1             1           
                    ia (t )    I d sin t  sin 11t  sin 13t  ...
•                            
    For symmetrical ideal triggering, only harmonics of the 13 12n±1 are 
                                             11            order
    present in the AC side currents.




       Supply voltage and current waveforms for twelve pulse bridge with highly inductive load
‫مبدالت التردد ‪Cycloconverters‬‬
                                     ‫- ٌستخدم فً قٌادة المطاحن الكبٌرة فً صتاعة اإلسمنت وصناعة التعدٌن.‬
                                                                         ‫- التوافقٌات المتولدة عنه هً :‬


   ‫‪ cycloconverter‬حشدد الخشج لمبذل الخشدد =‪fo‬‬       ‫‪f h   pm  1 f‬‬            ‫‪‬‬      ‫0 ‪6nf‬‬
   ‫; …,3,2,1=‪m‬‬             ‫…,2,1,0=‪n‬‬
                                                              ‫- طيف الخىفميبث يخغيش كلمب حغيش حشدد الخشج‬




‫‪Typical input current harmonics of a six-pules cycloconverter with 5-Hz output frequency‬‬
Integral-cycle Controllers or Pulse Burst Modulation (PBM)


  • This technique is used in applications such as heating, ovens,
    furnaces, etc.
  • Subharmonics are predominant. DC component can also be
    present.
  • High frequency harmonics above 200 Hz are practically absent.




Pulse-burst-modulation power conditioning .
Current wave: n=6; g=4/6
Harmonic spectrum for g6/8.


   Currents generated by a typical PBM system. 
A Demonstration That a Balanced 3-Phase Load Can Result
                   In Neutral Current
‫الخىافميبث والمحىالث‬


                       ‫إرتفاع حراري للمحول وعطب العزل وذلك ألسباب عدة:‬
                 ‫زٌادة تأثٌر الظاهرة القشرٌة ‪ skin‬وظاهرة التجاور‪proximity‬‬
                       ‫دوران التوافقٌات فً الملف اإلبتدائً ‪. circulating‬‬
                                   ‫تزٌد من ضٌاعات اإلبطاء ‪hysteresis‬‬
                               ‫تزٌد من ضٌاعات التٌارات اإلعصارٌة ‪eddy‬‬
                                        ‫تٌار مستمر فً الملف اإلبتدائً ‪DC‬‬


‫‪AFC‬‬   ‫‪AFC‬‬




        ‫الدكتور المهندس محمد منذر القادري-‬
        ‫‪munthear@gmail.com‬‬
‫الخىافميبث والمحىالث‬

                      Many transformers are rated by
                      “K factor” which simply describes
                      their ability to withstand harmonics.

                      Transformers may also be derated
                      to compensate for the additional
                      heating caused by harmonics.

                      Improved transformer designs have
                      also been developed, with oversized
AFC   AFC
                      neutral busses, special cores, and
                      specially designed coils.


        -‫الدكتور المهندس محمد منذر القادري‬
        munthear@gmail.com
‫تأثٌر التوافقٌات على المحوالت‬
                                            ‫ضٌاعات المحول الناتجة عن التوافقٌة الثالثة ‪TRIP‬‬


                                  ‫•تقسم ضٌاعات المحول إلى ضٌاع الملفات وضٌاع النواة الحدٌدٌة‬
         ‫• ضٌاع النواة تلقى إهتمام أقل ألنها ناتجة من السٌالة المولدة فً النواة من قبل الجهد المستمر‬
                                       ‫• ضٌاع الملفات ٌزداد مع إزدٌااد ‪ I2R‬والضٌاعات الشاردة‬


                                                                         ‫تأثٌر التوافقٌة الثالثة:‬
                                           ‫• إجهادات مفرطة ناجمة عن الحرارة‬
                                                                 ‫•إنهٌار العازلٌة‬
                                                        ‫•مردود تشغٌلً منخفض‬
                                                               ‫•زمن حٌاة قصٌر‬
                                                                 ‫•ضجٌج صوتً‬



     ‫الدكتور المهندس محمد منذر القادري-‬
     ‫‪munthear@gmail.com‬‬
‫الخىافميبث ومكثفبث حصحيح المذسة‬


   ‫مكثفات تصحٌح عامل القدرة قد تسبب طنٌن تسلسلً أو طنٌن‬
                                     ‫تفرعً فً نظم القدرة.‬
‫إذا تولدت توافقٌات تقع ضمن تردد طنٌن النظام , فً هذه الحالة‬
                                    ‫سوف تضخم التوافقٌات‬
‫الخىافميبث ومكثفبث حصحيح المذسة‬

                                                                            :‫مثال‬

                                  Assume a 1500 kVA supply xfmr,
                  1500 kVA        with a 5.75% impedance.
                   5.75%




                  600 kVAC        Also assume 600 kVA of power
                                  correction capacitors on the system


                                         :‫ٌعرف تردد الطنٌنً التوافقً بالعالقة‬


                 kVAsc             1500 / 0.0575 = 6.6
        hr =                  =
                 kVAC              600
‫الحلول القدٌمة فً معالجة التوافقٌات‬              ‫‪Leo Craig‬‬



    ‫1-وضع عامل أمان كبٌر عند حساب منابع الطاقة والكبالت والقواطع وهوحل مكلف جدا‬
                                        ‫وبطبٌعة الحال ال ٌنفً وجود التوافقٌات على الشبكة.‬
        ‫2- وضع محوالت بتوصٌالت مختلفة للحد من حركة التوافقٌات الثالثة ومضاعفاتها (‬
      ‫التوافقٌة التاسعة ) وهو للحد من آثار التوافقٌة الثالثة لحماٌة كابل الحٌادي. وٌبقى حال‬
                                                                              ‫جزئٌا مكلفا.‬
     ‫وهً خاصة لتخمٌد التوافقٌة )‪ -36 pulse Bridge‬استخدام جسور خاصة تدعى (‬
     ‫‪d,y‬الخامسة والسابعة . وطبعا لكونها محوالت صرفة (ذات لف مختلف لمفات الثانوي‬
              ‫)متوضعة تسلسلٌا بٌن المنبع والحمل فٌها فهً مكلفة للغاٌة وتعتبر حال جزئٌا.‬
‫4- دارات الطنٌن المولفة ( الفالتر الطنٌنٌة ) والتً تتألف من ملف ومكثف موصولٌن بشكل‬
   ‫دارة طنٌن تعٌٌر على التردد المرغوب التخلص منه بحٌث تمرر هذا التردد دون غٌره إلى‬
                               ‫الخط الحٌادي أو األرضً . وكسابقتها هً حل مكلف وجزئً.‬
 ‫5- ملف تسلسلً بٌن المنبع والحمل تكون ممانعته عالٌة بالنسبة للترددات األكبر من التردد‬
‫) بحٌث تخفض مجموع التوافقٌات الكلً . وهً تعتبر حال جٌدا للتوافقٌات ‪50hz‬األساسً (‬
  ‫الكبٌرة ولكنها اقل فعالٌة بالنسبة للتوافقٌات الصغٌرة الهامة فهً كغٌرها من الحللول تعتبر‬
                                                                                ‫حال جزئٌا.‬
‫التوصٌات العملٌة للتعامل مع مشكلة التوافقٌات‬
Identify the required PCC and apply techniques that are most cost effective for that location.
 Add a line reactor (or DC link choke if possible) to any un-buffered 6 pulse drives.
 Never use power factor correction capacitors at the input (or output) terminals of a drive.
 Active filters are most cost effective on larger multi-drive systems to correct for both displacement and distortion
power factor.
 For an even number of equally sized drives, consider a Pseudo 12 pulse solution by placing half of the load on a
phase shifting delta wye transformer.
 Design the system to Isolate linear and non-linear loads and create two systems with 5% and 10% voltage limits
respectively.
 If passive filters are used on generator power, select a passive filter with an LC dropout contactor terminal block.
 Take the time to understand the benefits and drawbacks of each type of mitigation solution to assure you meet
the requirements of the application
and that you can live with any negative effects created by the chosen harmonic solution.
 Consider an active front end if the application requires regenerative operation and harmonic compliance.
 Perform a preliminary computer analysis and explore the effects of using various compliance methods.
‫كٌف نخفض التٌار التوافقً‬
‫• خانق ترابط مستمر داخل نظام القٌادة ‪DC link choke within the drive‬‬
                                               ‫• مفاعل خط ‪line reactor‬‬
                                          ‫• مرشح مسالم ‪passive filter‬‬
                                             ‫• مر شح فعال ‪active filter‬‬
                                              ‫• تعدد األطوار ‪multi-pulse‬‬
                       ‫• مبدل  مقوم فعال ‪active rectifier / converter‬‬



                    ‫الدكتور المهندس محمد منذر القادري-‬
                    ‫‪munthear@gmail.com‬‬
‫أنواع المرشحات‬

                          ‫المرشحات المسالمة ‪Passive filters‬‬              ‫•‬
        ‫تؤمن مسار ذو ممانعة منخفضة إلى األرض عند تردد الرنٌن‬         ‫–‬
                               ‫تستخدم المكثفات كمرشحات فعالة.‬        ‫–‬
                                   ‫تستخدم عناصر ‪ RLC‬مولفة .‬          ‫–‬
                                                    ‫إقتصادٌة.‬        ‫–‬

                              ‫المرشحات الفعالة ‪Active filters‬‬            ‫•‬
                                ‫معوض ستاتٌكً لإلستطاعة الردٌة.‬       ‫–‬
‫تحقن تٌارات توافقٌة ( أو توترات) معاكسة بالطور للتوافقٌة الموجودة‬    ‫–‬
              ‫تستخدم عناصر مثل مفاتٌح أنصاف النواقل ومضخمات.‬         ‫–‬
                                                      ‫غالٌة الثمن.‬   ‫–‬
‫‪ Passive Filters‬المرشحات المسالمة‬




  ‫• النمط ذو الطنٌن التسلسلً ٌؤمن ممانعة منخفضة عند تردد الطنٌن‬
              ‫• النمط ذو طنٌن التوازي ٌؤمن ممانعة عالٌة عند تردد‬
Capacitor as a Filter ‫المكثف كمرشح‬


                ‫• المكثف التفرعً هو أبسط شكل للمرشح المسالم‬
                                                    ‫إقتصادي‬        -
                                 (Q) ‫– أٌضا ٌؤمن تعوٌض قدرة ردٌة‬
• delines for sizing capacitive filters
   – resonance between capacitor and circuit inductive
     reactance should not occur exactly at an integer
     multiple of fundamental frequency.
   – sensitivity of resonant point to drift in capacitor value
     should be investigated,
   – voltage and var support provided should not be
     excessive,
   – IEEE Standard 18 should be consulted for sizing and
     placement of capacitor.
‫مرشح توافقٌات مسالم‬
‫معالجة مسالمة ‪ Passive‬لتخفٌض تٌار الحٌادي‬
‫مرشح تٌار الحٌادي‬

Neutral Current Filter (Blockade)
‫تٌار الخط وتٌار الحٌادي وأطٌافهما بدون مرشح‬



Line Current & Neutral Current and Spectrum Without the Blockade
Line Current & Neutral Current With the Blockade
‫)‪ (NFC‬مرشح تٌار الحٌادي‬
‫المخطط المبسط لمرشح تٌار حٌادي فعال‬
‫نتائج اإلختبار لمرشح تٌار حٌادي فعال‬
‫نتائج إختبار مرشح تٌار حٌادي فعال‬
‫توزع المرشحات على الشبكة‬
Motor Derating vs. Harmenic Voltage Distortion


        This chart requires a calculation for the Harmonic Voltage Factor or
        HVF based on weighted individual harmonic component levels. Since
        the motor impedance is lower for the lower harmonic components, they
        will cause more heating and thus carry more weight. To determine the
        motor de-rating factor, the following formula should be used.

                                 for values of n from 0 to infinity.
Six pulse buffered vs. un-buffered drives
Six pulse buffered vs. un-buffered drives
Six pulse buffered vs. un-buffered drives
‫المرشحات المسالمة‬
‫المرشحات العرٌضة المجال‬
‫مرشح توافقٌات فعال‬
‫المرشحات الفعالة‬
‫المرشح الفعال نمط الجهد ونمط التٌار‬




             ‫.‪Voltage type (left) and current-type active filters‬‬


        ‫• مرشح فعال منبع تٌار‬                          ‫• مرشح فعال منبع جهد‬
‫– ملف,)‪(current source‬‬                               ‫– مكثف,)‪(dc source‬‬
   ‫– معرج منبع تٌار.)‪(CSI‬‬                           ‫– معرج منبع جهد.)‪(VSI‬‬
ً‫مبدأ التعوٌض الفعال التفرع‬
Shunt Active Compensation Principle

       IS

                          IF        IL
ً‫ تفرع‬PWM ‫فلتر فعال‬
         Shunt PWM Active Filters


                      IS        IL
                                            IL

                           IF               +
                                            IF
Source
         C                           Load
                                            =
                                            IS
             Filter
‫مبدأ التعوٌض الفعال التسلسلً‬
‫تكنولوجٌا المرشحات الفعالة‬


‫• تعتبر المرشحات الفعالة ‪ Active filters‬مكٌفات قدرة فعالة ‪active power line‬‬
                                                          ‫.‪conditioners‬‬

                     ‫المرشحات الفعالة أٌضا تصنف إعتمادا على طرٌقة التصحٌح‬   ‫•‬
                                                ‫- تصحٌح فً المجال الزمنً‬
                                               ‫- تصحٌح فً المجال الترددي‬
‫منابع الجهد‬
‫‪AFE System‬‬   ‫مرشح فً المقدمة فعال‬
‫مدخل فعال‬
‫فعال من جهة المدخل‬   ‫‪Active Front End‬‬
Active Front End Rectifier   ‫مقوم فعال فً المقدمة‬
Recommendations Practices to Aid in
                Harmonic Compliance

• Identify the required PCC And apply techniques most cost effective for that location.
• Add a line reactor (or DC link choke if possible) to any un-buffered 6 pulse drives.
• Use Active Filters on multi-drive systems to correct displacement / distortion.
• For an even number of equally sized drives, consider a Pseudo 12 pulse solution by placing half of
the load on a phase shifting delta wye transformer.
• Design the system to Isolate linear and non-linear loads and create two systems with 5% and 10%
voltage limits.




                  -‫الدكتور المهندس محمد منذر القادري‬
                  munthear@gmail.com
Recommendations Practices to Aid in Harmonic Compliance




       • For passive filters on generator power, select a filter with an LC dropout contactor terminal
       block. Limit leading power factor.
       • Take time to understand the benefits and drawbacks of each type of mitigation solution to
       assure you meet the requirements of the application and that you can live with any negative
       effects created by the chosen harmonic solution.
       • Consider an active front end if the application requires regenerative operation and harmonic
       compliance.
       • Perform a preliminary computer analysis and explore the effects of using various compliance
       methods.
       • Never use power factor correction capacitors at the input (or output) of a drive.
‫الكلفت والىثىليت‬
      COST & RELIABILITY
‫أنواع األحمال فً الشبكة الكهربائٌة‬
‫ - الحذود المىصى بهب‬IEEE 519

  The Institute of Electrical and Electronics Engineers (IEEE)
  has set recommended limits on both current and voltage
  distortion in IEEE 519-1992.


    THD (voltage) ‫نوع التطبٌق‬

              3%           Special               Hospitals and Airports
              5%          General               Commercial Industrial
              10%         Dedicated              Non-lineal load system

careful review of the IEEE-519-1992 document reveals three levels of
compliance with regard to voltage distortion. These levels are set at and
defined as:
‫915 ‪ - IEEE‬الحذود المىصى بهب للخشىهبث‬

‫تشوه التٌار التوافقً األعظمً كنسبة من تٌار الحمل‬

                                                     ‫رقم التوافقٌة الفردٌة‬

 ‫‪Isc/IL‬‬             ‫11<‬        ‫71<‪11<h‬‬             ‫32<‪17<h‬‬              ‫53<‪23<h‬‬              ‫‪TDD‬‬
  ‫02<‬               ‫0.4‬           ‫0.2‬                ‫5.1‬                  ‫6.0‬                ‫0.5‬
 ‫05-02‬              ‫0.7‬           ‫5.3‬                ‫5.2‬                  ‫0.1‬                ‫0.8‬
 ‫001-05‬             ‫0.01‬          ‫5.4‬                ‫0.4‬                  ‫5.1‬                ‫0.21‬
‫0001-001‬            ‫0.21‬          ‫5.5‬                ‫0.5‬                  ‫0.2‬                ‫0.51‬
 ‫0001>‬              ‫0.51‬          ‫0.7‬                ‫0.6‬                  ‫5.2‬                ‫0.02‬

      ‫‪ : Isc‬تٌار قصر الدارة األعظمً عند نقطة الربط المشتركة ‪(PCC Point of Common Coupling‬‬

                                                   ‫تٌار الحمل المطلوب األعظمً عند نقطة ‪PCC‬‬   ‫‪: IL‬‬
‫حخميذ الخىافميبث ‪Attenuation of Harmonics‬‬

‫المفاعلة التحرٌضٌة‬

                ‫طرٌقة العمل : إضافة مفاعلة خط أو محول عزل لتخمٌد التوافقٌات‬

                                                    ‫منخفض الكلفة‬        ‫الفوائد:‬
                                                      ‫تقانة بسٌطة‬


 ‫االهتمام: ٌخدم فً تقدٌم تخفٌض فً توافقٌات المرتبة العلٌا. وله تأثٌر قلٌل على‬
                                                    ‫التوافقٌات الخامسة والسابعة‬
       ‫بسبب ترافق ذلك مع هبوط فً الجهد. ٌوجد حدود فً إضافة هذه المفاعالت‬
‫حخميذ الخىافميبث ‪Attenuation of Harmonics‬‬

                                                                             ‫المرشحات المسالمة‬

         ‫ٌؤمن ممر ممانعة منخفضة بالنسبة للترددات التوافقٌة الى األرض‬            ‫طرٌقة العمل:‬

‫ٌمكن أن تولف على تردد بٌن التوافقٌٌن الشائعٌن بحث ٌخدم فً تخمٌد الترددٌن‬            ‫الفوائد:‬



                            ‫تولٌف الفالتر تحتاج إهتمام مركز من قبل الفنٌٌن‬          ‫االهتمام :‬
                         ‫تختلف الفالتر بحجومها وال ٌمكن تحدٌد مقاٌٌس لها‬
                          ‫تبدي حساسٌة عالٌة ألي تغٌٌر فً مواصفات النظام‬




                           ‫الدكتور المهندس محمد منذر القادري-‬
                           ‫‪munthear@gmail.com‬‬
‫‪Attenuation of Harmonics‬‬                      ‫حخميذ الخىافميبث‬
                                                                             ‫المرشحات الفعالة‬

‫طرٌقة العمل: ٌحقن توافقٌات مساوٌة ومعاكسة إلى نظام القدرة لحذف تلك التوافقٌات المولدة من أجهزة‬
                                                                                         ‫أخرى‬


                            ‫الفوائد: ٌضمن تخفٌض فعال للتوافقٌات إلى مستوٌات منخفضة مطلوبة‬


                                  ‫االهتمام : ٌتطلب إنفرتر أداء عالً لحقن التوافقٌات وهذا مكلف‬
 ‫ترانستورات القدرة المستخدمة تتعرض إلى ظروف التً ٌخضع لها الخط.وبذلك نواجه مشكلة الوثوقٌة‬




                          ‫الدكتور المهندس محمد منذر القادري-‬
                          ‫‪munthear@gmail.com‬‬
Attenuation of Harmonics ‫حخميذ الخىافميبث‬
                                                  ‫مقومات 21 نبضة‬

‫:طرٌقة العمل‬    Two separate rectifier bridges supply a single
                DC bus. The two bridges are fed from phase-
                shifted supplies.
‫:الفوائد‬       Very effective in the elimination of 5th and 7th
               harmonics.
               Stops harmonics at the source.
               Insensitive to future system changes.

Concerns:       May not meet the IEEE standards in every
                case.
                Does little to attenuate the 11th and 13th
                harmonics.
‫حخميذ الخىافميبث ‪Attenuation of Harmonics‬‬
                                                                          ‫مقومات 81 نبضة‬


‫طرٌقة العمل: محول إزاحة الطور المتكامل ومقوم الدخل الذي ٌستجر فً الغالب موجة جٌبٌة نقٌة‬
                                                                              ‫من المنبع‬


                                             ‫ٌلبً المعٌار ‪ IEEE‬فً جمٌع الحاالت‬      ‫الفوائد:‬
                                           ‫ٌخمد جمٌع التوافقٌات حتى التوافقٌة 53‬
                                                       ‫ٌوقف التوافقٌات عند المنبع‬
                                                ‫غٌر حساس لتغٌر مواصفات النظام‬



                                   ‫االهتمام: ٌمكن أن ٌكون غالً الثمن عند استطاعات منخفضة‬
ً‫ ستاتٌك‬Var ‫معوض إستطاعة ردٌة‬




• Consists of electronically switched capacitor and/or inductor.
• Some SVC technologies
    – Thyristor Controlled Reactor (TCR) with fixed capacitor (FC)
    – TCR with thyristor switched capacitor (TSC).
• The Adaptive Var Compensator (AVC), developed at the University of
  Washington, is essentially a bank of TSCs.
FACTS and Custom Power Devices


•   The other families of power electronic devices, very closely related to
    the active filters, are
     – Flexible AC Transmission System (FACTS) devices,
     – Custom Power Devices.
•   FACTS devices are intended for [4]
     –   greater control of power transmission,
     –   maximize utilization of existing transmission lines,
     –   reduction of generation reserve margin,
     –   prevention of cascading outages,
     –   damping of power system oscillations.
Static Condenser (STATCOM)              ً‫المكثف الستاتٌك‬



                                    Figure 22: Functional
                                     block diagram of a
                                         STATCON.




• FACTS and Custom Power Device
   – reactive power compensation,
   – voltage regulation (by reactive power compensation),
   – harmonic current compensation.
• Behaves as a voltage source connected in shunt to the power
  system through an inductor.
‫معوض الجهد الدٌنامٌكً )‪(DVR‬‬




‫‪Dynamic Voltage Restorer‬‬




               ‫• مناسب ألجهزة المستهلكٌن‬
      ‫– تنظٌم جهد بطرٌقة التعوٌض التسلسً‬
              ‫– تعوٌض توافقٌات جهد الخط‬
‫ٌتصرف كمنبع جهد موصول مع خط القدرة‬         ‫•‬
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality
جودة القدرة Power quality

Contenu connexe

Tendances

Stability test of transformer
Stability test of transformerStability test of transformer
Stability test of transformerSantu Mondal
 
FACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY pptFACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY pptMamta Bagoria
 
Components of LT Switchgear.pptx
Components of LT Switchgear.pptxComponents of LT Switchgear.pptx
Components of LT Switchgear.pptxSwaroopMallick2
 
Generator protection calculations settings
Generator protection calculations settingsGenerator protection calculations settings
Generator protection calculations settingsmichaeljmack
 
MicroGrid and Energy Storage System COMPLETE DETAILS NEW PPT
MicroGrid and Energy Storage System COMPLETE DETAILS NEW PPTMicroGrid and Energy Storage System COMPLETE DETAILS NEW PPT
MicroGrid and Energy Storage System COMPLETE DETAILS NEW PPT Abin Baby
 
Slip power recovery schemes EDC
Slip power recovery schemes EDC Slip power recovery schemes EDC
Slip power recovery schemes EDC STALLONRAJ
 
CT design aspects - Nageswar-6
CT design aspects - Nageswar-6CT design aspects - Nageswar-6
CT design aspects - Nageswar-6Nageswar Rao
 
Switchgear and protection 1
Switchgear and protection 1Switchgear and protection 1
Switchgear and protection 1Md Irshad Ahmad
 
EXCITATION SYSTEMS by Dr. Kundur Power Systems
EXCITATION SYSTEMS by Dr. Kundur Power SystemsEXCITATION SYSTEMS by Dr. Kundur Power Systems
EXCITATION SYSTEMS by Dr. Kundur Power SystemsPower System Operation
 
WIDE AREA PROTECTION IN POWER SYSTEMS
WIDE AREA PROTECTION IN POWER SYSTEMSWIDE AREA PROTECTION IN POWER SYSTEMS
WIDE AREA PROTECTION IN POWER SYSTEMSmanogna gwen
 
concept of resilience and self healing in smart grid
concept of resilience and self healing in smart gridconcept of resilience and self healing in smart grid
concept of resilience and self healing in smart gridKundan Kumar
 
Protection and control of Microgrid
Protection and control of MicrogridProtection and control of Microgrid
Protection and control of MicrogridAmarjeet S Pandey
 
Measurement of high_voltage_and_high_currentunit_iv_full_version
Measurement of high_voltage_and_high_currentunit_iv_full_versionMeasurement of high_voltage_and_high_currentunit_iv_full_version
Measurement of high_voltage_and_high_currentunit_iv_full_versionAman Ansari
 
Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear johny renoald
 

Tendances (20)

Static var compensator
Static var compensatorStatic var compensator
Static var compensator
 
Stability test of transformer
Stability test of transformerStability test of transformer
Stability test of transformer
 
FACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY pptFACTS DEVICES AND POWER SYSTEM STABILITY ppt
FACTS DEVICES AND POWER SYSTEM STABILITY ppt
 
Components of LT Switchgear.pptx
Components of LT Switchgear.pptxComponents of LT Switchgear.pptx
Components of LT Switchgear.pptx
 
Generator protection calculations settings
Generator protection calculations settingsGenerator protection calculations settings
Generator protection calculations settings
 
MicroGrid and Energy Storage System COMPLETE DETAILS NEW PPT
MicroGrid and Energy Storage System COMPLETE DETAILS NEW PPTMicroGrid and Energy Storage System COMPLETE DETAILS NEW PPT
MicroGrid and Energy Storage System COMPLETE DETAILS NEW PPT
 
Slip power recovery schemes EDC
Slip power recovery schemes EDC Slip power recovery schemes EDC
Slip power recovery schemes EDC
 
CT design aspects - Nageswar-6
CT design aspects - Nageswar-6CT design aspects - Nageswar-6
CT design aspects - Nageswar-6
 
Switchgear and protection 1
Switchgear and protection 1Switchgear and protection 1
Switchgear and protection 1
 
EXCITATION SYSTEMS by Dr. Kundur Power Systems
EXCITATION SYSTEMS by Dr. Kundur Power SystemsEXCITATION SYSTEMS by Dr. Kundur Power Systems
EXCITATION SYSTEMS by Dr. Kundur Power Systems
 
Apfc panel
Apfc panelApfc panel
Apfc panel
 
WIDE AREA PROTECTION IN POWER SYSTEMS
WIDE AREA PROTECTION IN POWER SYSTEMSWIDE AREA PROTECTION IN POWER SYSTEMS
WIDE AREA PROTECTION IN POWER SYSTEMS
 
Protection and Switchgear
Protection and SwitchgearProtection and Switchgear
Protection and Switchgear
 
concept of resilience and self healing in smart grid
concept of resilience and self healing in smart gridconcept of resilience and self healing in smart grid
concept of resilience and self healing in smart grid
 
Protection and control of Microgrid
Protection and control of MicrogridProtection and control of Microgrid
Protection and control of Microgrid
 
Measurement of high_voltage_and_high_currentunit_iv_full_version
Measurement of high_voltage_and_high_currentunit_iv_full_versionMeasurement of high_voltage_and_high_currentunit_iv_full_version
Measurement of high_voltage_and_high_currentunit_iv_full_version
 
Protection & switchgear
Protection & switchgear   Protection & switchgear
Protection & switchgear
 
Power system calculations
Power system calculationsPower system calculations
Power system calculations
 
Harmonics
HarmonicsHarmonics
Harmonics
 
Facts devices
Facts devicesFacts devices
Facts devices
 

En vedette

أسس الكهرباء وطرق عمل التمديدات الكهربائية
أسس الكهرباء وطرق عمل التمديدات الكهربائيةأسس الكهرباء وطرق عمل التمديدات الكهربائية
أسس الكهرباء وطرق عمل التمديدات الكهربائيةDr. Munthear Alqaderi
 
إلكترونيات صناعية الفصل الأول
إلكترونيات صناعية   الفصل الأولإلكترونيات صناعية   الفصل الأول
إلكترونيات صناعية الفصل الأولDr. Munthear Alqaderi
 
Decision support systems (ch4)
Decision support systems (ch4)Decision support systems (ch4)
Decision support systems (ch4)DrSamahAhmed
 
Control in Electric Vechicle Transportation Systems
Control in Electric Vechicle Transportation SystemsControl in Electric Vechicle Transportation Systems
Control in Electric Vechicle Transportation SystemsKamel Alhomsi
 
Mechatronics Programs
Mechatronics  ProgramsMechatronics  Programs
Mechatronics ProgramsEmad Ezzat
 
Decision support systems (ch1)
Decision support systems (ch1)Decision support systems (ch1)
Decision support systems (ch1)DrSamahAhmed
 
Nature of Electricity
Nature of Electricity Nature of Electricity
Nature of Electricity Aalwan Aziz
 
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture5
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture5Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture5
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture5AL-AWAIL for Electronic Engineering
 
GIS: Geographic Information Systems
GIS: Geographic Information SystemsGIS: Geographic Information Systems
GIS: Geographic Information Systemsaalaa gaffar
 
Critical system
Critical systemCritical system
Critical systemhamzaeng
 
Bảng giá Recorder, UPS, Trasformers, PLC, HMI Fuji Electric 2015
Bảng giá Recorder, UPS, Trasformers, PLC, HMI Fuji Electric 2015Bảng giá Recorder, UPS, Trasformers, PLC, HMI Fuji Electric 2015
Bảng giá Recorder, UPS, Trasformers, PLC, HMI Fuji Electric 2015CTY TNHH HẠO PHƯƠNG
 
التحكم العصبوني العائم لنظام معقد واسع النطاق
التحكم العصبوني العائم لنظام معقد واسع النطاقالتحكم العصبوني العائم لنظام معقد واسع النطاق
التحكم العصبوني العائم لنظام معقد واسع النطاقDr. Munthear Alqaderi
 
برنامج تدريبى عن المخاطر الكهربائية وطرق الوقاية منها Training program
برنامج تدريبى عن المخاطر الكهربائية وطرق الوقاية منها Training programبرنامج تدريبى عن المخاطر الكهربائية وطرق الوقاية منها Training program
برنامج تدريبى عن المخاطر الكهربائية وطرق الوقاية منها Training programدكتور تامر عبدالله شراكى
 
ترشيد الاستهلاك الكهربائي المنزلي
ترشيد الاستهلاك الكهربائي المنزليترشيد الاستهلاك الكهربائي المنزلي
ترشيد الاستهلاك الكهربائي المنزليDr. Munthear Alqaderi
 
Introduction to Nokia RNC
Introduction to Nokia RNCIntroduction to Nokia RNC
Introduction to Nokia RNCAhmed Nabeeh
 

En vedette (18)

Short courses
Short coursesShort courses
Short courses
 
أسس الكهرباء وطرق عمل التمديدات الكهربائية
أسس الكهرباء وطرق عمل التمديدات الكهربائيةأسس الكهرباء وطرق عمل التمديدات الكهربائية
أسس الكهرباء وطرق عمل التمديدات الكهربائية
 
إلكترونيات صناعية الفصل الأول
إلكترونيات صناعية   الفصل الأولإلكترونيات صناعية   الفصل الأول
إلكترونيات صناعية الفصل الأول
 
Decision support systems (ch4)
Decision support systems (ch4)Decision support systems (ch4)
Decision support systems (ch4)
 
Control in Electric Vechicle Transportation Systems
Control in Electric Vechicle Transportation SystemsControl in Electric Vechicle Transportation Systems
Control in Electric Vechicle Transportation Systems
 
Mechatronics Programs
Mechatronics  ProgramsMechatronics  Programs
Mechatronics Programs
 
Decision support systems (ch1)
Decision support systems (ch1)Decision support systems (ch1)
Decision support systems (ch1)
 
Power System Protection
Power System ProtectionPower System Protection
Power System Protection
 
Nature of Electricity
Nature of Electricity Nature of Electricity
Nature of Electricity
 
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture5
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture5Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture5
Embedded System Microcontroller Interactive Course using BASCOM-AVR -Lecture5
 
GIS: Geographic Information Systems
GIS: Geographic Information SystemsGIS: Geographic Information Systems
GIS: Geographic Information Systems
 
Critical system
Critical systemCritical system
Critical system
 
Bảng giá Recorder, UPS, Trasformers, PLC, HMI Fuji Electric 2015
Bảng giá Recorder, UPS, Trasformers, PLC, HMI Fuji Electric 2015Bảng giá Recorder, UPS, Trasformers, PLC, HMI Fuji Electric 2015
Bảng giá Recorder, UPS, Trasformers, PLC, HMI Fuji Electric 2015
 
التحكم العصبوني العائم لنظام معقد واسع النطاق
التحكم العصبوني العائم لنظام معقد واسع النطاقالتحكم العصبوني العائم لنظام معقد واسع النطاق
التحكم العصبوني العائم لنظام معقد واسع النطاق
 
برنامج تدريبى عن المخاطر الكهربائية وطرق الوقاية منها Training program
برنامج تدريبى عن المخاطر الكهربائية وطرق الوقاية منها Training programبرنامج تدريبى عن المخاطر الكهربائية وطرق الوقاية منها Training program
برنامج تدريبى عن المخاطر الكهربائية وطرق الوقاية منها Training program
 
Scada course
Scada courseScada course
Scada course
 
ترشيد الاستهلاك الكهربائي المنزلي
ترشيد الاستهلاك الكهربائي المنزليترشيد الاستهلاك الكهربائي المنزلي
ترشيد الاستهلاك الكهربائي المنزلي
 
Introduction to Nokia RNC
Introduction to Nokia RNCIntroduction to Nokia RNC
Introduction to Nokia RNC
 

Similaire à جودة القدرة Power quality

Dynamic Voltage Regulator
Dynamic Voltage RegulatorDynamic Voltage Regulator
Dynamic Voltage RegulatorRamesh Tholiya
 
A Voltage Controlled Dstatcom for Power Quality Improvement
A Voltage Controlled Dstatcom for Power Quality ImprovementA Voltage Controlled Dstatcom for Power Quality Improvement
A Voltage Controlled Dstatcom for Power Quality Improvementiosrjce
 
Transcat and Megger: Power Quality 101 Webinar
Transcat and Megger: Power Quality 101 WebinarTranscat and Megger: Power Quality 101 Webinar
Transcat and Megger: Power Quality 101 WebinarTranscat
 
Distribu pQ.pptx
Distribu pQ.pptxDistribu pQ.pptx
Distribu pQ.pptxbhuvana71
 
A Review on Basic Concepts and Important Standards of Power Quality in Power ...
A Review on Basic Concepts and Important Standards of Power Quality in Power ...A Review on Basic Concepts and Important Standards of Power Quality in Power ...
A Review on Basic Concepts and Important Standards of Power Quality in Power ...Editor IJCATR
 
A Review on Basic Concepts and Important Standards of Power Quality in Power ...
A Review on Basic Concepts and Important Standards of Power Quality in Power ...A Review on Basic Concepts and Important Standards of Power Quality in Power ...
A Review on Basic Concepts and Important Standards of Power Quality in Power ...Editor IJCATR
 
Power quality issues in POWER SYSTEMS
Power quality issues in POWER SYSTEMSPower quality issues in POWER SYSTEMS
Power quality issues in POWER SYSTEMSCharan Sai Jc
 
36-DGSG-Mod 6-Lec 33 Harmonic Indices.pdf
36-DGSG-Mod 6-Lec 33 Harmonic Indices.pdf36-DGSG-Mod 6-Lec 33 Harmonic Indices.pdf
36-DGSG-Mod 6-Lec 33 Harmonic Indices.pdfvikip35
 
Ppt on introduction to power quality
Ppt on introduction to power qualityPpt on introduction to power quality
Ppt on introduction to power qualityShivani Mishra
 
powerqualityissues-150802081939-lva1-app6892.pdf
powerqualityissues-150802081939-lva1-app6892.pdfpowerqualityissues-150802081939-lva1-app6892.pdf
powerqualityissues-150802081939-lva1-app6892.pdfssuser10f1ca
 
Introduction to Power Quality
Introduction to Power QualityIntroduction to Power Quality
Introduction to Power QualitySteve Johnson
 

Similaire à جودة القدرة Power quality (20)

Power Quality
Power QualityPower Quality
Power Quality
 
Dynamic Voltage Regulator
Dynamic Voltage RegulatorDynamic Voltage Regulator
Dynamic Voltage Regulator
 
Power quality
Power quality  Power quality
Power quality
 
If3415111540
If3415111540If3415111540
If3415111540
 
63-pq.ppt
63-pq.ppt63-pq.ppt
63-pq.ppt
 
63-pq.ppt
63-pq.ppt63-pq.ppt
63-pq.ppt
 
Power quality
Power qualityPower quality
Power quality
 
00798333
0079833300798333
00798333
 
A Voltage Controlled Dstatcom for Power Quality Improvement
A Voltage Controlled Dstatcom for Power Quality ImprovementA Voltage Controlled Dstatcom for Power Quality Improvement
A Voltage Controlled Dstatcom for Power Quality Improvement
 
E010612734
E010612734E010612734
E010612734
 
Transcat and Megger: Power Quality 101 Webinar
Transcat and Megger: Power Quality 101 WebinarTranscat and Megger: Power Quality 101 Webinar
Transcat and Megger: Power Quality 101 Webinar
 
Distribu pQ.pptx
Distribu pQ.pptxDistribu pQ.pptx
Distribu pQ.pptx
 
A Review on Basic Concepts and Important Standards of Power Quality in Power ...
A Review on Basic Concepts and Important Standards of Power Quality in Power ...A Review on Basic Concepts and Important Standards of Power Quality in Power ...
A Review on Basic Concepts and Important Standards of Power Quality in Power ...
 
A Review on Basic Concepts and Important Standards of Power Quality in Power ...
A Review on Basic Concepts and Important Standards of Power Quality in Power ...A Review on Basic Concepts and Important Standards of Power Quality in Power ...
A Review on Basic Concepts and Important Standards of Power Quality in Power ...
 
Power quality issues in POWER SYSTEMS
Power quality issues in POWER SYSTEMSPower quality issues in POWER SYSTEMS
Power quality issues in POWER SYSTEMS
 
36-DGSG-Mod 6-Lec 33 Harmonic Indices.pdf
36-DGSG-Mod 6-Lec 33 Harmonic Indices.pdf36-DGSG-Mod 6-Lec 33 Harmonic Indices.pdf
36-DGSG-Mod 6-Lec 33 Harmonic Indices.pdf
 
Ppt on introduction to power quality
Ppt on introduction to power qualityPpt on introduction to power quality
Ppt on introduction to power quality
 
powerqualityissues-150802081939-lva1-app6892.pdf
powerqualityissues-150802081939-lva1-app6892.pdfpowerqualityissues-150802081939-lva1-app6892.pdf
powerqualityissues-150802081939-lva1-app6892.pdf
 
Power Quality Improvement using AC To AC PWM converter for distribution line
Power Quality Improvement using AC To AC PWM converter for distribution linePower Quality Improvement using AC To AC PWM converter for distribution line
Power Quality Improvement using AC To AC PWM converter for distribution line
 
Introduction to Power Quality
Introduction to Power QualityIntroduction to Power Quality
Introduction to Power Quality
 

Plus de Dr. Munthear Alqaderi

مشروع أتمتة صوامع الحبوب
مشروع أتمتة  صوامع الحبوبمشروع أتمتة  صوامع الحبوب
مشروع أتمتة صوامع الحبوبDr. Munthear Alqaderi
 
نظام الاستشعار الحراري لمراقبة الحبوب
نظام الاستشعار الحراري لمراقبة الحبوبنظام الاستشعار الحراري لمراقبة الحبوب
نظام الاستشعار الحراري لمراقبة الحبوبDr. Munthear Alqaderi
 
نظام الاستشعار الحراري لمراقبة الحبوب
نظام الاستشعار الحراري لمراقبة الحبوبنظام الاستشعار الحراري لمراقبة الحبوب
نظام الاستشعار الحراري لمراقبة الحبوبDr. Munthear Alqaderi
 
التحكم العصبوني العائم Neuro fuzzy systems
التحكم العصبوني العائم  Neuro  fuzzy systemsالتحكم العصبوني العائم  Neuro  fuzzy systems
التحكم العصبوني العائم Neuro fuzzy systemsDr. Munthear Alqaderi
 
إدارة المرافق وصيانتها
إدارة  المرافق وصيانتهاإدارة  المرافق وصيانتها
إدارة المرافق وصيانتهاDr. Munthear Alqaderi
 
دورة كتابة التقرير الفنية
دورة كتابة التقرير الفنيةدورة كتابة التقرير الفنية
دورة كتابة التقرير الفنيةDr. Munthear Alqaderi
 
دورة إدارة الجودة الشاملة
دورة إدارة الجودة الشاملة دورة إدارة الجودة الشاملة
دورة إدارة الجودة الشاملة Dr. Munthear Alqaderi
 
دراسة الجدوى الاقتصادية لمشروع
دراسة الجدوى الاقتصادية لمشروعدراسة الجدوى الاقتصادية لمشروع
دراسة الجدوى الاقتصادية لمشروعDr. Munthear Alqaderi
 
المحركات الخطوية والتحكم بها
المحركات الخطوية والتحكم بهاالمحركات الخطوية والتحكم بها
المحركات الخطوية والتحكم بهاDr. Munthear Alqaderi
 
مخبر الشمسي تصميم Aes
مخبر الشمسي تصميم Aesمخبر الشمسي تصميم Aes
مخبر الشمسي تصميم AesDr. Munthear Alqaderi
 

Plus de Dr. Munthear Alqaderi (20)

مشروع أتمتة صوامع الحبوب
مشروع أتمتة  صوامع الحبوبمشروع أتمتة  صوامع الحبوب
مشروع أتمتة صوامع الحبوب
 
نظام الاستشعار الحراري لمراقبة الحبوب
نظام الاستشعار الحراري لمراقبة الحبوبنظام الاستشعار الحراري لمراقبة الحبوب
نظام الاستشعار الحراري لمراقبة الحبوب
 
حاضنة البيض
حاضنة البيضحاضنة البيض
حاضنة البيض
 
نظام الاستشعار الحراري لمراقبة الحبوب
نظام الاستشعار الحراري لمراقبة الحبوبنظام الاستشعار الحراري لمراقبة الحبوب
نظام الاستشعار الحراري لمراقبة الحبوب
 
التحكم العصبوني العائم Neuro fuzzy systems
التحكم العصبوني العائم  Neuro  fuzzy systemsالتحكم العصبوني العائم  Neuro  fuzzy systems
التحكم العصبوني العائم Neuro fuzzy systems
 
إدارة المرافق وصيانتها
إدارة  المرافق وصيانتهاإدارة  المرافق وصيانتها
إدارة المرافق وصيانتها
 
ادارة المرافق
ادارة المرافقادارة المرافق
ادارة المرافق
 
دورة كتابة التقرير الفنية
دورة كتابة التقرير الفنيةدورة كتابة التقرير الفنية
دورة كتابة التقرير الفنية
 
دورة إدارة الجودة الشاملة
دورة إدارة الجودة الشاملة دورة إدارة الجودة الشاملة
دورة إدارة الجودة الشاملة
 
دراسة الجدوى الاقتصادية لمشروع
دراسة الجدوى الاقتصادية لمشروعدراسة الجدوى الاقتصادية لمشروع
دراسة الجدوى الاقتصادية لمشروع
 
Power management system course
Power management system coursePower management system course
Power management system course
 
Plc course level 1
Plc course level 1Plc course level 1
Plc course level 1
 
Industrial networks
Industrial networksIndustrial networks
Industrial networks
 
Fire alarm system
Fire alarm systemFire alarm system
Fire alarm system
 
Decision support system
Decision support systemDecision support system
Decision support system
 
Bms
BmsBms
Bms
 
Advanced maintenance planning
Advanced maintenance planningAdvanced maintenance planning
Advanced maintenance planning
 
تصنيف أنظمة التحكم
تصنيف أنظمة  التحكمتصنيف أنظمة  التحكم
تصنيف أنظمة التحكم
 
المحركات الخطوية والتحكم بها
المحركات الخطوية والتحكم بهاالمحركات الخطوية والتحكم بها
المحركات الخطوية والتحكم بها
 
مخبر الشمسي تصميم Aes
مخبر الشمسي تصميم Aesمخبر الشمسي تصميم Aes
مخبر الشمسي تصميم Aes
 

Dernier

Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 

Dernier (20)

LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 

جودة القدرة Power quality

  • 1. ‫‪ - munthear@gmail.com‬الدكتور المهندس محمد منذر القادري -‬
  • 2. ‫تحدٌات ......‬ ‫• تقلبات سوق الكهرباء تدعو الشركات إلى إعادة التقٌٌم النوعً للكهرباء.‬ ‫• نمو الطلب على الطاقة غالبا ما ٌسبق التزوٌد خصوصا مع األسالٌب الجدٌدة لتولٌد الكهرباء‬ ‫وانتظار الشركات نتائج األبحاث لمعرفة إلى أٌن ستؤول مشاكل عدم التنظٌم.‬ ‫•الطاقة الرخٌصة المولدة من الطاقة النووٌة أو من الفحم أو المحطات المائٌة هً لٌست حلوال‬ ‫سهلة للغاٌة لخصوصٌات البٌئة, أنظمة نقل الطاقة مصممة لنقل استطاعات محددة, وإن بناء‬ ‫إمكانات إضافٌة ٌتطلب 01 سنوات.‬ ‫• جودة القدرة فً تغٌرات سوق الكهرباء تخلق مشكالت إضافٌة للشركات ومراكز البحث.‬ ‫• تسوٌة موضوع جودة القدرة ٌبدأ بتحدٌد االستطاعات المستهلكة على الشبكات الكهربائٌة.‬ ‫• األجهزة الجدٌدة هً أكثر حساسٌة لمشكلة القدرة الناجمة عن زٌادة سرعة وكثافة الدارات‬ ‫التكاملٌة.‬ ‫• كلفة مشاكل القدرة اآلن وصلت إلى آالف الدوالرات فً الدقٌقة فً العدٌد من الشركات.‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 3. ‫هل تعلم أن؟‬ ‫أجهزة الكومبٌوتر النظامٌة عرضة إلضطرابات كهربائٌة مدمرة أكثر من 521 مرة كل شهر!‬ ‫إنقطاع التغذٌة لمدة ساعة ٌكلف مالكً شبكات الكومبٌوتر المتوسطة النظامٌة 000,81£!‬ ‫إنقطاع التغذٌة لمدة ساعة ٌكلف قطاع النقل والمواصالت 000,09£!‬ ‫ٌكلف مراكز البورصة الكبٌرة ‪!£6.5 million‬‬ ‫000,05£!‬ ‫ٌكلف استرجاع ‪ one megabyte‬من المعطٌات‬ ‫أن ثلث المعطٌات تفقد بسبب مشاكل القدرة!‬ ‫نصف أعطال الحواسب بسبب مشاكل التغذٌة الكهربائٌة!‬ ‫رداءة التغذٌة الكهربائٌة ٌكلف قطاع األعمال فً أمرٌكا أكثر من ‪ $26 billion‬كل سنة!‬ ‫نقال عن ‪ Silicon Valley Power‬أن كلفة انقطاع التغذٌة عن ‪ Sun Microsystems‬أكثر من ‪ $1 million‬كل دقٌقة.‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 4. ‫أنواع إضطرابات القدرة الكهربائٌة‬ ‫إنقطاع كامل للتوتر‬ ‫حالة عابرة‬ ‫إنقطاع لحظً‬ ‫جهوط إبرٌة, مسمارٌة, نبضٌة‬ ‫إزدٌاد مؤقت‬ ‫إرتفاع جهد‬ ‫تغٌرات فً التردد‬ ‫هبوط مؤقت‬ ‫توافقٌات‬ ‫إنخفاض جهد‬ ‫ضجٌج تردد عالً‬ ‫‪Power Factor‬‬ ‫معامل القدرة المنخفض‬ ‫عدم توازن األطوار الثالثة ‪Unbalance On three-phase systems‬‬ ‫‪, three-phase motors with 5% voltage unbalance exhibit 25% decrease‬‬
  • 6. ‫إحصائٌات جدٌدة‬ ‫النسب القٌاسٌة للتشوهات فً الشبكات األمرٌكٌة‬ Electrical Noise & Transients 62.6/Month 48.79% Spikes Transients 50.7/Month 39.52% Sags, Surges -‫الدكتور المهندس محمد منذر القادري‬ Mains Failures & Brownouts 14.4/Month munthear@gmail.com 0.6/Month 11.22% 0.47%
  • 7. ‫‪Elements of a Power Quality Problem‬‬ ‫عناصر ردائة القدرة‬ ‫التولٌد‬ ‫النقل‬ ‫التوزٌع‬ ‫المستهلك‬ ‫المرسل‬ ‫قناة الربط‬ ‫المستقبل‬ ‫( المنبع)‬ ‫(الشبكة)‬ ‫(الحمل)‬ ‫إي تغٌر فً تردد أو قٌمة أو شكل موجة الجهد ٌسمى اضطرابا فً خط الشبكة ‪ ,line disturbance power‬وهذا ٌسب‬ ‫مشاكل فً تشغٌل األجهزة الكهربائٌة.‬ ‫أسباب حدوث اإلضراب فً الشبكة ٌنسب إلى ثالثة عناصر‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 8. ‫مىببع الخغزيت : ‪Source‬‬ ‫جهذ ثببج: / حردد ثببج )‪DC, 1-Phase/ 3-Phase AC ( 50 / 60 hz‬‬ ‫مىببغ صغٍرة : رٌبح / خالٌب ضىئٍت /مذخراث / خالٌب انىقىد‬ ‫مىبع مخىسطت : دٌسل /حىربٍه غبزي‬ ‫مىببغ كبٍرة : مبئٍت / حرارٌت / وىوٌت‬ ‫األحمبل: ‪Load‬‬ ‫أمثهت ػهى األحمبل ومخطهببث حشغٍههب:‬ ‫مشبرٌغ كهراكٍمبوٌبث: ‪Low DC Voltage, High Current‬‬ ‫أفران ححرٌضٍت: ‪1-phase , High Frequency, AC 50hz‬‬ ‫أدواث حشغٍم: ‪Variable DC Voltage‬‬ ‫مشبرٌغ حسخخذو محركبث: ‪Variable Voltage Variable Frequency ( VVVF) AC‬‬ ‫أحمبل حىاسٍب: )‪Un-interrupted Power Supply ( UPS‬‬ ‫أوظمت حسود انطبئراث : )‪Variable Speed Constant Frequency ( VSCF‬‬ ‫أوظمت انخىحر انؼبنً انمسخمر : / ‪AC/ DC & DC‬‬
  • 9. ‫أسباب ردائة القدرة الكهربائٌة‬ ‫األحمال اللخطٌة‬ ‫•‬ ‫منابع التوافقٌات‬ ‫•‬ ‫منابع اإلرتعاش‬ ‫•‬ ‫منابع ‪sage‬‬ ‫•‬ ‫المبدالت المختلفة‬ ‫•‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 10. ‫طرق الترابط ‪coupling methods‬‬ ‫الترابط المنقول‬ ‫الترابط المشع‬ ‫الترابط من خالل ممانعة مشتركة: ٌحدث عندما ٌمر تٌار دارتٌن من خالل ممانعة مشتركة واحدة , مثال ممانعة األرضً.‬ ‫وباتالً فإن الجهدالهابط على الممانعة ٌؤثر على كال الدارتٌن.‬ ‫الحقول الكهرامغناطٌسٌة المشعة تحدث بسبب آالت لحام القوس الكهربائً والصواعق أو أحمال متقطعة أو محطات إرسال‬ ‫إذاعً أو محطات رادار‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 11. ‫تداخل ‪RFI EMI‬‬ ‫التداخل الكهرامغناطٌسً )‪Electromagnetic Interference (EMI‬‬ ‫تداخل التردد الرادٌوي ‪Interference (RFI) Radio Frequency‬‬ ‫- التداخل الكهرمغناطٌسً أو الرادٌوي عادة ماٌكون بتردد ٌزٌد عن ‪ 100khz‬وٌنتقل كما األمواج‬ ‫الرادٌوٌة . وبالتالً فإن خطوط القدرة وكبالتها الغٌر محجبة تسلك سلوك هوائً إستقبال ومنه تعمل‬ ‫على إدخال هذه األمواج إلى األنظمة الكهربائٌة.‬ ‫- ‪ٌ EMI/RFI‬مكن أن ٌحدث عن طرٌق الترابط السعوي أو الترابط التحرٌضً‬ ‫- بعض أنماط إضطرابات الجهد مثل الضجٌج والحاالت العابرة تحدث إما كإضطراب نمط‬ ‫عادي ‪normal mode‬أوكإضطراب نمط مشترك ‪.common mode‬‬ ‫- إضطراب النمط العادي أو المتعارض ‪A normal or transverse mode‬هو‬ ‫عبارة عن فرق فً الجهد غٌر مرغوب به ٌخلق بٌن خطٌن دارة ٌحمالن تٌارا , مثال فً‬ ‫دارة تغذٌة إحادٌة الطور المعنٌان هما الحٌادي وخط الفاز.‬ ‫- إضطراب النمط المشترك ‪ A common mode disturbance‬هو فرق جهد غٌر‬ ‫مرغوب به بٌن جمٌع الخطوط الحاملة للتٌار وخط األرضً. وهً تتضمن نبضات وضجٌج‬ ‫‪ EMIRFI‬بالنسبة لألرضً.‬
  • 12. ‫من أٌن تأتً إضطرابات التغذٌة الكهربائٌة؟‬ ‫‪ ‬تجهٌزات المعامل‬ ‫‪ ‬تجهٌزات المكاتب‬ ‫‪ ‬المكٌفات الكهربائٌة والمصاعد‬
  • 13. ‫من أٌن تأتً اإلضطرابات الكهربائٌة‬ ‫اصطدام الطٌور بخططوط التوتر العالً ‪O/H lines‬‬ ‫•‬ ‫تأثٌرالرٌاح على خطوط التوتر العالً.‬ ‫•‬ ‫معظم الصواعق تقع على خطوط التوتر العالً.‬ ‫•‬ ‫إنهٌار بعض المعدات الكهربائٌة ( محوالت ...)‬ ‫•‬ ‫أخطاء عملٌاتٌة.‬ ‫•‬ ‫عناصر مسٌئة:‬ ‫•‬ ‫– إعادة اإلغالق اآللً‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫– تقفً العطل ‪Fault tracing‬‬ ‫‪munthear@gmail.com‬‬
  • 14.
  • 15. ‫الحلول‬ ‫- تحسٌن نوعٌة الكهرباء هذا ٌتضمن‬ Uninterruptible power supplies ‫• وحدات التغذٌة عدٌمة اإلنقطاع‬ Power conditioning ‫• منظمات الجهد مكٌفات القدرة‬ transient voltage surge suppressor ‫• مخمد هضبة الجهد العابرة‬ RFI Filter ‫• مرشح‬ Line Filters ‫• مرشح جهد الشبكة‬ Isolation Transformer ‫• محول العزل‬ Power Factor Correction ‫• تصحٌح معامل القدرة‬ generation Backup emergency and on-site‫• الطوارئ اإلحتٌاطً والتولٌد الجاهز‬ .shielding ‫• التحجٌب‬ .Grounding ‫• التأرٌض‬ -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 16. ITIC ‫منحنً السماحٌة للتوتر وفق‬ ITIC Voltage Tolerance Curve EQUIPMENT DAMAGE RISK EQUIPMENT MALFUNCTION ITIC (Information Technology Industry Council) formally CBEMA curve
  • 18. SEMI F47 voltage immunity standard SEMI, the industry association for the semiconductor industry, has developed two voltage sag immunity standards. •SEMI F47 sets out the required voltage sag tolerance for semiconductor fab equipment. •SEMI F42 explains how to test compliance with SEMI F47. (PSL helped write SEMI F42.) You can purchase copies of these standards from SEMI for $50 each, or you can quickly and easily obtain a free set of Application Notes on a CD-ROM from PSL -- just send us an e-mail at FreeCD@PowerStandards.com with your name and address. (Trouble with this link? Just give us a call at +1-510-658-9600 and we'll take care of it.) In essence, SEMI F47 requires that semiconductor processing equipment tolerate voltage sags on their ac power line. Specifically, they must tolerate sags to 50% for up to 200 ms, sags to 70% for up to 0.5 seconds, and sags to 80% for up to one second. In addition to these requirements, SEMI F47 recommends that equipment tolerate sags to 0% for one cycle, sags to 80% for 10 seconds, and continuous sags to 90%, but these are not part of the requirements. SEMI F47 suggests that semiconductor manufacturers may use this sag standard when procuring equipment. Major semiconductor manufacturers are beginning to take this approach, including Intel, Texas Instruments, Motorola, IBM, and others. SEMI F42 explains how to test compliance with F47. It describes safety procedures, processing modes, test sequences, phase connections, and reporting requirements. SEMI F42 also distinguishes between testing equipment for "characterization" (determining the depth and duration of sags that equipment can tolerate) and "compliance" (a pass/fail test determining if equipment complies with the requirements and recommendations of SEMI F47). PSL's sag generators are designed specifically to test according to SEMI F47 and SEMI F42
  • 19. Voltage sags(dips) and swells A typical voltage sag ‫فترة الهبوط تستمر من 01 مٌلً ثانٌة إلى عدة ثوان‬
  • 20. Sag Voltage sags -- or dips which are the same thing -- are brief reductions in voltage, typically lasting from a cycle to a second or so, or tens of milliseconds to hundreds of milliseconds. Voltage swells are brief increases in voltage over the same time range. (Longer periods of low or high voltage are referred to as "undervoltage" or "overvoltage".) Voltage sags are caused by abrupt increases in loads such as short circuits or faults, motors starting, or electric heaters turning on, or they are caused by abrupt increases in source impedance, typically caused by a loose connection. Voltage swells are almost always caused by an abrupt reduction in load on a circuit with a poor or damaged voltage regulator, although they can also be caused by a damaged or loose neutral connection. A typical voltage sag. Voltage sags are the most common power disturbance. At a typical industrial site, it is not unusual to see several sags per year at the service entrance, and far more at equipment terminals. Voltage sags can arrive from the utility; however, in most cases, the majority of sags are generated inside a building. For example, in residential wiring, the most common cause of voltage sags is the starting current drawn by refrigerator and air conditioning motors. Sags do not generally disturb incandescent or fluorescent lighting, motors, or heaters. However, some electronic equipment lacks sufficient internal energy storage and, therefore, cannot ride through sags in the supply voltage. Equipment may be able to ride through very brief, deep sags, or it may be able to ride through longer but shallower sags.
  • 21. ‫‪Sources of Sags‬‬ ‫أسباب غور التوتر‬ ‫إقالع أحمال كبٌرة‬ ‫•‬ ‫– محركات كبٌرة جدا‬ ‫هبوط الشبكة‬ ‫•‬ ‫– أحمال كبٌرة .‬ ‫– حدوث أعطال.‬ ‫أزمنة إزالة العطل على المغذٌات فً محطات التوزٌع: ‪5 to15 cycles‬‬ ‫•‬ ‫مجال ضعف التوتر ‪20 to 50% Sag‬‬ ‫•‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 22. voltage sags ‫أسباب‬ Voltage sags are brief reductions in the voltage on ac power systems. (The American "sag" and the British "dip" have exactly the same meaning, and may be used interchangeably.) How brief? Between 1/2 cycle and a few seconds. Disturbances that last less than 1/2 cycle are commonly called "low frequency transients"; voltage reductions that last longer than a few seconds are commonly called "undervoltage." Power systems have non-zero impedances, so every increase in current causes a corresponding reduction in voltage. Usually, these reductions are small enough that the voltage remains within normal tolerances. But when there is a large increase in current, or when the system impedance is high, the voltage can drop significantly. So conceptually, there are two sources of voltage sags: •Large increases in current •Increases in system impedance As a practical matter, most voltage sags are caused by increases in current. It is convenient to think of the power system as a tree, with your sensitive load connected to one of the twigs. Any voltage sag on the trunk of the tree, or on a branch leading out to your twig, will cause a voltage sag at your load. But a short circuit out on a distant branch can cause the trunk voltage to diminish, so even faults in a distant part of the tree can cause a sag at your load.
  • 23. It is important to understand the source of the voltage sags before trying to eliminate them, because the wrong solution can actually make the problem worse. For example, if you install a ferro-resonant transformer as a voltage regulator, or a battery-operated UPS (a reasonable and common approach), but inadvertently install it upstream from the motor that is causing your voltage sags, the voltage sags will get worse, not better. In most cases, the correct solution is to adjust the equipment so that it is less sensitive to voltage sags. Sag sensitivity - Five ways equipment fails during voltage sags CBEMA curve - voltage sag depth and duration at world-wide semiconductor plants -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 24. ‫إرتفاع أو إنخفاض التوتر‬ High or Low Voltages Sustained high and low voltages are usually caused by the distribution system. This system of wires and transformers that connects all electrical loads to the utility generators has impedance. This impedance causes the voltage to drop when current flows through the system. The further you are from the power source and the more current drawn, the more the voltage will drop. To maintain the voltage as best they can, the utility will increase the voltage so customers close to the power source will have higher than nominal voltage while the furthest customers will have lower than nominal voltage (maybe much lower). Because the utility will only increase the voltage by a certain amount, and because additional voltage drop is caused in the user’s building wiring, voltages are
  • 25. Most voltage sags originate within your facility. The three most common causes of facility-sourced voltage sags are: •Starting a large load, such as a motor or resistive heater. Electric motors typically draw 150% to 500% of their operating current as they come up to speed. Resisitive heaters typically draw 150% of their rated current until they warm up. •Loose or defective wiring, such as insufficiently tightened box screws on power conductors. This effective increases your system impedance, and exaggerates the effect of current increases. •Faults or short circuits elsewhere in your facility. Although the fault will be quickly removed by a fuse or a circuit breaker, they will drag the voltage down until the protective device operates, which can take anywhere from a few cycles to a few seconds. Experts can identify the specific source of a voltage sag with an advanced power quality monitor, such as those found at PQMonitoring.com. Voltage sags can also originate on your utility's electric power system. The most common types of utility-sourced voltage sags are: •Faults on distant circuits, which cause a corresponding reduction in voltage on your circuit. Typically, these faults are removed by "reclosers", or self-resetting circuit breakers. These reclosers typically delay 1 to 5 seconds before self-resetting. If the fault is still present when the recloser resets, you may see a series of voltage sags, spaced 1 to 5 seconds apart. Faults on utility systems may be phase-to-phase, or phase-to-earth; depending on the transformers between you and the fault, you will see different levels of voltage reduction. • Voltage regulator failures are far less common. Utilities have automated systems to adjust voltage (typically using power factor correction capacitors, or tap switching transformers), and these systems do occasionally fail.
  • 26. ‫ كحالة عابرة‬overvaltage ‫تجاوز الجهد‬ Example capacitor switching transient -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 27. The reasons for these categories were explained as follows: •The 90% level provides an indication of performance for the most sensitive equipment. •The 80% level corresponds to an important break point on the ITI curve and some sensitive equipment may be susceptible to even short sags at this level. •The 70% level corresponds to the sensitivity level of a wide group of industrial and commercial equipment and is probably the most important performance level to specify. •The 50% level is important, especially for the semiconductor industry, since they have adopted a standard that specifies ride through at this level. •Interruptions affect all customers so it is important to specify this level separately. These will usually have longer durations than the voltage sags. •The first range of durations is up to 0.2 seconds (12 cycles at 60 Hz). This is the range specified by the semiconductor industry that equipment should be able to ride through sags as long as the minimum voltage is above 50%. •The second range is up to 0.5 seconds. This corresponds to the specification in the ITIC standard for equipment ride through as long as the minimum voltage is above 70%. It is also an important break point in the definition of sag durations in IEEE 1159 (instantaneous vs. momentary). •The third duration range is up to 3 seconds. This is an important break point in IEEE 1159 and in IEC standards (momentary to temporary). •The final duration is up to one minute. Events longer than one minute are characterized as long duration events and are part of the system voltage regulation performance, rather than voltage sags.
  • 28. voltage sag sensitivity Why does equipment fail when there are voltage sags on ac power systems? There is one obvious way, and four not-so-obvious ways. 1. Equipment fails because there isn't enough voltage. This is the obvious way -- if there is not enough voltage on the ac power system to provide the energy that the equipment needs, it is going to fail. Actually, the problem is slightly more subtle. In a typical sensitive load, the ac voltage is rectified and coverted to pulsed dc. With a bridge rectifier, the pulsing will typically be either twice the power line frequency (for single-phase loads) or six times the power line frequency (for three-phase loads). This pulsing DC is stored in a filter capacitor, which in turn supplies smooth DC as raw material for the rest of the power supply: regulators, etc. If the DC supplied by the filter capacitor drops below some critical level, the regulators will not be able to deliver their designed voltage, and the system will fail. Note that the filter capacitor always stores energy, so there is always an ability to ride through some sags -- after all, the ac power system delivers zero voltage 100 or 120 times each second! But with a deep enough sag that lasts long enough, the filter capacitor voltage will drop below a critical level. 2. Equipment fails because an undervoltage circuit trips. Careful system designers may include a circuit that monitors the ac power system for adequate voltage. But "adequate voltage" may not be well defined, or understood. For example, if the sensitive system is running at half load, it may be able to operate at only 70% ac voltage, even though it may be specified to operate with 90% - 110% ac voltage. So the voltage sags to 70%; the equipment can operate without a problem; but the undervoltage monitor may decide to shut the system down.
  • 29. 3. Equipment fails because an unbalance relay trips.On three-phase systems, voltage sags are often asymmetrical (they affect one or two phases more than the remaining phases). Three-phase motors and transformers can be damaged by sustained voltage unbalance; it can cause the transformer or motor to overheat. So it makes sense to put in an unbalance relay, which is a device that shuts down the system if the voltage unbalance exceeds some threshold, typically a few percent. But a voltage sag that causes 20-50% unbalance for a second or two is never going to cause a motor or transformer to overheat. It just doesn't last long enough. Still, unbalance relays with inadequate delays can cause the sensitive system to shut down, even for a brief voltage sag. 4. A quick-acting relay shuts the system down, typically in the EMO circuit. The EMO (emergency off) circuit in an industrial load typically consists of a normally-closed switch that can disconnect power to a latched relay coil. If the relay operates quickly enough, it may interpret a brief voltage sag as an operator hitting the EMO switch. The whole system will shut down unnecessarily. 5. A reset circuit may incorrectly trip at the end of the voltage sag. This is the most subtle problem caused by voltage sags. Many electronic reset circuits are designed to operate at "power up" -- when you first turn on the equipment, these circuits will ensure that the microprocessors all start up properly, the latches are all properly initialized, the displays are in their correct mode, etc. These circuits are difficult to design, because they must operate correctly when power is uncertain. One common design detects a sudden increase in voltage, which always happens when you turn the equipment on. Unfortunately, it also happens at the end of a voltage sag. If the reset circuit misinterprets the end of a voltage sag, the equipment will operate perfectly during the voltage sag, but will abruptly reset itself when the voltage returns to normal. To make this problem even more difficult, it is quite common for different parts of a system to have different reset circuits, so it is possible for one part of the system to be reset even when the rest of the system is not. Without a sag generator with a good data acquisition system, this problem is very difficult to detect and solve.
  • 30. ‫تنظٌم التوتر‬ The term "voltage regulation" is used to discuss long-term variations in voltage. It does not include short term variations, which are generally called sags, dips, or swells. The ability of equipment to handle steady state voltage variations varies from equipment to equipment. The steady state voltage variation limits for equipment is usually part of the equipment specifications. The Information Technology Industry Council (ITIC) specifies equipment withstand recommendations for IT equipment according to the ITI Curve (formerly the CBEMA curve). The 1996 ITI Curve specifies that equipment should be able to withstand voltage variations within +/- 10% (variations that last longer than 10 seconds). Voltage regulation standards in North America vary from state to state and utility to utility. The national standard in the U.S.A. is ANSI C84.1. Voltage regulation requirements are defined in two categories: •Range A is for normal conditions and the required regulation is +/- 5% on a 120 volt base at the service entrance (for services above 600 volts, the required regulation is -2.5% to +5%). •Range B is for short durations or unusual conditions. The allowable range for these conditions is -8.3% to +5.8%. A specific definition of these conditions is not provided. Voltage regulation requirements from ANSI C84.1. This is not a universal standard; it is only used in North America. Other countries have different standards. For example, IEC 61000-2-2 mentions that the normal operational tolerances are +/- 10% of the declared voltage. This is the basis of requirements for voltage regulation in EN 50160 for the European Community. EN 50160 requires that voltage regulation be within +/- 10% for 95% of the 10 minute samples in a one week period, and that all 10 minute samples be within -15% to +10%, excluding voltage dips.
  • 31. voltage sag ‫كٌف نحسن من المناعة ضد‬ 1. Find and fix the problem. 2. 2. Add a power quality relay. 3. 3. Switch power supply settings. 4. Connect your single-phase power supply phase-to-phase. 5. Reduce the load on your power supply. 6. Increase the rating of your power supply. 7. Use a three-phase power supply instead of a single-phase supply. 8. Run your power supply from a DC bus. 9. Change the trip settings. 10. Slow the relay down. 11. Get rid of the voltage sag itself. -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 32. ‫ اإلرتفاع /اإلنخفاض‬Sags / Surges Sags / Surges are short duration changes in voltage level. Sags (low voltage) are much more common than surges (high voltage). Starting electric motors and other equipment, ground faults, undersized power systems, and lightning all produce voltage sags. Surges may be generated when large electrical loads are shut off. -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 33. Surge ‫إندفاع هضبة التوتر‬ • EN61000-4-5 • Performance Criteria B • The surge waveform simulates the transients induced onto the AC power line by lightning events • The wave-shape is 1.2/50 S open circuit voltage through a 2 ohm resistor (line to line) or 12 ohm resistor (line to ground). The short circuit current wave-form is 8/20S -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 34. ‫‪ surge‬ماذا تعنً؟‬ ‫‪ Surge ‬هً رشقة قصٌر من الجهد ( جهود دفقٌة أو هضبة جهد) تعرض‬ ‫الحمل إلى االف الفولت. وتكون أحٌانا على شكل نبضة مسمارٌة وأحٌانا على‬ ‫شكل حالة عابرة‬ ‫‪ ‬فترة قصٌرة ‪Short Duration --- Microseconds‬‬ ‫‪ ‬طاقة عالٌة ‪High Energy‬‬ ‫‪ ‬مولدة خارجٌا ‪Externally Generated‬‬ ‫‪ ‬مولدة داخلٌا ‪Internally Generated‬‬
  • 35. ‫هضبة الجهد ‪ Surges‬هً‬ ‫نبضة زمنها أكبر من 4.8 مٌلً ثانٌة‬ ‫•‬ ‫توصف بالموجة المربعة أو األسٌة‬ ‫•‬ ‫عادة ما تترافق بمنبع ذو ممانعة منخفضة‬ ‫•‬ ‫إرتفاع الهضبة فً %09 من الحاالت ٌكون أقل من ضعفً قٌمة الجهد التشغٌل االسمً.‬ ‫•‬
  • 36. ‫من أٌن تأتً ‪Surges‬؟‬ ‫النوع المولد خارجٌا:‬ ‫‪ ‬المدمرة – ‪ Destructive‬من الجو مثل الصواعق‬ ‫‪ ‬المعطلة – ‪ Disruptive‬فصل الشبكة الكهربائٌة‬ ‫النوع المولد داخلٌا:‬ ‫‪ ‬مسٌئة – ‪Degradative‬األحمال التحرٌضٌة وأجهزة التقطٌع‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 37. ‫ماهً المشاكل التً تسببها ‪surges‬؟‬ ‫‪ ‬عطل مباشر في التجهيزات قد تسب تلف ‪.IC‬‬ ‫‪ ‬هضبة الجهد المسٌئة ‪ degradative surges‬قد تسبب أعطال غٌر قابلة للشرح.‬ ‫‪ ‬فشل أداء بعض األجهزة بسبب ترابط ‪ surges‬مع خطوط معطٌات.‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 38. ‫08% من األعطال الناجمة عن رداءة القدرة هً‬ ‫بسبب الجهود اإلبرٌة و‪ surge‬المولدة داخلٌا‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 39. ‫ماهً وسائل الحماٌة من‬surge ‫؟‬  A high voltage relief valve  It insulates during normal operation  It clamps voltage by diverting excess current to ground during a surge  It is basically a variable resistor  Acts like an open circuit with high impedance normally  During a surge it acts like a short circuit with low impedance
  • 40. ‫تقنٌات الحماٌة من ‪Surge‬‬ ‫انمهفبث‬ ‫-‬ ‫األوببٍب انغبزٌت‬ ‫-‬ ‫مقىمبث انسٍهٍىٍىو‬ ‫-‬ ‫انفبٌرسخىر‪MOV‬‬ ‫-‬ ‫ثىبئٍبث ‪ Avalanche‬انسهكىوٍت‪SAD‬‬ ‫-‬ ‫انمكثفبث‬ ‫-‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 41. ‫خواص العناصر‬ ‫مقىمبث انسٍهٍىٍىو‬ ‫انمكثفبث‬ ‫‪ surge ‬قذرة ػبنٍت‬ ‫‪ surge ‬قذرة ػبنٍت‬ ‫‪ ‬جهذ إقفبل ػبنً ‪clamping‬‬ ‫‪ ‬حخسن طبقت كبٍرة‬ ‫‪ ‬اسخجببت بطٍئت‬ ‫‪ ‬حخصرف كذارة قصر‬ ‫األوببٍب انغبزٌت‬ ‫انمهفبث‬ ‫‪ surge ‬قذرة ػبنٍت‬ ‫‪ surge ‬قذرة ػبنٍت‬ ‫‪ ‬اسخجببت بطٍئت‬ ‫‪ ‬حخسن قذرة كبٍرة‬ ‫‪ ‬غٍر ثببخت‬ ‫‪ ‬حخصرف كذارة مفخىحت‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 42. ‫خواص العناصر‬ ‫ثىبئٍبث ‪ Avalanche‬انسهكىوٍت‪SAD‬‬ ‫‪ ‬إسخجببت سشيعت للغبيت أصغش مه‪1 nsec‬‬ ‫‪ surge ‬لذسة مىخفضت‬ ‫‪ ‬حخميذ صغيشة مسبحت‬ ‫فبٌرسخىر أكسٍذ مؼذن ‪MOV‬‬ ‫‪ ‬اسخجببت سشيعت مه مشحبت ‪1 nsec‬‬ ‫‪ ‬جهذ إلفبل محكم ‪clamping‬‬ ‫‪ surge ‬عبليت لذسة‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 43. ‫الحاالت العابرة & الجهودالنبضٌة واإلبرٌة‬ Impulses, Spikes & Transients are all names used to describe very short duration, high amplitude voltage pulses on the power lines. These voltage pulses often reach 6,000 volts. They are caused by lightning that strikes on or near the power lines, utility switching, static electricity, and switching electrical devices on or off. Impulses damage all types of electronic and electrical equipment. The high voltage levels puncture or weaken insulation. The fast rate of voltage change stresses the turn-to-turn insulation of windings in motors, transformers, solenoids, etc. The damage may not cause immediate failure. Often the equipment is weakened and may fail days or weeks after the event. Besides equipment damage, impulses cause machine resets, data processing errors, and other apparently random malfunctions. -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 44. Transient ‫ماهً الحالة العابرة‬ • Definition: an unanticipated change in voltage caused by a unpredictable occurrence. • One must differentiate between a voltage transient and a power surge. • Transients can be categorized in 4 basic threats. – Lightning. – Nuclear electromagnetic pulse. – Electrostatic Discharge. – Inductive switching.
  • 45. ‫الحالة العابرة‬ ‫القدرة النظامٌة .‪50Hz‬‬ ‫‪Transient‬‬ ‫‪waveform‬‬
  • 46. ‫الحالة العابرة هً‬ ‫نبضة زمنها أقل من 4.8 مٌلً ثانٌة‬ ‫•‬ ‫توصف بالموجة الجٌبٌة أو األسٌة عادة ما تترافق بمنبع ذو ممانعة عالٌة.‬ ‫•‬ ‫قٌمتها تتراوح بٌن بضع مٌلً فولت و 00081 فولت بشروط التشغٌل الطبٌعٌة.‬ ‫•‬ ‫حىصيفهب وفك المعيبس 2-4-00016 ‪IEC‬‬
  • 47. ‫كٌف نخمد الحالة العابرة‬ : ‫ٌجب األخذ بعٌن اإلعتبار اإلرشادات التالٌة‬ – TVS Parameters • Stand-off Voltage (Vwm) >= Operating Voltage (Vop) • Peak Pulse Current (Ippm) >= Source Transient Current (Is) • Clamping Voltage (Vc) =< Voltage Withstand (Vws) -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 48. ‫لماذا‬TVSS‫؟‬ Increasing Awareness of power quality  Increased speed and density of integrated circuits  Microprocessor based electronics throughout facility  Conversion from analog to digital  Switch-mode power supplies -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 50. TVS‫مكثفات متناهٌة الصغر‬ • Available from 3volt to 24volt in unidirectional and bidirectional configurations • GBLC series
  • 51. ‫ ذات سعات صغٌرة جدا‬TVS ‫مصفوفات‬ • Can be utilized for unidirectional common mode and bidirectional common mode or differential mode protection applications
  • 52. ‫ متناهٌة الصغر‬TVS ‫مصفوفات‬ • SLVU2.8-4 – 4 lines of protection
  • 53. ‫إرتعاش الجهود المتناوبة‬ AC Voltage Flicker • “Flicker” is the effect caused when a large load current is switched, creating a short-duration dip in the AC voltage (e.g. refrigerator, when compressor switches on the lights dim momentarily) • Can only be measured with a custom-built test equipment - but could be evaluated using a light bulb connected to the same AC outlet ?
  • 54. ‫اإلرتعاش‬ ‫‪Flicker‬‬ ‫اإلرتعاش مشكلة خاصة جدا وتهم اإلنسان العادي . وهً ال تقع تحت مصطلح تغٌرات الجهد.‬ ‫اإلنسان حساس جدا إلرتعاش اإلضاءة الناجم عن تموج الجهد.‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 55. Brownouts ‫إنخفاض الجهد‬ Brownouts are intentional under-voltages instituted by the utility. When power demand exceeds the capacity of the utility generators, the utility lowers the voltage to all or some customers. This reduces the load on the generators so they won’t burn out, but causes even more acute equipment malfunctions and damage. -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 56. ‫عدم توازن األطوار‬ Three Phase Voltage Unbalance simply means the voltages on a three-phase system are not equal. Utilities generate three-phase AC power because it is produced and distributed at lower cost than single phase AC or DC power, and because three phases are needed to produce steady torque in AC generators and motors. To power single phase loads, any two of the three power wires are connected. Voltage unbalance is usually caused by connecting more single phase loads to one of the three phases. This situation produces unbalanced load currents, uneven voltage drops, and thus, unbalanced voltages. For three-phase loads, a voltage unbalance of one or two percent is usually not a problem. However, larger voltage unbalances can cause many problems. For example, three-phase motors with 5% voltage unbalance exhibit 25% decrease in torque, 50% increase in losses, 40% increase in temperature, and a whopping 80% decrease in life. In transmitter applications, voltage unbalance causes severe ripple in high voltage power supplies, straining the power supply filtering and increasing AM noise.
  • 57. ‫معامل القدرة‬ ( PF ) Power factor ‫• معامل القدرة‬ PF = kW / kVA – ‫– معامل القدرة للمحرك متأخر‬ – 100HP motor, 460V, 93% eff, 119A : ‫- مثال‬ • (100HP x 0.746kW/HP) / 0.93 = 80.2kW • 119A x 460V x 1.73 / 1000 = 94.8kVA • PF = 80.2kW / 94.8kVA = 84.6% @ FL • But … at actual load, more like 70% or less -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 58. ElectroMagnetic Compatibility ‫المالئمة الكهرامغناطٌسٌة‬ • All electronic equipment is capable of radiating and absorbing radio frequency (RF) energy. • The principle behind ElectroMagnetic Compatibility is that equipment should limit radiation to below a specified level, and be able to withstand a certain level of incident RF radiation. • The levels are given in the EMC regulations. – BS EN 55022 (Computers) – BS EN 55020 (Radio & TV) • These are only a guide as circumstances vary for each location.
  • 59. EMC ‫1-إعتبارات‬ • Good RF house keeping is vital . . . • Spurious outputs from transmitters – Along with unintended leakage wanted RF. • Too much power radiated. – Leading to excessive field strength. • Only use as much power necessary to make the contact. – This will reduce the EMC potential • Your set-up – Mode used, Antenna location, Antenna type used (Next session).
  • 60. EMC ‫2-إعتبارات‬ • Considerations . . . • Filters used (EMC session-2) – Ferrite ring, High Pass, Low Pass, Band Pass Notch. • Poor immunity of affected device – Age, construction and use of equipment.. • Proximity for affected item. – Coupling / Connections, Location. • Good Quality Coax – Quality connectors, soldered correctly and water tight.
  • 61. RF Earths ‫تأرٌض التردد الرادٌوي‬ “Mains Earth” ‫• التستخدم أرضً القدرة‬ – Provide a separate earth point consisting of several copper rods in the ground and a thick copper wire to the equipment – Earth outer of coax cable as it enters any building. – Do not use water / gas pipes as they may not be truly earthed. -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 62. EMC ‫ و‬RFI ‫ و‬EMI ‫ما هو‬ Electromagnetic Interference (EMI) ً‫• التداخل الكهرامغناطٌس‬ – Any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the effective performance of electronics/electrical equipment Radio Frequency Interference (RFI) ‫• التداخل الرادٌوي‬ – In general, extraneous energy, from natural or man-made sources, that impedes the reception of desired signals. Electromagnetic Compatibility (EMC) ‫• المالئمة الكهرامغناطٌسٌة‬ – A device is compatible with its electromagnetic (EM) environment and it does not emit levels of EM energy that cause electromagnetic interference (EMI) in other devices in the vicinity.
  • 63. EMI ‫مسببات‬ ‫المنابع‬ • Signal / Power energy in EM fields ‫– حقول كهرامغناطٌسً لخطوط القدرة‬ Reflections from un-terminated transmission lines ‫– إنعكاس من تهاٌات خطوط إرسال‬ Electrostatic Discharges (ESD) ً‫– تفرٌغ كهراستاتٌك‬ ‫• التربط‬ Inductive / Capacitive coupling ً‫ترابط سعوي أو تحرٌض‬ – Common impedance coupling ‫ترابط بممانعة مشتركة‬ – Radiated electromagnetic fields ‫حقل كهرامغناطٌسً مشع‬ – ‫المستقبالت‬ • Unnecessarily high bandwidth ‫– عرض مجال واسع غٌر مرغوب‬ Low noise margins ‫– هامش ضجٌج منخفض‬
  • 64. ‫تقنٌات تخفٌض ‪EMI‬‬ ‫• تخمٌد منابع اإلشعاع‬ ‫موافقة خطوط اإلرسال‬ ‫–‬ ‫تخمٌد عناصر اإلشارة الرادٌوٌة الغٌر ضروري‬ ‫–‬ ‫تخفٌض مستوٌات الجهد والتٌار‬ ‫–‬ ‫مرشح مسالم على خطوط التغذٌة وعلى خطوط اإلشارة وعلى نبضات النزامن‬ ‫–‬ ‫• تخفٌض الترابط‬ ‫– توضع للعناصر وتوزٌع مسار الخطوط.‬ ‫– التحجٌب.‬ ‫– تأرٌض .‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 65. ‫كٌف تعمل المرشحات على تخفٌض ‪EMI‬‬ ‫1‪V‬‬ ‫‪-1/1V‬‬ ‫‪Int Z‬‬ ‫1‪R‬‬ ‫05‬ ‫001‬ ‫ٌخمد مرشح التمرٌر المنخفض‬ ‫‪1mHz‬‬ ‫1‪C‬‬ ‫توافقٌات اإلشارة التً هً أعلى من‬ ‫‪TVS‬‬ ‫2‪C‬‬ ‫القطع )‪ (fc‬من أجل اإلختبار نختار‬ ‫‪TVS‬‬ ‫‪20pf‬‬ ‫‪20pf‬‬ ‫‪50 Load‬‬ ‫1‪ D‬و2‪ D‬من نوع دٌود ‪ TV‬ذو‬ ‫سعة وصلة ‪ ,20pF‬سوف ‪TVS‬‬ ‫تحمً من الحالة العابرة وتخمد‬ ‫اإلشارات الغٌر مرغوبة التً فوق تردد‬ ‫القطع‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 66. ‫المرشح بوجود تحرٌضٌات طفٌلٌة‬ ‫1‪R‬‬ ‫001‬ ‫1‪+ Vs‬‬ ‫1‪C‬‬ ‫2‪C‬‬ ‫‪15pF‬‬ ‫‪15pF‬‬ ‫‪RL‬‬ ‫‪2.5V‬‬ ‫05‬ ‫-‬ ‫‪TVS‬‬ ‫2‪D‬‬ ‫50.‬ ‫50.‬ ‫‪TVS‬‬ ‫1‪L‬‬ ‫1‪D‬‬ ‫2‪L‬‬ ‫المكثفبث 1‪ C‬و2‪ C‬هي مكثفبث الىصلت الذيىداث ‪L1 , TVS‬‬ ‫و 2‪ L‬هي ححشيضيبث وبشئت مه حىصيالث الذاسة المطبىعت ‪. PCB‬‬ ‫المششح سىف يخمذ اإلشبساث الخي فىق حشدد المطع‬ ‫والذيىداث ‪ TVS‬سىف ححمي مه الىبضبث اإلبشيت الىبجمت مه الحبلت العببشة.‬
  • 67. ‫‪EMIF6-100LFC‬‬ ‫مثال‬ ‫إن ‪ EMIF6-100FC‬هى عببسة عه مششح ‪ EMI‬رو 6‬ ‫خطىط مع حمبيت مه الحبالث العببشة ضمه ششيحت واحذة‬
  • 68. ESD ‫المناعة ضد تفرٌغ الشحنة الساكنة‬ • EN61000-4-2 • Performance Criteria B • ESD events create high-speed transients that can: • Permanently damage ICs • Cause false resets or other spurious reactions • The performance criteria is B - so some degradation in performance is permitted during the test but the device MUST recover without user intervention. • ESD events caused by people discharging directly to the product or to nearby objects
  • 69. ‫توضع عناصر دارة صحٌح‬ ‫حافظ على جعل مسارات نبضات التزامن أقصر ما ٌمكن.‬ ‫‪‬‬ ‫حاول إبعاد مسارات نبضات التزامن بعٌدة ما ٌكمن عن حواف البطاقة اإللكترونٌة ‪.PCB‬‬ ‫‪‬‬ ‫دعم الدارة بمكثفات إزالة الترابط الرادٌوي وخصوصا على الدارات المتكاملة التً تعمل على‬ ‫‪‬‬ ‫التقطٌع وحاول وصلها أقرب ماٌمكن من أرجل .‬ ‫إن مكثفات إزالة الترابط فعالة فقط فً الترددات حتى ‪ ,100MHz‬فً الترددات األعلى من ذلك ٌتم‬ ‫‪‬‬ ‫تحقٌق إزالة الترابط بجعل وحدات التغذٌة أقرب ما ٌكون ومن خالل صفائح معدنٌة مؤرضة.‬ ‫الخطوط الحاملة لنبضات التزامن ٌجب وصل نهاٌاتها بمقومات عندما طولها ثالثة أضعاف زمن‬ ‫‪‬‬ ‫صعودها لحماٌتها من الطنٌن على خطوطهاألن ممانعة المسار ال تساوي المصدر مقسومة على‬ ‫الحمل.‬ ‫.‪tr = rise time in nS‬‬ ‫‪‬‬
  • 70. ‫توضع عناصر دارة صحٌح‬  Provide filtering on all interface ports (including AC & DC power )  RF caps to a “clean” ground (typically chassis), common mode chokes or ferrite beads make ideal circuit elements  Include the filter components on ALL signal lines, including ground (especially where the ground is a digital signal ground)
  • 71. I/O Interfaces ‫التداخل بٌن الخرج والدخل‬  If possible, use PCB connectors with metal back shells as these can prevent high frequency signals radiated from the board from coupling onto the signal lines after the filter  Shields ideally terminate 360 to the enclosure (NOT to digital ground).  Shielded cables should have the shield terminated to the enclosure at the “noisy” end(s) - single ended grounding at rf does not work  Never use pigtails to terminate shields - at best they make a shielded cable ineffective, at worst they can increase emissions.  XLR cables are not designed for effective use of the shields - if you cannot terminate the shield directly to chassis (because of low frequency ground loops) tie to chassis using ceramic capacitors (alternatively create a capacitor on the PCB)
  • 72. ‫الحلول الوقائٌة‬ • ‫ الحصانة من اإلشعاع‬Radiated Immunity – Solve problems in a similar manner to radiated emissions – Restrict bandwidths – Add common mode filtering to audio inputs – Pay particular attention to high-gain stages - make sure they are provided with adequate rf decoupling • ‫ الحالة العابرة السرٌعة‬Fast Transients – Transzorbs on I/O lines, filtering, enclosure design all have an effect • ‫ إنبعاث الجهد‬Surge – Power supply design could incorporate MoVs line-to-line (line-to- ground typically prohibited by Safety standard) – AC line filters can reduce surge effects.
  • 73. ‫فلتر ‪EMI‬‬ ‫مثال:‬ ‫الشبكة‬ ‫الجهاز‬ ‫الكهربائٌة‬
  • 74. ‫مبهي الخىافميبث ؟‬ ‫+‬ ‫=‬ ‫)‪sin(5x‬‬ ‫)‪f(x) = sin(x‬‬ ‫= )‪f(x‬‬ ‫5‬ ‫)‪f(x) = sin(x) + sin(5x‬‬ ‫5‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 75. ‫التشوه التوافقً‬ ‫التشوه التوافقً هو تشوه فً شكل الموجةالجٌبٌة . ٌحدث بسبب مرور تٌارات أحمال‬ ‫غٌر جٌبٌة فً ممانعة مشتركة فً نظام التوزٌع الذي بدوره ٌؤدي إلى خلق جهد غٌر‬ ‫جٌبً على خطوط التوزٌع.‬ ‫إن وحدات التغذٌة وأنظمة قٌادة المحركات التً تعتمد أنصاف النواقل وتٌارات مغنطة‬ ‫المحوالت جمٌعها تسبب تشوهات توفقٌة.‬ ‫تشوهات الجهد هذه قد تؤذي أو تخل فً أداء العدٌد من األجهزة المصولة على خطوط‬ ‫الشبكة المشوهة.‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 76. ‫اآلثار الضارة للتشوه التوافقً‬ ‫• ضجٌج سمعً وإهتزاز مٌكانٌكً فً التجهٌزات الكهرومغناطٌسٌة كالمحوالت والمحركات و لوحات‬ ‫الحماٌة (القواطع).‬ ‫• إرتفاع الحرارة فً المحوالت والمولدات والكبالت ومكثفات التعوٌض.‬ ‫• سوء أداء بعض تجهٌزات التحكم اإللكترونٌة الحساسة.‬ ‫• فتح قواطع الحماٌة بشكل غٌر مبرر.‬ ‫• إرتجاف اإلضاءة وشاشات التلفزة والحواسٌب.‬ ‫• تشوه الصوت فً األنظمة الصوتٌة.‬ ‫• إنخفاض عامل اإلستطاعة الغٌر مفسر.‬ ‫• تحمٌل الزائد للناقل الحٌادي خصوصا عند وجود التوافقٌة الثالثة.‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 77. ‫مصادر التوافقٌات & اإلرتعاش‬ ‫• العناصر الفٌرومغناطٌسٌة‬ ‫– المحوالت(اإلشباع , الالخطٌة).‬ ‫• عناصر القوس الكهربائً‬ ‫– مصابٌح الفلورٌسانت.‬ ‫– أجهزة اللحام بالقوس الكهربائً.‬ ‫– أفران القوس الكهربائً.‬ ‫• العناصر اإللكترونٌة المفتاحٌة‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 78. Conquering Harmonic Resonance can be accomplished by: (1) adding or subtracting capacitance from the system to move the parallel resonance frequency to one that is not deleterious; (2) adding tuned harmonic suppression reactors in series with the capacitor to prevent resonance; (3) altering the size of non-linear devices. It is important that the tuned frequency, for the 5th harmonic, be at approximately the 4.7th harmonic to account for tolerance in manufacturing and to remove the largest offending portion of the 5th harmonic. Parallel resonance will occur around the 4th harmonic, at a much lower amplitude and in an area that does no harm to the system or capacitor. Tuning lower than 282 Hz is not efficient in removing large portions of the offending harmonic -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 79. ‫تطبٌق تصحٌح عامل القدرة فً بٌئة مشوه توافقٌا‬
  • 80. where: h = harmonic order KVAsc : available short circuit at point of capacitor bank installation KVAR =capacitor bank size -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 82. ‫منظمات زاوٌة الطور‬ ‫مثال: مخفتات اإلضاءة‬ ‫•‬ ‫‪lamp dimmer circuit‬‬ ‫تعلٌقات:‬ ‫•‬ ‫– ٌمكن تخفٌض تشوهات التٌار باستخدام ملف خانق مناسب‬ ‫– إن ‪THD‬و ‪ EMI‬المشع ٌكون بأقل قٌمته عند زاوٌة قدح °0 و °081 (صفر أو كامل التوتر)‬ ‫– إن ‪THD‬و ‪ EMI‬المشع ٌكون بأعلى قٌمته عند زاوٌة قدح °09 (نصف التوتر)‬
  • 84. ‫طيف مىجت الخيبس لمخفج اإلضبءة‬ • High frequency components which lead to EMI are reduced by the choke.
  • 85. ‫المقومات وحٌدة الطور‬ ‫مثال: وحدات تغذٌة الحواسب, شواحن البطارٌات‬ Typical computer power supply front-end • The rectifier conducts only when the line voltage magnitude exceeds the capacitor voltage. • The capacitor gets charged by drawing current at the peak of the voltage cycle and gets discharges slowly into the switching regulator between the voltage peaks. • Thus the circuit draws short pulses of current during line voltage peaks.
  • 86. ‫التٌار المستجر من وحدة تغذٌة الحاسب‬
  • 87. ‫تٌار الحٌادي فً جسر تقوٌم ثالثً الطور‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 88. Sequence Classification of Harmonics • In AC systems, the current and voltage waveforms have rotational symmetry. – even harmonics will not be present. • Power system harmonics are hence predominantly the odd, i.e 3rd, 5th, 7th, etc.
  • 89. ‫مقوم ثالثً الطور‬ Six-pulse Rectifier • Used in motor drives, traction, electrochemical plants, etc. • The high inductance in the dc side causes the dc current, Id to be essentially constant.
  • 90. ‫ مقوم ثالثً الطور‬Six-pulse Rectifier • The Fourier series for the line current for a diode rectifier is: 2 3  1 1 1 1  ia ( t)   Id   sin t  sin5 t  sin 7 t  sin 11 t  sin 13 t  ... 5 7 11 13  • For symmetrical ideal triggering, only harmonics of the order 6n±1 are present in the AC side currents. • The presence of source reactance and commutation effects lead to smoother current waveforms. -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 91. Supply voltage and current waveforms for three-phase bridge with highly inductive load
  • 92. Twelve-pulse Rectifier (cont.) • Used in high power motor drives, traction, hvdc converters, etc. • The Fourier series for the line current for a twelve-pulse diode rectifier is: 2 3  1 1  ia (t )  I d sin t  sin 11t  sin 13t  ... •  For symmetrical ideal triggering, only harmonics of the 13 12n±1 are   11 order present in the AC side currents. Supply voltage and current waveforms for twelve pulse bridge with highly inductive load
  • 93. ‫مبدالت التردد ‪Cycloconverters‬‬ ‫- ٌستخدم فً قٌادة المطاحن الكبٌرة فً صتاعة اإلسمنت وصناعة التعدٌن.‬ ‫- التوافقٌات المتولدة عنه هً :‬ ‫‪ cycloconverter‬حشدد الخشج لمبذل الخشدد =‪fo‬‬ ‫‪f h   pm  1 f‬‬ ‫‪‬‬ ‫0 ‪6nf‬‬ ‫; …,3,2,1=‪m‬‬ ‫…,2,1,0=‪n‬‬ ‫- طيف الخىفميبث يخغيش كلمب حغيش حشدد الخشج‬ ‫‪Typical input current harmonics of a six-pules cycloconverter with 5-Hz output frequency‬‬
  • 94. Integral-cycle Controllers or Pulse Burst Modulation (PBM) • This technique is used in applications such as heating, ovens, furnaces, etc. • Subharmonics are predominant. DC component can also be present. • High frequency harmonics above 200 Hz are practically absent. Pulse-burst-modulation power conditioning . Current wave: n=6; g=4/6 Harmonic spectrum for g6/8. Currents generated by a typical PBM system. 
  • 95. A Demonstration That a Balanced 3-Phase Load Can Result In Neutral Current
  • 96. ‫الخىافميبث والمحىالث‬ ‫إرتفاع حراري للمحول وعطب العزل وذلك ألسباب عدة:‬ ‫زٌادة تأثٌر الظاهرة القشرٌة ‪ skin‬وظاهرة التجاور‪proximity‬‬ ‫دوران التوافقٌات فً الملف اإلبتدائً ‪. circulating‬‬ ‫تزٌد من ضٌاعات اإلبطاء ‪hysteresis‬‬ ‫تزٌد من ضٌاعات التٌارات اإلعصارٌة ‪eddy‬‬ ‫تٌار مستمر فً الملف اإلبتدائً ‪DC‬‬ ‫‪AFC‬‬ ‫‪AFC‬‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 97. ‫الخىافميبث والمحىالث‬ Many transformers are rated by “K factor” which simply describes their ability to withstand harmonics. Transformers may also be derated to compensate for the additional heating caused by harmonics. Improved transformer designs have also been developed, with oversized AFC AFC neutral busses, special cores, and specially designed coils. -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 98. ‫تأثٌر التوافقٌات على المحوالت‬ ‫ضٌاعات المحول الناتجة عن التوافقٌة الثالثة ‪TRIP‬‬ ‫•تقسم ضٌاعات المحول إلى ضٌاع الملفات وضٌاع النواة الحدٌدٌة‬ ‫• ضٌاع النواة تلقى إهتمام أقل ألنها ناتجة من السٌالة المولدة فً النواة من قبل الجهد المستمر‬ ‫• ضٌاع الملفات ٌزداد مع إزدٌااد ‪ I2R‬والضٌاعات الشاردة‬ ‫تأثٌر التوافقٌة الثالثة:‬ ‫• إجهادات مفرطة ناجمة عن الحرارة‬ ‫•إنهٌار العازلٌة‬ ‫•مردود تشغٌلً منخفض‬ ‫•زمن حٌاة قصٌر‬ ‫•ضجٌج صوتً‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 99. ‫الخىافميبث ومكثفبث حصحيح المذسة‬ ‫مكثفات تصحٌح عامل القدرة قد تسبب طنٌن تسلسلً أو طنٌن‬ ‫تفرعً فً نظم القدرة.‬ ‫إذا تولدت توافقٌات تقع ضمن تردد طنٌن النظام , فً هذه الحالة‬ ‫سوف تضخم التوافقٌات‬
  • 100. ‫الخىافميبث ومكثفبث حصحيح المذسة‬ :‫مثال‬ Assume a 1500 kVA supply xfmr, 1500 kVA with a 5.75% impedance. 5.75% 600 kVAC Also assume 600 kVA of power correction capacitors on the system :‫ٌعرف تردد الطنٌنً التوافقً بالعالقة‬ kVAsc 1500 / 0.0575 = 6.6 hr = = kVAC 600
  • 101. ‫الحلول القدٌمة فً معالجة التوافقٌات‬ ‫‪Leo Craig‬‬ ‫1-وضع عامل أمان كبٌر عند حساب منابع الطاقة والكبالت والقواطع وهوحل مكلف جدا‬ ‫وبطبٌعة الحال ال ٌنفً وجود التوافقٌات على الشبكة.‬ ‫2- وضع محوالت بتوصٌالت مختلفة للحد من حركة التوافقٌات الثالثة ومضاعفاتها (‬ ‫التوافقٌة التاسعة ) وهو للحد من آثار التوافقٌة الثالثة لحماٌة كابل الحٌادي. وٌبقى حال‬ ‫جزئٌا مكلفا.‬ ‫وهً خاصة لتخمٌد التوافقٌة )‪ -36 pulse Bridge‬استخدام جسور خاصة تدعى (‬ ‫‪d,y‬الخامسة والسابعة . وطبعا لكونها محوالت صرفة (ذات لف مختلف لمفات الثانوي‬ ‫)متوضعة تسلسلٌا بٌن المنبع والحمل فٌها فهً مكلفة للغاٌة وتعتبر حال جزئٌا.‬ ‫4- دارات الطنٌن المولفة ( الفالتر الطنٌنٌة ) والتً تتألف من ملف ومكثف موصولٌن بشكل‬ ‫دارة طنٌن تعٌٌر على التردد المرغوب التخلص منه بحٌث تمرر هذا التردد دون غٌره إلى‬ ‫الخط الحٌادي أو األرضً . وكسابقتها هً حل مكلف وجزئً.‬ ‫5- ملف تسلسلً بٌن المنبع والحمل تكون ممانعته عالٌة بالنسبة للترددات األكبر من التردد‬ ‫) بحٌث تخفض مجموع التوافقٌات الكلً . وهً تعتبر حال جٌدا للتوافقٌات ‪50hz‬األساسً (‬ ‫الكبٌرة ولكنها اقل فعالٌة بالنسبة للتوافقٌات الصغٌرة الهامة فهً كغٌرها من الحللول تعتبر‬ ‫حال جزئٌا.‬
  • 102. ‫التوصٌات العملٌة للتعامل مع مشكلة التوافقٌات‬ Identify the required PCC and apply techniques that are most cost effective for that location. Add a line reactor (or DC link choke if possible) to any un-buffered 6 pulse drives. Never use power factor correction capacitors at the input (or output) terminals of a drive. Active filters are most cost effective on larger multi-drive systems to correct for both displacement and distortion power factor. For an even number of equally sized drives, consider a Pseudo 12 pulse solution by placing half of the load on a phase shifting delta wye transformer. Design the system to Isolate linear and non-linear loads and create two systems with 5% and 10% voltage limits respectively. If passive filters are used on generator power, select a passive filter with an LC dropout contactor terminal block. Take the time to understand the benefits and drawbacks of each type of mitigation solution to assure you meet the requirements of the application and that you can live with any negative effects created by the chosen harmonic solution. Consider an active front end if the application requires regenerative operation and harmonic compliance. Perform a preliminary computer analysis and explore the effects of using various compliance methods.
  • 103. ‫كٌف نخفض التٌار التوافقً‬ ‫• خانق ترابط مستمر داخل نظام القٌادة ‪DC link choke within the drive‬‬ ‫• مفاعل خط ‪line reactor‬‬ ‫• مرشح مسالم ‪passive filter‬‬ ‫• مر شح فعال ‪active filter‬‬ ‫• تعدد األطوار ‪multi-pulse‬‬ ‫• مبدل مقوم فعال ‪active rectifier / converter‬‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 104. ‫أنواع المرشحات‬ ‫المرشحات المسالمة ‪Passive filters‬‬ ‫•‬ ‫تؤمن مسار ذو ممانعة منخفضة إلى األرض عند تردد الرنٌن‬ ‫–‬ ‫تستخدم المكثفات كمرشحات فعالة.‬ ‫–‬ ‫تستخدم عناصر ‪ RLC‬مولفة .‬ ‫–‬ ‫إقتصادٌة.‬ ‫–‬ ‫المرشحات الفعالة ‪Active filters‬‬ ‫•‬ ‫معوض ستاتٌكً لإلستطاعة الردٌة.‬ ‫–‬ ‫تحقن تٌارات توافقٌة ( أو توترات) معاكسة بالطور للتوافقٌة الموجودة‬ ‫–‬ ‫تستخدم عناصر مثل مفاتٌح أنصاف النواقل ومضخمات.‬ ‫–‬ ‫غالٌة الثمن.‬ ‫–‬
  • 105. ‫‪ Passive Filters‬المرشحات المسالمة‬ ‫• النمط ذو الطنٌن التسلسلً ٌؤمن ممانعة منخفضة عند تردد الطنٌن‬ ‫• النمط ذو طنٌن التوازي ٌؤمن ممانعة عالٌة عند تردد‬
  • 106. Capacitor as a Filter ‫المكثف كمرشح‬ ‫• المكثف التفرعً هو أبسط شكل للمرشح المسالم‬ ‫إقتصادي‬ - (Q) ‫– أٌضا ٌؤمن تعوٌض قدرة ردٌة‬ • delines for sizing capacitive filters – resonance between capacitor and circuit inductive reactance should not occur exactly at an integer multiple of fundamental frequency. – sensitivity of resonant point to drift in capacitor value should be investigated, – voltage and var support provided should not be excessive, – IEEE Standard 18 should be consulted for sizing and placement of capacitor.
  • 108. ‫معالجة مسالمة ‪ Passive‬لتخفٌض تٌار الحٌادي‬
  • 110. ‫تٌار الخط وتٌار الحٌادي وأطٌافهما بدون مرشح‬ Line Current & Neutral Current and Spectrum Without the Blockade
  • 111. Line Current & Neutral Current With the Blockade
  • 112. ‫)‪ (NFC‬مرشح تٌار الحٌادي‬
  • 113. ‫المخطط المبسط لمرشح تٌار حٌادي فعال‬
  • 114. ‫نتائج اإلختبار لمرشح تٌار حٌادي فعال‬
  • 115. ‫نتائج إختبار مرشح تٌار حٌادي فعال‬
  • 117. Motor Derating vs. Harmenic Voltage Distortion This chart requires a calculation for the Harmonic Voltage Factor or HVF based on weighted individual harmonic component levels. Since the motor impedance is lower for the lower harmonic components, they will cause more heating and thus carry more weight. To determine the motor de-rating factor, the following formula should be used. for values of n from 0 to infinity.
  • 118. Six pulse buffered vs. un-buffered drives
  • 119. Six pulse buffered vs. un-buffered drives
  • 120. Six pulse buffered vs. un-buffered drives
  • 125. ‫المرشح الفعال نمط الجهد ونمط التٌار‬ ‫.‪Voltage type (left) and current-type active filters‬‬ ‫• مرشح فعال منبع تٌار‬ ‫• مرشح فعال منبع جهد‬ ‫– ملف,)‪(current source‬‬ ‫– مكثف,)‪(dc source‬‬ ‫– معرج منبع تٌار.)‪(CSI‬‬ ‫– معرج منبع جهد.)‪(VSI‬‬
  • 126. ً‫مبدأ التعوٌض الفعال التفرع‬ Shunt Active Compensation Principle IS IF IL
  • 127. ً‫ تفرع‬PWM ‫فلتر فعال‬ Shunt PWM Active Filters IS IL IL IF + IF Source C Load = IS Filter
  • 129. ‫تكنولوجٌا المرشحات الفعالة‬ ‫• تعتبر المرشحات الفعالة ‪ Active filters‬مكٌفات قدرة فعالة ‪active power line‬‬ ‫.‪conditioners‬‬ ‫المرشحات الفعالة أٌضا تصنف إعتمادا على طرٌقة التصحٌح‬ ‫•‬ ‫- تصحٌح فً المجال الزمنً‬ ‫- تصحٌح فً المجال الترددي‬
  • 131. ‫‪AFE System‬‬ ‫مرشح فً المقدمة فعال‬
  • 133. ‫فعال من جهة المدخل‬ ‫‪Active Front End‬‬
  • 134. Active Front End Rectifier ‫مقوم فعال فً المقدمة‬
  • 135. Recommendations Practices to Aid in Harmonic Compliance • Identify the required PCC And apply techniques most cost effective for that location. • Add a line reactor (or DC link choke if possible) to any un-buffered 6 pulse drives. • Use Active Filters on multi-drive systems to correct displacement / distortion. • For an even number of equally sized drives, consider a Pseudo 12 pulse solution by placing half of the load on a phase shifting delta wye transformer. • Design the system to Isolate linear and non-linear loads and create two systems with 5% and 10% voltage limits. -‫الدكتور المهندس محمد منذر القادري‬ munthear@gmail.com
  • 136. Recommendations Practices to Aid in Harmonic Compliance • For passive filters on generator power, select a filter with an LC dropout contactor terminal block. Limit leading power factor. • Take time to understand the benefits and drawbacks of each type of mitigation solution to assure you meet the requirements of the application and that you can live with any negative effects created by the chosen harmonic solution. • Consider an active front end if the application requires regenerative operation and harmonic compliance. • Perform a preliminary computer analysis and explore the effects of using various compliance methods. • Never use power factor correction capacitors at the input (or output) of a drive.
  • 138. ‫أنواع األحمال فً الشبكة الكهربائٌة‬
  • 139. ‫ - الحذود المىصى بهب‬IEEE 519 The Institute of Electrical and Electronics Engineers (IEEE) has set recommended limits on both current and voltage distortion in IEEE 519-1992. THD (voltage) ‫نوع التطبٌق‬ 3% Special Hospitals and Airports 5% General Commercial Industrial 10% Dedicated Non-lineal load system careful review of the IEEE-519-1992 document reveals three levels of compliance with regard to voltage distortion. These levels are set at and defined as:
  • 140. ‫915 ‪ - IEEE‬الحذود المىصى بهب للخشىهبث‬ ‫تشوه التٌار التوافقً األعظمً كنسبة من تٌار الحمل‬ ‫رقم التوافقٌة الفردٌة‬ ‫‪Isc/IL‬‬ ‫11<‬ ‫71<‪11<h‬‬ ‫32<‪17<h‬‬ ‫53<‪23<h‬‬ ‫‪TDD‬‬ ‫02<‬ ‫0.4‬ ‫0.2‬ ‫5.1‬ ‫6.0‬ ‫0.5‬ ‫05-02‬ ‫0.7‬ ‫5.3‬ ‫5.2‬ ‫0.1‬ ‫0.8‬ ‫001-05‬ ‫0.01‬ ‫5.4‬ ‫0.4‬ ‫5.1‬ ‫0.21‬ ‫0001-001‬ ‫0.21‬ ‫5.5‬ ‫0.5‬ ‫0.2‬ ‫0.51‬ ‫0001>‬ ‫0.51‬ ‫0.7‬ ‫0.6‬ ‫5.2‬ ‫0.02‬ ‫‪ : Isc‬تٌار قصر الدارة األعظمً عند نقطة الربط المشتركة ‪(PCC Point of Common Coupling‬‬ ‫تٌار الحمل المطلوب األعظمً عند نقطة ‪PCC‬‬ ‫‪: IL‬‬
  • 141. ‫حخميذ الخىافميبث ‪Attenuation of Harmonics‬‬ ‫المفاعلة التحرٌضٌة‬ ‫طرٌقة العمل : إضافة مفاعلة خط أو محول عزل لتخمٌد التوافقٌات‬ ‫منخفض الكلفة‬ ‫الفوائد:‬ ‫تقانة بسٌطة‬ ‫االهتمام: ٌخدم فً تقدٌم تخفٌض فً توافقٌات المرتبة العلٌا. وله تأثٌر قلٌل على‬ ‫التوافقٌات الخامسة والسابعة‬ ‫بسبب ترافق ذلك مع هبوط فً الجهد. ٌوجد حدود فً إضافة هذه المفاعالت‬
  • 142. ‫حخميذ الخىافميبث ‪Attenuation of Harmonics‬‬ ‫المرشحات المسالمة‬ ‫ٌؤمن ممر ممانعة منخفضة بالنسبة للترددات التوافقٌة الى األرض‬ ‫طرٌقة العمل:‬ ‫ٌمكن أن تولف على تردد بٌن التوافقٌٌن الشائعٌن بحث ٌخدم فً تخمٌد الترددٌن‬ ‫الفوائد:‬ ‫تولٌف الفالتر تحتاج إهتمام مركز من قبل الفنٌٌن‬ ‫االهتمام :‬ ‫تختلف الفالتر بحجومها وال ٌمكن تحدٌد مقاٌٌس لها‬ ‫تبدي حساسٌة عالٌة ألي تغٌٌر فً مواصفات النظام‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 143. ‫‪Attenuation of Harmonics‬‬ ‫حخميذ الخىافميبث‬ ‫المرشحات الفعالة‬ ‫طرٌقة العمل: ٌحقن توافقٌات مساوٌة ومعاكسة إلى نظام القدرة لحذف تلك التوافقٌات المولدة من أجهزة‬ ‫أخرى‬ ‫الفوائد: ٌضمن تخفٌض فعال للتوافقٌات إلى مستوٌات منخفضة مطلوبة‬ ‫االهتمام : ٌتطلب إنفرتر أداء عالً لحقن التوافقٌات وهذا مكلف‬ ‫ترانستورات القدرة المستخدمة تتعرض إلى ظروف التً ٌخضع لها الخط.وبذلك نواجه مشكلة الوثوقٌة‬ ‫الدكتور المهندس محمد منذر القادري-‬ ‫‪munthear@gmail.com‬‬
  • 144. Attenuation of Harmonics ‫حخميذ الخىافميبث‬ ‫مقومات 21 نبضة‬ ‫:طرٌقة العمل‬ Two separate rectifier bridges supply a single DC bus. The two bridges are fed from phase- shifted supplies. ‫:الفوائد‬ Very effective in the elimination of 5th and 7th harmonics. Stops harmonics at the source. Insensitive to future system changes. Concerns: May not meet the IEEE standards in every case. Does little to attenuate the 11th and 13th harmonics.
  • 145. ‫حخميذ الخىافميبث ‪Attenuation of Harmonics‬‬ ‫مقومات 81 نبضة‬ ‫طرٌقة العمل: محول إزاحة الطور المتكامل ومقوم الدخل الذي ٌستجر فً الغالب موجة جٌبٌة نقٌة‬ ‫من المنبع‬ ‫ٌلبً المعٌار ‪ IEEE‬فً جمٌع الحاالت‬ ‫الفوائد:‬ ‫ٌخمد جمٌع التوافقٌات حتى التوافقٌة 53‬ ‫ٌوقف التوافقٌات عند المنبع‬ ‫غٌر حساس لتغٌر مواصفات النظام‬ ‫االهتمام: ٌمكن أن ٌكون غالً الثمن عند استطاعات منخفضة‬
  • 146. ً‫ ستاتٌك‬Var ‫معوض إستطاعة ردٌة‬ • Consists of electronically switched capacitor and/or inductor. • Some SVC technologies – Thyristor Controlled Reactor (TCR) with fixed capacitor (FC) – TCR with thyristor switched capacitor (TSC). • The Adaptive Var Compensator (AVC), developed at the University of Washington, is essentially a bank of TSCs.
  • 147. FACTS and Custom Power Devices • The other families of power electronic devices, very closely related to the active filters, are – Flexible AC Transmission System (FACTS) devices, – Custom Power Devices. • FACTS devices are intended for [4] – greater control of power transmission, – maximize utilization of existing transmission lines, – reduction of generation reserve margin, – prevention of cascading outages, – damping of power system oscillations.
  • 148. Static Condenser (STATCOM) ً‫المكثف الستاتٌك‬ Figure 22: Functional block diagram of a STATCON. • FACTS and Custom Power Device – reactive power compensation, – voltage regulation (by reactive power compensation), – harmonic current compensation. • Behaves as a voltage source connected in shunt to the power system through an inductor.
  • 149. ‫معوض الجهد الدٌنامٌكً )‪(DVR‬‬ ‫‪Dynamic Voltage Restorer‬‬ ‫• مناسب ألجهزة المستهلكٌن‬ ‫– تنظٌم جهد بطرٌقة التعوٌض التسلسً‬ ‫– تعوٌض توافقٌات جهد الخط‬ ‫ٌتصرف كمنبع جهد موصول مع خط القدرة‬ ‫•‬