SlideShare une entreprise Scribd logo
1  sur  46
Two-Phase Clocked Adiabatic Static CMOS Logic: Analysis, Application and LSI Implementation Nazrul Anuar Bin Nayan Sekine and Takahashi Lab., Electronics and Information System Division   Graduate School of Engineering Gifu University
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Slide
Slide  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Designer’s dream 1. Portable –increase  battery life  continuously  2. High-end  – avoid  cooling  packages and  reliability  issue due to power Slide  Chapter 1 Introduction
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Slide  Chapter 1 Introduction
Slide  Chapter 1 Introduction  Two-phase Clocked Adiabatic Static CMOS Logic (2PASCL)  Using adiabatic switching  Reduce current flow
Slide  charismathics.com topnews.in Smart cards RFID nec.co.jp Sensors nextbigfuture.com Target: Low power, low frequency devices Chapter 1 Introduction
Static   (leakage) ~10% Short circuit 10~20% Dynamic 70~80% (>0.18  m tech.) Abdollahi, A., Fallah, F., Pedram, M.: Leakage Current Reduction in CMOS VLSI Circuits by Input Vector Control. IEEE Transactions on VLSI Systems  12 (2), 140–154 (2004) Slide  Chapter 1 Introduction  Adiabatic switching --Technology to reduce dynamic power
CMOS and its equivalent circuit V dd  and V ss  of CMOS V dd V ss Slide  Chapter 2 Principle of Adiabatic e n (t)
Slide  Chapter 2 Principle of Adiabatic MOS R N MOS R 1 Pull-up  network Pull-up  network Pull-down network Pull-down  network 0.18    process 1.2    process Pull-up network 10 kOhm 3.8 kOhm Pull-down network 4 kOhm 2.2 kOhm
Charge transfer without generating heat. V   and V  -  of adiabatic circuit. V  Slide  Chapter 2 Principle of Adiabatic V  w r : Energy dissipated at R
Adiabatic charging/discharging  reduce  the amount of  current flow  in the circuit The  energy recovery  phenomenon is demonstrated in w p  ramped voltage supply   Slide  Chapter 2 Principle of Adiabatic   w p : Supplied energy at P w C : Energy accumulated at C Pull up Pull down Pull up Pull down
[object Object],[object Object],[object Object],Slide  Chapter 2 Principle of Adiabatic ,[object Object],[object Object],[object Object],Technique ,[object Object],[object Object],Requirement Condition
[object Object],[object Object],Slide  Chapter 2 Principle of Adiabatic
2n2p-2n Method used to  create three states;  (released, zero, unity) 1n1p The approach 1n1p 2n2n2p ECRL ADL ADCL 2PADCL HCnMOS 2n-2n2D Slide  Chapter 2 Principle of Adiabatic (2PASCL) Adiabatic logic dynamic static Differential  Operation Quasi Asymptotically Split-level  pulse driving
Slide  Chapter 2 Principle of Adiabatic Adiabatic inverters which are easily derived from CMOS T: period of primary signal N: no. of power supply V P  & I P : voltage & current supply
Slide  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],Nazrul Anuar , Y. Takahashi, T. Sekine, “Two phase clocked adiabatic static CMOS logic and its logic family,”  J. Semiconductor Technology and Science , vol. 10, no. 1, pp. 1–10, Mar. 2010. E i : Energy injected to the circuit E r : Energy received (recovery) 0.6   / 0.18   0.6   / 0.18   0.6   / 0.18   40   / 40   Split level sinusoidal to reduce the  voltage potential  of logic while maintaining the  Vp-p  Slide  Chapter 3 2PASCL Diodes eliminated at the charging path to increase the amplitude and reduce dissipated energy
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],V X V Y V   V  Slide  Chapter 3 2PASCL Evaluation and Hold Mode
Slide  ,[object Object],[object Object],[object Object],[object Object],C L =0.01 pF,  V tp =  –  0.58 V,  V tn =0.24 V,  V  p− p = 0.9 V Power dissipation without shape factor (theory) Energy dissipation for triangle Chapter 3 2PASCL
Slide  Chapter 3 2PASCL
Slide  Chapter 3 2PASCL
Slide  NOR  NAND XOR  NOT Chapter 3 2PASCL
Slide  Chapter 3 2PASCL 1 st  design 2 nd  design 3 rd  design 4 th  design
Chapter 3 2PASCL Slide  4 th  design
Slide  Chapter 3 2PASCL
Slide  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],Slide  Chapter 4 Application Circuits
Full Adder Spice diagram of  4-bit 2PASCL RCA Slide  4-bit Ripple Carry Adder (RCA) Chapter 4 Application Circuits Spice diagram
Average of 35% power dissipation reduction in 2PASCL-RCA compared to CMOS-RCA Slide  Chapter 4 Application Circuits Input, Power clocks and Output signal 2PASCL-RCA.
Chapter 4 Application Circuits Block diagram. Consists of 16 ANDs, 4 HAs, 8 FAs, and 8 DFFs. Slide
Chapter 4 Application Circuits Simulation results using 1.2um CMOS technology Slide  1 1 1 1 0 0 0 0 1 1 1 1 (1111) 2  X (1111) 2 = (11100001) 2
Comparison with CMOS using 1.2   m technology with W/L : 5.0/1.2   m Simulation at 1 to 12 MHz, 2PASCL Multiplier dissipates  55%  lower power compared to CMOS. Slide  Chapter 4 Application Circuits
Slide  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
NOR NOT NAND XOR D-Flip flop 1-bit Half Adder 1-bit Full Adder Slide  Chapter 5  LSI Implementation
Slide  Chapter 5  LSI Implementation
Slide  Chapter 5  LSI Implementation ,[object Object],[object Object],[object Object]
Tech. 1.2 μm  CMOS 2-metal, 2-poly Power Voltage: 5.0 V Core Size : 1354 (W) × 997 (H) μm2 No. of transistors : 992 Dynamic Operating : Frequency 50 kHz – 5 MHz Dynamic Power Dissipation: 5.8 mW @ 5 MHz mulitiplier 4-inverter chain Slide  Chapter 5  LSI Implementation
Slide  Chapter 5  LSI Implementation
Measurement equipment to examine the functionality of 4x4-bit array 2PASCL Multiplier Slide  Chapter 5  LSI Implementation
Measurement result to examine the functionality of 4x4-bit array 2PASCL Multiplier @ 1 MHz Slide  Chapter 5  LSI Implementation (a) Output signals without D-Flipflop (b) Output signals  with D-Flip flop 1 1 1 1 0 0 0 0 1 (1111) 2  X (1111) 2 = (11100001) 2
Slide  Chapter 5  LSI Implementation
Slide  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],Slide  Chapter 5  Conclusion & Future Works
[object Object],[object Object],[object Object],Slide  Chapter 5  Conclusion & Future Works
Thank you for your kind attention!

Contenu connexe

Tendances

Chapter 03
Chapter 03Chapter 03
Chapter 03Tha Mike
 
Chapter 02
Chapter 02Chapter 02
Chapter 02Tha Mike
 
Chapter 10
Chapter 10Chapter 10
Chapter 10Tha Mike
 
Chapter 17
Chapter 17Chapter 17
Chapter 17Tha Mike
 
Design and Implementation of Low Power Multiplier Using Proposed Two Phase Cl...
Design and Implementation of Low Power Multiplier Using Proposed Two Phase Cl...Design and Implementation of Low Power Multiplier Using Proposed Two Phase Cl...
Design and Implementation of Low Power Multiplier Using Proposed Two Phase Cl...IJECEIAES
 
Chapter 20
Chapter 20Chapter 20
Chapter 20Tha Mike
 
Ch4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICCh4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICChenming Hu
 
Chapter 16
Chapter 16Chapter 16
Chapter 16Tha Mike
 
Chapter 13
Chapter 13Chapter 13
Chapter 13Tha Mike
 
Ch6 lecture slides Chenming Hu Device for IC
Ch6 lecture slides Chenming Hu Device for ICCh6 lecture slides Chenming Hu Device for IC
Ch6 lecture slides Chenming Hu Device for ICChenming Hu
 
Ch3 lecture slides Chenming Hu Device for IC
Ch3 lecture slides Chenming Hu Device for ICCh3 lecture slides Chenming Hu Device for IC
Ch3 lecture slides Chenming Hu Device for ICChenming Hu
 
Ch5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICCh5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICChenming Hu
 
Lecture psk qam, digital modulation
Lecture psk qam, digital modulation Lecture psk qam, digital modulation
Lecture psk qam, digital modulation DrAimalKhan
 
Design of a Low Power Combinational Circuit by using Adiabatic Logic
Design of a Low Power Combinational Circuit by using Adiabatic LogicDesign of a Low Power Combinational Circuit by using Adiabatic Logic
Design of a Low Power Combinational Circuit by using Adiabatic LogicIJERA Editor
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
Low Power CMOS Analog Multiplier
Low Power CMOS Analog MultiplierLow Power CMOS Analog Multiplier
Low Power CMOS Analog MultiplierIJERA Editor
 
OPAL-RT Real time simulation using RT-LAB
OPAL-RT Real time simulation using RT-LABOPAL-RT Real time simulation using RT-LAB
OPAL-RT Real time simulation using RT-LABOPAL-RT TECHNOLOGIES
 
Electrical Drive & Traction (Their Control)
Electrical Drive & Traction (Their Control)Electrical Drive & Traction (Their Control)
Electrical Drive & Traction (Their Control)FellowBuddy.com
 

Tendances (20)

Chapter 03
Chapter 03Chapter 03
Chapter 03
 
Chapter 02
Chapter 02Chapter 02
Chapter 02
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
Design and Implementation of Low Power Multiplier Using Proposed Two Phase Cl...
Design and Implementation of Low Power Multiplier Using Proposed Two Phase Cl...Design and Implementation of Low Power Multiplier Using Proposed Two Phase Cl...
Design and Implementation of Low Power Multiplier Using Proposed Two Phase Cl...
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Ch4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICCh4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for IC
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Smh presentación jmsc depc
Smh presentación  jmsc depcSmh presentación  jmsc depc
Smh presentación jmsc depc
 
Chapter 13
Chapter 13Chapter 13
Chapter 13
 
Cw4301569573
Cw4301569573Cw4301569573
Cw4301569573
 
Ch6 lecture slides Chenming Hu Device for IC
Ch6 lecture slides Chenming Hu Device for ICCh6 lecture slides Chenming Hu Device for IC
Ch6 lecture slides Chenming Hu Device for IC
 
Ch3 lecture slides Chenming Hu Device for IC
Ch3 lecture slides Chenming Hu Device for ICCh3 lecture slides Chenming Hu Device for IC
Ch3 lecture slides Chenming Hu Device for IC
 
Ch5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICCh5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for IC
 
Lecture psk qam, digital modulation
Lecture psk qam, digital modulation Lecture psk qam, digital modulation
Lecture psk qam, digital modulation
 
Design of a Low Power Combinational Circuit by using Adiabatic Logic
Design of a Low Power Combinational Circuit by using Adiabatic LogicDesign of a Low Power Combinational Circuit by using Adiabatic Logic
Design of a Low Power Combinational Circuit by using Adiabatic Logic
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
Low Power CMOS Analog Multiplier
Low Power CMOS Analog MultiplierLow Power CMOS Analog Multiplier
Low Power CMOS Analog Multiplier
 
OPAL-RT Real time simulation using RT-LAB
OPAL-RT Real time simulation using RT-LABOPAL-RT Real time simulation using RT-LAB
OPAL-RT Real time simulation using RT-LAB
 
Electrical Drive & Traction (Their Control)
Electrical Drive & Traction (Their Control)Electrical Drive & Traction (Their Control)
Electrical Drive & Traction (Their Control)
 

Similaire à 4x4-bit 2PASCL Multiplier by Nazrul Anuar Nayan

Design and Implementation of Low Power 16-bit Carry-lookahead Adder using Adi...
Design and Implementation of Low Power 16-bit Carry-lookahead Adder using Adi...Design and Implementation of Low Power 16-bit Carry-lookahead Adder using Adi...
Design and Implementation of Low Power 16-bit Carry-lookahead Adder using Adi...IRJET Journal
 
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...CSCJournals
 
MICROPROCESSOR BASED SUN TRACKING SOLAR PANEL SYSTEM TO MAXIMIZE ENERGY GENER...
MICROPROCESSOR BASED SUN TRACKING SOLAR PANEL SYSTEM TO MAXIMIZE ENERGY GENER...MICROPROCESSOR BASED SUN TRACKING SOLAR PANEL SYSTEM TO MAXIMIZE ENERGY GENER...
MICROPROCESSOR BASED SUN TRACKING SOLAR PANEL SYSTEM TO MAXIMIZE ENERGY GENER...moiz89
 
Design and Analysis of Sequential Elements for Low Power Clocking System with...
Design and Analysis of Sequential Elements for Low Power Clocking System with...Design and Analysis of Sequential Elements for Low Power Clocking System with...
Design and Analysis of Sequential Elements for Low Power Clocking System with...IJERA Editor
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationscuashok07
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualChirag Shetty
 
Iaetsd an mtcmos technique for optimizing low
Iaetsd an mtcmos technique for optimizing lowIaetsd an mtcmos technique for optimizing low
Iaetsd an mtcmos technique for optimizing lowIaetsd Iaetsd
 
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...VLSICS Design
 
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...IJERA Editor
 
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...IJERA Editor
 
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITPOWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITAnil Yadav
 
Design and simulation of cmos ota
Design and simulation of cmos otaDesign and simulation of cmos ota
Design and simulation of cmos otaijmpict
 
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLERDC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLERTridib Bose
 
RobertPresentation.ppt
RobertPresentation.pptRobertPresentation.ppt
RobertPresentation.pptRevathiMohan14
 

Similaire à 4x4-bit 2PASCL Multiplier by Nazrul Anuar Nayan (20)

Design and Implementation of Low Power 16-bit Carry-lookahead Adder using Adi...
Design and Implementation of Low Power 16-bit Carry-lookahead Adder using Adi...Design and Implementation of Low Power 16-bit Carry-lookahead Adder using Adi...
Design and Implementation of Low Power 16-bit Carry-lookahead Adder using Adi...
 
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
Design of High Speed Low Power 15-4 Compressor Using Complementary Energy Pat...
 
MICROPROCESSOR BASED SUN TRACKING SOLAR PANEL SYSTEM TO MAXIMIZE ENERGY GENER...
MICROPROCESSOR BASED SUN TRACKING SOLAR PANEL SYSTEM TO MAXIMIZE ENERGY GENER...MICROPROCESSOR BASED SUN TRACKING SOLAR PANEL SYSTEM TO MAXIMIZE ENERGY GENER...
MICROPROCESSOR BASED SUN TRACKING SOLAR PANEL SYSTEM TO MAXIMIZE ENERGY GENER...
 
Design and Analysis of Sequential Elements for Low Power Clocking System with...
Design and Analysis of Sequential Elements for Low Power Clocking System with...Design and Analysis of Sequential Elements for Low Power Clocking System with...
Design and Analysis of Sequential Elements for Low Power Clocking System with...
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
5 FINAL PROJECT REPORT
5 FINAL PROJECT REPORT5 FINAL PROJECT REPORT
5 FINAL PROJECT REPORT
 
Iceeot
IceeotIceeot
Iceeot
 
bucu2_5
bucu2_5bucu2_5
bucu2_5
 
Iaetsd an mtcmos technique for optimizing low
Iaetsd an mtcmos technique for optimizing lowIaetsd an mtcmos technique for optimizing low
Iaetsd an mtcmos technique for optimizing low
 
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
DESIGN & ANALYSIS OF A CHARGE RE-CYCLE BASED NOVEL LPHS ADIABATIC LOGIC CIRCU...
 
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
 
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
 
Buck converter design
Buck converter designBuck converter design
Buck converter design
 
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUITPOWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
POWER CONSUMPTION AT CIRCUIT OR LOGIC LEVEL IN CIRCUIT
 
Two Quadrant chopper
Two Quadrant chopperTwo Quadrant chopper
Two Quadrant chopper
 
Design and simulation of cmos ota
Design and simulation of cmos otaDesign and simulation of cmos ota
Design and simulation of cmos ota
 
15 47-58
15 47-5815 47-58
15 47-58
 
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLERDC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY  PIC16F877A MICROCONTROLLER
DC MOTOR SPEED CONTROL USING ON-OFF CONTROLLER BY PIC16F877A MICROCONTROLLER
 
RobertPresentation.ppt
RobertPresentation.pptRobertPresentation.ppt
RobertPresentation.ppt
 

Dernier

TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 

Dernier (20)

TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 

4x4-bit 2PASCL Multiplier by Nazrul Anuar Nayan

  • 1. Two-Phase Clocked Adiabatic Static CMOS Logic: Analysis, Application and LSI Implementation Nazrul Anuar Bin Nayan Sekine and Takahashi Lab., Electronics and Information System Division Graduate School of Engineering Gifu University
  • 2.
  • 3.
  • 4. Designer’s dream 1. Portable –increase battery life continuously 2. High-end – avoid cooling packages and reliability issue due to power Slide Chapter 1 Introduction
  • 5.
  • 6. Slide Chapter 1 Introduction Two-phase Clocked Adiabatic Static CMOS Logic (2PASCL) Using adiabatic switching Reduce current flow
  • 7. Slide charismathics.com topnews.in Smart cards RFID nec.co.jp Sensors nextbigfuture.com Target: Low power, low frequency devices Chapter 1 Introduction
  • 8. Static   (leakage) ~10% Short circuit 10~20% Dynamic 70~80% (>0.18  m tech.) Abdollahi, A., Fallah, F., Pedram, M.: Leakage Current Reduction in CMOS VLSI Circuits by Input Vector Control. IEEE Transactions on VLSI Systems 12 (2), 140–154 (2004) Slide Chapter 1 Introduction Adiabatic switching --Technology to reduce dynamic power
  • 9. CMOS and its equivalent circuit V dd and V ss of CMOS V dd V ss Slide Chapter 2 Principle of Adiabatic e n (t)
  • 10. Slide Chapter 2 Principle of Adiabatic MOS R N MOS R 1 Pull-up network Pull-up network Pull-down network Pull-down network 0.18  process 1.2  process Pull-up network 10 kOhm 3.8 kOhm Pull-down network 4 kOhm 2.2 kOhm
  • 11. Charge transfer without generating heat. V  and V  - of adiabatic circuit. V  Slide Chapter 2 Principle of Adiabatic V  w r : Energy dissipated at R
  • 12. Adiabatic charging/discharging reduce the amount of current flow in the circuit The energy recovery phenomenon is demonstrated in w p ramped voltage supply   Slide Chapter 2 Principle of Adiabatic   w p : Supplied energy at P w C : Energy accumulated at C Pull up Pull down Pull up Pull down
  • 13.
  • 14.
  • 15. 2n2p-2n Method used to create three states; (released, zero, unity) 1n1p The approach 1n1p 2n2n2p ECRL ADL ADCL 2PADCL HCnMOS 2n-2n2D Slide Chapter 2 Principle of Adiabatic (2PASCL) Adiabatic logic dynamic static Differential Operation Quasi Asymptotically Split-level pulse driving
  • 16. Slide Chapter 2 Principle of Adiabatic Adiabatic inverters which are easily derived from CMOS T: period of primary signal N: no. of power supply V P & I P : voltage & current supply
  • 17.
  • 18.
  • 19.
  • 20.
  • 21. Slide Chapter 3 2PASCL
  • 22. Slide Chapter 3 2PASCL
  • 23. Slide NOR NAND XOR NOT Chapter 3 2PASCL
  • 24. Slide Chapter 3 2PASCL 1 st design 2 nd design 3 rd design 4 th design
  • 25. Chapter 3 2PASCL Slide 4 th design
  • 26. Slide Chapter 3 2PASCL
  • 27.
  • 28.
  • 29. Full Adder Spice diagram of 4-bit 2PASCL RCA Slide 4-bit Ripple Carry Adder (RCA) Chapter 4 Application Circuits Spice diagram
  • 30. Average of 35% power dissipation reduction in 2PASCL-RCA compared to CMOS-RCA Slide Chapter 4 Application Circuits Input, Power clocks and Output signal 2PASCL-RCA.
  • 31. Chapter 4 Application Circuits Block diagram. Consists of 16 ANDs, 4 HAs, 8 FAs, and 8 DFFs. Slide
  • 32. Chapter 4 Application Circuits Simulation results using 1.2um CMOS technology Slide 1 1 1 1 0 0 0 0 1 1 1 1 (1111) 2 X (1111) 2 = (11100001) 2
  • 33. Comparison with CMOS using 1.2  m technology with W/L : 5.0/1.2  m Simulation at 1 to 12 MHz, 2PASCL Multiplier dissipates 55% lower power compared to CMOS. Slide Chapter 4 Application Circuits
  • 34.
  • 35. NOR NOT NAND XOR D-Flip flop 1-bit Half Adder 1-bit Full Adder Slide Chapter 5 LSI Implementation
  • 36. Slide Chapter 5 LSI Implementation
  • 37.
  • 38. Tech. 1.2 μm CMOS 2-metal, 2-poly Power Voltage: 5.0 V Core Size : 1354 (W) × 997 (H) μm2 No. of transistors : 992 Dynamic Operating : Frequency 50 kHz – 5 MHz Dynamic Power Dissipation: 5.8 mW @ 5 MHz mulitiplier 4-inverter chain Slide Chapter 5 LSI Implementation
  • 39. Slide Chapter 5 LSI Implementation
  • 40. Measurement equipment to examine the functionality of 4x4-bit array 2PASCL Multiplier Slide Chapter 5 LSI Implementation
  • 41. Measurement result to examine the functionality of 4x4-bit array 2PASCL Multiplier @ 1 MHz Slide Chapter 5 LSI Implementation (a) Output signals without D-Flipflop (b) Output signals with D-Flip flop 1 1 1 1 0 0 0 0 1 (1111) 2 X (1111) 2 = (11100001) 2
  • 42. Slide Chapter 5 LSI Implementation
  • 43.
  • 44.
  • 45.
  • 46. Thank you for your kind attention!

Notes de l'éditeur

  1. Good afternoon I am Nazrul Anuar Bin Nayan of Sekine and Takahashi Lab.. The title of my presentation is Two Phase Clocked Adiabatic Static CMOS Logic : Analysis, Application and LSI Implementation.
  2. The presentation is divided into 6 parts as in the chapters of the graduate thesis. Chapter 1- Introduction, Chapter 2 – Principle of Adiabatic, 3 – Two-phase clocked adiabatic static CMOS logic (2PASCL), 4- Application Circuits, 5- LSI Implementation, and finally Chapter 6 – Summary and Future works.
  3. The introduction.
  4. As the motivation, designers dream can be divided into 2 : 1. for portable devices such as iPad – to increase battery life continously. 2. for high-end circuits , such-as processors, to avoid cooling packages and reliability issue due to increasing power.
  5. Some of the approaches for low power circuits. At circuit design level……. Then, to solve the dynamic power the approaches are such as …… as the energy dissipation is wr=1/2ClVdd^2. The lower the Cl and Vdd, the lower the energy dissipation, however the drawbacks are the increase in static power consumption. Finally adiabatic switching, a method to solve dynamic power with less effect on the static power.
  6. By reducing the current flow and by using adiabatic switching, my solution is two phase clocked adiabatic static CMOS logic (2PASCL)
  7. The target device applications for this research are the low power, low frequency devices such as smart cards, sensors and RFIDs.
  8. In CMOS the power dissipation produced from the leakage, short-circuit and dynamic current. Leakage power is dissipated when the turned-off device leaks current. Short circuit occurs when the input is higher than threshold voltage of nMOS, and dynamic power produced during charging and discharging. Short-circuit and dynamic power consumption occupies more than 90% for processes larger than 0.18 micron. However, for 70 nm process and below, the leakage is the dominant. In present research, I am implementing adiabatic switching, a method to reduce dynamic power.
  9. From this CMOS equivalent circuit, ep and en are the step voltage supply, ip, the current flow. For pull up networks, power dissipation at resistive elements is Rpip^2. In present research I am focusing on how to reduce this ip. A little different approach compared to conventional method nowadays being done everywhere emphasizing on reducing Vdd. For pull down networks, same amount of power is dissipated. Since on resistance contributes to the power dissipation, I had done the simulation to estimate the on-resistance value using RC equivalent circuit and to confirm whether this equivalent circuit is appropriate.
  10. Therefore, by simulation using 0.18u CMOS technology and RC equivalent circuit, the on-resistance for pull-up and pull-down network gained is 10 kOhm and 4 kOhm respectively. For 1.2 um technology, the on-resistance achieved from the equivalent circuit is 3.8kohm for pull up network and 2.2 kohm for pull down network. Here, we clearly understand that different process resulting in different on resistance.
  11. Theoretically, for adiabatic charging, charge can be transferred without generating heat. Instead of constant , the power supply is a ramped-step voltage. Tau is the time for the voltage to change from 0 to Vdd vice versa. I have derived the energy dissipation equation and found that at resistive element , the energy dissipation is depending on tau. Therefore, if tau is long, we can reduce the energy dissipation accordingly.
  12. From this analytical study, I plot comparison graphs to demonstrate the current. As the area below the line demonstrates power dissipation or Ri^2, when the current reduced, the total power dissipation is reduced too. Then from energy graph, we can see that energy supplied in CMOS step voltage, wp is increasing but for the adiabatic ramped step voltage, there is a decreasing here when the energy is delivered back to the power source. I understand that the recovery can be increased by making the time for discharging longer. Dissipation at resistive elements are shown in black solid color for adiabatic and dotted for CMOS step voltage. In CMOS, half amount of energy is dissipated during pull up and another half during pull down. While in adiabatic, by increasing the tau, we can reduce the dissipation at resistive elements. From this graph too, I understand that dissipation can be reduced by reducing load capacitance and voltage supplied.
  13. The common techniques used in adiabatic circuits are slowing down the energy transfer by increasing tau. As the result, current flow is reduced. The next technique is the recovering of energy from logic. The important aspect of adiabatic design is that the voltage between current carrying electrodes must be zero when the transistor switched on. Besides, the conductor coupling between load capacitor and driver must exist at any time too. The circuit conditions are : clocked AC power supply with the height of Vdd. GND of CMOS terminal connected to inverted AC power supply and diodes are mainly used for charging and recycling of charges.
  14. So, how low-power is gained in adiabatic circuits. First, during adiabatic switching, all the nodes are charged or discharged at a constant current. Then, from the energy dissipation equation here, when tau is long the dissipation is nearly zero.
  15. In adiabatic logic, we can categorize them into asymptotically (complete) and quasi (incomplete) adiabatic logic. For asymptotically, Based on the method to create three states which are released, zero and unity, we can classified them into differential operation and split-level pulse driving. As for the quasi adiabatic we can further divide it according to static or dynamic. The conventional adiabatic circuits are categorized accordingly here. This is my proposed 2PASCL circuit.
  16. Before ending chapter 2, I have done a power dissipation simulation from the equation here and compared the conventional adiabatic inverters which are easily derived from CMOS at transition frequency of 1 to 100 MHz. My proposed two phase clocked adiabatic static CMOS logic, 2PASCL shows a little higher dissipation compared to 1n1p slp and 1n1p quasi. However 1n1p circuits cannot be used as pipelining.
  17. Chapter 3 –two-phase clocked adiabatic static CMOS logic (2PASCL)
  18. 2PASCL was first introduced in the Journal of Semiconductor Technology and Science last year. This is the inverter circuit of my 2PASCL. It is powered by the split level sinusoidal V-phi and Vphi- as in these equations. Simulation is carried out using standard 0.18u CMOS technology. The energy dissipation per cycle is measured by E2-E1. EI is the energy injected to the circuit and ER is the energy received. The difference of 2PASCL as compared to other adiabatic circuits is that no diode is used at the charging path, therefore the logic swing can be increased and power dissipation can be reduced. ITC-CSCC 2010 2010
  19. The circuit operation is shown here. During evaluation mode, when phi swings up and phi- swings down, and M2 transistor is ON, CL is charged. When output is High and M1 is ON, discharging occurs. During hold mode, there is no transition.
  20. I have also done analytical study on the power dissipation of 2PASCL according to equation here. The parameters used are 0.01 pF CL, Vp threshold -0.58, Vn threshold 0.24, Vp-p as 0.9 V. n is the number of power supply, xi is the constant shape factor where for sine shaped current, it is 1.23. This is the power dissipation axis and this is transition frequency. The result using triangle waveforms is plotted here. In this graph, I manage to achieve the almost identical result of triangle plus shape factor to the results in the simulations.
  21. From the SPICE simulation too, the comparison between CMOS and 2PASCL is carried out. The first graph is the input, next is the power supply clock and this is the output waveforms. The final graph demonstrates the energy supplied and energy dissipation in 2PASCL and CMOS. Here, we can clearly see the energy recovery phenomenon of 2PASCL.
  22. Next, by using the output waveforms and energy dissipations of 2 different nMOS diodes, I managed to figure out the equivalent circuit of 2PASCL inverter. This circuit, the nMOS diode is using W/L of 40/40u and here it is 0.6/0.18u.
  23. These are the fundamental logics of 2PASCL NOT, NOR, NAND and XOR. As the power dissipation of XOR is the highest, I have done further evaluation to select the best performance 2PASCL XOR.
  24. In these screening, I evaluate by simulation the power dissipation and the output waveforms of these 4 designs.
  25. On the basis of the evaluation, I found that 4 th design exhibits the least glitch output. Furthermore, compared to others, the no. of gates is the least. And produce the smallest power dissipation. Therefore 4 th design is selected for 2Pascl XOR.
  26. This slide is the power dissipation comparison of the final fundamental logic of 2PASCL 4-inverter chain, NAND, XOR and NOR to CMOS. All show significant lower dissipation compared to CMOS at 1 to 100 MHz. I also see that the higher the frequency, the bigger the difference.
  27. The overview, I will begin with the introduction, then CMOS vis-à-vis adiabatic circuit, 2input 2PASCL XOR evaluation, 4x4-bit array 2PASCL multiplier and I will conclude my presentation with the summary.
  28. Application circuits using 2PASCL topology are 4-bit 2PASCL Ripple carry adder and 4x4-bit 2PASCL multiplier. We run for the functionality check and evaluate their energy dissipation compared to CMOS.
  29. This is the evaluated 4-bit ripple carry adder using 2PASCL topology which consist of 4 full adders. The 4-bit RCA SPICE diagram which simulated utilizing 0.18um CMOS technology is shown here.
  30. The input, power clocks and the output achieved from the simulation are shown here. The circuit is functioning correctly and the average power dissipation reduction is 35%.
  31. This is the block diagram of 4x4 bit 2PASCL multiplier, which consist of 16 ANDs, 4 HAs, 8 FAs land 8 Dynamic flip flop at the outputs. The input a0-a3 and b0-b3.
  32. The simulation results using 1.2 um CMOS technology demonstrate that the circuit is functioning accordingly.
  33. Using 1.2 um technology simulation, for 4x4 bit 2PASCL multiplier, I have reduced 55% of power dissipation compared to CMOS of the same W/L, at the transition frequency of 1 to 12 MHz. Signal degradation occurs for more than 12 MHz. This is due to the charging time ,T, which is much slower than conventional CMOS. T is also proportional to RCL i.e. the longer the path, the larger T is needed.
  34. These are the photo of my layout design of fundamental logic gates of 2PASCL, D-flip flop, 1-bit half adder and 1-bit full adder .
  35. This slide shows the complete design of the 2pascl multiplier.
  36. The chip is then fabricated at ON semiconductor using motorola’s 80 input / output 2.3x2.3cm Quad flat package
  37. This slides shows my 4x4 bit 2PASCL multiplier chip. The chip summary is as this.
  38. This slide demonstrates how I test the chip using DUT board and case.
  39. The test equipment consist of 3 signal generators for input, voltage clocks and d-flip flop signal, DC voltage source and 1 4-channel oscilloscope.
  40. The measurement test results started by examining the functionality of the 4x4bit 2PASCL multiplier at 1 MHz. The input of a0 until a3 and b0 until b3 are connected together. Therefore we have the 8 bit of high and 8 bit of low here. The results are divided into signal without Dflipflop and signals through the flipflops. The output signals using flipflops shows a significant better results.
  41. In this slide, the power dissipation of 2PASCL multiplier is compared by simulation to CMOS and 2PADCL multiplier. From the transition frequency of 50 kHz to 5 MHz, 2PASCL topology reduced 77% of the power dissipated by CMOS and 55% of the 2PADCL . On the chip measurement results, 2PASCL demonstrate 55% reduction compare to 2PADCL. By the trend in the simulation, I can expect that CMOS has 77% more than my 2PASCL. By the way, the difference for the simulation and the actual measurement are due to wire resistance, parasitic capacitance and the transistor parameter.
  42. As the conclusion