SlideShare une entreprise Scribd logo
1  sur  11
Télécharger pour lire hors ligne
                                                                                                                                                                                                                                                    	
                 WHITE	
  PAPER	
  




                                                                                                                                                                                                                                                                   	
  
                                                                                                                                                                                                                  Plastic	
  Logic	
  Technology	
  Overview	
  
Beginnings	
  	
  

Over	
   the	
   last	
   three	
   decades	
   organic	
   electronics,	
   which	
   is	
   electronics	
   based	
   on	
   carbon	
   rather	
   than	
  
silicon,	
  has	
  been	
  extensively	
  researched.	
  In	
  1998	
  Professor	
  Richard	
  Friend’s	
  group	
  at	
  the	
  University	
  
of	
   Cambridge,	
   UK	
   published	
   a	
   seminal	
   work	
   using	
   an	
   organic	
   transistor	
   to	
   drive	
   an	
   organic	
   light	
  
emitting	
   diode1.	
   Two	
   years	
   later	
   Plastic	
   Logic	
   was	
   founded	
   to	
   develop	
   and	
   commercialize	
   the	
  
successes	
   of	
   the	
   work	
   done	
   by	
   Professor	
   Friend,	
   Professor	
   Henning	
   Sirringhaus	
   and	
   their	
   teams	
   at	
  
the	
  Cavendish	
  Laboratory.	
  	
  

Plastic	
  Logic	
  soon	
  focused	
  its	
  activity	
  on	
  transistor	
  arrays	
  for	
  displays.	
  	
  Organic	
  materials	
  are	
  typically	
  
flexible,	
   lightweight	
   and	
   robust.	
   Plastic	
   Logic	
   decided	
   to	
   exploit	
   these	
   attributes	
   by	
   developing	
   its	
  
arrays	
   on	
   a	
   plastic	
   base	
   which	
   would	
   then	
   allow	
   any	
   final	
   display	
   to	
   be	
  lighter	
   and	
   more	
   robust	
   than	
  
equivalent	
  silicon-­‐based	
  products.	
  	
  

At	
   the	
   same	
   time,	
   teams	
   of	
   researchers	
   began	
   pushing	
   for	
   high-­‐quality	
   materials	
   that	
   would	
   meet	
  
the	
  rigorous	
  demands	
  of	
  a	
  commercial	
  environment.	
  	
  	
  Several	
  leading	
  materials	
  companies	
  started	
  
to	
   put	
   serious	
   effort	
   into	
   refining	
   their	
   materials	
   for	
   use	
   in	
   this	
   new	
   application	
   space	
   and	
   Plastic	
  
Logic	
   developed	
   close	
   relationships	
   with	
   many	
   industrial	
   research	
   teams	
   to	
   guide	
   their	
   work	
   and	
  
exploit	
  the	
  results	
  at	
  the	
  earliest	
  opportunity.	
  

By	
   mid-­‐2004	
   Plastic	
   Logic	
   had	
   developed	
   small	
   area	
   displays	
   with	
   relatively	
   low	
   resolution	
   which	
  
were	
  extremely	
  robust,	
  as	
  evidenced	
  by	
  the	
  photographs	
  in	
  Figure	
  1	
  a	
  .	
  

	
  

	
  

	
  

	
  

	
  

	
  

Figure	
  1	
  b:	
  Demonstrating	
  the	
  robustness	
  of	
  Plastic	
  Logic’s	
  displays	
  –	
  note	
  the	
  small	
  bend	
  radius	
  

Just	
  over	
  a	
  year	
  later,	
  in	
  late	
  2005,	
  the	
  company	
  had	
  progressed	
  its	
  technology	
  to	
  large	
  area	
  displays	
  
with	
  much	
  higher	
  resolution	
  as	
  shown	
  in	
  Figure	
  2.	
  

	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1
       	
  Sirringhaus	
  et	
  al,	
  Science	
  (1998)	
  Vol	
  280	
  page	
  1741-­‐1744	
  


	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                                                                                                                                 	
     PAGE	
  1	
  OF	
  11	
  	
  
                                                                                        	
                                                                  WHITE	
  PAPER	
  



	
  

	
  

	
  

	
  

Figure	
  2:	
  	
  An	
  example	
  of	
  Plastic	
  Logic’s	
  displays	
  in	
  late	
  2005	
  

By	
  early	
  2007,	
  Plastic	
  Logic	
  had	
  identified	
  a	
  site	
  for	
  its	
  manufacturing	
  facility	
  in	
  Dresden,	
  Germany	
  
and	
   had	
   begun	
   the	
   factory	
   build.	
   	
   Ideally	
   placed	
   in	
   the	
   heart	
   of	
   Silicon	
   Saxony,	
   Plastic	
   Logic	
   has	
  
drawn	
   a	
   high-­‐caliber	
   team	
   with	
   extensive	
   manufacturing	
   experience	
   from	
   the	
   surrounding	
   region,	
  
where	
  many	
  silicon	
  manufacturing	
  facilities	
  are	
  based.	
  The	
  teams	
  in	
  Dresden	
  and	
  Cambridge	
  worked	
  
closely	
  together	
  to	
  ensure	
  that	
  the	
  transfer	
  of	
  the	
  technology	
  from	
  lab	
  to	
  fab	
  would	
  be	
  as	
  smooth	
  
and	
  as	
  efficient	
  as	
  possible.	
  	
  

Only	
   eighteen	
   months	
   later	
   the	
   Dresden	
   manufacturing	
   facility	
   opened	
   its	
   doors	
   and	
   began	
  
producing	
  flexible	
  displays	
  on	
  a	
  scale	
  never	
  seen	
  previously	
  in	
  the	
  organic	
  electronics	
  community.	
  	
  


       a)	
                                                                                       b)	
  




                                                                                                                                                    	
  	
  

Figure	
  3:	
  	
  a)	
  Aerial	
  image	
  of	
  Plastic	
  Logic’s	
  manufacturing	
  facility	
  in	
  Dresden	
  Germany	
  and	
  b)	
  showing	
  
the	
  size	
  of	
  the	
  motherplates	
  used	
  in	
  the	
  factory.

	
  

In	
   parallel	
   the	
   company	
   has	
   been	
   ramping	
   its	
   product	
   development,	
   marketing,	
   and	
   business	
  
development	
   and	
   activities	
   in	
   the	
   US	
   to	
   ultimately	
   complete	
   the	
   transition	
   of	
   Plastic	
   Logic	
   from	
   a	
  
small	
  R&D	
  company,	
  spun	
  out	
  of	
  academia,	
  to	
  a	
  product-­‐based	
  organization	
  with	
  the	
  facilities	
  and	
  
know-­‐how	
  to	
  take	
  technologies	
  from	
  the	
  lab	
  bench	
  to	
  mass	
  market.	
  	
  



An	
  Introduction	
  to	
  Plastic	
  Logic	
  Technology	
  

Now	
   that	
   the	
   field	
   of	
   organic	
   electronics	
   is	
   firmly	
   on	
   its	
   journey	
   to	
   industrial	
   maturity	
   it	
   is	
   important	
  
to	
   step	
   back	
   and	
   recognize	
   the	
   key	
   components	
   in	
   taking	
   a	
   small	
   scale,	
   academic	
   activity	
   and	
   scaling	
  
it	
  to	
  the	
  realities	
  of	
  a	
  commercial	
  environment.	
  	
  A	
  balance	
  between	
  device	
  performance	
  and	
  ease	
  of	
  
manufacture	
  must	
  be	
  struck	
  for	
  commercial	
  success.	
  	
  

For	
   the	
   past	
   10	
   years,	
   Plastic	
   Logic	
   has	
   been	
   at	
   the	
   forefront	
   of	
   this	
   progression—	
   taking	
   its	
   own	
  
organic	
  transistor	
  technology	
  from	
  a	
  lab	
  bench	
  to	
  a	
  high	
  tech	
  manufacturing	
  environment—	
  and	
  is	
  


	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                      	
     PAGE	
  2	
  OF	
  11	
  	
  
                                                                                        	
                                                        WHITE	
  PAPER	
  



therefore	
   well	
   placed	
   to	
   discuss	
   the	
   considerations	
   from	
   both	
   the	
   research	
   and	
   manufacturing	
  
perspectives.	
  	
  	
  

This	
   document	
   will	
   give	
   an	
   overview	
   of	
   the	
   key	
   considerations	
   which	
   frame	
   the	
   transistor’s	
  
performance	
  and	
  manufacturing	
  considerations	
  based	
  on	
  Plastic	
  Logic’s	
  learnings.	
  

Transistors	
  

Transistors	
   are	
   formed	
   from	
   three	
   electrodes,	
   a	
   dialectric	
   and	
   a	
   semiconductor.	
   	
   The	
   electrodes	
  
control	
  the	
  current	
  flow	
  by	
  way	
  of	
  the	
  voltage	
  applied	
  to	
  them.	
  	
  The	
  semiconductor	
  is	
  the	
  material	
  
through	
  which	
  the	
  current	
  flows.	
  A	
  schematic	
  is	
  shown	
  in	
  Figure	
  4.	
  	
  

                                                                                                                                          	
  

                                                                                                  	
  

                                                                                                  	
  

                                                                                                  	
  

                                                                                                  	
  

Figure	
  4:	
  A	
  generic	
  top-­‐gate	
  transistor	
  in	
  cross-­‐section.	
  

A	
  good	
  transistor	
  is	
  analogous	
  to	
  a	
  good	
  water	
  tap.	
  	
  

       1) When	
  you	
  turn	
  the	
  tap	
  on,	
  water	
  soon	
  starts	
  to	
  flow	
  and	
  as	
  you	
  turn	
  it	
  on	
  a	
  little	
  more	
  the	
  
          water	
   flows	
   faster	
   until	
   it	
   is	
   soon	
   flowing	
   very	
   fast.	
   	
   Similarly	
   for	
   a	
   transistor,	
   the	
   current,	
  
          which	
  is	
  a	
  flow	
  of	
  electric	
  charge,	
  should	
  begin	
  to	
  flow	
  once	
  a	
  small	
  voltage	
  is	
  applied	
  and	
  as	
  
          you	
  increase	
  the	
  voltage	
  the	
  current	
  should	
  increase	
  until	
  you	
  have	
  a	
  surfeit	
  of	
  current	
  for	
  
          your	
  application.	
  
       2) When	
   you	
   turn	
   the	
   tap	
   off,	
   it	
   shouldn’t	
   allow	
   any	
   water	
   to	
   leak	
   out.	
   	
   Similarly	
   a	
   transistor	
  
          should	
  not	
  allow	
  current	
  to	
  flow	
  when	
  it	
  is	
  off.	
  	
  

In	
  the	
  vast	
  majority	
  of	
  display	
  applications	
  the	
  transistors	
  use	
  silicon	
  as	
  the	
  semiconductor	
  because	
  it	
  
is	
   a	
   well-­‐established	
   technology	
   that	
   can	
   provide	
   ample	
   current	
   to	
   drive	
   the	
   LCD,	
   OLED,	
  
electrophoretic	
   or	
   whichever	
   other	
   screen	
   technology	
   is	
   being	
   used.	
   	
   However,	
   silicon	
   has	
   its	
  
drawbacks	
   in	
   terms	
   of	
   cost,	
   ease	
   of	
   device	
   manufacture	
   and	
   fragility.	
   	
   In	
   these	
   areas	
   organic	
  
electronics	
   offer	
   an	
   advantage.	
   	
   Made	
   primarily	
   from	
   materials	
   which	
   can	
   be	
   processed	
   from	
  
solution,	
   the	
   transistors	
   are	
   inherently	
   simpler	
   and	
   cheaper	
   to	
   manufacture.	
   	
   Even	
   though	
   today	
  
silicon	
   can	
   have	
   higher	
   performance	
   than	
   organic	
   semiconductors,	
   there	
   are	
   many	
   applications	
  
where	
   the	
   performance	
   advantage	
   of	
   silicon	
   is	
   not	
   required	
   and	
   where	
   an	
   organic	
   electronics	
  
solution	
  is	
  more	
  cost	
  effective.	
  	
  	
  	
  

The	
  key	
  metric	
  of	
  semiconductor	
  performance	
  is	
  mobility.	
  	
  This	
  is	
  effectively	
  a	
  measure	
  of	
  the	
  speed	
  
at	
   which	
   the	
   charge	
   can	
   flow	
   in	
   the	
   semiconductor.	
   	
   The	
   required	
   mobility	
   is	
   dependent	
   on	
   the	
  
application.	
  The	
  faster	
  the	
  application,	
  the	
  higher	
  the	
  mobility	
  needed.	
  For	
  a	
  television,	
  the	
  picture	
  
changes	
   rapidly	
   and	
   hence	
   the	
   mobility	
   required	
   is	
   high.	
   	
   Where	
   the	
   image	
   changes	
   more	
   slowly,	
  
such	
  as	
  in	
  an	
  e-­‐reader,	
  the	
  mobility	
  can	
  be	
  much	
  lower.	
  	
  



	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                   	
     PAGE	
  3	
  OF	
  11	
  	
  
                                                                                        	
                                                      WHITE	
  PAPER	
  



The	
  typical	
  mobility	
  of	
  crystalline	
  silicon	
  is	
  on	
  the	
  order	
  of	
  1000cm2/Vs	
  but	
  many	
  	
  applications	
  use	
  
poly-­‐crystalline	
   silicon	
   (mobility	
   	
   >50cm2/Vs	
   )	
   or	
   amorphous	
   silicon	
   (mobility	
   ~0.5cm2/Vs)	
   as	
   the	
  
performance	
  is	
  still	
  adequate	
  but	
  the	
  cost	
  of	
  manufacture	
  is	
  greatly	
  reduced.	
  	
  	
  	
  

Within	
  organic	
  transistors	
  there	
  is	
  also	
  a	
  mobility	
  range	
  available.	
  	
  Pentacene,	
  which	
  is	
  a	
  crystalline	
  
material,	
  can	
  achieve	
  mobilities	
  of	
  10cm2/Vs	
  but	
  it	
  is	
  difficult	
  to	
  process	
  on	
  any	
  meaningful	
  scale.	
  	
  At	
  
the	
  other	
  end	
  of	
  the	
  spectrum,	
  fully	
  amorphous	
  polymer	
  devices	
  are	
  simple	
  to	
  manufacture.	
  	
  They	
  
can	
  be	
  made	
  and	
  driven	
  in	
  air,	
  without	
  encapsulation,	
  and	
  have	
  a	
  whole	
  host	
  of	
  attributes	
  which	
  are	
  
extremely	
   desirable	
   in	
   a	
   manufacturing	
   context,	
   but	
   they	
   can	
   only	
   reach	
   mobilities	
   of	
   around	
  
0.05cm2/Vs.	
   	
   Nevertheless	
   this	
   is	
   still	
   sufficient	
   for	
   a	
   number	
   of	
   applications.	
   For	
   example,	
  
electrophoretic	
   displays,	
   which	
   are	
   used	
   to	
   make	
   e-­‐paper	
   and	
   use	
   reflected	
   light	
   rather	
   than	
   an	
  
internal	
   backlight,	
   can	
   be	
   successfully	
   driven	
   with	
   mobilities	
   in	
   this	
   range.	
   The	
   mobility	
   values	
   of	
  
various	
  semiconductors	
  are	
  summarised	
  in	
  Figure	
  5.	
  

	
  




                                                                                                                     Source:	
  A.	
  Salleo	
  


                                                                                                                     	
  




                                                                                                                    	
  

Figure	
  5:	
  Mobility	
  levels	
  of	
  various	
  semiconductors.	
  

Much	
   is	
   made	
   in	
   the	
   academic	
   literature	
   about	
   high	
   mobility	
   devices	
   and	
   often	
   this	
   is	
   the	
   metric	
  
which	
  denotes	
  whether	
  or	
  not	
  a	
  device	
  is	
  a	
  success.	
  	
  However,	
  the	
  highest	
  mobility	
  devices	
  are	
  often	
  
made	
  in	
  nitrogen	
  environments	
  using	
  toxic	
  or	
  expensive	
  solvents	
  and	
  using	
  processes	
  which	
  are	
  slow	
  
and	
  inherently	
  small	
  scale.	
  Such	
  devices	
  are	
  of	
  no	
  use	
  in	
  commercial	
  products.	
  	
  Consistent	
  devices	
  
are	
   needed,	
   made	
   from	
   materials	
   which	
   are	
   easy	
   to	
   manufacture	
   on	
   a	
   large	
   scale,	
   at	
   a	
   sensible	
  cost,	
  
with	
  good	
  reproducibility	
  and	
  which	
  are	
  easy	
  to	
  process	
  in	
  air.	
  	
  This	
  is	
  often	
  forgotten	
  in	
  the	
  quest	
  
for	
  headline	
  mobility	
  values.	
  	
  	
  Fortunately,	
  over	
  the	
  last	
  few	
  years	
  there	
  has	
  been	
  increasing	
  effort	
  
on	
   parameters	
   other	
   than	
   mobility.	
   Now	
   that	
   materials	
   manufacturers	
   are	
   becoming	
   more	
  
acclimated	
   with	
   industrial	
   requirements,	
   materials	
   are	
   starting	
   to	
   appear	
   which	
   are	
   closer	
   to	
  
pentacene	
   in	
   performance	
   whilst	
   retaining	
   many	
   of	
   the	
   desirable	
   processing	
   attributes	
   of	
   the	
  
amorphous	
   materials.	
   	
   This	
   development	
   will	
   open	
   up	
   display	
   applications	
   beyond	
   electrophoretic	
  
into	
  LCD	
  and	
  OLED	
  displays.	
  	
  Additionally	
  this	
  advancement	
  will	
  enable	
  organic	
  electronics	
  use	
  in	
  a	
  
number	
  of	
  non-­‐display	
  applications	
  such	
  as	
  logic.	
  	
  	
  	
  




	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                               	
     PAGE	
  4	
  OF	
  11	
  	
  
                                                                                        	
                                                               WHITE	
  PAPER	
  



Mobility	
  isn’t	
  the	
  only	
  factor	
  which	
  determines	
  the	
  current	
  that	
  is	
  available.	
  The	
  size	
  of	
  the	
  transistor	
  
is	
  also	
  important.	
  	
  If	
  the	
  transistor	
  is	
  large	
  enough	
  then	
  a	
  high	
  current	
  can	
  be	
  achieved	
  even	
  with	
  a	
  
low	
  mobility.	
  	
  

In	
  practice,	
  the	
  space	
  available	
  for	
  the	
  transistor	
  is	
  usually	
  limited.	
  	
  For	
  example,	
  a	
  laptop	
  screen	
  is	
  
backlit	
   and	
   the	
   light	
   must	
   pass	
   through	
   the	
   transistor	
   array	
   to	
   the	
   user.	
   	
   The	
   transistor	
   is	
   not	
  
transmissive	
  and	
  hence	
   needs	
  to	
  be	
  as	
  small	
  as	
  possible	
  if	
  the	
  front-­‐of-­‐screen	
  performance	
  is	
  not	
  to	
  
be	
   impaired.	
   	
   In	
   an	
   electrophoretic	
   application,	
   where	
   reflected	
   light	
   is	
   used,	
   the	
   size	
   of	
   the	
  
transistor	
   will	
   not	
   affect	
   the	
   user	
   experience	
   and	
   this	
   substantially	
   relaxes	
   the	
   size	
   constraint,	
  
allowing	
  the	
  devices	
  to	
  be	
  much	
  larger	
  and	
  consequently	
  allowing	
  the	
  transistor	
  mobility	
  to	
  be	
  much	
  
lower.	
  	
  	
  There	
  are	
  still	
  limits	
  however.	
  	
  For	
  example,	
  in	
  active	
  matrix	
  displays	
  at	
  least	
  one	
  transistor	
  is	
  
required	
  to	
  drive	
  each	
  pixel.	
  	
  Therefore,	
  in	
  a	
  display	
  with	
  a	
  resolution	
  of	
  200	
  pixels	
  per	
  inch	
  all	
  of	
  the	
  
requirements	
  for	
  the	
  pixel	
  need	
  to	
  fit	
  within	
  a	
  space	
  127	
  µm	
  x	
  127	
  µm	
  in	
  size.	
  	
  

In	
  an	
  ideal	
  transistor	
  the	
  current	
  would	
  begin	
  to	
  flow	
  once	
  a	
  small	
  voltage	
  has	
  been	
  applied	
  to	
  the	
  
device	
   to	
   turn	
   it	
   on.	
   	
   Usually,	
   however,	
   there	
   is	
   a	
   resistance	
   preventing	
   current	
   flow	
   when	
   the	
  
voltage	
  begins	
  to	
  be	
  applied.	
  	
  This	
  resistance	
  is	
  caused	
  by	
  poor	
  physical	
  or	
  electrical	
  contact	
  between	
  
the	
   semiconductor	
   and	
   the	
   electrode,	
   known	
   as	
   contact	
   resistance,	
   and/or	
   by	
   the	
   bulk	
   of	
   the	
  
semiconductor	
  hindering	
  the	
  charge	
  as	
  it	
  travels	
  to	
  the	
  semiconductor/dielectric	
  interface	
  where	
  the	
  
charge	
  flow	
  occurs.	
  	
  	
  

In	
  order	
  for	
  current	
  to	
  flow	
  the	
  voltage	
  must	
  be	
  increased	
  to	
  overcome	
  the	
  resistance.	
  The	
  size	
  of	
  
the	
  resistance	
  is	
  especially	
  important	
  in	
  mobile	
  applications	
  because	
  the	
  greater	
  the	
  voltage	
  that	
  is	
  
required	
  to	
  obtain	
  a	
  useful	
  current,	
  the	
  quicker	
  the	
  battery	
  will	
  run	
  down.	
  	
  It	
  is	
  therefore	
  desirable	
  to	
  
minimize	
   any	
   resistance	
   as	
   far	
   as	
   possible,	
   by	
   appropriate	
   choice	
   of	
   materials	
   and	
   careful	
  
consideration	
  of	
  the	
  cleaning	
  methods	
  and	
  device	
  processing	
  methods	
  employed.	
  	
  	
  

It	
   is	
   also	
   wasteful	
   if	
   a	
   high	
   voltage	
   is	
   needed	
   to	
   turn	
   the	
   transistor	
   off	
   as	
   this	
   also	
   requires	
   power	
  
which	
  will	
  shorten	
  the	
  battery	
  run	
  time.	
  	
  Thus	
  it	
  is	
  preferred	
  if	
  the	
  transistor	
  is	
  off	
  with	
  no	
  significant	
  
current	
   flow	
   when	
   no	
   voltages	
   are	
   applied.	
   	
   Additionally,	
   a	
   high	
   current	
   flow	
   with	
   only	
   minimal	
  
voltage	
   increase	
   is	
   optimum	
   so	
   the	
   device	
   should	
   switch	
   from	
   off	
   to	
   on	
   with	
   only	
   a	
   small	
   applied	
  
voltage.	
  	
  	
  

The	
   materials	
   choice	
   for	
   each	
   of	
   the	
   components	
   of	
   the	
   transistor	
   (source,	
   drain,	
   gate,	
  
semiconductor	
  and	
  dielectric)	
  can	
  have	
  significant	
  implications	
  for	
  its	
  performance	
  and	
  the	
  relative	
  
ease	
  that	
  charge	
  can	
  flow.	
  The	
  source	
  and	
  drain	
  electrodes	
  must	
  be	
  chosen	
  so	
  that	
  charge	
  can	
  flow	
  
easily	
   from	
   the	
   source	
   through	
   the	
   semiconductor	
   to	
   the	
   drain	
   when	
   the	
   transistor	
   is	
   on.	
   	
   The	
  
dielectric	
   must	
   also	
   be	
   carefully	
   chosen	
   as	
   the	
   wrong	
   dielectric	
   can	
   reduce	
   the	
   device	
   mobility	
   by	
  
several	
   orders	
   of	
   magnitude	
   which	
   would	
   render	
   the	
   device	
   worthless.	
   	
   Plastic	
   Logic	
   has	
   long	
  	
  
realized	
   the	
   importance	
   of	
   the	
   dielectric	
   choice	
   and	
   has	
   extensive	
   experience	
   in	
   matching	
   the	
  
dielectric	
   to	
   the	
   semiconductor.	
   	
   Materials	
   suppliers	
   are	
   now	
   also	
   seriously	
   investigating	
   the	
  
dielectric	
   selection	
   to	
   provide	
   the	
   combination	
   of	
   dielectric	
   and	
   semiconductor	
  to	
   device	
   companies	
  
rather	
  than	
  just	
  providing	
  the	
  semiconductor,	
  which	
  was	
  previously	
  the	
  case.	
  	
  

From	
  this	
  discussion	
  it	
  is	
  clear	
  that,	
  when	
  designing	
  a	
  transistor	
  for	
  the	
  mass	
  market,	
  mobility	
  is	
  only	
  
part	
   of	
   the	
   story.	
   The	
   ease	
   at	
   which	
   the	
   device	
   can	
   be	
   turned	
   on	
   and	
   off	
   is	
   also	
   important	
   and	
  
depends	
  on	
  the	
  choice	
  of	
  materials.	
  However,	
  there	
  are	
  yet	
  further	
  considerations	
  when	
  the	
  leap	
  is	
  


	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                          	
     PAGE	
  5	
  OF	
  11	
  	
  
                                                                                        	
                                                            WHITE	
  PAPER	
  



   made	
  from	
  the	
  individual	
  transistor	
  to	
  the	
  active	
  matrix	
  array	
  for	
  a	
  display	
  application.	
  	
  For	
  example,	
  
   in	
  arrays,	
  device	
  uniformity	
  is	
  key.	
  	
  It	
  is	
  expected	
  that	
  devices	
  will	
  perform	
  similarly	
  to	
  one	
  another,	
  
   otherwise	
  visual	
  differences	
  may	
  be	
  observable	
  in	
  the	
  resultant	
  display.	
  Operational	
  stability	
  is	
  also	
  
   required	
   so	
   that	
   the	
   array	
   continues	
   to	
   function	
   predictably	
   throughout	
   its	
   life,	
   with	
   all	
   of	
   the	
  
   individual	
  devices	
  aging	
  consistently	
  regardless	
  of	
  how	
  they	
  have	
  been	
  driven.	
  	
  	
  

   Active	
  Matrix	
  Arrays	
  for	
  Display	
  Applications	
  

   Active	
  matrix	
  arrays	
  consist	
  of	
  a	
  series	
  of	
  transistors	
  laid	
  out	
  in	
  a	
  grid.	
  	
  The	
  isolated	
  gate	
  line	
  shown	
  
   in	
  Figure	
  4	
  is	
  extended	
  to	
  connect	
  all	
  transistors	
  in	
  the	
  same	
  row	
  and	
  the	
  source	
  line	
  in	
  Figure	
  4	
  is	
  
   extended	
   to	
   connect	
   all	
   the	
   transistors	
   in	
   the	
   same	
   column.	
   This	
   allows	
   each	
   transistor	
   to	
   be	
  
   uniquely	
   addressed.	
   	
   These	
   arrays	
   can	
   then	
   be	
   used	
   to	
   drive	
   display	
   media,	
   for	
   example,	
  
   electrophoretic	
   media	
   (such	
   as	
   E	
   Ink),	
   LCD	
   or	
   OLED.	
   In	
   the	
   simplest	
   architecture,	
   each	
   pixel	
   within	
  
   the	
   display	
   is	
   controlled	
   by	
   one	
   transistor	
   and	
   if	
   the	
   transistor	
   is	
   switched	
   on	
   then	
   the	
   pixel	
   will	
  
   switch	
   and	
   otherwise	
   will	
   not	
   switch.	
   A	
   schematic	
   is	
   shown	
   in	
   Figure	
   6a	
   with	
   the	
   display	
   pixels	
  
   overlaid	
  in	
  Figure	
  6b.	
  


a)	
                                                                                             b)	
  




   Figure	
  6:	
  a)	
  A	
  transistor	
  array	
  and	
  b)	
  Display	
  pixels	
  overlaying	
  the	
  transistor	
  array	
  

   Voltage	
   is	
   applied	
   to	
   the	
   first	
   gate	
   line	
   and	
   concurrently	
   each	
   source	
   line	
   in	
   parallel,	
   this	
   is	
   then	
  
   repeated	
  with	
  the	
  second	
  gate	
  line	
  and	
  so	
  on	
  until	
  all	
  the	
  transistors	
  have	
  been	
  addressed	
  and	
  all	
  
   the	
   pixels	
   are	
   on	
   or	
   off	
   as	
   required	
   for	
   the	
   image.	
   	
   	
   Because	
   the	
   millions	
   of	
   transistors	
   within	
   the	
  
   array	
  are	
  addressed	
  one	
  row	
  at	
  a	
  time,	
  any	
  one	
  transistor	
  is	
  only	
  addressed	
  for	
  a	
  very	
  short	
  period.	
  	
  
   In	
   the	
   example	
   in	
   Figure	
   6b,	
   voltages	
   are	
   applied	
   to	
   turn	
   on	
   the	
   TFT	
   at	
   the	
   Source-­‐2	
   Gate-­‐2	
  
   intersection	
  (S2G2)	
  and	
  change	
  the	
  associated	
  pixel	
  to	
  its	
  on	
  state,	
  which	
  is	
  white,	
  and	
  then	
  applied	
  
   to	
  S4G3	
  and	
  finally	
  S2G4	
  to	
  change	
  their	
  pixel	
  colors	
  to	
  white.	
  The	
  remaining	
  transistors	
  are	
  left	
  in	
  
   their	
  off	
  state	
  and	
  the	
  pixels	
  remain	
  black.	
  	
  

   LCD	
   color	
   displays	
   use	
   this	
   basic	
   principle	
   and	
   then	
   use	
   color	
   filters	
   distributed	
   in	
   a	
   pattern	
   across	
  
   the	
  display	
  to	
  give	
  red,	
  green	
  and	
  blue	
  pixels	
  as	
  well	
  as	
  white	
  ones.	
  	
  This	
  methodology	
  can	
  also	
  be	
  
   used	
   for	
   reflective	
   technologies	
   although	
   there	
   are	
   also	
   other	
   device	
   architectures	
   that	
   can	
   be	
  
   employed.	
  	
  

   The	
   gate	
   lines	
   and	
   source	
   lines	
   running	
   across	
   and	
   down	
   the	
   transistor	
   array	
   can	
   form	
   transistors	
  
   other	
  than	
  those	
  in	
  the	
  array	
  if	
  the	
  array	
  is	
  poorly	
  constructed.	
  These	
  unwanted	
  transistors,	
  called	
  
   parasitics,	
   can	
   cause	
   the	
   display	
   pixels	
   to	
   turn	
   on	
   when	
   they	
   should	
   be	
   off.	
   	
   It	
   is	
   important	
   that	
  


   	
  
   	
  
   © 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                        	
     PAGE	
  6	
  OF	
  11	
  	
  
                                                                                        	
                                                     WHITE	
  PAPER	
  



careful	
  consideration	
  is	
  given	
  to	
  where	
  connections	
  are	
  routed	
  and	
  how	
  the	
  devices	
  are	
  built	
  up	
  so	
  
that	
  parasitic	
  devices	
  are	
  avoided.	
  	
  	
  Plastic	
  Logic	
  has	
  extensive	
  knowledge	
  in	
  array	
  design	
  to	
  minimize	
  
the	
  impact	
  of	
  parasitic	
  devices.	
  	
  

Parasitic	
  transistors	
  are	
  not	
  the	
  only	
  source	
  of	
  unwanted	
  current.	
  	
  Transistors	
  within	
  the	
  array	
  can	
  
also	
  leak	
  current	
  to	
  one	
  another	
  so	
  it	
  is	
  important	
  to	
  ensure	
  there	
  is	
  no	
  path	
  for	
  the	
  current	
  to	
  travel	
  
between	
  neighboring	
  devices.	
  	
  	
  	
  

While	
   we	
   have	
   focused	
   on	
   transistors,	
   these	
   are	
   not	
   the	
   only	
   devices	
   within	
   the	
   array	
   and	
   the	
   other	
  
components	
  must	
  not	
  be	
  neglected.	
  During	
  the	
  time	
  that	
  the	
  transistor	
  is	
  not	
  being	
  addressed	
  the	
  
charge	
  it	
  produced	
  during	
  the	
  address	
  time	
  needs	
  to	
  be	
  retained	
  until	
  it	
  is	
  next	
  addressed.	
  	
  This	
  is	
  
achieved	
  by	
  the	
  use	
  of	
  a	
  storage	
  capacitor	
  which	
  comprises	
  two	
  plates	
  separated	
  by	
  a	
  dielectric.	
  The	
  
drain	
  pad	
  of	
  the	
  transistor	
  makes	
  up	
  one	
  of	
  the	
  plates	
  of	
  the	
  capacitor.	
  The	
  cross-­‐section	
  is	
  shown	
  in	
  
Figure	
  7.	
  




                                                                                                                                           	
  

Figure	
  7:	
  Cross-­‐section	
  of	
  TFT	
  and	
  capacitor	
  combination	
  

The	
  metric	
  for	
  the	
  capacitor	
  is	
  known	
  as	
  capacitance.	
  	
  The	
  capacitance	
  is	
  a	
  measure	
  of	
  the	
  ability	
  of	
  
the	
  capacitor	
  to	
  store	
  charge	
  and	
  is	
  determined	
  by	
  the	
  capacitor’s	
  area,	
  the	
  separation	
  of	
  the	
  plates,	
  	
  
and	
  a	
  measure	
  of	
  the	
  dielectric	
  known	
  as	
  the	
  dielectric	
  constant.	
  	
  

For	
   any	
   given	
   capacitance	
   the	
   area	
   of	
   the	
   capacitor	
   can	
   be	
   reduced	
   if	
   the	
   dielectric	
   constant	
   is	
  
increased.	
  	
  As	
  space	
  is	
  at	
  a	
  premium	
  within	
  the	
  array	
  it	
  would	
  be	
  ideal	
  to	
  have	
  a	
  dielectric	
  with	
  a	
  high	
  
dielectric	
   constant	
   so	
   that	
   the	
   capacitor	
   can	
   be	
   as	
   small	
   as	
   possible.	
   	
   Unfortunately	
   most	
   organic	
  
transistors	
   have	
   relatively	
   small	
   dielectric	
   constants,	
   when	
   compared	
   to	
   inorganic	
   transistors,	
   and	
  
consequently	
  the	
  capacitor	
  structure	
  is	
  often	
  larger	
  than	
  would	
  ideally	
  be	
  the	
  case.	
  	
  The	
  competing	
  
requirements	
   of	
   the	
   transistor	
   and	
   the	
   capacitor	
   present	
   one	
   of	
   the	
   problems	
   that	
   has	
   to	
   be	
  
addressed	
   for	
   success	
   in	
   the	
   displays	
   market.	
   There	
   are	
   several	
   routes	
   to	
   solve	
   the	
   problem,	
   all	
   of	
  
which	
  present	
  challenges.	
  	
  

       1) The	
   transistor	
   could	
   be	
   shrunk	
   to	
   allow	
   more	
   space	
   for	
   the	
   capacitor,	
   although	
   this	
   will	
  
          increase	
  the	
  mobility	
  requirement.	
  
          	
  
       2) The	
  dielectric	
  used	
  could	
  have	
  a	
  high	
  dielectric	
  constant	
  so	
  that	
  the	
  capacitor	
  can	
  be	
  small,	
  
          but	
  this	
  will	
  impair	
  transistor	
  performance.	
  	
  	
  
          	
  




	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                	
     PAGE	
  7	
  OF	
  11	
  	
  
                                                                                         	
                                                                 WHITE	
  PAPER	
  



          3) A	
   capacitor	
   and	
   the	
   transistor	
   could	
   be	
   processed	
   such	
   that	
   they	
   use	
   different	
   dielectrics	
  
             from	
  one	
  another,	
  although	
  this	
  will	
  certainly	
  add	
  complexity	
  and	
  consequently	
  cost	
  to	
  the	
  
             system.	
  	
  

   As	
  was	
  previously	
  stated,	
  materials	
  suppliers	
  have	
  recently	
  started	
  to	
  realize	
  that	
  the	
  dielectric	
  must	
  
   also	
   be	
   carefully	
   optimized	
   to	
   match	
   the	
   semiconductor	
   and	
   in	
   so	
   doing	
   maximize	
   the	
   transistor	
  
   mobility.	
  	
  Materials	
  manufacturers	
  also	
  need	
  to	
  extend	
  this	
  thinking	
  and	
  realize	
  that	
  the	
  transistor	
  is	
  
   not	
  the	
  only	
  component	
  in	
  the	
  array	
  and	
  that	
  developing	
  a	
  semiconductor	
  that	
  could	
  work	
  with	
  high	
  
   dielectric	
  constant	
  materials	
  would	
  be	
  very	
  desirable.	
  	
  	
  

   The	
   array	
   structure	
   is	
   complicated	
   further	
   because	
   the	
   bottom	
   capacitor	
   plate	
   (the	
   drain	
   pad)	
   needs	
  
   to	
   be	
   in	
   direct	
   contact	
   with	
   the	
   display	
   media.	
   	
   As	
   shown	
   in	
   Figure	
   7,	
   the	
   drain	
   pad	
   is	
   underneath	
   all	
  
   of	
   the	
   other	
   layers	
   so	
   it	
   therefore	
   has	
   to	
   be	
   brought	
   to	
   the	
   top	
   of	
   the	
   stack.	
   This	
   is	
   achieved	
   by	
  
   adding	
  an	
  interlayer	
  dielectric,	
  making	
  a	
  hole	
  in	
  the	
  stack	
  of	
  layers	
  and	
  adding	
  a	
  metal	
  or	
  polymeric	
  
   conductor	
  on	
  top	
  to	
  effectively	
  move	
  the	
  bottom	
  capacitor	
  plate	
  from	
  the	
  bottom	
  of	
  the	
  stack	
  to	
  the	
  
   top.	
  	
  

   A	
  generic	
  repeat	
  unit	
  in	
  the	
  active	
  matrix	
  array	
  would	
  therefore	
  be:	
  

a)	
                                                                                                             b)	
  




                                                                                                          	
  

   Figure	
   8:	
   a)	
   Plan	
   view	
   of	
   a	
   generic	
   repeat	
   unit	
   in	
   an	
   active	
   matrix	
   array,	
   b)	
   cross-­‐section	
   of	
   repeat	
  
   unit.	
  

   Thus	
   once	
   the	
   transistors	
   are	
   incorporated	
   into	
   a	
   real-­‐world	
   application	
   there	
   are	
   many	
   aspects	
  
   which	
  must	
  be	
  considered	
  and	
  not	
  just	
  the	
  design	
  and	
  performance	
  of	
  the	
  transistor	
  itself.	
  	
  This	
  is	
  
   true	
  not	
  only	
  in	
  displays	
  but	
  also	
  in	
  non-­‐display	
  applications	
  such	
  as	
  sensors	
  or	
  RFID.	
  	
  

   Non-­‐Display	
  Applications	
  

   Transistors	
   can	
   either	
   be	
   p-­‐type	
   or	
   n-­‐type	
   depending	
   on	
   whether	
   they	
   are	
   turned	
   on	
   by	
   applying	
  
   negative	
  voltages	
  or	
  positive	
  ones.	
  For	
  display	
  applications	
  an	
  active	
  matrix	
  array	
  can	
  be	
  produced	
  
   using	
  transistors	
  which	
  are	
  either	
  all	
  p-­‐type	
  or	
  all	
  n-­‐type.	
  	
  Logic	
  circuits,	
  however,	
  are	
  most	
  efficient	
  
   if	
  both	
  n-­‐type	
  and	
  p-­‐type	
  transistors	
  are	
  available.	
  	
  

   To	
   date	
   the	
   vast	
   majority	
   of	
   organic	
   transistors	
   are	
   p-­‐type	
   because	
   p-­‐type	
   semiconductors	
   are	
   the	
  
   most	
  advanced	
  in	
  terms	
  of	
  our	
  understanding	
  and	
  also	
  in	
  terms	
  of	
  the	
  key	
  performance	
  metrics	
  such	
  
   as	
  mobility.	
  	
  However	
  n-­‐type	
  transistors	
  would	
  bring	
  many	
  advantages	
  even	
  into	
  the	
  displays	
  space.	
  	
  	
  



   	
  
   	
  
   © 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                              	
     PAGE	
  8	
  OF	
  11	
  	
  
                                                                                        	
                                                               WHITE	
  PAPER	
  



A	
   display	
   requires	
   drivers	
   in	
   order	
   to	
   address	
   the	
   pixels	
   correctly	
   and	
   in	
   Plastic	
   Logic’s	
   case	
   all	
   of	
   the	
  
driving	
  electronics	
  which	
  surround	
  the	
  active	
  matrix	
  array	
  are	
  made	
  from	
  silicon.	
  	
  Some	
  of	
  this	
  could	
  
be	
  replaced	
  by	
  organic	
  transistors	
  if	
  both	
  p	
  and	
  n-­‐type	
  materials	
  were	
  available.	
  	
  This	
  would	
  allow	
  
the	
  advantages	
  of	
  organic	
  materials,	
  namely	
  ease	
  of	
  processing,	
  cost	
  and	
  robustness	
  to	
  be	
  utilized	
  in	
  
more	
  of	
  the	
  system.	
  Some	
  companies	
  are	
  beginning	
  to	
  seriously	
  develop	
  n-­‐type	
  materials	
  and	
  Plastic	
  
Logic	
   is	
   actively	
   engaged	
   in	
   the	
   testing	
   and	
   development	
   of	
   these	
   materials	
   to	
   ensure	
   they	
   reach	
  
commercial	
  viability	
  as	
  soon	
  as	
  is	
  practicable.	
  	
  

In	
   addition	
   to	
   n-­‐type	
   devices,	
   Plastic	
   Logic	
   has	
   also	
   given	
   significant	
   consideration	
   into	
   how	
   the	
  
devices	
  are	
  constructed	
  so	
  that	
  unwanted	
  capacitances	
  and	
  currents	
  can	
  be	
  removed.	
  	
  Plastic	
  Logic’s	
  
IP	
   portfolio	
   extends	
   broadly	
   over	
   high-­‐resolution	
   printing	
   methods,	
   where	
   sub-­‐micron	
   channel	
  
lengths	
   have	
   been	
   demonstrated,	
   and	
   fine-­‐feature	
   patterning	
   techniques,	
   both	
   of	
   which	
   help	
   to	
  
reduce	
  parasitics	
  and	
  improve	
  the	
  device	
  speed.	
  	
  

As	
  the	
  transistor	
  mobility	
  improves	
  for	
  commercially	
  viable	
  devices	
  in	
  both	
  p	
  and	
  n-­‐type	
  devices,	
  and	
  
deposition	
   methods	
   enable	
   fine	
   features	
   and	
   low	
   parasitics,	
   it	
   becomes	
   possible	
   for	
   organic	
  
electronics	
  to	
  move	
  into	
  other	
  application	
  areas	
  such	
  as	
  RFID,	
  Sensors,	
  ASIC,	
  and	
  smartcards.	
  	
  	
  	
  

Reliability	
  

Of	
   paramount	
   importance	
   when	
   discussing	
   any	
   commercial	
   application	
   is	
   the	
   reliability	
   of	
   the	
  
electronic	
   components	
   in	
   the	
   product	
   and	
   the	
   reliability	
   of	
   the	
   process	
   used	
   to	
   make	
   them.	
   	
   The	
  
product	
  will	
  not	
  be	
  a	
  commercial	
  success	
  if	
  the	
  transistors	
  stop	
  working	
  when	
  they	
  are	
  exposed	
  to	
  
heat,	
   light,	
   water,	
   or	
   wear	
   out	
   after	
   being	
   operated	
   for	
   a	
   few	
   weeks.	
   	
   In	
   the	
   case	
   of	
   displays	
   this	
  
would	
  create	
  ‘dead’	
  pixels	
  which	
  remain	
  permanently	
  off	
  and	
  in	
  logic	
  circuits	
  it	
  would	
  prevent	
  the	
  
circuit	
   from	
   operating	
   correctly	
   and	
   cause	
   the	
   product	
   to	
   fail.	
   While	
   it	
   would	
   be	
   desirable	
   for	
   the	
  
transistors	
  to	
  always	
  perform	
  the	
  same	
  way	
  in	
  all	
  environments	
  and	
  all	
  operating	
  conditions	
  this	
  is	
  
unrealistic.	
  	
  Temperature	
  and	
  moisture	
  will	
  change	
  the	
  device	
  behaviour	
  not	
  only	
  in	
  organic	
  devices	
  
but	
   in	
   silicon	
   and	
   other	
   semiconductors	
   too.	
   	
   Additionally,	
   as	
   with	
   most	
   things,	
   extensive	
   use	
   will	
  
cause	
   degradation	
   over	
   time.	
   	
   When	
   designing	
   a	
   product	
   it	
   is	
   important	
   to	
   investigate	
   the	
   operation	
  
of	
   the	
   devices	
   in	
   a	
   range	
   of	
   environments	
   and	
   under	
   a	
   range	
   of	
   operating	
   conditions	
   which	
   are	
  
specific	
   to	
   the	
   application	
   in	
   question.	
   	
   The	
   changes	
   to	
   the	
   device	
   performance	
   caused	
   by	
   varying	
  
these	
   factors	
   can	
   then	
   be	
   accounted	
   for	
   in	
   the	
   design	
   of	
   the	
   devices	
   such	
   that	
   it	
   doesn’t	
   cause	
   a	
  
difference	
   in	
   the	
   visual	
   performance	
   of	
   the	
   display	
   or	
   the	
   operation	
   of	
   the	
   logic	
   circuit.	
   	
   When	
  
completing	
   such	
   a	
   design	
   it	
   is	
   important	
   to	
   remember	
   that	
   it	
   is	
   the	
   performance	
   of	
   the	
   worst	
  
transistor	
  that	
  is	
  of	
  most	
  interest.	
  	
  The	
  worst	
  transistor	
  in	
  the	
  display	
  must	
  still	
  be	
  functional	
  at	
  the	
  
end	
   of	
   the	
   product	
   life	
   and	
   therefore	
   the	
   worst	
   transistor	
   dictates	
   the	
   pixel	
   design.	
   	
   If	
   the	
   product	
   is	
  
to	
  reach	
  its	
  full	
  potential	
  and	
  thereby	
  maximize	
  revenue	
  for	
  the	
  manufacturer,	
  uniformity	
  across	
  all	
  
the	
  devices	
  within	
  the	
  display	
  is	
  key.	
  	
  

The	
   importance	
   of	
   uniformity	
   is	
   also	
   clear	
   when	
   considering	
   how	
   the	
   products	
   will	
   be	
   tested	
   to	
  
ensure	
   they	
   are	
   fit	
   for	
   purpose.	
   It	
   is	
   impossible	
   to	
   fully	
   test	
   every	
   device	
   in	
   every	
   product	
   and	
  
therefore	
  it	
   is	
   important	
   that	
   the	
   transistor	
   behaviour	
   is	
   consistent	
   and	
   predictable	
   such	
   that	
   a	
   basic	
  
test	
  will	
  show	
  whether	
  the	
  product	
  will	
  work	
  as	
  expected.	
  	
  	
  

Again	
  this	
  highlights	
  the	
  importance	
  of	
  using	
  materials	
  which	
  can	
  be	
  easily	
  mass-­‐produced	
  and	
  are	
  
well	
  understood	
  so	
  that	
  the	
  variability	
  between	
  devices	
  is	
  minimized.	
  	
  	
  


	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                           	
     PAGE	
  9	
  OF	
  11	
  	
  
                                                                                        	
                                                     WHITE	
  PAPER	
  



It	
   is	
   not	
   only	
   variability	
   in	
   the	
   materials	
   which	
   can	
   cause	
   variation	
   in	
   the	
   device	
   performance.	
  	
  
Variability	
  in	
  the	
  process	
  can	
  have	
  the	
  same	
  effect	
  and	
  hence	
  the	
  manufacturing	
  process	
  needs	
  to	
  be	
  
robust	
  and	
  repeatable.	
  An	
  unreliable	
  process	
  will	
  reduce	
  yield,	
  increase	
  cost	
  and	
  make	
  forecasting	
  
product	
  availability	
  difficult.	
  This	
  needs	
  to	
  be	
  considered	
  at	
  the	
  outset,	
  in	
  the	
  initial	
  device	
  design,	
  as	
  
a	
   complicated	
   and	
   intricate	
   process	
   will	
   be	
   harder	
   to	
   maintain	
   than	
   a	
   straightforward	
   and	
   simple	
  
one.	
  	
  

Manufacturing	
  

The	
   requirements	
   and	
   intricacies	
   of	
   manufacturing	
   are	
   worthy	
   of	
   a	
   document	
   in	
   their	
   own	
   right.	
  	
  
Here,	
  a	
  couple	
  of	
  examples	
  are	
  used	
  to	
  give	
  a	
  flavor	
  of	
  some	
  of	
  the	
  considerations	
  involved	
  in	
  the	
  
transition	
  from	
  a	
  lab-­‐based	
  environment	
  to	
  a	
  manufacturing	
  one.	
  

When	
   moving	
   from	
   an	
   R&D	
   environment	
   to	
   manufacturing	
   every	
   minutia	
   has	
   to	
   be	
   validated	
   and	
  
understood.	
   	
   Issues	
   that	
   affect	
   a	
   couple	
   of	
   displays	
   in	
   the	
   lab	
   could	
   wipe	
   out	
   whole	
   batches	
   of	
  
displays	
   in	
   a	
   factory,	
   which	
   would	
   be	
   extremely	
   costly.	
   	
   Thus	
   it	
   is	
   important	
   to	
   understand	
   all	
   the	
  
parameters	
  so	
  that	
  issues	
  can	
  be	
  rectified	
  quickly	
  with	
  minimal	
  impact	
  on	
  production.	
  	
  

As	
   an	
   example,	
   one	
   major	
   consideration	
   is	
   display	
   build	
   time.	
   	
   In	
   a	
   lab,	
   where	
   displays	
   are	
   being	
  
processed	
   one	
   at	
   a	
   time,	
   tight	
   time	
   constraints	
   can	
   be	
   accommodated.	
   	
   For	
   example,	
   if	
   one	
   layer	
  
cannot	
  be	
  exposed	
  to	
  air	
  for	
  more	
  than	
  an	
  hour	
  or	
  one	
  clean	
  or	
  treatment	
  process	
  wears	
  off	
  after	
  
ten	
   minutes,	
   then	
   displays	
   can	
   be	
   moved	
   from	
   one	
   station	
   to	
   another	
   quickly	
   in	
   order	
   to	
  
accommodate	
  this	
  criterion.	
  	
  In	
  a	
  manufacturing	
  facility	
  however,	
  such	
  tight	
  time	
  constraints	
  cause	
  
complexity	
   because	
   displays	
   are	
   usually	
   processed	
   in	
   relatively	
   large	
   batches	
   using	
   automated	
  
equipment,	
  meaning	
  that	
  any	
  one	
  display	
  must	
  wait	
  for	
  all	
  the	
  other	
  displays	
  ahead	
  of	
  it	
  before	
  it	
  
goes	
   through	
   a	
   particular	
   process.	
   	
   Any	
   delay	
   could	
   potentially	
   push	
   large	
   numbers	
   of	
   displays	
  
beyond	
   the	
   allowable	
   time	
   between	
   process	
   steps.	
   	
   Consequently	
   any	
   time	
   criticalities	
   need	
   to	
   be	
  
fully	
   understood,	
   not	
   only	
   so	
   batches	
   are	
   processed	
   through	
   genuinely	
   critical	
   steps	
   within	
   the	
  
allotted	
   time	
   but	
   also	
   so	
   perfectly	
   good	
   batches	
   are	
   not	
   scrapped	
   for	
   failing	
   to	
   meet	
   an	
   arbitrary	
  
time	
  constraint.	
  	
  

A	
   second	
   issue	
   in	
   moving	
   from	
   the	
   lab	
   to	
   manufacturing	
   is	
   how	
   to	
   scale	
   the	
   processing	
   of	
   flexible	
  
substrates	
  to	
  a	
  size	
  not	
  previously	
  used	
  in	
  industry.	
  	
  The	
  manufacturing	
  of	
  organic	
  electronic	
  devices	
  
on	
  flexible	
  substrates	
  is	
  still	
  in	
  its	
  infancy.	
  	
  Equipment	
  suppliers	
  are	
  used	
  to	
  sheet	
  fed,	
  glass	
  based	
  
products	
   and	
   their	
   tools	
   are	
   designed	
   with	
   rigid,	
   inflexible	
   substrates	
   in	
   mind.	
   	
   Plastic	
   Logic	
  
addressed	
  this	
  conundrum	
  by	
  laminating	
  its	
  flexible	
  substrate	
  to	
  glass	
  so	
  that	
  it	
  could	
  be	
  processed	
  
as	
   if	
   it	
   were	
   glass.	
   This	
   minimized	
   the	
   equipment	
   modifications,	
   and	
   removed	
   the	
   challenge	
   from	
  
each	
   and	
   every	
   tool	
   supplier,	
   who	
   might	
   each	
   have	
   different,	
   and	
   potentially	
   mutually	
   exclusive,	
  
ways	
  of	
  addressing	
  the	
  issue,	
  and	
  moved	
  it	
  squarely	
  back	
  to	
  Plastic	
  Logic.	
  	
  This	
  allowed	
  Plastic	
  Logic	
  
to	
  develop	
  unrivalled	
  expertise	
  and	
  competency	
  in	
  the	
  handling	
  and	
  processing	
  of	
  flexible	
  substrates	
  
and	
  their	
  lamination	
  to	
  glass	
  and	
  facilitated	
  a	
  deep	
  understanding	
  of	
  how	
  the	
  substrate	
  is	
  affected	
  
by	
   factors	
   such	
   as	
   temperature,	
   chemicals	
   and	
   humidity,	
   which	
   is	
   invaluable	
   information	
  not	
   only	
   at	
  
the	
  lamination	
  stages	
  but	
  for	
  all	
  of	
  the	
  other	
  processing	
  steps.These	
  examples	
  help	
  to	
  show	
  that	
  to	
  
successfully	
   progress	
   out	
   of	
   the	
   lab	
   and	
   into	
   a	
   factory	
   there	
   are	
   not	
   only	
   scientific	
   considerations,	
  
such	
   as	
   how	
   the	
   transistor	
   degrades	
   or	
   whether	
   devices	
   are	
   uniform,	
   but	
   also	
   practical	
  
considerations,	
  which	
  are	
  every	
  bit	
  as	
  important	
  and	
  which	
  must	
  also	
  be	
  addressed.	
  	
  



	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                                	
     PAGE	
  10	
  OF	
  11	
  	
  
                                                                                        	
                                                   WHITE	
  PAPER	
  



Conclusion	
  

In	
   a	
   commercial	
   environment	
   it	
   is	
   not	
   enough	
   to	
   design	
   a	
   transistor	
   purely	
   on	
   the	
   basis	
   of	
   high	
  
mobility.	
  	
  The	
  optimum	
  transistor	
  is	
  the	
  one	
  which	
  can	
  be	
  processed	
  simply,	
  affordably,	
  consistently,	
  
and	
  which	
  has	
  a	
  performance	
  that	
  is	
  sufficient	
  for	
  the	
  task	
  in	
  hand.	
  	
  Additionally	
  the	
  requirements	
  of	
  
the	
   other	
   components	
   of	
   the	
   system,	
   for	
   example	
   the	
   capacitor	
   in	
   the	
   display,	
   must	
   also	
   be	
  
accounted	
   for	
   right	
   at	
   the	
   outset	
   of	
   the	
   design.	
   This	
   ensures	
   that	
   the	
   design	
   optimizes	
   the	
   system	
  
rather	
  than	
  any	
  individual	
  component.	
  	
  In	
  designing	
  a	
  system,	
  Plastic	
  Logic	
  understands	
  the	
  balance	
  
that	
   must	
   be	
   struck	
   between	
   the	
   myriad	
   of	
   influencing	
   factors,	
   and	
   this	
   is	
   critical	
   to	
   commercial	
  
success.	
  	
  

Plastic	
   Logic	
   has	
   unrivalled	
   expertise	
   in	
   developing	
   organic	
   electronics	
   for	
   consumer	
   products	
   and	
   in	
  
such	
   a	
   rapidly	
   changing	
   technology	
   environment	
   it	
   is	
   vital	
   to	
   remain	
   at	
   the	
   forefront	
   of	
   research	
   and	
  
development	
   for	
   early	
   integration	
   of	
   new	
   features	
   and	
   hence	
   is	
   a	
   competitive	
   advantage.	
   	
   Plastic	
  
Logic	
   is	
   devoting	
   significant	
   resources	
   to	
   the	
   integration	
   of	
   a	
   compatible	
   color	
   technology	
   and	
  
optimum	
   front-­‐of-­‐screen	
   performance.	
   Plastic	
   Logic	
   is	
   also	
   focused	
   on	
   the	
   continued	
   development	
  
of	
  the	
  p-­‐type	
  transistors	
  in	
  its	
  array,	
  using	
  materials	
  with	
  similar	
  performance	
  to	
  amorphous	
  silicon.	
  	
  
For	
  further	
  cost	
  benefit	
  and	
  feature	
  enhancement	
  it	
  is	
  also	
  developing	
   n-­‐type	
  transistors	
  which	
  will,	
  
when	
  integrated	
  successfully,	
  expand	
  the	
  functionality	
  of	
  organic	
  electronics	
  beyond	
  the	
  transistor	
  
array	
  and	
  into	
  the	
  surrounding	
  logic	
  circuits.	
  	
  

In	
  Plastic	
  Logic	
  the	
  research	
  teams	
  are	
  highly	
  aligned	
  with	
  the	
  manufacturing	
  engineers	
  to	
  procure	
  
suitable	
   equipment	
   that	
   can	
   meet	
   the	
   challenges	
   of	
   mass	
   manufacture,	
   both	
   in	
   Dresden	
   and	
   in	
  
Plastic	
   Logic’s	
   planned	
   second	
   manufacturing	
   facility	
   in	
   Russia.	
   	
   Close	
   alignment	
   ensures	
   rapid	
  
inclusion	
  of	
  new	
  advances	
  into	
  the	
  end	
  product.	
  

This	
  work	
  will	
  ensure	
  that	
  Plastic	
  Logic	
  continues	
  to	
  advance	
  its	
  technology	
  platform	
  for	
  the	
  future.	
  	
  	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



                                                                                                                                       	
  

       Plastic Logic Inc. Headquarters 650 Castro Street, Suite 500 Mountain View, CA 94041
                         USA Phone: +1 (650) 584-2100 Fax: +1 (650) 584-2101	
  



	
  
	
  
© 2011	
  PLASTIC	
  LOGIC.	
  ALL	
  RIGHTS	
  RESERVED.	
  THIS	
  DOCUMENT	
  IS	
  PLASTIC	
  LOGIC	
  PUBLIC	
  INFORMATION	
  	
  	
                             	
     PAGE	
  11	
  OF	
  11	
  	
  

Contenu connexe

Similaire à Plastic Logic Technology Overview

Graphene and lack of prospective for industry
Graphene and lack of prospective for industryGraphene and lack of prospective for industry
Graphene and lack of prospective for industryCesar Franco
 
Material science & eng 2011
Material science  & eng 2011Material science  & eng 2011
Material science & eng 2011Eko Kiswanto
 
IRJET-An Efficient Approach for Handover Decision Making in Wireless Networks
IRJET-An Efficient Approach for Handover Decision Making in Wireless NetworksIRJET-An Efficient Approach for Handover Decision Making in Wireless Networks
IRJET-An Efficient Approach for Handover Decision Making in Wireless NetworksIRJET Journal
 
BIO CONCRETE
BIO CONCRETEBIO CONCRETE
BIO CONCRETEkomalnani
 
PIEZOELECTRIC MATERIALS
PIEZOELECTRIC MATERIALSPIEZOELECTRIC MATERIALS
PIEZOELECTRIC MATERIALSankit100ni
 
New books oct 2012 02
New books oct 2012 02New books oct 2012 02
New books oct 2012 02maethaya
 
Kress Franchetti ASME Congress
Kress Franchetti ASME CongressKress Franchetti ASME Congress
Kress Franchetti ASME CongressConnor Kress
 
637122main short presentation
637122main short presentation637122main short presentation
637122main short presentationClifford Stone
 
Final Report for CHEME 5650 Huawei Zhou
Final Report for CHEME 5650 Huawei ZhouFinal Report for CHEME 5650 Huawei Zhou
Final Report for CHEME 5650 Huawei ZhouHuawei Zhou
 
The 1.7 kilogram_microchip_energy_and_ma (1)
The 1.7 kilogram_microchip_energy_and_ma (1)The 1.7 kilogram_microchip_energy_and_ma (1)
The 1.7 kilogram_microchip_energy_and_ma (1)Soumitra Pal
 
IRJET - Carbon Nanotubes – The Centre of Nanoelectronics
IRJET -  	  Carbon Nanotubes – The Centre of NanoelectronicsIRJET -  	  Carbon Nanotubes – The Centre of Nanoelectronics
IRJET - Carbon Nanotubes – The Centre of NanoelectronicsIRJET Journal
 
RECYCLING THE WASTE PLASTIC MATERIAL WITH THE HELP OF HEAT TREARTMENT
RECYCLING THE WASTE PLASTIC MATERIAL WITH THE HELP OF HEAT TREARTMENTRECYCLING THE WASTE PLASTIC MATERIAL WITH THE HELP OF HEAT TREARTMENT
RECYCLING THE WASTE PLASTIC MATERIAL WITH THE HELP OF HEAT TREARTMENTjaideep kishanpuri
 
Corenet montreal 2_13_08_nanotech_materials
Corenet montreal 2_13_08_nanotech_materialsCorenet montreal 2_13_08_nanotech_materials
Corenet montreal 2_13_08_nanotech_materialsAhmad Rashwan
 
Paper id 21201429
Paper id 21201429Paper id 21201429
Paper id 21201429IJRAT
 
Material science & eng 2012
Material science  & eng 2012Material science  & eng 2012
Material science & eng 2012Eko Kiswanto
 
NOVO MODISMO ACADÊMICO E A PROMESSA DE APLICAÇÃO INDUSTRIAL DE GRAFENO
NOVO MODISMO ACADÊMICO E A PROMESSA DE APLICAÇÃO INDUSTRIAL DE GRAFENONOVO MODISMO ACADÊMICO E A PROMESSA DE APLICAÇÃO INDUSTRIAL DE GRAFENO
NOVO MODISMO ACADÊMICO E A PROMESSA DE APLICAÇÃO INDUSTRIAL DE GRAFENOCesar Franco
 

Similaire à Plastic Logic Technology Overview (20)

Graphene and lack of prospective for industry
Graphene and lack of prospective for industryGraphene and lack of prospective for industry
Graphene and lack of prospective for industry
 
Material science & eng 2011
Material science  & eng 2011Material science  & eng 2011
Material science & eng 2011
 
IRJET-An Efficient Approach for Handover Decision Making in Wireless Networks
IRJET-An Efficient Approach for Handover Decision Making in Wireless NetworksIRJET-An Efficient Approach for Handover Decision Making in Wireless Networks
IRJET-An Efficient Approach for Handover Decision Making in Wireless Networks
 
BIO CONCRETE
BIO CONCRETEBIO CONCRETE
BIO CONCRETE
 
PIEZOELECTRIC MATERIALS
PIEZOELECTRIC MATERIALSPIEZOELECTRIC MATERIALS
PIEZOELECTRIC MATERIALS
 
New books oct 2012 02
New books oct 2012 02New books oct 2012 02
New books oct 2012 02
 
Kress Franchetti ASME Congress
Kress Franchetti ASME CongressKress Franchetti ASME Congress
Kress Franchetti ASME Congress
 
637122main short presentation
637122main short presentation637122main short presentation
637122main short presentation
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Final Report for CHEME 5650 Huawei Zhou
Final Report for CHEME 5650 Huawei ZhouFinal Report for CHEME 5650 Huawei Zhou
Final Report for CHEME 5650 Huawei Zhou
 
The 1.7 kilogram_microchip_energy_and_ma (1)
The 1.7 kilogram_microchip_energy_and_ma (1)The 1.7 kilogram_microchip_energy_and_ma (1)
The 1.7 kilogram_microchip_energy_and_ma (1)
 
Optimisation of Recycled Thermoplastic Plate (Tile)
Optimisation of Recycled Thermoplastic Plate (Tile)Optimisation of Recycled Thermoplastic Plate (Tile)
Optimisation of Recycled Thermoplastic Plate (Tile)
 
over view of Polytronics ppt by jakeer
over view of Polytronics ppt by jakeerover view of Polytronics ppt by jakeer
over view of Polytronics ppt by jakeer
 
IRJET - Carbon Nanotubes – The Centre of Nanoelectronics
IRJET -  	  Carbon Nanotubes – The Centre of NanoelectronicsIRJET -  	  Carbon Nanotubes – The Centre of Nanoelectronics
IRJET - Carbon Nanotubes – The Centre of Nanoelectronics
 
Graphene
GrapheneGraphene
Graphene
 
RECYCLING THE WASTE PLASTIC MATERIAL WITH THE HELP OF HEAT TREARTMENT
RECYCLING THE WASTE PLASTIC MATERIAL WITH THE HELP OF HEAT TREARTMENTRECYCLING THE WASTE PLASTIC MATERIAL WITH THE HELP OF HEAT TREARTMENT
RECYCLING THE WASTE PLASTIC MATERIAL WITH THE HELP OF HEAT TREARTMENT
 
Corenet montreal 2_13_08_nanotech_materials
Corenet montreal 2_13_08_nanotech_materialsCorenet montreal 2_13_08_nanotech_materials
Corenet montreal 2_13_08_nanotech_materials
 
Paper id 21201429
Paper id 21201429Paper id 21201429
Paper id 21201429
 
Material science & eng 2012
Material science  & eng 2012Material science  & eng 2012
Material science & eng 2012
 
NOVO MODISMO ACADÊMICO E A PROMESSA DE APLICAÇÃO INDUSTRIAL DE GRAFENO
NOVO MODISMO ACADÊMICO E A PROMESSA DE APLICAÇÃO INDUSTRIAL DE GRAFENONOVO MODISMO ACADÊMICO E A PROMESSA DE APLICAÇÃO INDUSTRIAL DE GRAFENO
NOVO MODISMO ACADÊMICO E A PROMESSA DE APLICAÇÃO INDUSTRIAL DE GRAFENO
 

Plus de Sergey Lourie

Skoltech: take a step into the future
Skoltech: take a step into the futureSkoltech: take a step into the future
Skoltech: take a step into the futureSergey Lourie
 
Normalized Yahoo vs. Google stock prices vs. S&P500 Index
Normalized Yahoo vs. Google stock prices vs. S&P500 IndexNormalized Yahoo vs. Google stock prices vs. S&P500 Index
Normalized Yahoo vs. Google stock prices vs. S&P500 IndexSergey Lourie
 
Yahoo vs. Google in 2012
Yahoo vs. Google in 2012Yahoo vs. Google in 2012
Yahoo vs. Google in 2012Sergey Lourie
 
Looking for PhD Students in the field of space physics, space sciences and sp...
Looking for PhD Students in the field of space physics, space sciences and sp...Looking for PhD Students in the field of space physics, space sciences and sp...
Looking for PhD Students in the field of space physics, space sciences and sp...Sergey Lourie
 
Opportunities for Material Science PhD students at Skoltech
Opportunities for Material Science PhD students at SkoltechOpportunities for Material Science PhD students at Skoltech
Opportunities for Material Science PhD students at SkoltechSergey Lourie
 
Looking for Post-Docs to work in the field of Advanced Materials
Looking for Post-Docs to work in the field of Advanced MaterialsLooking for Post-Docs to work in the field of Advanced Materials
Looking for Post-Docs to work in the field of Advanced MaterialsSergey Lourie
 
Skoltech is hiring post-docs for its Strategic Innovation Research Groups
Skoltech is hiring post-docs for its Strategic Innovation Research GroupsSkoltech is hiring post-docs for its Strategic Innovation Research Groups
Skoltech is hiring post-docs for its Strategic Innovation Research GroupsSergey Lourie
 
Обзор американской прессы по инновационным продуктам май 2013
Обзор американской прессы по инновационным продуктам май 2013Обзор американской прессы по инновационным продуктам май 2013
Обзор американской прессы по инновационным продуктам май 2013Sergey Lourie
 
Предложения по развитию нормативной базы в целях поддержки национальной свето...
Предложения по развитию нормативной базы в целях поддержки национальной свето...Предложения по развитию нормативной базы в целях поддержки национальной свето...
Предложения по развитию нормативной базы в целях поддержки национальной свето...Sergey Lourie
 
Государственно-частное партнерство: серийное создание стартапов
Государственно-частное партнерство: серийное создание стартаповГосударственно-частное партнерство: серийное создание стартапов
Государственно-частное партнерство: серийное создание стартаповSergey Lourie
 
Инновационная диагностика свертывания крови
Инновационная диагностика свертывания кровиИнновационная диагностика свертывания крови
Инновационная диагностика свертывания кровиSergey Lourie
 
Роль РОСНАНО в развитии научно-технической базы наноиндустрии
Роль РОСНАНО в развитии научно-технической базы наноиндустрииРоль РОСНАНО в развитии научно-технической базы наноиндустрии
Роль РОСНАНО в развитии научно-технической базы наноиндустрииSergey Lourie
 
РОСНАНО: итоги первой пятилетки
РОСНАНО: итоги первой пятилеткиРОСНАНО: итоги первой пятилетки
РОСНАНО: итоги первой пятилеткиSergey Lourie
 
Российский институты развития
Российский институты развитияРоссийский институты развития
Российский институты развитияSergey Lourie
 
Делирий: термоквантовый двигатель
Делирий: термоквантовый двигательДелирий: термоквантовый двигатель
Делирий: термоквантовый двигательSergey Lourie
 
RUSNANO's CEO Anatoly Chubais' presentation for Asian investors
RUSNANO's CEO Anatoly Chubais' presentation for Asian investorsRUSNANO's CEO Anatoly Chubais' presentation for Asian investors
RUSNANO's CEO Anatoly Chubais' presentation for Asian investorsSergey Lourie
 
Рекламный буклет о бесконтактных глюкометрах
Рекламный буклет о бесконтактных глюкометрахРекламный буклет о бесконтактных глюкометрах
Рекламный буклет о бесконтактных глюкометрахSergey Lourie
 
Mlab labnotes-021 American management
Mlab labnotes-021 American managementMlab labnotes-021 American management
Mlab labnotes-021 American managementSergey Lourie
 
Сайт первого лица компании
Сайт первого лица компанииСайт первого лица компании
Сайт первого лица компанииSergey Lourie
 

Plus de Sergey Lourie (20)

Planets
PlanetsPlanets
Planets
 
Skoltech: take a step into the future
Skoltech: take a step into the futureSkoltech: take a step into the future
Skoltech: take a step into the future
 
Normalized Yahoo vs. Google stock prices vs. S&P500 Index
Normalized Yahoo vs. Google stock prices vs. S&P500 IndexNormalized Yahoo vs. Google stock prices vs. S&P500 Index
Normalized Yahoo vs. Google stock prices vs. S&P500 Index
 
Yahoo vs. Google in 2012
Yahoo vs. Google in 2012Yahoo vs. Google in 2012
Yahoo vs. Google in 2012
 
Looking for PhD Students in the field of space physics, space sciences and sp...
Looking for PhD Students in the field of space physics, space sciences and sp...Looking for PhD Students in the field of space physics, space sciences and sp...
Looking for PhD Students in the field of space physics, space sciences and sp...
 
Opportunities for Material Science PhD students at Skoltech
Opportunities for Material Science PhD students at SkoltechOpportunities for Material Science PhD students at Skoltech
Opportunities for Material Science PhD students at Skoltech
 
Looking for Post-Docs to work in the field of Advanced Materials
Looking for Post-Docs to work in the field of Advanced MaterialsLooking for Post-Docs to work in the field of Advanced Materials
Looking for Post-Docs to work in the field of Advanced Materials
 
Skoltech is hiring post-docs for its Strategic Innovation Research Groups
Skoltech is hiring post-docs for its Strategic Innovation Research GroupsSkoltech is hiring post-docs for its Strategic Innovation Research Groups
Skoltech is hiring post-docs for its Strategic Innovation Research Groups
 
Обзор американской прессы по инновационным продуктам май 2013
Обзор американской прессы по инновационным продуктам май 2013Обзор американской прессы по инновационным продуктам май 2013
Обзор американской прессы по инновационным продуктам май 2013
 
Предложения по развитию нормативной базы в целях поддержки национальной свето...
Предложения по развитию нормативной базы в целях поддержки национальной свето...Предложения по развитию нормативной базы в целях поддержки национальной свето...
Предложения по развитию нормативной базы в целях поддержки национальной свето...
 
Государственно-частное партнерство: серийное создание стартапов
Государственно-частное партнерство: серийное создание стартаповГосударственно-частное партнерство: серийное создание стартапов
Государственно-частное партнерство: серийное создание стартапов
 
Инновационная диагностика свертывания крови
Инновационная диагностика свертывания кровиИнновационная диагностика свертывания крови
Инновационная диагностика свертывания крови
 
Роль РОСНАНО в развитии научно-технической базы наноиндустрии
Роль РОСНАНО в развитии научно-технической базы наноиндустрииРоль РОСНАНО в развитии научно-технической базы наноиндустрии
Роль РОСНАНО в развитии научно-технической базы наноиндустрии
 
РОСНАНО: итоги первой пятилетки
РОСНАНО: итоги первой пятилеткиРОСНАНО: итоги первой пятилетки
РОСНАНО: итоги первой пятилетки
 
Российский институты развития
Российский институты развитияРоссийский институты развития
Российский институты развития
 
Делирий: термоквантовый двигатель
Делирий: термоквантовый двигательДелирий: термоквантовый двигатель
Делирий: термоквантовый двигатель
 
RUSNANO's CEO Anatoly Chubais' presentation for Asian investors
RUSNANO's CEO Anatoly Chubais' presentation for Asian investorsRUSNANO's CEO Anatoly Chubais' presentation for Asian investors
RUSNANO's CEO Anatoly Chubais' presentation for Asian investors
 
Рекламный буклет о бесконтактных глюкометрах
Рекламный буклет о бесконтактных глюкометрахРекламный буклет о бесконтактных глюкометрах
Рекламный буклет о бесконтактных глюкометрах
 
Mlab labnotes-021 American management
Mlab labnotes-021 American managementMlab labnotes-021 American management
Mlab labnotes-021 American management
 
Сайт первого лица компании
Сайт первого лица компанииСайт первого лица компании
Сайт первого лица компании
 

Dernier

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 

Dernier (20)

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 

Plastic Logic Technology Overview

  • 1.     WHITE  PAPER     Plastic  Logic  Technology  Overview   Beginnings     Over   the   last   three   decades   organic   electronics,   which   is   electronics   based   on   carbon   rather   than   silicon,  has  been  extensively  researched.  In  1998  Professor  Richard  Friend’s  group  at  the  University   of   Cambridge,   UK   published   a   seminal   work   using   an   organic   transistor   to   drive   an   organic   light   emitting   diode1.   Two   years   later   Plastic   Logic   was   founded   to   develop   and   commercialize   the   successes   of   the   work   done   by   Professor   Friend,   Professor   Henning   Sirringhaus   and   their   teams   at   the  Cavendish  Laboratory.     Plastic  Logic  soon  focused  its  activity  on  transistor  arrays  for  displays.    Organic  materials  are  typically   flexible,   lightweight   and   robust.   Plastic   Logic   decided   to   exploit   these   attributes   by   developing   its   arrays   on   a   plastic   base   which   would   then   allow   any   final   display   to   be  lighter   and   more   robust   than   equivalent  silicon-­‐based  products.     At   the   same   time,   teams   of   researchers   began   pushing   for   high-­‐quality   materials   that   would   meet   the  rigorous  demands  of  a  commercial  environment.      Several  leading  materials  companies  started   to   put   serious   effort   into   refining   their   materials   for   use   in   this   new   application   space   and   Plastic   Logic   developed   close   relationships   with   many   industrial   research   teams   to   guide   their   work   and   exploit  the  results  at  the  earliest  opportunity.   By   mid-­‐2004   Plastic   Logic   had   developed   small   area   displays   with   relatively   low   resolution   which   were  extremely  robust,  as  evidenced  by  the  photographs  in  Figure  1  a  .               Figure  1  b:  Demonstrating  the  robustness  of  Plastic  Logic’s  displays  –  note  the  small  bend  radius   Just  over  a  year  later,  in  late  2005,  the  company  had  progressed  its  technology  to  large  area  displays   with  much  higher  resolution  as  shown  in  Figure  2.                                                                                                                                 1  Sirringhaus  et  al,  Science  (1998)  Vol  280  page  1741-­‐1744       © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  1  OF  11    
  • 2.     WHITE  PAPER           Figure  2:    An  example  of  Plastic  Logic’s  displays  in  late  2005   By  early  2007,  Plastic  Logic  had  identified  a  site  for  its  manufacturing  facility  in  Dresden,  Germany   and   had   begun   the   factory   build.     Ideally   placed   in   the   heart   of   Silicon   Saxony,   Plastic   Logic   has   drawn   a   high-­‐caliber   team   with   extensive   manufacturing   experience   from   the   surrounding   region,   where  many  silicon  manufacturing  facilities  are  based.  The  teams  in  Dresden  and  Cambridge  worked   closely  together  to  ensure  that  the  transfer  of  the  technology  from  lab  to  fab  would  be  as  smooth   and  as  efficient  as  possible.     Only   eighteen   months   later   the   Dresden   manufacturing   facility   opened   its   doors   and   began   producing  flexible  displays  on  a  scale  never  seen  previously  in  the  organic  electronics  community.     a)   b)       Figure  3:    a)  Aerial  image  of  Plastic  Logic’s  manufacturing  facility  in  Dresden  Germany  and  b)  showing   the  size  of  the  motherplates  used  in  the  factory.   In   parallel   the   company   has   been   ramping   its   product   development,   marketing,   and   business   development   and   activities   in   the   US   to   ultimately   complete   the   transition   of   Plastic   Logic   from   a   small  R&D  company,  spun  out  of  academia,  to  a  product-­‐based  organization  with  the  facilities  and   know-­‐how  to  take  technologies  from  the  lab  bench  to  mass  market.     An  Introduction  to  Plastic  Logic  Technology   Now   that   the   field   of   organic   electronics   is   firmly   on   its   journey   to   industrial   maturity   it   is   important   to   step   back   and   recognize   the   key   components   in   taking   a   small   scale,   academic   activity   and   scaling   it  to  the  realities  of  a  commercial  environment.    A  balance  between  device  performance  and  ease  of   manufacture  must  be  struck  for  commercial  success.     For   the   past   10   years,   Plastic   Logic   has   been   at   the   forefront   of   this   progression—   taking   its   own   organic  transistor  technology  from  a  lab  bench  to  a  high  tech  manufacturing  environment—  and  is       © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  2  OF  11    
  • 3.     WHITE  PAPER   therefore   well   placed   to   discuss   the   considerations   from   both   the   research   and   manufacturing   perspectives.       This   document   will   give   an   overview   of   the   key   considerations   which   frame   the   transistor’s   performance  and  manufacturing  considerations  based  on  Plastic  Logic’s  learnings.   Transistors   Transistors   are   formed   from   three   electrodes,   a   dialectric   and   a   semiconductor.     The   electrodes   control  the  current  flow  by  way  of  the  voltage  applied  to  them.    The  semiconductor  is  the  material   through  which  the  current  flows.  A  schematic  is  shown  in  Figure  4.               Figure  4:  A  generic  top-­‐gate  transistor  in  cross-­‐section.   A  good  transistor  is  analogous  to  a  good  water  tap.     1) When  you  turn  the  tap  on,  water  soon  starts  to  flow  and  as  you  turn  it  on  a  little  more  the   water   flows   faster   until   it   is   soon   flowing   very   fast.     Similarly   for   a   transistor,   the   current,   which  is  a  flow  of  electric  charge,  should  begin  to  flow  once  a  small  voltage  is  applied  and  as   you  increase  the  voltage  the  current  should  increase  until  you  have  a  surfeit  of  current  for   your  application.   2) When   you   turn   the   tap   off,   it   shouldn’t   allow   any   water   to   leak   out.     Similarly   a   transistor   should  not  allow  current  to  flow  when  it  is  off.     In  the  vast  majority  of  display  applications  the  transistors  use  silicon  as  the  semiconductor  because  it   is   a   well-­‐established   technology   that   can   provide   ample   current   to   drive   the   LCD,   OLED,   electrophoretic   or   whichever   other   screen   technology   is   being   used.     However,   silicon   has   its   drawbacks   in   terms   of   cost,   ease   of   device   manufacture   and   fragility.     In   these   areas   organic   electronics   offer   an   advantage.     Made   primarily   from   materials   which   can   be   processed   from   solution,   the   transistors   are   inherently   simpler   and   cheaper   to   manufacture.     Even   though   today   silicon   can   have   higher   performance   than   organic   semiconductors,   there   are   many   applications   where   the   performance   advantage   of   silicon   is   not   required   and   where   an   organic   electronics   solution  is  more  cost  effective.         The  key  metric  of  semiconductor  performance  is  mobility.    This  is  effectively  a  measure  of  the  speed   at   which   the   charge   can   flow   in   the   semiconductor.     The   required   mobility   is   dependent   on   the   application.  The  faster  the  application,  the  higher  the  mobility  needed.  For  a  television,  the  picture   changes   rapidly   and   hence   the   mobility   required   is   high.     Where   the   image   changes   more   slowly,   such  as  in  an  e-­‐reader,  the  mobility  can  be  much  lower.         © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  3  OF  11    
  • 4.     WHITE  PAPER   The  typical  mobility  of  crystalline  silicon  is  on  the  order  of  1000cm2/Vs  but  many    applications  use   poly-­‐crystalline   silicon   (mobility     >50cm2/Vs   )   or   amorphous   silicon   (mobility   ~0.5cm2/Vs)   as   the   performance  is  still  adequate  but  the  cost  of  manufacture  is  greatly  reduced.         Within  organic  transistors  there  is  also  a  mobility  range  available.    Pentacene,  which  is  a  crystalline   material,  can  achieve  mobilities  of  10cm2/Vs  but  it  is  difficult  to  process  on  any  meaningful  scale.    At   the  other  end  of  the  spectrum,  fully  amorphous  polymer  devices  are  simple  to  manufacture.    They   can  be  made  and  driven  in  air,  without  encapsulation,  and  have  a  whole  host  of  attributes  which  are   extremely   desirable   in   a   manufacturing   context,   but   they   can   only   reach   mobilities   of   around   0.05cm2/Vs.     Nevertheless   this   is   still   sufficient   for   a   number   of   applications.   For   example,   electrophoretic   displays,   which   are   used   to   make   e-­‐paper   and   use   reflected   light   rather   than   an   internal   backlight,   can   be   successfully   driven   with   mobilities   in   this   range.   The   mobility   values   of   various  semiconductors  are  summarised  in  Figure  5.     Source:  A.  Salleo       Figure  5:  Mobility  levels  of  various  semiconductors.   Much   is   made   in   the   academic   literature   about   high   mobility   devices   and   often   this   is   the   metric   which  denotes  whether  or  not  a  device  is  a  success.    However,  the  highest  mobility  devices  are  often   made  in  nitrogen  environments  using  toxic  or  expensive  solvents  and  using  processes  which  are  slow   and  inherently  small  scale.  Such  devices  are  of  no  use  in  commercial  products.    Consistent  devices   are   needed,   made   from   materials   which   are   easy   to   manufacture   on   a   large   scale,   at   a   sensible  cost,   with  good  reproducibility  and  which  are  easy  to  process  in  air.    This  is  often  forgotten  in  the  quest   for  headline  mobility  values.      Fortunately,  over  the  last  few  years  there  has  been  increasing  effort   on   parameters   other   than   mobility.   Now   that   materials   manufacturers   are   becoming   more   acclimated   with   industrial   requirements,   materials   are   starting   to   appear   which   are   closer   to   pentacene   in   performance   whilst   retaining   many   of   the   desirable   processing   attributes   of   the   amorphous   materials.     This   development   will   open   up   display   applications   beyond   electrophoretic   into  LCD  and  OLED  displays.    Additionally  this  advancement  will  enable  organic  electronics  use  in  a   number  of  non-­‐display  applications  such  as  logic.             © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  4  OF  11    
  • 5.     WHITE  PAPER   Mobility  isn’t  the  only  factor  which  determines  the  current  that  is  available.  The  size  of  the  transistor   is  also  important.    If  the  transistor  is  large  enough  then  a  high  current  can  be  achieved  even  with  a   low  mobility.     In  practice,  the  space  available  for  the  transistor  is  usually  limited.    For  example,  a  laptop  screen  is   backlit   and   the   light   must   pass   through   the   transistor   array   to   the   user.     The   transistor   is   not   transmissive  and  hence   needs  to  be  as  small  as  possible  if  the  front-­‐of-­‐screen  performance  is  not  to   be   impaired.     In   an   electrophoretic   application,   where   reflected   light   is   used,   the   size   of   the   transistor   will   not   affect   the   user   experience   and   this   substantially   relaxes   the   size   constraint,   allowing  the  devices  to  be  much  larger  and  consequently  allowing  the  transistor  mobility  to  be  much   lower.      There  are  still  limits  however.    For  example,  in  active  matrix  displays  at  least  one  transistor  is   required  to  drive  each  pixel.    Therefore,  in  a  display  with  a  resolution  of  200  pixels  per  inch  all  of  the   requirements  for  the  pixel  need  to  fit  within  a  space  127  µm  x  127  µm  in  size.     In  an  ideal  transistor  the  current  would  begin  to  flow  once  a  small  voltage  has  been  applied  to  the   device   to   turn   it   on.     Usually,   however,   there   is   a   resistance   preventing   current   flow   when   the   voltage  begins  to  be  applied.    This  resistance  is  caused  by  poor  physical  or  electrical  contact  between   the   semiconductor   and   the   electrode,   known   as   contact   resistance,   and/or   by   the   bulk   of   the   semiconductor  hindering  the  charge  as  it  travels  to  the  semiconductor/dielectric  interface  where  the   charge  flow  occurs.       In  order  for  current  to  flow  the  voltage  must  be  increased  to  overcome  the  resistance.  The  size  of   the  resistance  is  especially  important  in  mobile  applications  because  the  greater  the  voltage  that  is   required  to  obtain  a  useful  current,  the  quicker  the  battery  will  run  down.    It  is  therefore  desirable  to   minimize   any   resistance   as   far   as   possible,   by   appropriate   choice   of   materials   and   careful   consideration  of  the  cleaning  methods  and  device  processing  methods  employed.       It   is   also   wasteful   if   a   high   voltage   is   needed   to   turn   the   transistor   off   as   this   also   requires   power   which  will  shorten  the  battery  run  time.    Thus  it  is  preferred  if  the  transistor  is  off  with  no  significant   current   flow   when   no   voltages   are   applied.     Additionally,   a   high   current   flow   with   only   minimal   voltage   increase   is   optimum   so   the   device   should   switch   from   off   to   on   with   only   a   small   applied   voltage.       The   materials   choice   for   each   of   the   components   of   the   transistor   (source,   drain,   gate,   semiconductor  and  dielectric)  can  have  significant  implications  for  its  performance  and  the  relative   ease  that  charge  can  flow.  The  source  and  drain  electrodes  must  be  chosen  so  that  charge  can  flow   easily   from   the   source   through   the   semiconductor   to   the   drain   when   the   transistor   is   on.     The   dielectric   must   also   be   carefully   chosen   as   the   wrong   dielectric   can   reduce   the   device   mobility   by   several   orders   of   magnitude   which   would   render   the   device   worthless.     Plastic   Logic   has   long     realized   the   importance   of   the   dielectric   choice   and   has   extensive   experience   in   matching   the   dielectric   to   the   semiconductor.     Materials   suppliers   are   now   also   seriously   investigating   the   dielectric   selection   to   provide   the   combination   of   dielectric   and   semiconductor  to   device   companies   rather  than  just  providing  the  semiconductor,  which  was  previously  the  case.     From  this  discussion  it  is  clear  that,  when  designing  a  transistor  for  the  mass  market,  mobility  is  only   part   of   the   story.   The   ease   at   which   the   device   can   be   turned   on   and   off   is   also   important   and   depends  on  the  choice  of  materials.  However,  there  are  yet  further  considerations  when  the  leap  is       © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  5  OF  11    
  • 6.     WHITE  PAPER   made  from  the  individual  transistor  to  the  active  matrix  array  for  a  display  application.    For  example,   in  arrays,  device  uniformity  is  key.    It  is  expected  that  devices  will  perform  similarly  to  one  another,   otherwise  visual  differences  may  be  observable  in  the  resultant  display.  Operational  stability  is  also   required   so   that   the   array   continues   to   function   predictably   throughout   its   life,   with   all   of   the   individual  devices  aging  consistently  regardless  of  how  they  have  been  driven.       Active  Matrix  Arrays  for  Display  Applications   Active  matrix  arrays  consist  of  a  series  of  transistors  laid  out  in  a  grid.    The  isolated  gate  line  shown   in  Figure  4  is  extended  to  connect  all  transistors  in  the  same  row  and  the  source  line  in  Figure  4  is   extended   to   connect   all   the   transistors   in   the   same   column.   This   allows   each   transistor   to   be   uniquely   addressed.     These   arrays   can   then   be   used   to   drive   display   media,   for   example,   electrophoretic   media   (such   as   E   Ink),   LCD   or   OLED.   In   the   simplest   architecture,   each   pixel   within   the   display   is   controlled   by   one   transistor   and   if   the   transistor   is   switched   on   then   the   pixel   will   switch   and   otherwise   will   not   switch.   A   schematic   is   shown   in   Figure   6a   with   the   display   pixels   overlaid  in  Figure  6b.   a)   b)   Figure  6:  a)  A  transistor  array  and  b)  Display  pixels  overlaying  the  transistor  array   Voltage   is   applied   to   the   first   gate   line   and   concurrently   each   source   line   in   parallel,   this   is   then   repeated  with  the  second  gate  line  and  so  on  until  all  the  transistors  have  been  addressed  and  all   the   pixels   are   on   or   off   as   required   for   the   image.       Because   the   millions   of   transistors   within   the   array  are  addressed  one  row  at  a  time,  any  one  transistor  is  only  addressed  for  a  very  short  period.     In   the   example   in   Figure   6b,   voltages   are   applied   to   turn   on   the   TFT   at   the   Source-­‐2   Gate-­‐2   intersection  (S2G2)  and  change  the  associated  pixel  to  its  on  state,  which  is  white,  and  then  applied   to  S4G3  and  finally  S2G4  to  change  their  pixel  colors  to  white.  The  remaining  transistors  are  left  in   their  off  state  and  the  pixels  remain  black.     LCD   color   displays   use   this   basic   principle   and   then   use   color   filters   distributed   in   a   pattern   across   the  display  to  give  red,  green  and  blue  pixels  as  well  as  white  ones.    This  methodology  can  also  be   used   for   reflective   technologies   although   there   are   also   other   device   architectures   that   can   be   employed.     The   gate   lines   and   source   lines   running   across   and   down   the   transistor   array   can   form   transistors   other  than  those  in  the  array  if  the  array  is  poorly  constructed.  These  unwanted  transistors,  called   parasitics,   can   cause   the   display   pixels   to   turn   on   when   they   should   be   off.     It   is   important   that       © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  6  OF  11    
  • 7.     WHITE  PAPER   careful  consideration  is  given  to  where  connections  are  routed  and  how  the  devices  are  built  up  so   that  parasitic  devices  are  avoided.      Plastic  Logic  has  extensive  knowledge  in  array  design  to  minimize   the  impact  of  parasitic  devices.     Parasitic  transistors  are  not  the  only  source  of  unwanted  current.    Transistors  within  the  array  can   also  leak  current  to  one  another  so  it  is  important  to  ensure  there  is  no  path  for  the  current  to  travel   between  neighboring  devices.         While   we   have   focused   on   transistors,   these   are   not   the   only   devices   within   the   array   and   the   other   components  must  not  be  neglected.  During  the  time  that  the  transistor  is  not  being  addressed  the   charge  it  produced  during  the  address  time  needs  to  be  retained  until  it  is  next  addressed.    This  is   achieved  by  the  use  of  a  storage  capacitor  which  comprises  two  plates  separated  by  a  dielectric.  The   drain  pad  of  the  transistor  makes  up  one  of  the  plates  of  the  capacitor.  The  cross-­‐section  is  shown  in   Figure  7.     Figure  7:  Cross-­‐section  of  TFT  and  capacitor  combination   The  metric  for  the  capacitor  is  known  as  capacitance.    The  capacitance  is  a  measure  of  the  ability  of   the  capacitor  to  store  charge  and  is  determined  by  the  capacitor’s  area,  the  separation  of  the  plates,     and  a  measure  of  the  dielectric  known  as  the  dielectric  constant.     For   any   given   capacitance   the   area   of   the   capacitor   can   be   reduced   if   the   dielectric   constant   is   increased.    As  space  is  at  a  premium  within  the  array  it  would  be  ideal  to  have  a  dielectric  with  a  high   dielectric   constant   so   that   the   capacitor   can   be   as   small   as   possible.     Unfortunately   most   organic   transistors   have   relatively   small   dielectric   constants,   when   compared   to   inorganic   transistors,   and   consequently  the  capacitor  structure  is  often  larger  than  would  ideally  be  the  case.    The  competing   requirements   of   the   transistor   and   the   capacitor   present   one   of   the   problems   that   has   to   be   addressed   for   success   in   the   displays   market.   There   are   several   routes   to   solve   the   problem,   all   of   which  present  challenges.     1) The   transistor   could   be   shrunk   to   allow   more   space   for   the   capacitor,   although   this   will   increase  the  mobility  requirement.     2) The  dielectric  used  could  have  a  high  dielectric  constant  so  that  the  capacitor  can  be  small,   but  this  will  impair  transistor  performance.             © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  7  OF  11    
  • 8.     WHITE  PAPER   3) A   capacitor   and   the   transistor   could   be   processed   such   that   they   use   different   dielectrics   from  one  another,  although  this  will  certainly  add  complexity  and  consequently  cost  to  the   system.     As  was  previously  stated,  materials  suppliers  have  recently  started  to  realize  that  the  dielectric  must   also   be   carefully   optimized   to   match   the   semiconductor   and   in   so   doing   maximize   the   transistor   mobility.    Materials  manufacturers  also  need  to  extend  this  thinking  and  realize  that  the  transistor  is   not  the  only  component  in  the  array  and  that  developing  a  semiconductor  that  could  work  with  high   dielectric  constant  materials  would  be  very  desirable.       The   array   structure   is   complicated   further   because   the   bottom   capacitor   plate   (the   drain   pad)   needs   to   be   in   direct   contact   with   the   display   media.     As   shown   in   Figure   7,   the   drain   pad   is   underneath   all   of   the   other   layers   so   it   therefore   has   to   be   brought   to   the   top   of   the   stack.   This   is   achieved   by   adding  an  interlayer  dielectric,  making  a  hole  in  the  stack  of  layers  and  adding  a  metal  or  polymeric   conductor  on  top  to  effectively  move  the  bottom  capacitor  plate  from  the  bottom  of  the  stack  to  the   top.     A  generic  repeat  unit  in  the  active  matrix  array  would  therefore  be:   a)   b)     Figure   8:   a)   Plan   view   of   a   generic   repeat   unit   in   an   active   matrix   array,   b)   cross-­‐section   of   repeat   unit.   Thus   once   the   transistors   are   incorporated   into   a   real-­‐world   application   there   are   many   aspects   which  must  be  considered  and  not  just  the  design  and  performance  of  the  transistor  itself.    This  is   true  not  only  in  displays  but  also  in  non-­‐display  applications  such  as  sensors  or  RFID.     Non-­‐Display  Applications   Transistors   can   either   be   p-­‐type   or   n-­‐type   depending   on   whether   they   are   turned   on   by   applying   negative  voltages  or  positive  ones.  For  display  applications  an  active  matrix  array  can  be  produced   using  transistors  which  are  either  all  p-­‐type  or  all  n-­‐type.    Logic  circuits,  however,  are  most  efficient   if  both  n-­‐type  and  p-­‐type  transistors  are  available.     To   date   the   vast   majority   of   organic   transistors   are   p-­‐type   because   p-­‐type   semiconductors   are   the   most  advanced  in  terms  of  our  understanding  and  also  in  terms  of  the  key  performance  metrics  such   as  mobility.    However  n-­‐type  transistors  would  bring  many  advantages  even  into  the  displays  space.           © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  8  OF  11    
  • 9.     WHITE  PAPER   A   display   requires   drivers   in   order   to   address   the   pixels   correctly   and   in   Plastic   Logic’s   case   all   of   the   driving  electronics  which  surround  the  active  matrix  array  are  made  from  silicon.    Some  of  this  could   be  replaced  by  organic  transistors  if  both  p  and  n-­‐type  materials  were  available.    This  would  allow   the  advantages  of  organic  materials,  namely  ease  of  processing,  cost  and  robustness  to  be  utilized  in   more  of  the  system.  Some  companies  are  beginning  to  seriously  develop  n-­‐type  materials  and  Plastic   Logic   is   actively   engaged   in   the   testing   and   development   of   these   materials   to   ensure   they   reach   commercial  viability  as  soon  as  is  practicable.     In   addition   to   n-­‐type   devices,   Plastic   Logic   has   also   given   significant   consideration   into   how   the   devices  are  constructed  so  that  unwanted  capacitances  and  currents  can  be  removed.    Plastic  Logic’s   IP   portfolio   extends   broadly   over   high-­‐resolution   printing   methods,   where   sub-­‐micron   channel   lengths   have   been   demonstrated,   and   fine-­‐feature   patterning   techniques,   both   of   which   help   to   reduce  parasitics  and  improve  the  device  speed.     As  the  transistor  mobility  improves  for  commercially  viable  devices  in  both  p  and  n-­‐type  devices,  and   deposition   methods   enable   fine   features   and   low   parasitics,   it   becomes   possible   for   organic   electronics  to  move  into  other  application  areas  such  as  RFID,  Sensors,  ASIC,  and  smartcards.         Reliability   Of   paramount   importance   when   discussing   any   commercial   application   is   the   reliability   of   the   electronic   components   in   the   product   and   the   reliability   of   the   process   used   to   make   them.     The   product  will  not  be  a  commercial  success  if  the  transistors  stop  working  when  they  are  exposed  to   heat,   light,   water,   or   wear   out   after   being   operated   for   a   few   weeks.     In   the   case   of   displays   this   would  create  ‘dead’  pixels  which  remain  permanently  off  and  in  logic  circuits  it  would  prevent  the   circuit   from   operating   correctly   and   cause   the   product   to   fail.   While   it   would   be   desirable   for   the   transistors  to  always  perform  the  same  way  in  all  environments  and  all  operating  conditions  this  is   unrealistic.    Temperature  and  moisture  will  change  the  device  behaviour  not  only  in  organic  devices   but   in   silicon   and   other   semiconductors   too.     Additionally,   as   with   most   things,   extensive   use   will   cause   degradation   over   time.     When   designing   a   product   it   is   important   to   investigate   the   operation   of   the   devices   in   a   range   of   environments   and   under   a   range   of   operating   conditions   which   are   specific   to   the   application   in   question.     The   changes   to   the   device   performance   caused   by   varying   these   factors   can   then   be   accounted   for   in   the   design   of   the   devices   such   that   it   doesn’t   cause   a   difference   in   the   visual   performance   of   the   display   or   the   operation   of   the   logic   circuit.     When   completing   such   a   design   it   is   important   to   remember   that   it   is   the   performance   of   the   worst   transistor  that  is  of  most  interest.    The  worst  transistor  in  the  display  must  still  be  functional  at  the   end   of   the   product   life   and   therefore   the   worst   transistor   dictates   the   pixel   design.     If   the   product   is   to  reach  its  full  potential  and  thereby  maximize  revenue  for  the  manufacturer,  uniformity  across  all   the  devices  within  the  display  is  key.     The   importance   of   uniformity   is   also   clear   when   considering   how   the   products   will   be   tested   to   ensure   they   are   fit   for   purpose.   It   is   impossible   to   fully   test   every   device   in   every   product   and   therefore  it   is   important   that   the   transistor   behaviour   is   consistent   and   predictable   such   that   a   basic   test  will  show  whether  the  product  will  work  as  expected.       Again  this  highlights  the  importance  of  using  materials  which  can  be  easily  mass-­‐produced  and  are   well  understood  so  that  the  variability  between  devices  is  minimized.           © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  9  OF  11    
  • 10.     WHITE  PAPER   It   is   not   only   variability   in   the   materials   which   can   cause   variation   in   the   device   performance.     Variability  in  the  process  can  have  the  same  effect  and  hence  the  manufacturing  process  needs  to  be   robust  and  repeatable.  An  unreliable  process  will  reduce  yield,  increase  cost  and  make  forecasting   product  availability  difficult.  This  needs  to  be  considered  at  the  outset,  in  the  initial  device  design,  as   a   complicated   and   intricate   process   will   be   harder   to   maintain   than   a   straightforward   and   simple   one.     Manufacturing   The   requirements   and   intricacies   of   manufacturing   are   worthy   of   a   document   in   their   own   right.     Here,  a  couple  of  examples  are  used  to  give  a  flavor  of  some  of  the  considerations  involved  in  the   transition  from  a  lab-­‐based  environment  to  a  manufacturing  one.   When   moving   from   an   R&D   environment   to   manufacturing   every   minutia   has   to   be   validated   and   understood.     Issues   that   affect   a   couple   of   displays   in   the   lab   could   wipe   out   whole   batches   of   displays   in   a   factory,   which   would   be   extremely   costly.     Thus   it   is   important   to   understand   all   the   parameters  so  that  issues  can  be  rectified  quickly  with  minimal  impact  on  production.     As   an   example,   one   major   consideration   is   display   build   time.     In   a   lab,   where   displays   are   being   processed   one   at   a   time,   tight   time   constraints   can   be   accommodated.     For   example,   if   one   layer   cannot  be  exposed  to  air  for  more  than  an  hour  or  one  clean  or  treatment  process  wears  off  after   ten   minutes,   then   displays   can   be   moved   from   one   station   to   another   quickly   in   order   to   accommodate  this  criterion.    In  a  manufacturing  facility  however,  such  tight  time  constraints  cause   complexity   because   displays   are   usually   processed   in   relatively   large   batches   using   automated   equipment,  meaning  that  any  one  display  must  wait  for  all  the  other  displays  ahead  of  it  before  it   goes   through   a   particular   process.     Any   delay   could   potentially   push   large   numbers   of   displays   beyond   the   allowable   time   between   process   steps.     Consequently   any   time   criticalities   need   to   be   fully   understood,   not   only   so   batches   are   processed   through   genuinely   critical   steps   within   the   allotted   time   but   also   so   perfectly   good   batches   are   not   scrapped   for   failing   to   meet   an   arbitrary   time  constraint.     A   second   issue   in   moving   from   the   lab   to   manufacturing   is   how   to   scale   the   processing   of   flexible   substrates  to  a  size  not  previously  used  in  industry.    The  manufacturing  of  organic  electronic  devices   on  flexible  substrates  is  still  in  its  infancy.    Equipment  suppliers  are  used  to  sheet  fed,  glass  based   products   and   their   tools   are   designed   with   rigid,   inflexible   substrates   in   mind.     Plastic   Logic   addressed  this  conundrum  by  laminating  its  flexible  substrate  to  glass  so  that  it  could  be  processed   as   if   it   were   glass.   This   minimized   the   equipment   modifications,   and   removed   the   challenge   from   each   and   every   tool   supplier,   who   might   each   have   different,   and   potentially   mutually   exclusive,   ways  of  addressing  the  issue,  and  moved  it  squarely  back  to  Plastic  Logic.    This  allowed  Plastic  Logic   to  develop  unrivalled  expertise  and  competency  in  the  handling  and  processing  of  flexible  substrates   and  their  lamination  to  glass  and  facilitated  a  deep  understanding  of  how  the  substrate  is  affected   by   factors   such   as   temperature,   chemicals   and   humidity,   which   is   invaluable   information  not   only   at   the  lamination  stages  but  for  all  of  the  other  processing  steps.These  examples  help  to  show  that  to   successfully   progress   out   of   the   lab   and   into   a   factory   there   are   not   only   scientific   considerations,   such   as   how   the   transistor   degrades   or   whether   devices   are   uniform,   but   also   practical   considerations,  which  are  every  bit  as  important  and  which  must  also  be  addressed.         © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  10  OF  11    
  • 11.     WHITE  PAPER   Conclusion   In   a   commercial   environment   it   is   not   enough   to   design   a   transistor   purely   on   the   basis   of   high   mobility.    The  optimum  transistor  is  the  one  which  can  be  processed  simply,  affordably,  consistently,   and  which  has  a  performance  that  is  sufficient  for  the  task  in  hand.    Additionally  the  requirements  of   the   other   components   of   the   system,   for   example   the   capacitor   in   the   display,   must   also   be   accounted   for   right   at   the   outset   of   the   design.   This   ensures   that   the   design   optimizes   the   system   rather  than  any  individual  component.    In  designing  a  system,  Plastic  Logic  understands  the  balance   that   must   be   struck   between   the   myriad   of   influencing   factors,   and   this   is   critical   to   commercial   success.     Plastic   Logic   has   unrivalled   expertise   in   developing   organic   electronics   for   consumer   products   and   in   such   a   rapidly   changing   technology   environment   it   is   vital   to   remain   at   the   forefront   of   research   and   development   for   early   integration   of   new   features   and   hence   is   a   competitive   advantage.     Plastic   Logic   is   devoting   significant   resources   to   the   integration   of   a   compatible   color   technology   and   optimum   front-­‐of-­‐screen   performance.   Plastic   Logic   is   also   focused   on   the   continued   development   of  the  p-­‐type  transistors  in  its  array,  using  materials  with  similar  performance  to  amorphous  silicon.     For  further  cost  benefit  and  feature  enhancement  it  is  also  developing   n-­‐type  transistors  which  will,   when  integrated  successfully,  expand  the  functionality  of  organic  electronics  beyond  the  transistor   array  and  into  the  surrounding  logic  circuits.     In  Plastic  Logic  the  research  teams  are  highly  aligned  with  the  manufacturing  engineers  to  procure   suitable   equipment   that   can   meet   the   challenges   of   mass   manufacture,   both   in   Dresden   and   in   Plastic   Logic’s   planned   second   manufacturing   facility   in   Russia.     Close   alignment   ensures   rapid   inclusion  of  new  advances  into  the  end  product.   This  work  will  ensure  that  Plastic  Logic  continues  to  advance  its  technology  platform  for  the  future.                         Plastic Logic Inc. Headquarters 650 Castro Street, Suite 500 Mountain View, CA 94041 USA Phone: +1 (650) 584-2100 Fax: +1 (650) 584-2101       © 2011  PLASTIC  LOGIC.  ALL  RIGHTS  RESERVED.  THIS  DOCUMENT  IS  PLASTIC  LOGIC  PUBLIC  INFORMATION         PAGE  11  OF  11