SlideShare une entreprise Scribd logo
1  sur  44
Télécharger pour lire hors ligne
Nadia	
  Barbara	
  Figueroa	
  Fernandez	
  
3D Computer Vision and Applications in Robotics and Multimedia	
  
Reconstruct your world	
  
Reconstruct yourself	
  
•  BACKGROUND	
  
	
  
•  3D	
  COMPUTER	
  VISION	
  
	
  
•  APPLICATIONS	
  IN	
  ROBOTICS	
  
Research	
  Projects	
  at	
  TU	
  Dortmund	
  
Master’s	
  Thesis	
  at	
  DLR	
  
	
  
•  APPLICATIONS	
  IN	
  MULTIMEDIA	
  
Research	
  Projects	
  at	
  NYU	
  Abu	
  Dhabi	
  
	
  
	
  
	
  
DLR’s	
  rollin’	
  JusEn	
  Humanoid	
  
	
  	
  
AGENDA	
  
EducaEon	
  and	
  Research	
  PosiEons	
  
BACKGROUND	
  
Fundamentals	
  
1	
  
General	
  DefiniEon	
  
2	
  
My	
  DefiniEon	
  
3	
  
What	
  if	
  a	
  point	
  cloud?	
  
“Generate	
  3D	
  representaBons	
  of	
  the	
  world	
  from	
  the	
  viewpoint	
  of	
  a	
  
sensor,	
  generally	
  in	
  the	
  form	
  of	
  3D	
  point	
  clouds.”	
  
“Ability	
  of	
  powered	
  devices	
  to	
  acquire	
  a	
  real	
  Bme	
  picture	
  of	
  the	
  
world	
  in	
  three	
  dimensions”.	
  -­‐	
  Wikipedia	
  
3D	
  COMPUTER	
  VISION	
  
€
p ∈ P
€
p = (x,y,z,r,g,b)“A	
  point	
  cloud	
  is	
  a	
  set	
  of	
  points	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .”	
  
•  Primesense	
  3D	
  sensor	
  
•  MicrosoP	
  Kinect
Example	
  text	
  
3	
   Light	
  Coding	
  –	
  Structured	
  Light	
  
•  Stereo	
  Systems	
  
	
  
	
  
	
  
	
  
	
  
•  MulB-­‐Camera	
  Stereo	
  
2	
   TriangulaEon-­‐based	
  Systems	
  
1	
   Time-­‐Of-­‐Flight	
  Sensors	
  
Sensing	
  Devices	
  
3D	
  COMPUTER	
  VISION	
  
•  LIDAR	
  (Light	
  DetecBon	
  
and	
  Ranging)	
  
•  Radar	
  
•  Sonar	
  
•  TOF	
  Cameras	
  
•  PMD	
  (Photonic	
  Mixing	
  
Device)
APPLICATIONS	
  IN	
  ROBOTICS	
  
CalibraEon	
  and	
  VerificaEon	
   Mapping	
  and	
  NavigaEonObject	
  RecogniEon	
  and	
  
Mobile	
  ManipulaEon	
  
Nadia	
  Figueroa	
  and	
  JiVu	
  Kurian	
  
OBJECT	
  RECOGNITION	
  FOR	
  A	
  MOBILE	
  
MANIPULATION	
  PLATFORM	
  
GOAL:	
  Detect	
  and	
  esBmate	
  the	
  pose	
  of	
  a	
  wanted	
  object	
  in	
  a	
  table	
  top	
  
scenario.	
  
	
  
	
  
PROPOSED	
  APPROACH:	
  Use	
  CCD	
  and	
  PMD	
  cameras.	
  
PRE-­‐REQUISITES:	
  
1.-­‐	
  CalibraBon	
  of	
  PMD-­‐CCD	
  Camera	
  Rig	
  
2.-­‐	
  Object	
  Database	
  	
  
Pre-­‐Requisite	
  1:	
  CalibraEon	
  of	
  PMD-­‐CCD	
  rig	
  
OBJECT	
  RECOGNITION	
  FOR	
  A	
  MOBILE	
  
MANIPULATION	
  PLATFORM	
  
CalibraEon	
  and	
  camera	
  set-­‐up	
  
(CCD-­‐PMD)	
  
•  Binocular	
  camera	
  setup	
  of	
  
PMD	
  and	
  CCD	
  Camera.	
  
•  Stereo	
  System	
  CalibraBon	
  
Method.	
  
–  MathemaBcally	
  align	
  the	
  2	
  
cameras	
  in	
  1	
  viewing	
  plane.	
  
–  Using	
  epipolar	
  geometry,	
  
calculate	
  essenBal	
  and	
  
fundamental	
  matrices.	
  
	
  
Pre-­‐Requisite	
  2:	
  Object	
  Database	
  
	
  
OBJECT	
  RECOGNITION	
  FOR	
  A	
  MOBILE	
  
MANIPULATION	
  PLATFORM	
  
Object	
  model	
  generaEon	
  
• Each	
  object	
  is	
  matched	
  with	
  20	
  training	
  images.	
  
• The	
  keypoints	
  (SURF)	
  that	
  are	
  repeatedly	
  matched	
  are	
  selected	
  as	
  the	
  
„best“	
  keypoints.	
  
• APer	
  training	
  each	
  object,	
  we	
  get	
  100	
  keypoints	
  per	
  object.	
  
Object	
  1	
   Object	
  2	
   Object	
  3	
  
Object	
  RecogniEon	
  Algorithm	
  
	
  
OBJECT	
  RECOGNITION	
  FOR	
  A	
  MOBILE	
  
MANIPULATION	
  PLATFORM	
  
PMD	
  Data	
  FlaVening	
  and	
  Variance	
  SegmentaEon	
  Algorithm	
  
	
  
OBJECT	
  RECOGNITION	
  FOR	
  A	
  MOBILE	
  
MANIPULATION	
  PLATFORM	
  
Original	
  PMD	
  
Segmented	
  PMD	
  
Fla^ened	
  PMD	
  
OBJECT	
  RECOGNITION	
  FOR	
  A	
  MOBILE	
  
MANIPULATION	
  PLATFORM	
  
DLR’S	
  ROLLIN’	
  JUSTIN	
  
Built	
  of	
  light-­‐weight	
  structures	
  
and	
  joints	
  with	
  mechanical	
  
compliances	
  and	
  flexibiliEes.	
  
(+)	
  Compliant	
  behavior	
  of	
  the	
  arm	
  
(-­‐)	
  Low	
  posiEong	
  accuracy	
  at	
  the	
  	
  
TCP	
  (Tool-­‐Center-­‐Point)	
  end	
  pose.
Designed	
  to	
  interact	
  with	
  
humans	
  and	
  unknown	
  
environments.	
  
How	
  is	
  this	
  low	
  posiEon	
  accuracy	
  compensated	
  in	
  this	
  
lightweight	
  design?	
  	
  
Using	
  the	
  torque	
  sensors.	
  
(+)	
  An	
  approximaBon	
  of	
  a	
  joint’s	
  deflecBon	
  is	
  obtained	
  by:	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :measured	
  torque	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :sBffness	
  coefficient	
  of	
  the	
  gear	
  
(-­‐)	
   This	
   approx.	
   is	
   insufficient.	
   It	
   cannot	
   measure	
   the	
   remaining	
  
mechanical	
  flexibiliBes.	
  
€
Θi = θi +
τi
Ki
€
τ
€
K
ROLLIN’	
  JUSTIN’S	
  LOW	
  POSITION	
  ACCURACY	
  
MASTER	
  THESIS	
  MOTIVATION	
  
Problem	
  
Goal	
  
Requirements	
  
Create	
  a	
  verificaBon	
  rouBne	
  to	
  idenBfy	
  the	
  maximum	
  bounds	
  of	
  the	
  TCP	
  posiBoning	
  
errors	
  of	
  humanoid	
  JusBn’s	
  upper	
  kinemaBc	
  chains.	
  
The	
  feasibility	
  of	
  moBon	
  planning	
  is	
  highly	
  dependent	
  on	
  the	
  posiBoning	
  
accuracy.	
  	
  
1.	
  Avoid	
  using	
  any	
  external	
  sensory	
  system.	
  
2.	
  Avoid	
  any	
  human	
  intervenBon	
  
Supervisors:	
  Florian	
  Schmidt	
  and	
  Haider	
  Ali	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
€
TCP = Tw
h
Th
a
Ta
tcp
TCP measured by
forward kinematics:
€
TCP = Tw
h
Th
s
Ts
tcp
TCP measured by
stereo vision system:
€
Ts
tcp
€
Th
s
€
Ta
tcp
€
Th
a
€
TCP
Tw
h
TCP End-Pose Error:
Proposed	
  Approach:	
  Use	
  the	
  on-­‐board	
  stereo	
  vision	
  system	
  to	
  esBmate	
  the	
  TCP	
  end-­‐pose.	
  
	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
3D	
  point	
  clouds	
  of	
  the	
  hand	
  from	
  the	
  stereo	
  cameras.	
  
EsBmate	
  TCP	
  by	
  using	
  registraBon	
  between	
  a	
  point	
  cloud	
  
of	
  the	
  hand	
  and	
  a	
  model.	
  	
  
RegistraEon	
  method	
  evaluaEon	
  
1.	
  Keypoint	
  extracBon	
  (SIFT)	
  &	
  point-­‐to-­‐
point	
  correspondence.	
  
2.	
  Local	
  descriptor	
  (FPFH/SHOT/CSHOT)	
  
matching	
  using	
  Ransac-­‐based	
  
correspondence	
  search.	
  
Model	
  GeneraEon	
  
Data	
  AcquisiEon	
  
Pose	
  EsEmaEon	
   Model	
  generated	
  from	
  an	
  extended	
  metaview	
  
registraBon	
  method	
  from	
  a	
  selected	
  subset	
  of	
  
views	
  generated	
  by	
  analyzing	
  the	
  distribuBon	
  of	
  
max/min	
  depth	
  values.	
  
Data	
  AcquisiEon:	
  Dense	
  3D	
  point	
  cloud	
  generated	
  from	
  Stereo	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Point	
  Cloud	
  Processing	
  
Pass-­‐through	
  filter	
  (remove	
  background).	
  
StaBsBcal	
  Outlier	
  Removal	
  (remove	
  outliers)	
  
Voxel	
  Grid	
  Filter	
  (downsample).	
  
3D	
  RegistraEon	
  Methods	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Model	
  GeneraEon	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Model	
  GeneraEon	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Extended	
  Metaview	
  RegistraEon	
  Method	
  
Consists	
  of	
  3	
  steps:	
  
Global	
  Thresholding	
  Process:	
  Reject	
  the	
  views	
  that	
  lie	
  in	
  unstable	
  
areas.	
  
Next	
  Best	
  View	
  Ordering	
  Algorithm:	
  Find	
  an	
  order	
  for	
  
incrementally	
  registering	
  the	
  subset	
  of	
  point	
  clouds.	
  
Metaview	
  RegistraEon:	
  The	
  resulBng	
  subset	
  of	
  views	
  are	
  
registered	
  and	
  merged.	
  
	
  	
  
	
  
	
  
VerificaEon	
  RouEne	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
€
ek = 〈et ,eθ 〉
€
fk = 3dRMS
E = (e1,..,eN )
F = ( f1,..., fN )
€
F* = RANSAC(F)
eb = 〈max(et ∈ E*),max(eθ ∈ E*)〉
VerificaEon	
  RouEne	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Method	
  EvaluaEon	
  (Ground	
  Truth)	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Pose	
  EsEmaEon	
  using	
  IR	
  ART	
  tracking	
  system	
  (Ground	
  Truth)	
  
ART	
  System	
  Set-­‐up	
  
–  MulB-­‐camera	
   setup	
   that	
  
esBmates	
   the	
   6DOF	
   pose	
   of	
  
the	
  tracking	
  targets.	
  
–  Mean	
   accuracy	
   of	
   0.04	
  
pixels.	
  	
  
–  Speed	
  of	
  100	
  fps.	
  
Method	
  EvaluaEon	
  (Ground	
  Truth)	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Implicit	
  loop	
  closure	
  with	
  tracking	
  system	
  (Ground	
  Truth)	
  
–  By	
  expressing	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  ART	
  coordinate	
  system	
  a	
  double	
  loop	
  closure	
  is	
  generated.	
  
€
TCPfk = Tart
heT
TheT
h
Th
a
Ta
tcp
€
TCPreg = Tart
heT
TheT
h
Th
s
Ts
tcp
€
TCPart = (Tart
heT
TheT
h
)−1
Tart
haT
ThaT
tcp
§  Error	
  IdenBficaBon	
  
€
Ta
tcp
€
Th
a
€
TCP
€
ART
€
Tart
heT
€
Tart
haT
€
ThaT
tcp
€
TheT
h
€
Ts
tcp
€
Th
s
€
TCPfk,TCPreg
 
Two	
  step	
  calibraEon:	
  
I.	
  Center	
  of	
  RotaEon	
  EsEmaEon:	
  
Non-­‐rigid	
  geometrically	
  constrained	
  	
  
sphere-­‐fimng	
  
	
  
	
  
min	
  
subject	
  to	
  
	
  	
  	
  :spherical	
  fit	
  
	
  	
  	
  :measurements	
  
	
  	
  	
  :spherical	
  constraint	
  
II.	
  Axis	
  of	
  RotaEons	
  EsEmaEon	
  
Combined	
  plane/circle	
  fimng	
  for	
  each	
  axis.	
  
	
  
min	
  
	
  
	
  	
  	
  	
  	
  	
  :planar	
  
	
  	
  	
  	
  	
  	
  :radial	
  
	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
CalibraEon	
  of	
  Tracking	
  targets	
  to	
  JusEn	
  
–  The	
  esBmaBon	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  relies	
  on	
  	
  
the	
  idenBficaBon	
  of	
  	
  	
  	
  	
  	
  	
  	
  and	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
€
TCPart
€
TheT
h
€
ThaT
tcp
€
f = (δk
2
+εk
2
)
k=1
N
∑
€
εk =||vk − m ||2
−r2
€
uT
DT
Du
€
uT
Cu =1
εk
δk
€
u
€
C
€
D
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
CalibraEon	
  of	
  Tracking	
  targets	
  to	
  JusEn	
  (cont’d)	
  
–  Create	
  spherical	
  trajectories	
  around	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  
	
  
	
  
–  CoR	
  is	
  the	
  posiBon	
  of	
  the	
  joint	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  deviaBons	
  throughout	
  10	
  calibraBons.	
  
–  AoRs	
  are	
  the	
  rotaBons	
  
–  Moun*ng	
  frames:	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  deviaBons	
  throughout	
  10	
  calibraBons.	
  
	
  
	
   	
   	
   	
   	
   	
  	
  
	
  
	
  
€
R = [AoRx,AoRy,AoRz ]
€
t = [mx,my,mz ]T
€
head
€
TCP
ThaT
tcp
= TCP(R,t)−1
Tart
haT
TheT
h
= head(R,t)−1
Tart
heT
€
ThaT
tcp
€
TheT
h
Method	
  EvaluaEon	
  (Ground	
  Truth)	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Method	
  EvaluaEon	
  (Ground	
  Truth)	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Experimental	
  Results	
  (TranslaEonal	
  Error)	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Experimental	
  Results	
  (RotaEonal	
  Error)	
  
3D	
  REGISTRATION	
  FOR	
  VERIFICATION	
  OF	
  
HUMANOID	
  JUSTIN’S	
  UPPER	
  BODY	
  KINEMATICS	
  
Nadia	
  Figueroa	
  and	
  Haider	
  Ali	
  (DLR)	
  
SEGMENTATION	
  AND	
  POSE	
  ESTIMATION	
  OF	
  PLANAR	
  
METALLIC	
  OBJECTS	
  
PROBLEM:	
  Pose	
  esBmaBon	
  of	
  planar	
  metallic	
  objects	
  in	
  a	
  pile.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
PROPOSED	
  APPROACH:	
  	
  	
  
(i)	
  	
  SegmentaBon	
  using	
  Euclidean	
  clustering	
  
(ii)	
  Pose	
  EsBmaBon	
  using	
  RegistraBon	
  
SEGMENTATION	
  AND	
  POSE	
  ESTIMATION	
  OF	
  PLANAR	
  
METALLIC	
  OBJECTS	
  
3D	
  point	
  clouds	
  of	
  the	
  cloud	
  from	
  a	
  range	
  sensor.	
  
Cluster	
  RegistraEon	
  
Euclidean	
  Clustering	
  We	
  extract	
  n-­‐clusters	
  C	
  from	
  pile	
  P	
  that	
  represent	
  the	
  
planar	
   objects	
   by	
   analyzing	
   the	
   angle	
   deviaBons	
  
between	
  the	
  surface	
  normal	
  vectors.	
  
	
  Model	
   PosiEve	
  aligned	
  clusters	
  
3D	
  point	
  clouds	
  of	
  the	
  cloud	
  from	
  a	
  range	
  sensor.	
  
Data	
  AcquisiEon	
  
Euclidean	
  Clustering	
  
CONTEXTUAL	
  OBJECT	
  CATEGORY	
  RECOGNITION	
  IN	
  
RGB-­‐D	
  SCENES	
  
PROBLEM:	
  Object	
  category	
  recogniBon	
  in	
  RGB-­‐D	
  Data	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
PROPOSED	
  APPROACH:	
  	
  	
  
(i)	
  	
  Novel	
  combinaBon	
  of	
  depth	
  and	
  color	
  features.	
  
(ii)	
  Scene	
  segmentaBon	
  based	
  on	
  table	
  detecBon	
  and	
  euclidean	
  clustering.	
  
(iii)	
  ClassificaBon	
  results	
  augmented	
  by	
  a	
  context	
  model	
  learnt	
  from	
  social	
  media.	
  	
  
	
  
CONTEXTUAL	
  OBJECT	
  CATEGORY	
  RECOGNITION	
  IN	
  
RGB-­‐D	
  SCENES	
  




















System	
  Architecture	
  
CONTEXTUAL	
  OBJECT	
  CATEGORY	
  RECOGNITION	
  IN	
  
RGB-­‐D	
  SCENES	
  
RGB-­‐D	
  Object	
  Features	
  and	
  Classifier	
  


We	
  use	
  a	
  linear	
  SVM	
  to	
  train	
  6	
  object	
  categories.	
  The	
  accuracy	
  	
  of	
  
our	
  classicaBon	
  framework	
  (63.91%)	
  is	
  four-­‐Bmes	
  the	
  minimum	
  
baseline	
  generated	
  by	
  a	
  random	
  guess	
  (16.67%).	
  	
  
MulE-­‐object	
  ClassificaEon	
  
APPLICATIONS	
  IN	
  MULTIMEDIA	
  
World,	
  object,	
  human	
  reconstrucEon	
   Rapid	
  ReplicaEon	
  (3D	
  prinEng)Gaming	
  
Kinect	
  Fusion	
  
Uses	
  Truncated	
  Signed	
  Distance	
  FuncEon	
  (TSDF)	
  to	
  represent	
  the	
  3D	
  data.	
  
What	
  is	
  a	
  TSDF?	
  
A	
  TSDF	
  cloud	
  is	
  a	
  point	
  cloud	
  which	
  use	
  of	
  how	
  the	
  data	
  is	
  stored	
  within	
  GPU	
  at	
  KinFu	
  runBme.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Each	
  element	
  in	
  the	
  grid	
  represents	
  a	
  voxel,	
  and	
  the	
  value	
  inside	
  it	
  represents	
  the	
  TSDF	
  value.	
  The	
  TSDF	
  
value	
  is	
  the	
  distance	
  to	
  the	
  nearest	
  isosurface.	
  	
  
RGB-­‐D	
  KINECT	
  FUSION	
  FOR	
  CONSISTENT	
  
RECONSTRUCTIONS	
  OF	
  INDOOR	
  SPACES	
  
Nadia	
  Figueroa,	
  Haiwei	
  Dong	
  and	
  Abdulmotaleb	
  El	
  Saddik	
  
PROBLEM:	
  GeneraBng	
  geometric	
  models	
  of	
  environments	
  for	
  interior	
  design,	
  architectural	
  and	
  
re-­‐pair	
  or	
  remodeling	
  of	
  indoor	
  spaces.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
PROPOSED	
  APPROACH:	
  	
  RGB-­‐D	
  Kinect	
  Fusion,	
  which	
  is	
  a	
  combined	
  approach	
  towards	
  consistent	
  
reconstrucBons	
  of	
  indoor	
  Spaces	
  based	
  on	
  Kinect	
  Fusion	
  and	
  6D	
  RGB-­‐D	
  Odometry	
  based	
  on	
  
efficient	
  feature	
  matching.	
  	
  
RGB-­‐D	
  KINECT	
  FUSION	
  FOR	
  CONSISTENT	
  
RECONSTRUCTIONS	
  OF	
  INDOOR	
  SPACES	
  
6D	
  RGB-­‐D	
  ODOMETRY	
  
FROM	
  SENSE	
  TO	
  PRINT	
  
Nadia	
  Figueroa,	
  Haiwei	
  Dong	
  and	
  Abdulmotaleb	
  El	
  Saddik	
  
FROM	
  SENSE	
  TO	
  PRINT	
  
SegmentaEon	
  based	
  on	
  Camera	
  Pose	
  SemanEcs	
  
Object	
  on	
  Table	
  Top	
  SegmentaEon	
   Human	
  Bust	
  SegmentaEon	
  
THANK	
  YOU!	
  

Contenu connexe

Tendances

Visual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environmentsVisual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environmentsNAVER Engineering
 
Optical volume holograms and their applications
Optical volume holograms and their applicationsOptical volume holograms and their applications
Optical volume holograms and their applicationsHossein Babashah
 
mihara_iccp16_presentation
mihara_iccp16_presentationmihara_iccp16_presentation
mihara_iccp16_presentationHajime Mihara
 
Optical Computing for Fast Light Transport Analysis
Optical Computing for Fast Light Transport AnalysisOptical Computing for Fast Light Transport Analysis
Optical Computing for Fast Light Transport AnalysisMatthew O'Toole
 
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII
 
3-d interpretation from single 2-d image III
3-d interpretation from single 2-d image III3-d interpretation from single 2-d image III
3-d interpretation from single 2-d image IIIYu Huang
 
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object DetectionDeep Learning JP
 
3-d interpretation from single 2-d image V
3-d interpretation from single 2-d image V3-d interpretation from single 2-d image V
3-d interpretation from single 2-d image VYu Huang
 
3-d interpretation from single 2-d image IV
3-d interpretation from single 2-d image IV3-d interpretation from single 2-d image IV
3-d interpretation from single 2-d image IVYu Huang
 
Structured Illumination Microscopy - Fundamentals and Applications
Structured Illumination Microscopy - Fundamentals and ApplicationsStructured Illumination Microscopy - Fundamentals and Applications
Structured Illumination Microscopy - Fundamentals and ApplicationsRafael Camacho Dejay
 
Neural Scene Representation & Rendering: Introduction to Novel View Synthesis
Neural Scene Representation & Rendering: Introduction to Novel View SynthesisNeural Scene Representation & Rendering: Introduction to Novel View Synthesis
Neural Scene Representation & Rendering: Introduction to Novel View SynthesisVincent Sitzmann
 
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)Matthew O'Toole
 
fusion of Camera and lidar for autonomous driving I
fusion of Camera and lidar for autonomous driving Ifusion of Camera and lidar for autonomous driving I
fusion of Camera and lidar for autonomous driving IYu Huang
 
Lecture 02 yasutaka furukawa - 3 d reconstruction with priors
Lecture 02   yasutaka furukawa - 3 d reconstruction with priorsLecture 02   yasutaka furukawa - 3 d reconstruction with priors
Lecture 02 yasutaka furukawa - 3 d reconstruction with priorsmustafa sarac
 
3D Shape and Indirect Appearance by Structured Light Transport
3D Shape and Indirect Appearance by Structured Light Transport3D Shape and Indirect Appearance by Structured Light Transport
3D Shape and Indirect Appearance by Structured Light TransportMatthew O'Toole
 
IGARSS-SAR-Pritt.pptx
IGARSS-SAR-Pritt.pptxIGARSS-SAR-Pritt.pptx
IGARSS-SAR-Pritt.pptxgrssieee
 

Tendances (20)

Survey 1 (project overview)
Survey 1 (project overview)Survey 1 (project overview)
Survey 1 (project overview)
 
Visual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environmentsVisual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environments
 
Optical volume holograms and their applications
Optical volume holograms and their applicationsOptical volume holograms and their applications
Optical volume holograms and their applications
 
mihara_iccp16_presentation
mihara_iccp16_presentationmihara_iccp16_presentation
mihara_iccp16_presentation
 
AR/SLAM for end-users
AR/SLAM for end-usersAR/SLAM for end-users
AR/SLAM for end-users
 
Optical Computing for Fast Light Transport Analysis
Optical Computing for Fast Light Transport AnalysisOptical Computing for Fast Light Transport Analysis
Optical Computing for Fast Light Transport Analysis
 
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
 
D04432528
D04432528D04432528
D04432528
 
3-d interpretation from single 2-d image III
3-d interpretation from single 2-d image III3-d interpretation from single 2-d image III
3-d interpretation from single 2-d image III
 
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
[DL輪読会]PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
 
Raskar Coded Opto Charlotte
Raskar Coded Opto CharlotteRaskar Coded Opto Charlotte
Raskar Coded Opto Charlotte
 
3-d interpretation from single 2-d image V
3-d interpretation from single 2-d image V3-d interpretation from single 2-d image V
3-d interpretation from single 2-d image V
 
3-d interpretation from single 2-d image IV
3-d interpretation from single 2-d image IV3-d interpretation from single 2-d image IV
3-d interpretation from single 2-d image IV
 
Structured Illumination Microscopy - Fundamentals and Applications
Structured Illumination Microscopy - Fundamentals and ApplicationsStructured Illumination Microscopy - Fundamentals and Applications
Structured Illumination Microscopy - Fundamentals and Applications
 
Neural Scene Representation & Rendering: Introduction to Novel View Synthesis
Neural Scene Representation & Rendering: Introduction to Novel View SynthesisNeural Scene Representation & Rendering: Introduction to Novel View Synthesis
Neural Scene Representation & Rendering: Introduction to Novel View Synthesis
 
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 2)
 
fusion of Camera and lidar for autonomous driving I
fusion of Camera and lidar for autonomous driving Ifusion of Camera and lidar for autonomous driving I
fusion of Camera and lidar for autonomous driving I
 
Lecture 02 yasutaka furukawa - 3 d reconstruction with priors
Lecture 02   yasutaka furukawa - 3 d reconstruction with priorsLecture 02   yasutaka furukawa - 3 d reconstruction with priors
Lecture 02 yasutaka furukawa - 3 d reconstruction with priors
 
3D Shape and Indirect Appearance by Structured Light Transport
3D Shape and Indirect Appearance by Structured Light Transport3D Shape and Indirect Appearance by Structured Light Transport
3D Shape and Indirect Appearance by Structured Light Transport
 
IGARSS-SAR-Pritt.pptx
IGARSS-SAR-Pritt.pptxIGARSS-SAR-Pritt.pptx
IGARSS-SAR-Pritt.pptx
 

Similaire à Nadia2013 research

Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based V...
Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based V...Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based V...
Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based V...c.choi
 
Lidar for Autonomous Driving II (via Deep Learning)
Lidar for Autonomous Driving II (via Deep Learning)Lidar for Autonomous Driving II (via Deep Learning)
Lidar for Autonomous Driving II (via Deep Learning)Yu Huang
 
Presentation Object Recognition And Tracking Project
Presentation Object Recognition And Tracking ProjectPresentation Object Recognition And Tracking Project
Presentation Object Recognition And Tracking ProjectPrathamesh Joshi
 
Deep learning fundamental and Research project on IBM POWER9 system from NUS
Deep learning fundamental and Research project on IBM POWER9 system from NUSDeep learning fundamental and Research project on IBM POWER9 system from NUS
Deep learning fundamental and Research project on IBM POWER9 system from NUSGanesan Narayanasamy
 
LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)Yu Huang
 
3-d interpretation from single 2-d image for autonomous driving II
3-d interpretation from single 2-d image for autonomous driving II3-d interpretation from single 2-d image for autonomous driving II
3-d interpretation from single 2-d image for autonomous driving IIYu Huang
 
BEV Semantic Segmentation
BEV Semantic SegmentationBEV Semantic Segmentation
BEV Semantic SegmentationYu Huang
 
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOTHUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOTcsandit
 
AUTO LANDING PROCESS FOR AUTONOMOUS FLYING ROBOT BY USING IMAGE PROCESSING BA...
AUTO LANDING PROCESS FOR AUTONOMOUS FLYING ROBOT BY USING IMAGE PROCESSING BA...AUTO LANDING PROCESS FOR AUTONOMOUS FLYING ROBOT BY USING IMAGE PROCESSING BA...
AUTO LANDING PROCESS FOR AUTONOMOUS FLYING ROBOT BY USING IMAGE PROCESSING BA...csandit
 
Object Pose Estimation
Object Pose EstimationObject Pose Estimation
Object Pose EstimationArithmer Inc.
 
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro..."High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...Edge AI and Vision Alliance
 
Rapid Laser Scanning the process
Rapid Laser Scanning the processRapid Laser Scanning the process
Rapid Laser Scanning the processSeeview Solutions
 
BEV Object Detection and Prediction
BEV Object Detection and PredictionBEV Object Detection and Prediction
BEV Object Detection and PredictionYu Huang
 
Driving behaviors for adas and autonomous driving xiv
Driving behaviors for adas and autonomous driving xivDriving behaviors for adas and autonomous driving xiv
Driving behaviors for adas and autonomous driving xivYu Huang
 
fusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIfusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIYu Huang
 
Convolutional Neural Network for pixel-wise skyline detection
Convolutional Neural Network for pixel-wise skyline detectionConvolutional Neural Network for pixel-wise skyline detection
Convolutional Neural Network for pixel-wise skyline detectionDarian Frajberg
 
CVGIP 2010 Part 3
CVGIP 2010 Part 3CVGIP 2010 Part 3
CVGIP 2010 Part 3Cody Liu
 
Using Panoramic Videos for Multi-Person Localization and Tracking In A 3D Pan...
Using Panoramic Videos for Multi-Person Localization and Tracking In A 3D Pan...Using Panoramic Videos for Multi-Person Localization and Tracking In A 3D Pan...
Using Panoramic Videos for Multi-Person Localization and Tracking In A 3D Pan...Fan Yang
 
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOTHUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOTcscpconf
 

Similaire à Nadia2013 research (20)

Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based V...
Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based V...Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based V...
Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based V...
 
Lidar for Autonomous Driving II (via Deep Learning)
Lidar for Autonomous Driving II (via Deep Learning)Lidar for Autonomous Driving II (via Deep Learning)
Lidar for Autonomous Driving II (via Deep Learning)
 
Presentation Object Recognition And Tracking Project
Presentation Object Recognition And Tracking ProjectPresentation Object Recognition And Tracking Project
Presentation Object Recognition And Tracking Project
 
Deep learning fundamental and Research project on IBM POWER9 system from NUS
Deep learning fundamental and Research project on IBM POWER9 system from NUSDeep learning fundamental and Research project on IBM POWER9 system from NUS
Deep learning fundamental and Research project on IBM POWER9 system from NUS
 
LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)
 
3-d interpretation from single 2-d image for autonomous driving II
3-d interpretation from single 2-d image for autonomous driving II3-d interpretation from single 2-d image for autonomous driving II
3-d interpretation from single 2-d image for autonomous driving II
 
BEV Semantic Segmentation
BEV Semantic SegmentationBEV Semantic Segmentation
BEV Semantic Segmentation
 
Raskar Computational Camera Fall 2009 Lecture 01
Raskar Computational Camera Fall 2009 Lecture 01Raskar Computational Camera Fall 2009 Lecture 01
Raskar Computational Camera Fall 2009 Lecture 01
 
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOTHUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
 
AUTO LANDING PROCESS FOR AUTONOMOUS FLYING ROBOT BY USING IMAGE PROCESSING BA...
AUTO LANDING PROCESS FOR AUTONOMOUS FLYING ROBOT BY USING IMAGE PROCESSING BA...AUTO LANDING PROCESS FOR AUTONOMOUS FLYING ROBOT BY USING IMAGE PROCESSING BA...
AUTO LANDING PROCESS FOR AUTONOMOUS FLYING ROBOT BY USING IMAGE PROCESSING BA...
 
Object Pose Estimation
Object Pose EstimationObject Pose Estimation
Object Pose Estimation
 
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro..."High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
"High-resolution 3D Reconstruction on a Mobile Processor," a Presentation fro...
 
Rapid Laser Scanning the process
Rapid Laser Scanning the processRapid Laser Scanning the process
Rapid Laser Scanning the process
 
BEV Object Detection and Prediction
BEV Object Detection and PredictionBEV Object Detection and Prediction
BEV Object Detection and Prediction
 
Driving behaviors for adas and autonomous driving xiv
Driving behaviors for adas and autonomous driving xivDriving behaviors for adas and autonomous driving xiv
Driving behaviors for adas and autonomous driving xiv
 
fusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIfusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving II
 
Convolutional Neural Network for pixel-wise skyline detection
Convolutional Neural Network for pixel-wise skyline detectionConvolutional Neural Network for pixel-wise skyline detection
Convolutional Neural Network for pixel-wise skyline detection
 
CVGIP 2010 Part 3
CVGIP 2010 Part 3CVGIP 2010 Part 3
CVGIP 2010 Part 3
 
Using Panoramic Videos for Multi-Person Localization and Tracking In A 3D Pan...
Using Panoramic Videos for Multi-Person Localization and Tracking In A 3D Pan...Using Panoramic Videos for Multi-Person Localization and Tracking In A 3D Pan...
Using Panoramic Videos for Multi-Person Localization and Tracking In A 3D Pan...
 
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOTHUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
HUMAN BODY DETECTION AND SAFETY CARE SYSTEM FOR A FLYING ROBOT
 

Plus de Nadia Barbara

[ICRA 2019] Lecture 3: Impedance Control and Force Generation with DS
[ICRA 2019] Lecture 3: Impedance Control and Force Generation with DS[ICRA 2019] Lecture 3: Impedance Control and Force Generation with DS
[ICRA 2019] Lecture 3: Impedance Control and Force Generation with DSNadia Barbara
 
[ICRA 2019] Lecture 4: Locally Active Globally Stable Dynamical Systems
[ICRA 2019] Lecture 4: Locally Active Globally Stable Dynamical Systems[ICRA 2019] Lecture 4: Locally Active Globally Stable Dynamical Systems
[ICRA 2019] Lecture 4: Locally Active Globally Stable Dynamical SystemsNadia Barbara
 
[ICRA 2019] Lecture 1: Learning Dynamical Systems from Demonstrations
[ICRA 2019] Lecture 1: Learning Dynamical Systems from Demonstrations[ICRA 2019] Lecture 1: Learning Dynamical Systems from Demonstrations
[ICRA 2019] Lecture 1: Learning Dynamical Systems from DemonstrationsNadia Barbara
 
[ICRA 2019] Introduction to Tutorial on Dynamical System-based Learning from ...
[ICRA 2019] Introduction to Tutorial on Dynamical System-based Learning from ...[ICRA 2019] Introduction to Tutorial on Dynamical System-based Learning from ...
[ICRA 2019] Introduction to Tutorial on Dynamical System-based Learning from ...Nadia Barbara
 
Lecture 3 - DS-based Impedance/Force Control
Lecture 3 - DS-based Impedance/Force ControlLecture 3 - DS-based Impedance/Force Control
Lecture 3 - DS-based Impedance/Force ControlNadia Barbara
 
Introduction to Tutorial on Dynamical System-based Learning from Demonstratio...
Introduction to Tutorial on Dynamical System-based Learning from Demonstratio...Introduction to Tutorial on Dynamical System-based Learning from Demonstratio...
Introduction to Tutorial on Dynamical System-based Learning from Demonstratio...Nadia Barbara
 
Lecture 1 - Learning Dynamical Systems from Demonstrations
Lecture 1 - Learning Dynamical Systems from DemonstrationsLecture 1 - Learning Dynamical Systems from Demonstrations
Lecture 1 - Learning Dynamical Systems from DemonstrationsNadia Barbara
 

Plus de Nadia Barbara (7)

[ICRA 2019] Lecture 3: Impedance Control and Force Generation with DS
[ICRA 2019] Lecture 3: Impedance Control and Force Generation with DS[ICRA 2019] Lecture 3: Impedance Control and Force Generation with DS
[ICRA 2019] Lecture 3: Impedance Control and Force Generation with DS
 
[ICRA 2019] Lecture 4: Locally Active Globally Stable Dynamical Systems
[ICRA 2019] Lecture 4: Locally Active Globally Stable Dynamical Systems[ICRA 2019] Lecture 4: Locally Active Globally Stable Dynamical Systems
[ICRA 2019] Lecture 4: Locally Active Globally Stable Dynamical Systems
 
[ICRA 2019] Lecture 1: Learning Dynamical Systems from Demonstrations
[ICRA 2019] Lecture 1: Learning Dynamical Systems from Demonstrations[ICRA 2019] Lecture 1: Learning Dynamical Systems from Demonstrations
[ICRA 2019] Lecture 1: Learning Dynamical Systems from Demonstrations
 
[ICRA 2019] Introduction to Tutorial on Dynamical System-based Learning from ...
[ICRA 2019] Introduction to Tutorial on Dynamical System-based Learning from ...[ICRA 2019] Introduction to Tutorial on Dynamical System-based Learning from ...
[ICRA 2019] Introduction to Tutorial on Dynamical System-based Learning from ...
 
Lecture 3 - DS-based Impedance/Force Control
Lecture 3 - DS-based Impedance/Force ControlLecture 3 - DS-based Impedance/Force Control
Lecture 3 - DS-based Impedance/Force Control
 
Introduction to Tutorial on Dynamical System-based Learning from Demonstratio...
Introduction to Tutorial on Dynamical System-based Learning from Demonstratio...Introduction to Tutorial on Dynamical System-based Learning from Demonstratio...
Introduction to Tutorial on Dynamical System-based Learning from Demonstratio...
 
Lecture 1 - Learning Dynamical Systems from Demonstrations
Lecture 1 - Learning Dynamical Systems from DemonstrationsLecture 1 - Learning Dynamical Systems from Demonstrations
Lecture 1 - Learning Dynamical Systems from Demonstrations
 

Nadia2013 research

  • 1. Nadia  Barbara  Figueroa  Fernandez   3D Computer Vision and Applications in Robotics and Multimedia   Reconstruct your world   Reconstruct yourself  
  • 2. •  BACKGROUND     •  3D  COMPUTER  VISION     •  APPLICATIONS  IN  ROBOTICS   Research  Projects  at  TU  Dortmund   Master’s  Thesis  at  DLR     •  APPLICATIONS  IN  MULTIMEDIA   Research  Projects  at  NYU  Abu  Dhabi         DLR’s  rollin’  JusEn  Humanoid       AGENDA  
  • 3. EducaEon  and  Research  PosiEons   BACKGROUND  
  • 4. Fundamentals   1   General  DefiniEon   2   My  DefiniEon   3   What  if  a  point  cloud?   “Generate  3D  representaBons  of  the  world  from  the  viewpoint  of  a   sensor,  generally  in  the  form  of  3D  point  clouds.”   “Ability  of  powered  devices  to  acquire  a  real  Bme  picture  of  the   world  in  three  dimensions”.  -­‐  Wikipedia   3D  COMPUTER  VISION   € p ∈ P € p = (x,y,z,r,g,b)“A  point  cloud  is  a  set  of  points                          where                                                                .”  
  • 5. •  Primesense  3D  sensor   •  MicrosoP  Kinect Example  text   3   Light  Coding  –  Structured  Light   •  Stereo  Systems             •  MulB-­‐Camera  Stereo   2   TriangulaEon-­‐based  Systems   1   Time-­‐Of-­‐Flight  Sensors   Sensing  Devices   3D  COMPUTER  VISION   •  LIDAR  (Light  DetecBon   and  Ranging)   •  Radar   •  Sonar   •  TOF  Cameras   •  PMD  (Photonic  Mixing   Device)
  • 6. APPLICATIONS  IN  ROBOTICS   CalibraEon  and  VerificaEon   Mapping  and  NavigaEonObject  RecogniEon  and   Mobile  ManipulaEon  
  • 7. Nadia  Figueroa  and  JiVu  Kurian   OBJECT  RECOGNITION  FOR  A  MOBILE   MANIPULATION  PLATFORM   GOAL:  Detect  and  esBmate  the  pose  of  a  wanted  object  in  a  table  top   scenario.       PROPOSED  APPROACH:  Use  CCD  and  PMD  cameras.   PRE-­‐REQUISITES:   1.-­‐  CalibraBon  of  PMD-­‐CCD  Camera  Rig   2.-­‐  Object  Database    
  • 8. Pre-­‐Requisite  1:  CalibraEon  of  PMD-­‐CCD  rig   OBJECT  RECOGNITION  FOR  A  MOBILE   MANIPULATION  PLATFORM   CalibraEon  and  camera  set-­‐up   (CCD-­‐PMD)   •  Binocular  camera  setup  of   PMD  and  CCD  Camera.   •  Stereo  System  CalibraBon   Method.   –  MathemaBcally  align  the  2   cameras  in  1  viewing  plane.   –  Using  epipolar  geometry,   calculate  essenBal  and   fundamental  matrices.    
  • 9. Pre-­‐Requisite  2:  Object  Database     OBJECT  RECOGNITION  FOR  A  MOBILE   MANIPULATION  PLATFORM   Object  model  generaEon   • Each  object  is  matched  with  20  training  images.   • The  keypoints  (SURF)  that  are  repeatedly  matched  are  selected  as  the   „best“  keypoints.   • APer  training  each  object,  we  get  100  keypoints  per  object.   Object  1   Object  2   Object  3  
  • 10. Object  RecogniEon  Algorithm     OBJECT  RECOGNITION  FOR  A  MOBILE   MANIPULATION  PLATFORM  
  • 11. PMD  Data  FlaVening  and  Variance  SegmentaEon  Algorithm     OBJECT  RECOGNITION  FOR  A  MOBILE   MANIPULATION  PLATFORM   Original  PMD   Segmented  PMD   Fla^ened  PMD  
  • 12. OBJECT  RECOGNITION  FOR  A  MOBILE   MANIPULATION  PLATFORM  
  • 13. DLR’S  ROLLIN’  JUSTIN   Built  of  light-­‐weight  structures   and  joints  with  mechanical   compliances  and  flexibiliEes.   (+)  Compliant  behavior  of  the  arm   (-­‐)  Low  posiEong  accuracy  at  the     TCP  (Tool-­‐Center-­‐Point)  end  pose. Designed  to  interact  with   humans  and  unknown   environments.   How  is  this  low  posiEon  accuracy  compensated  in  this   lightweight  design?     Using  the  torque  sensors.   (+)  An  approximaBon  of  a  joint’s  deflecBon  is  obtained  by:                              :measured  torque                              :sBffness  coefficient  of  the  gear   (-­‐)   This   approx.   is   insufficient.   It   cannot   measure   the   remaining   mechanical  flexibiliBes.   € Θi = θi + τi Ki € τ € K
  • 14. ROLLIN’  JUSTIN’S  LOW  POSITION  ACCURACY  
  • 15. MASTER  THESIS  MOTIVATION   Problem   Goal   Requirements   Create  a  verificaBon  rouBne  to  idenBfy  the  maximum  bounds  of  the  TCP  posiBoning   errors  of  humanoid  JusBn’s  upper  kinemaBc  chains.   The  feasibility  of  moBon  planning  is  highly  dependent  on  the  posiBoning   accuracy.     1.  Avoid  using  any  external  sensory  system.   2.  Avoid  any  human  intervenBon  
  • 16. Supervisors:  Florian  Schmidt  and  Haider  Ali   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   € TCP = Tw h Th a Ta tcp TCP measured by forward kinematics: € TCP = Tw h Th s Ts tcp TCP measured by stereo vision system: € Ts tcp € Th s € Ta tcp € Th a € TCP Tw h TCP End-Pose Error: Proposed  Approach:  Use  the  on-­‐board  stereo  vision  system  to  esBmate  the  TCP  end-­‐pose.    
  • 17. 3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   3D  point  clouds  of  the  hand  from  the  stereo  cameras.   EsBmate  TCP  by  using  registraBon  between  a  point  cloud   of  the  hand  and  a  model.     RegistraEon  method  evaluaEon   1.  Keypoint  extracBon  (SIFT)  &  point-­‐to-­‐ point  correspondence.   2.  Local  descriptor  (FPFH/SHOT/CSHOT)   matching  using  Ransac-­‐based   correspondence  search.   Model  GeneraEon   Data  AcquisiEon   Pose  EsEmaEon   Model  generated  from  an  extended  metaview   registraBon  method  from  a  selected  subset  of   views  generated  by  analyzing  the  distribuBon  of   max/min  depth  values.  
  • 18. Data  AcquisiEon:  Dense  3D  point  cloud  generated  from  Stereo   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS  
  • 19. 3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   Point  Cloud  Processing   Pass-­‐through  filter  (remove  background).   StaBsBcal  Outlier  Removal  (remove  outliers)   Voxel  Grid  Filter  (downsample).  
  • 20. 3D  RegistraEon  Methods   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS  
  • 21. Model  GeneraEon   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS  
  • 22. Model  GeneraEon   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   Extended  Metaview  RegistraEon  Method   Consists  of  3  steps:   Global  Thresholding  Process:  Reject  the  views  that  lie  in  unstable   areas.   Next  Best  View  Ordering  Algorithm:  Find  an  order  for   incrementally  registering  the  subset  of  point  clouds.   Metaview  RegistraEon:  The  resulBng  subset  of  views  are   registered  and  merged.          
  • 23. VerificaEon  RouEne   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   € ek = 〈et ,eθ 〉 € fk = 3dRMS E = (e1,..,eN ) F = ( f1,..., fN ) € F* = RANSAC(F) eb = 〈max(et ∈ E*),max(eθ ∈ E*)〉
  • 24. VerificaEon  RouEne   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS  
  • 25. Method  EvaluaEon  (Ground  Truth)   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   Pose  EsEmaEon  using  IR  ART  tracking  system  (Ground  Truth)   ART  System  Set-­‐up   –  MulB-­‐camera   setup   that   esBmates   the   6DOF   pose   of   the  tracking  targets.   –  Mean   accuracy   of   0.04   pixels.     –  Speed  of  100  fps.  
  • 26. Method  EvaluaEon  (Ground  Truth)   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   Implicit  loop  closure  with  tracking  system  (Ground  Truth)   –  By  expressing                                              in  ART  coordinate  system  a  double  loop  closure  is  generated.   € TCPfk = Tart heT TheT h Th a Ta tcp € TCPreg = Tart heT TheT h Th s Ts tcp € TCPart = (Tart heT TheT h )−1 Tart haT ThaT tcp §  Error  IdenBficaBon   € Ta tcp € Th a € TCP € ART € Tart heT € Tart haT € ThaT tcp € TheT h € Ts tcp € Th s € TCPfk,TCPreg
  • 27.   Two  step  calibraEon:   I.  Center  of  RotaEon  EsEmaEon:   Non-­‐rigid  geometrically  constrained     sphere-­‐fimng       min   subject  to        :spherical  fit        :measurements        :spherical  constraint   II.  Axis  of  RotaEons  EsEmaEon   Combined  plane/circle  fimng  for  each  axis.     min                :planar              :radial     3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   CalibraEon  of  Tracking  targets  to  JusEn   –  The  esBmaBon  of                      relies  on     the  idenBficaBon  of                and                 € TCPart € TheT h € ThaT tcp € f = (δk 2 +εk 2 ) k=1 N ∑ € εk =||vk − m ||2 −r2 € uT DT Du € uT Cu =1 εk δk € u € C € D
  • 28. 3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS   CalibraEon  of  Tracking  targets  to  JusEn  (cont’d)   –  Create  spherical  trajectories  around                              and                    .       –  CoR  is  the  posiBon  of  the  joint                                                                                                                                                                                              deviaBons  throughout  10  calibraBons.   –  AoRs  are  the  rotaBons   –  Moun*ng  frames:                                                                                              deviaBons  throughout  10  calibraBons.                       € R = [AoRx,AoRy,AoRz ] € t = [mx,my,mz ]T € head € TCP ThaT tcp = TCP(R,t)−1 Tart haT TheT h = head(R,t)−1 Tart heT € ThaT tcp € TheT h
  • 29. Method  EvaluaEon  (Ground  Truth)   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS  
  • 30. Method  EvaluaEon  (Ground  Truth)   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS  
  • 31. Experimental  Results  (TranslaEonal  Error)   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS  
  • 32. Experimental  Results  (RotaEonal  Error)   3D  REGISTRATION  FOR  VERIFICATION  OF   HUMANOID  JUSTIN’S  UPPER  BODY  KINEMATICS  
  • 33. Nadia  Figueroa  and  Haider  Ali  (DLR)   SEGMENTATION  AND  POSE  ESTIMATION  OF  PLANAR   METALLIC  OBJECTS   PROBLEM:  Pose  esBmaBon  of  planar  metallic  objects  in  a  pile.                           PROPOSED  APPROACH:       (i)    SegmentaBon  using  Euclidean  clustering   (ii)  Pose  EsBmaBon  using  RegistraBon  
  • 34. SEGMENTATION  AND  POSE  ESTIMATION  OF  PLANAR   METALLIC  OBJECTS   3D  point  clouds  of  the  cloud  from  a  range  sensor.   Cluster  RegistraEon   Euclidean  Clustering  We  extract  n-­‐clusters  C  from  pile  P  that  represent  the   planar   objects   by   analyzing   the   angle   deviaBons   between  the  surface  normal  vectors.    Model   PosiEve  aligned  clusters   3D  point  clouds  of  the  cloud  from  a  range  sensor.   Data  AcquisiEon   Euclidean  Clustering  
  • 35. CONTEXTUAL  OBJECT  CATEGORY  RECOGNITION  IN   RGB-­‐D  SCENES   PROBLEM:  Object  category  recogniBon  in  RGB-­‐D  Data                       PROPOSED  APPROACH:       (i)    Novel  combinaBon  of  depth  and  color  features.   (ii)  Scene  segmentaBon  based  on  table  detecBon  and  euclidean  clustering.   (iii)  ClassificaBon  results  augmented  by  a  context  model  learnt  from  social  media.      
  • 36. CONTEXTUAL  OBJECT  CATEGORY  RECOGNITION  IN   RGB-­‐D  SCENES                       System  Architecture  
  • 37. CONTEXTUAL  OBJECT  CATEGORY  RECOGNITION  IN   RGB-­‐D  SCENES   RGB-­‐D  Object  Features  and  Classifier     We  use  a  linear  SVM  to  train  6  object  categories.  The  accuracy    of   our  classicaBon  framework  (63.91%)  is  four-­‐Bmes  the  minimum   baseline  generated  by  a  random  guess  (16.67%).     MulE-­‐object  ClassificaEon  
  • 38. APPLICATIONS  IN  MULTIMEDIA   World,  object,  human  reconstrucEon   Rapid  ReplicaEon  (3D  prinEng)Gaming  
  • 39. Kinect  Fusion   Uses  Truncated  Signed  Distance  FuncEon  (TSDF)  to  represent  the  3D  data.   What  is  a  TSDF?   A  TSDF  cloud  is  a  point  cloud  which  use  of  how  the  data  is  stored  within  GPU  at  KinFu  runBme.                 Each  element  in  the  grid  represents  a  voxel,  and  the  value  inside  it  represents  the  TSDF  value.  The  TSDF   value  is  the  distance  to  the  nearest  isosurface.    
  • 40. RGB-­‐D  KINECT  FUSION  FOR  CONSISTENT   RECONSTRUCTIONS  OF  INDOOR  SPACES   Nadia  Figueroa,  Haiwei  Dong  and  Abdulmotaleb  El  Saddik   PROBLEM:  GeneraBng  geometric  models  of  environments  for  interior  design,  architectural  and   re-­‐pair  or  remodeling  of  indoor  spaces.                           PROPOSED  APPROACH:    RGB-­‐D  Kinect  Fusion,  which  is  a  combined  approach  towards  consistent   reconstrucBons  of  indoor  Spaces  based  on  Kinect  Fusion  and  6D  RGB-­‐D  Odometry  based  on   efficient  feature  matching.    
  • 41. RGB-­‐D  KINECT  FUSION  FOR  CONSISTENT   RECONSTRUCTIONS  OF  INDOOR  SPACES   6D  RGB-­‐D  ODOMETRY  
  • 42. FROM  SENSE  TO  PRINT   Nadia  Figueroa,  Haiwei  Dong  and  Abdulmotaleb  El  Saddik  
  • 43. FROM  SENSE  TO  PRINT   SegmentaEon  based  on  Camera  Pose  SemanEcs   Object  on  Table  Top  SegmentaEon   Human  Bust  SegmentaEon