SlideShare une entreprise Scribd logo
1  sur  82
Radio-over-fiber
Idelfonso Tafur Monroy
E-mail: idtm@fotonik.dtu.dk
Neil Guerrero Gonzalez
CPqD
2
Metro-access and short range
communications group
3
Team members
Staff (6)
Idelfonso Tafur Monroy, Prof.
Darko Zibar, Assoc. Prof.
Jesper B. Jensen, Asst. Prof.
J.J.Vegas Olmos, Asst. Prof.
Antonio Caballero, Postdoc
PhD Researchers (12 )
Cyd Delgado
Jose Estaran
Bomin Li
Valeria Arlunno
Xiaodan Pang
Alexander Lebedev
Maisara Othman
Roberto Rodes
Tien Thang Pham
Robert Borkowski
Supannee Learkthanakhachon
Gerson de Los Santos
A Copenhagen based, young and dynamic team, that combines
diversity in expertise and cultural backgrounds (15 nationalities)
Ongoing MSc students projects
(6)
David Montero, visit. Asst.
Prof.
4
Next generation access networks services
Central Office
PSTN
Internet
Private Home with
Small Repeater
Mobile access
Wireless
Stuff
Wireless
Access in
the City
Requirements:
• Versatile – handle a variety of signals
• Efficient bandwidth utilization
• Bidirectional
• Dynamic and reconfigurable
• Long-reach (~100 km)
5
Hybrid fiber wireless networks
CO
Service integration
Unified optical
network platform
Different
modulation
formats
BS
Different
bit rates
Radio over fiber (RoF) technology to increase
the capacity, coverage and mobility
Challenges:
• Integration with existing infrastructures
• Fulfill optical power budget
• Increase receiver sensitivity, reach and number of
users
• Improve the tolerance to fiber transmission
impairments
• Perform signal detection and demodulation of
different modulation formats and bit rates
6
Where? Network scenario1
[1] Alcatel Radio-over-Fibre solution, 2007
Convergence between fixed and wireless networks the goal to bring the
bandwidth of fixed network to mobile user
7
To take into account: Global data traffic
1 Exabyte = 1018 bytes
Drivers for traffic growth
Mobility
Cloud
Video
From CISCO analysis
8
Connectivity any time, any where
Source: Transfer Jet Toshiba
9
Challenges
Capacity
Scalability and sustainability
Connectivity anytime, anywhere
Manageability
10
100 Gbit/s wireless links
Bring the capacity of baseband optical links to
wireless links
1988 1992 1996 2000 2004 2008 2012
10Mbps
100Mbps
1Gbps
10Gbps
100Gbps
W
ireless
links
(standard
W
LAN)
W
ireless links (research)
Optical serial interface (products)
Bitrate
Year
Optical serial interface (research)
11
How to achieve multi gigabit wireless links
Higher RF carrier frequencies
• GHz of bandwidth available
• Higher Air attenuation
Courtesy of J. Mitchell, UCL1
Frequency (GHz)
10
GSM
900MHz
1800MHz
UMTS
~2GHz
WLAN
2.4GHz
5.1GHz
LMDS
28GHz
29GHz
31GHz
HiperAccess
18GHz
42GHz
MVDS
40GHz
WIMAX
2.5GHz
3.5GHz
802.20
~3.5GHz
UWB
3.1-10.6 GHz
Wireless HD
60GHz
6040 75 110
Future gigabit
links
Advanced modulation techniques
• High spectral efficiency
• Stringent requirements on
linearity and SNR
12
How to achieve multi gigabit wireless links
75-110GHz
An untapped
frequency band
1 100 500
Wireless HD
60GHz
Saturated frequency bands (i.e
GSM, UMTS, WiFi, WiMAX, WLAN, U
WB, HiperAccess, LMDS, MVDS...)
Frequency
(GHz)
300-
500GHz
 Augmented reality
 HD Video Streaming
 Interactive Apps
3D Skype on ipads
 Mobile e-Health
 Machine-to-machine
 synch and go
Disaster recovery
Need for wireless bandwidth beyond current up to 10 GHz bands
13
BTS Coverage vs Distributed Antenna Systems
DAS approach
•DAS attributes:
•Centralization of complex equipment and simple remote antennas
•Handover and load distribution/re-configurability
•Power consumption
BTS
BTS
BTS: base transceiver station
TU Dresden
Communications Laboratory
C.G. Schaeffer DTU Feb. 2009
Why Fibre Optics in Radio Systems ?
numerous lowcost base stations
without RF oscillators & modulators
with superior RF properties
higher RF carriers:
- reduced cell-size
- more subscribers per area
- frequency-reuse
- reduced RF power (EMI)
low fibre attenuation for
feeding the base stations
remote optical generation
of RF carriers
broadband data signals
15
Radio over fibre: basics
Baseband
Intermedeiate
frequency (IF)
up-conversion
Frequency
up-
conversion
GHz
E/O
conversion
Light source
Optical spectrum
THz
Optical spectrum
fo fo
fr
fr
RF spectrum
Intensity modulaiton
THz
Optical fiber link
Radio transmitter
Radio-over-fibre
TU Dresden
Communications Laboratory
C.G. Schaeffer DTU Feb. 2009
Intensity Modulation & Direct Detection
Optical
Receiver
Optical to RF
Optical Fibre
RF
Output
RF Input
Optical
Transmitter
RF to Optical
Optical Power Spectrum
Optical
Frequency
RF-Components contributing
to fRF
fRF
f0
Phase sensitive
summation of all
optically generated
RF-Components at fRF
17
Signal impairments
E/O
conversion
E/O
conversion Radio end
Fiber dispersion
Non-linearities
Phase noise
RF-powe fading
Crosstalk
Conversion efficiency
Link gain
Non-linearities
Intermodualtion products
18
Dispersion induced RF-power fading
TU Dresden
Communications Laboratory
C.G. Schaeffer DTU Feb. 2009
Intensity Modulation & Fibre
Dispersion
Fibre length L (km)
Periodical RF power transfer:
Fibre Dispersion:
Wavelength:
Velocity of Light:
D
ps
km nm
17
1540nm
c
m
s
3 108
222
cos f
c
DL
0 2 4 6 8
60 GHz
40 GHz
1
0.5
Opt. power
Fundamental
3-dB frequency:
DL
c
f dB
2
1
3
20
Radio-over-fiber Base Station
Dalma Novak
TU Dresden
Communications Laboratory
C.G. Schaeffer DTU Feb. 2009
Intensity Modulator for Sideband
Modulation
Principle: Mach-Zehnder Interferometer Bias
points
A
B
C
Electrical voltage V (a.u.)
Optical output power
0
0.
5
1
V0
A
B
C
DC bias
fMod-input
Optical
input
Optical
output
Optical Spectrum
f0 f1f-1
fRF = fMod
Optical Spectrum
f0 f1f-1
fRF = 2
fMod
Optical Spectrum
fop
t
f0 f1f-1
fRF = 4
fMod
f-2 f2
22
Optical Single Sideband + carrier
Dalma Novak
23
IF transport over fiber
24
IF and remote LO transport over fiber
25
Base-band-ovr fiber wireless transport
26
A comparison of schemes
27
Hybrid wireless-fibre systems
To metropolitan
network
Central
office
Antenna
base station:
: Optical fibre
Goal: Unified optical wireline and wireless signal transport systems
Coherent detection and DSP All-optical envelope detection
Approaches under study
Recovery &
protection Broadband
wireless bridge
Optical
fiber link
Optical
fiber link
28
All-optical envelope detection for wireless
signals
Modulation
(envelope)
DC Bias
EAM
Radio-frequency carrier
Outputopticalpower
- Vbias
Half-wave
rectified signal
Lightwave carrier
Base station
Envelope
detector
Baseband
data out
•No High frequency mixers and
oscillators
•No frequency and bandwidth fixed
operation
For high carrier frequencies and
large bandwidth reduced
complexity is desirable
Envelope detection with
straightforward connectivity to
fiber links is an interesting
approach
29
All-optical envelope detection
Example: upstream channel EPON
Desirable to use same technology for both wireline and wireless
Key enabling techniques based on all-optical wireless-to-optical
conversion
30
Challenges/potential
Why optical phase-modulation?
0
0.5
1
Transmission
MZ phase (rad)
100%
0
2
4
6
0 0.5 1 1.5 2
Outputphase(rad)
Drive signal (V)
600%
(equivalent)
Linearity:
• Optical intensity modulators nonlinear
 Mach-Zehnder – sinusoidal
 EAM – exponential
• Optical phase linear
 If dominated by linear electro-optic effect
Phase-modulation has no fundamental limit on the dynamic range.
Large dynamic range enabling wide range of power levels
31
Nonlinear and linear optical phase demodulation
0
0.5
1
Transmission
MZ phase (rad)
Photocurrent
Signal – LO phase difference
Large-signal
Modulation
•Open loop
•Closed loop
signal
LO
i~sin( signal - LO)
• Sinusoidal response of the receiver
Benefits of linear phase-modulation lost
90o
optical hybrid
LO
Signal in I(t)
Q(t)
Y(t)= I(t)+jQ(t)=exp( (t))exp( (t))
Linear phase demodulation
32
Converged fixed and wireless network
Central office
Metropolitan network
CWlaser
Analog-to-digital
conversion
RFcarrierrecovery
Lineardemodulation
Digitalcarrierrecovery
Digital coherent receiver
LO laserc
Transmitter
Phase
modulator
b
Photonic wireless-wireline
converged network
a
Carrier recovery and demodulation performed using DSP
larger tolerances to phase noise and impairment compensation using DSP
Same receiver structure for fixed and wireless signal detection
OPSCODER project
33 33
Radio over fiber (RoF) systems
Phase-modulated (PM) RoF systems
34
The basis:
E1
OpticalHybrid
Photodetectors
Analog-to-Digital
Converter
0
90
ELO
E2
E3
E4
II(t)
IQ(t)
DigitalSignal
Processing
LO laser
Optical
Modulator
( )data t
ES
PC
ES
Transmitter
Coherent detector
Digital
receiver
Modulation index
( )s s
pi
j t data t
V
s sE P e
Optical signal
Electrical signal
35 35
The basis:
ELO
ES
PC
LO
laser
E1
OpticalHybrid
Photodetectors
0
90
E2
E3
E4
Optical signal
Electrical signal
( ) cos( ( ))I out LO
pi
I t P P t data t
V
( ) sin( ( ))Q out LO
pi
I t P P t data t
V
( ( ))
( ) ( )pi
j t data t
V
I Qe I t jI t
Coherent receiver
36 36
The basis:
E1
OpticalHybrid
Photodetectors
0
90
E2
E3
E4
Analog-to-Digital
Converter
DigitalReceiver
( ( ))
( ) ( )pi
j t data t
V
I Qe I t jI tOptical frequency/
phase offset
( ( ))
pi
j t data t
V
e
1. DPLL
2. Linear demodulator
3. RF signal demodulation
( ( ))
ln( )pi
j data t
V
e
37 37
Signal parameters estimation:
Data clustering
38 38
The basis:Analog-to-Digital
Converter
DigitalSignal
Processing
1. DPLL
2. Linear demodulator
3. RF signal demodulation
0
( ) 2 Re ( ) j t
Basebanddata t S t e
Complex baseband representation
0
( ) 2 Re ( ) j t
Basebanddata t S t e
Frequency downconversion
Quadrature demodulator
Synchronizer
39 39
The basis:Analog-to-Digital
Converter
DPLLand
Lineardemodulator
Quadrature
demodulator
Synchronizer
( ) ( ) ( )Baseband I QS t s t js t
Symbol 1
Symbol 2
Symbol 3
Symbol 4
I
Q
40 40
The basis: problem statement
Phase offset
( ) kj
k Baseband ky s k e
Noise
41
41
Classical solution: Viterbi and Viterbi
( ) kj
k Baseband ky s k e
2
( )
( ) ( ) ( )
l
j
M
Baseband I Qs k s t js t e
2
( )
( ) ( ) ( )
l
j
M
Baseband I Qs k s t js t e
4MQPSK
2
( )
(2 )
( ) 1
l
j M
M j lM
Basebands k e e
2
( )
(2 )
( ) 1
l
j M
M j lM
Basebands k e e
No data
(Non-data-aided)
42
Classical solution: Viterbi and Viterbi
2
( )
(2 )
( ) 1
l
j M
M j lM
Basebands k e e
No data
(Non-data-aided)
( ) kjMM M M
k Baseband ky s k e
Objective function( ) Re kjMM
k k
k
L y eexp[ ]kjM M
k
k
e j y It is maximized
for one phasor
ky ( )kF y
arg( )ky
(.)
k
1
arg(.)
M
M
ky
• How to recover the phase of multi-amplitude
signals?
• How to estimate other data signal parameters such
as modulation format?
• How to track time-varying data transmission
conditions?
43
A novel point of view: data clustering
Phase offset
K-means
clustering
Cluster
Centroid
• Phase offset estimation and compensation
• Reconfigurable phase offset estimation
• Modulation format recognition
• Frequency offset compensation
44
The principle:
Centroid
Cluster 1
Centroid
Cluster 2
Centroid
Cluster 3
Centroid
Cluster 4
1u
2u
3u
4u
(a)
Shortest
distance
2u
3u
4u
1u
ix
1ix
(b)
1d
2d
3d 4d
Updated Centroid
Cluster 1
1u
ix
,1newu
1ix
(c)(d)
45
RF phase recovery:
Flexible configuration and simple upgrade for
supporting different modulation formats
Cluster
Prototype
Phase
compensation
Symbol 3
Symbol 4
Symbol 5
Symbol 6
Symbol 7
Symbol 8
Symbol 1
Symbol 2
Demodulation
46
12 14 16 18 20 22
4
3
2
B2B, Viterbi & Viterbi
B2B, k-means
40 Km, Viterbi & Viterbi
40 Km, k-means
-log(BER)
OSNR [dB]
1 dB
312.5 Mbaud 8PSK single carrier at 5 GHz
Viterbi and Viterbi vs. K-means:
K-means performs equally well as
Viterbi and Viterbi
47
Reconfigurable phase offset estimation:
PSK QAM
16 QAM with
phase offset Level threshold
Level 1
Level 2
Level 3
Low complex QAM
phase recovery
48
Automatic modulation format detection:
Level threshold
Level 1
Level 2
Level 3
Multilevel detection
Centroid k
Cluster
dmin(k,j+1)
dmin(k,j)
Centroid
k+2
dmin(k+2,j)
dmin(k+2,j+1)
Centroid
minvar( ( , ) )s d k j
Condition of symmetry
Signal
Histogram/
K-means clustering
Number of
levels/
Number of
clusters
Multilevel?/
Symmetry?
Right
16QAM/8PSK/
QPSK Signal
Format
Recognition
K-means
Re-initialization
AMFD process
Reconfigurable
CarrierRecovery
Wrong
49
Automatic modulation format detection:
Centroid k
Cluster
dmin(k,j+1)
dmin(k,j)
Centroid
k+2
dmin(k+2,j)
dmin(k+2,j+1)
Centroid
minvar( ( , ) )s d k j
Condition of symmetry
100 1000
0,000
0,001
0,002
0,003
0,004
0,005
0,006
0,007
Symmetry
Data samples
OSNR 20 dB
OSNR 24 dB
Threshold
QPSK 8PSK
0,000
0,005
0,010
0,015
0,020
Threshold
Hypothesis
Wrong QPSK id.
Symmetry
True QPSK id.
Truedetection
Wrongdetection
200 data-samples are required for
automatic modulation format detection
Modulation format = 8PSK
50
Frequency offset compensation:
The reconfigurable k-means clustering
algorithm allows multifunctional tasks
Frequency offset
effect
N samples
First N/2
samples
Second N/2
samples
Cluster
Centroid
Blue
constellation
rotation by
(1: )cleary N
( 1: 2 )darky N N
51
Frequency offset compensation:
The reconfigurable k-means clustering
algorithm allows multifunctional tasks
12 13 14 15 16 17 18 19 20 21 22
4
3
2
Without frequency offset compensation
With frequency offset compensation
-log(BER)
OSNR [dB]
2.7 dB
1200 1100 1000 900 800 700 600
4
3
OSNR 22 dB
OSNR 20 dB
-log(BER) Data-symbols / time-blocks
Frequency offset 10 kHz
a) b)
312.5 Mbaud 8PSK single carrier at 5 GHz
52 52
Heterogeneous optical network:
Reconfigurable digital coherent
receiver for Metro Access Networs
53
State of the art: converged WDM access link
Tx. 1
Tx. 2
Tx. 3
Tx. 4
K. Prince et.al, PTL 2009
• 4 х 21.4 Gbit/s NRZ-DQPSK
• 2 х 250 Mbit/s @ 5 GHz coherent Rof with phase modulation
• 1 х 3.125 Gbit/s photonically generated IR-UWB
• 1 х 256 QAM WiMAX @ 5.8 GHz (12 Mbaud, 70 Mbit/s)
200 GHz spacing between WDM channels
NRZ-DQPSK
PM RoF
IR-UWB
QAM-WiMAX
Dedicated
NRZ-DQPSK
Receiver
Dedicated
PM RoF
receiver
Dedicated
IR-UWB
reciever
Dedicated
QAM-WiMAX
receiver
4 dedicated receivers…
Less atractive to
network operators…
- Maintenance & cost
issues associated with
Mixed receiver hardware
Single
reconfigurable
digital photonic
Receiver
To support
converged service delivery
over a single infrastructure
54 54
Experimental Details
55 55
PM-OFDM
Baseband
VCSEL
AWG
AWG
78 km
Deployed Fiber
EDFA
20mW
PPG
DATA DATA /
MZM
/2
CW
PPG
DATA DATA /
VOA
10 dB
1
2
4
IR-UWB
AWG
TLS
M
3
Single Coherent Receiver
10 dBVOA
90°Optical
Hybrid
PwrMn
LO
1 2 3 4
VCSEL
DigitalPhotonic
Receiver
DSO
Serial-Parallel
Mapper
IFFT
CP
DATAIN
AWG
VSG
CW
M
1 m wireless
transmission
Converged service delivery:
• 5 Gbps directly modulated VCSEL
• 20 Gbps QPSK baseband
• 2 Gbps phase-modulated IR-UWB
• 500 Mbps phase-modulated OFDM at
5 GHz carrier frequency
Experimental setup
56
56
PM-OFDM
Baseband
VCSEL
AWG
AWG
78 km
Deployed Fiber
EDFA
20mW
PPG
DATA DATA /
MZM
/2
CW
PPG
DATA DATA /
VOA
10 dB
1
2
4
IR-UWB
AWG
TLS
M
3
Single Coherent Receiver
10 dBVOA
90°Optical
Hybrid
PwrMn
LO
1 2 3 4
VCSEL
DigitalPhotonic
Receiver
DSO
Serial-Parallel
Mapper
IFFT
CP
DATAIN
AWG
VSG
CW
M
1 m wireless
transmission
Linear demodulator
IR-UWB
Digital filtering (HPF)
Matched filtering
Symbol
synchronization
Signal demodulation
PM-OFDM
Symbol
synchronization
Delete Cyclic Prefix
FFT
Channel estimation
Demapper
Parallel-Serial
Signal demodulation
Optical frequency off-set
compensation (DPLL)
QPSK Baseband
Equalization
Clock recovery
Binary decision &
Differential decoding
Carrier recovery
IM VCSEL
Timing recovery
Digital filtering (HPF)
Signal demodulation
Thresholding
Digital chromatic dispersion compensation
Reconfigurable digital photonic receiver
57
PM-OFDM
Baseband
VCSEL
AWG
AWG
78 km
Deployed Fiber
EDFA
20mW
PPG
DATA DATA /
MZM
/2
CW
PPG
DATA DATA /
VOA
10 dB
1
2
4
IR-UWB
AWG
TLS
M
3
Single Coherent Receiver
10 dBVOA
90°Optical
Hybrid
PwrMn
LO
1 2 3 4
VCSEL
DigitalPhotonic
Receiver
DSO
Serial-Parallel
Mapper
IFFT
CP
DATAIN
AWG
VSG
CW
M
1 m wireless
transmission
Optical transmission over
78 km of deployed fiber
58
Buy SmartDraw!- purchased copies print this
document without a watermark.
Visit www.smartdraw.com or call 1-800-768-3729.
59
Results
60
-26 -25 -24 -23 -22 -21 -20
5
4
3
2
B2B single channel
78km single channel
-log(BER)
Received Power [dBm]
Coherent VCSEL(a)
-26 -25 -24 -23 -22 -21 -20
5
4
3
2
B2B single channel
78km single channel
78km all wavelengths
-log(BER)
Received Power [dBm]
Coherent VCSEL(a)
No penalty for
multichannel
case
61
-30 -29 -28 -27 -26
4
3
2
B2B single channel
78km single channel-log(BER)
Received Power [dBm]
(b) QPSK
-30 -29 -28 -27 -26
4
3
2
B2B single channel
B2B all wavelengths
78km single channel
78km all wavelengths
-log(BER)
Received Power [dBm]
(b) QPSK
0.5 dB penalty
for multichannel
case
62
-26 -24 -22 -20 -18
5
4
3
2
1
B2B single channel
B2B all wavelengths
78km single channel
78km all wavelengths
-log(BER)
Received Power [dBm]
(c) IR-UWB
-26 -24 -22 -20 -18
5
4
3
2
1
B2B single channel
78km single channel
-log(BER)
Received Power [dBm]
(c) IR-UWB
No penalty for
multichannel
case
63
-32 -31 -30 -29 -28 -27
5
4
3
2
B2B single channel
78 km single channel
-log(BER)
Received Power [dBm]
(d) OFDM RoF
-32 -31 -30 -29 -28 -27
5
4
3
2
B2B single channel
B2B all wavelengths
78 km single channel
78 km all wavelengths
-log(BER)
Received Power [dBm]
(d) OFDM RoF
No penalty for
multichannel
case
64
Receiver sensitivity:
• -24 dBm for directly modulated VCSEL
• -27 dBm for QPSK baseband
• -23 dBm for phase-modulated IR-UWB
• -27.5 dBm for phase-modulated OFDM
65
PM-OFDM
Baseband
VCSEL
AWG
AWG
78 km
Deployed Fiber
EDFA
20mW
PPG
DATA DATA /
MZM
/2
CW
PPG
DATA DATA /
VOA
10 dB
1
2
4
IR-UWB
AWG
TLS
M
3
Single Coherent Receiver
10 dBVOA
90°Optical
Hybrid
PwrMn
LO
1 2 3 4
VCSEL
DigitalPhotonic
Receiver
DSO
Serial-Parallel
Mapper
IFFT
CP
DATAIN
AWG
VSG
CW
M
1 m wireless
transmission
Summary:
• Successful WDM signal demodulation for all
four subsystems was demonstrated
• 78 km of optical fiber transmission was
achieved
• A BER value below FEC threshold was
achieved for all four subsystems
100 Gbps Wireless Link in 75-110 GHz
Band Using Photonic Technologies
67 DTU Fotonik, Danmarks Tekniske Universitet
Applications to gigabit wireless links
• Sync and go
• All wireless connectivity at business and home
• HD video streaming (uncompressed)
• Cloud computing
• Video-calls
http://wirelessgigabitalliance.org/
• Beyond LTE Cellular networks
• Disaster recovery links
• Fast deployment wireless networks
• Extension of optical fiber links
Optical fiber
Optical fiber
Optical fiber
68 DTU Fotonik, Danmarks Tekniske Universitet
Principle of RF generation by optical heterodyning
•High capacity optical baseband generation
•Incoherent beating of the lasers at the PD
•Stringent requirement on laser linewidth
•Scalable to high RF frequencies
[1] U. Gliese et al., MTT 1998
[2] I. Insua et al., OFC 2009
[3] R. Sambaraju et al., PTL 2010
[4] D. Zibar et al., PTL 2011
69 DTU Fotonik, Danmarks Tekniske Universitet
Ƭ
16-QAM Optical Baseband
Transmitter
PolMux
Emulator
Heterodyne
Upconversion
PC X
Y XX
Y Y
W-band
LNA
EDFA
x2
LO
37 GHz
75–110 GHz
1551.6nm
1550.9
nm
LO
PD212.5 Gb/s
PPG
Ƭ
80GS/sADC
Downconversion
I/QSeparation
TimingOffsetRecovery
DecisionandBERTest
Equalizer
Receiver
π/2
87.5 GHz
1550.9 1551.6
PD1
d
X
Y
36cm
6dB
Ƭ
6dB
Ƭ
Experimental Setup
•Optical baseband 16-QAM generation using binary signal generator
•Free running ECL (100 kHz linewidth) as LO for photonic up-conversion
•Double-stage down-conversion:
1. Electrically W-band to 1-26GHz;
2. Digitally from 1-26 GHz to baseband
16-QAM Optical Baseband
Transmitter
PC
1550.9
nm
12.5 Gb/s
PPG
Ƭ
π/2
6dB
Ƭ
6dB
Ƭ
16-QAM Optical Baseband
Transmitter
PC
1550.9
nm
12.5 Gb/s
PPG
Ƭ
π/2
6dB
Ƭ
6dB
Ƭ
Ƭ
PolMux
Emulator
X
Y
Ƭ
PolMux
Emulator
X
Y
Heterodyne
Upconversion
XX
Y Y
1551.6nm
LO
PD2
PD1
X
Y
Heterodyne
Upconversion
XX
Y Y
1551.6nm
LO
PD2
PD1
X
Y
EDFA
W-band
LNA
x2
LO
37 GHz
80GS/sADC
Downconversion
I/QSeparation
TimingOffsetRecovery
DecisionandBERTest
Equalizer
Receiver
W-band
LNA
x2
LO
37 GHz
80GS/sADC
Downconversion
I/QSeparation
TimingOffsetRecovery
DecisionandBERTest
Equalizer
Receiver
87.5 GHz
1550.9 1551.6
70 DTU Fotonik, Danmarks Tekniske Universitet
Experiment Setup
• For information:
– Both signal laser and LO laser has ~100 kHz linewidth, but drifting
fast within the range of 300 MHz;
– Signal and LO power are set to be equal;
– W-band LNA has 25 dB gain, max input power = -20 dBm;
– W-band Mixer is driven by LO at 74 GHz. With input RF with
frequency between 75-100 GHz, the output IF lies in the frequency
range 1-26 GHz;
71 DTU Fotonik, Danmarks Tekniske Universitet
Experiment Setup
W-band
Antenna
100 GHz
PD
W1-WR10
Adaptor
W-band
Antenna
W-band
LNA
W-band
Mixer
LO
IF
72 DTU Fotonik, Danmarks Tekniske Universitet
Experiment results
-1 0 1 2 3 4 5 6 7 8 9 10
5
4
3
2
1
Wireless d = 50cm
Wireless d = 150cm
Wireless d = 200cm
-log(BER)
Optical power into PD (dBm)
FEC
50 Gbit/s
•BER curves for 50 Gbit/s single
polarization 16-QAM with different
wireless distances
-1 0 1 2 3 4 5 6 7 8 9
5
4
3
2
1
Wireless d = 50 cm
Wireless d = 75 cm
Wireless d = 120 cm
-log(BER)
Optical power into PD (dBm)
FEC
100 Gbit/s
•BER curves for 100 Gbit/s PolMux
16-QAM with different wireless
distances
-1 0 1 2 3 4 5 6 7 8 9 10
5
4
3
2
1
Wireless d = 50cm
-log(BER)
Optical power into PD (dBm)
FEC
50 Gbit/s
-1 0 1 2 3 4 5 6 7 8 9 10
5
4
3
2
1
Wireless d = 50cm
Wireless d = 150cm
-log(BER)
Optical power into PD (dBm)
FEC
50 Gbit/s
-1 0 1 2 3 4 5 6 7 8 9
5
4
3
2
1
Wireless d = 50 cm
-log(BER)
Optical power into PD (dBm)
FEC
100 Gbit/s
-1 0 1 2 3 4 5 6 7 8 9
5
4
3
2
1
Wireless d = 50 cm
Wireless d = 75 cm
-log(BER)
Optical power into PD (dBm)
FEC
100 Gbit/s
73 DTU Fotonik, Danmarks Tekniske Universitet
Experiment results
Ƭ
16-QAM Optical Baseband
Transmitter
PolMux
Emulator
Heterodyne
Upconversion
PC X
Y XX
Y Y
W-band
LNA
EDFA
x2
LO
37 GHz
75–110 GHz
1551.6nm
1550.9
nm
LO
PD212.5 Gb/s
PPG
Ƭ
80GS/sADC
Downconversion
I/QSeparation
TimingOffsetRecovery
DecisionandBERTest
Equalizer
Receiver
π/2
87.5 GHz
1550.9 1551.6
PD1
d
X
Y
36cm
6dB
Ƭ
6dB
Ƭ
X branch Y branch
X branch
Y branch
Constellations for 100 Gbit/s PolMux 16-QAM signal
•120 cm wireless distance
•8 dBm optical power into the photodiode
74
Introduction to MIMO technique
1. If all Tx antennas transmits the same
data:
• Increase SNR
• Robust against physical disaster
2. If each Tx antenna transmits different
data simultaneously:
• Increase link capacity
• Diversity
75
Training-based MIMO channel estimation
1t ,0
T
XT
2 Yt 0,
T
T
Time
X
Y
Training period Training period
DATATX
TY
TX
TY
t1 t2
DATA
DATA
DATA
x1 2 1
1 2 2
0
0
xx yX X
Y Y xy yy
RT RT T
RT RT T
h h
h h
x 1 1 2 2
1 1 2 2
xx y X X
Y Yxy yy
RT T RT T
RT T RT T
h h
h h
Channel transfer
matrix derived
Pros
 Simple expression
Cons
Required synchronization
Reduced the spectral efficiency due to the overhead
76
Experimental Setup of MIMO-OFDM WDM
PON with DM-VCSEL
77
MIMO-OFDM WDM PON with DM-VCSEL
Various separationVarious distance
 Successfully demodulated below the FEC limit over 7%
overhead
 198.5 Mb/s net data rate with 5.65 GHz
 Training symbols compensate for impairments in wireless link
78
Experimental Setup of 2x2 MIMO-OFDM
Fiber-Wireless transmission system based
on PDM technique
79
2x2 MIMO-OFDM Fiber-Wireless
Transmission System Based on PDM
Technique
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4
5
4
3
2
1
Pol-x 22.8km SMF d=1m
Pol-y 22.8km SMF d=1m
Pol-x 22.8km SMF d=2m
Pol-y 22.8km SMF d=2m
Pol-x 22.8km SMF d=3m
Pol-y 22.8km SMF d=3m
-log(BER)
Received optical power at PD [dBm]
FEC
-1
1
-1 1
-1
1
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4
5
4
3
2
1
Pol-x QPSK 22.8km SMF d=1m
Pol-y QPSK 22.8km SMF d=1m
Pol-x 16QAM 22.8km SMF d=1m
Pol-y 16QAM 22.8km SMF d=1m
-log(BER)
Received optical power at PD [dBm]
FEC
-3 -1 1 3
-3
-1
1
3
-3
-1
1
3
 4-QAM-OFDM  797 Mb/s
 16-QAM-OFDM  1.5 Gb/s
 Training symbols compensate the optical polarization rotation
and crosstalk in the wireless link
Find out more, videos of experiments,…
metroaccessgroup
idtm@fotonik.dtu.dk
We look for:
Researchers exchange & collaboration
EU Marie Curie postdoc grant applicants, August 2013
MSc & PhD studies and research stays
Metro-access and short range
communications group
82
Conclusions of MIMO RoF
• Increase link capacity
• Channel estimation algorithm effectively
compensate for impairments in the wireless link
• VCSELs are an alternative optical source for
next generation access networks
• PDM alternative solution to double the capacity
• High potential for future in-door networks
system supporting gigabit/s wireless service

Contenu connexe

Tendances

Analysis of a framework implementation of the transceiver performances for in...
Analysis of a framework implementation of the transceiver performances for in...Analysis of a framework implementation of the transceiver performances for in...
Analysis of a framework implementation of the transceiver performances for in...IJECEIAES
 
Optical transmission technique
Optical transmission techniqueOptical transmission technique
Optical transmission techniqueOnline
 
Point to point microwave
Point to point microwavePoint to point microwave
Point to point microwavenandkishorsuman
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMCarlos Antonio Leal Saballos
 
optical transmission system
optical transmission systemoptical transmission system
optical transmission systemsangavi43
 
Digital microwave communication principles
Digital microwave communication principles Digital microwave communication principles
Digital microwave communication principles Mohamed Sewailam
 
Introduction to beamforming antennas
Introduction to beamforming antennasIntroduction to beamforming antennas
Introduction to beamforming antennasJOSE T Y
 
Massive MIMO Channel Calibration in TDD Wireless Networks
Massive MIMO Channel Calibration in TDD Wireless NetworksMassive MIMO Channel Calibration in TDD Wireless Networks
Massive MIMO Channel Calibration in TDD Wireless NetworksXiao-an Wang
 
PhySec_MassiveMIMO
PhySec_MassiveMIMOPhySec_MassiveMIMO
PhySec_MassiveMIMOJun Zhu
 
Remcom_Predictive_Simulation_of_MIMO_for_5G
Remcom_Predictive_Simulation_of_MIMO_for_5GRemcom_Predictive_Simulation_of_MIMO_for_5G
Remcom_Predictive_Simulation_of_MIMO_for_5GMichael Hicks
 
Ultra wide band
Ultra wide bandUltra wide band
Ultra wide bandmangal das
 
Radio over fiber system based on a hybrid link for next generation of optical...
Radio over fiber system based on a hybrid link for next generation of optical...Radio over fiber system based on a hybrid link for next generation of optical...
Radio over fiber system based on a hybrid link for next generation of optical...IJECEIAES
 
Optical Modulation Analysis (OMA) Present and Future
Optical Modulation Analysis (OMA) Present and FutureOptical Modulation Analysis (OMA) Present and Future
Optical Modulation Analysis (OMA) Present and FutureCPqD
 
Introduction to Massive Mimo
Introduction to Massive MimoIntroduction to Massive Mimo
Introduction to Massive MimoAhmed Nasser Agag
 
Radio Resource Management for Millimeter Wave & Massive MIMO
Radio Resource Management for Millimeter Wave & Massive MIMORadio Resource Management for Millimeter Wave & Massive MIMO
Radio Resource Management for Millimeter Wave & Massive MIMOEduardo Castañeda
 
Design of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB CommunicationsDesign of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB CommunicationsRFIC-IUMA
 
Massive information on Massive MIMO
Massive information on Massive MIMOMassive information on Massive MIMO
Massive information on Massive MIMOPavithra Nagaraj
 

Tendances (20)

Analysis of a framework implementation of the transceiver performances for in...
Analysis of a framework implementation of the transceiver performances for in...Analysis of a framework implementation of the transceiver performances for in...
Analysis of a framework implementation of the transceiver performances for in...
 
MIMO Testing
MIMO TestingMIMO Testing
MIMO Testing
 
Optical transmission technique
Optical transmission techniqueOptical transmission technique
Optical transmission technique
 
Point to point microwave
Point to point microwavePoint to point microwave
Point to point microwave
 
maaaasss
maaaasssmaaaasss
maaaasss
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
 
optical transmission system
optical transmission systemoptical transmission system
optical transmission system
 
Digital microwave communication principles
Digital microwave communication principles Digital microwave communication principles
Digital microwave communication principles
 
Introduction to beamforming antennas
Introduction to beamforming antennasIntroduction to beamforming antennas
Introduction to beamforming antennas
 
UFMC
UFMCUFMC
UFMC
 
Massive MIMO Channel Calibration in TDD Wireless Networks
Massive MIMO Channel Calibration in TDD Wireless NetworksMassive MIMO Channel Calibration in TDD Wireless Networks
Massive MIMO Channel Calibration in TDD Wireless Networks
 
PhySec_MassiveMIMO
PhySec_MassiveMIMOPhySec_MassiveMIMO
PhySec_MassiveMIMO
 
Remcom_Predictive_Simulation_of_MIMO_for_5G
Remcom_Predictive_Simulation_of_MIMO_for_5GRemcom_Predictive_Simulation_of_MIMO_for_5G
Remcom_Predictive_Simulation_of_MIMO_for_5G
 
Ultra wide band
Ultra wide bandUltra wide band
Ultra wide band
 
Radio over fiber system based on a hybrid link for next generation of optical...
Radio over fiber system based on a hybrid link for next generation of optical...Radio over fiber system based on a hybrid link for next generation of optical...
Radio over fiber system based on a hybrid link for next generation of optical...
 
Optical Modulation Analysis (OMA) Present and Future
Optical Modulation Analysis (OMA) Present and FutureOptical Modulation Analysis (OMA) Present and Future
Optical Modulation Analysis (OMA) Present and Future
 
Introduction to Massive Mimo
Introduction to Massive MimoIntroduction to Massive Mimo
Introduction to Massive Mimo
 
Radio Resource Management for Millimeter Wave & Massive MIMO
Radio Resource Management for Millimeter Wave & Massive MIMORadio Resource Management for Millimeter Wave & Massive MIMO
Radio Resource Management for Millimeter Wave & Massive MIMO
 
Design of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB CommunicationsDesign of Radio Frequency Integrated Circuits for UWB Communications
Design of Radio Frequency Integrated Circuits for UWB Communications
 
Massive information on Massive MIMO
Massive information on Massive MIMOMassive information on Massive MIMO
Massive information on Massive MIMO
 

En vedette

HTGAA 1
HTGAA 1HTGAA 1
HTGAA 1R L
 
Received Power performance in downlink architecture of Radio-over-Fiber Trans...
Received Power performance in downlink architecture of Radio-over-Fiber Trans...Received Power performance in downlink architecture of Radio-over-Fiber Trans...
Received Power performance in downlink architecture of Radio-over-Fiber Trans...IOSR Journals
 
Source Code Halaman Web Radio Stremaing [RAMEN RADIO]
Source Code Halaman Web Radio Stremaing [RAMEN RADIO]Source Code Halaman Web Radio Stremaing [RAMEN RADIO]
Source Code Halaman Web Radio Stremaing [RAMEN RADIO]Rizki Ogawa
 
Integrated Optical Wireless Network For Next Generation Wireless Systems
Integrated Optical Wireless Network For Next Generation Wireless SystemsIntegrated Optical Wireless Network For Next Generation Wireless Systems
Integrated Optical Wireless Network For Next Generation Wireless SystemsCSCJournals
 
Curso de TIC PARA LA ENSEÑANZA Y APRENDIZAJE
Curso de TIC PARA LA ENSEÑANZA Y APRENDIZAJECurso de TIC PARA LA ENSEÑANZA Y APRENDIZAJE
Curso de TIC PARA LA ENSEÑANZA Y APRENDIZAJEJanett Julca Flores
 
Detailed Introduction To Docker
Detailed Introduction To DockerDetailed Introduction To Docker
Detailed Introduction To Dockernklmish
 
BARRIQUE_CATAL_2013_web (1)
BARRIQUE_CATAL_2013_web (1)BARRIQUE_CATAL_2013_web (1)
BARRIQUE_CATAL_2013_web (1)Francesco Fadda
 
Programacion orientada objetos-1
Programacion orientada objetos-1Programacion orientada objetos-1
Programacion orientada objetos-1Scott Chavez
 
Adconion Direct "RTB: The Future of Cross Channel"
Adconion Direct "RTB: The Future of Cross Channel"Adconion Direct "RTB: The Future of Cross Channel"
Adconion Direct "RTB: The Future of Cross Channel"IAB Canada
 
SmartBits - Soluciones de negocio - www.smartbits.es
SmartBits - Soluciones de negocio - www.smartbits.esSmartBits - Soluciones de negocio - www.smartbits.es
SmartBits - Soluciones de negocio - www.smartbits.essmartbits1
 
News Press Capcortes Rc1
News Press Capcortes Rc1News Press Capcortes Rc1
News Press Capcortes Rc1Alcantara
 
East india securities rating advisory wc
East india securities rating advisory wcEast india securities rating advisory wc
East india securities rating advisory wcChirag Majithia
 
60 2016 individuazione e le responsabilità del lavoratore
60    2016   individuazione e le responsabilità del lavoratore60    2016   individuazione e le responsabilità del lavoratore
60 2016 individuazione e le responsabilità del lavoratorehttp://www.studioingvolpi.it
 
Finanzas iv y v unidad
Finanzas   iv y v unidad Finanzas   iv y v unidad
Finanzas iv y v unidad Perrizo Mora
 

En vedette (20)

HTGAA 1
HTGAA 1HTGAA 1
HTGAA 1
 
Received Power performance in downlink architecture of Radio-over-Fiber Trans...
Received Power performance in downlink architecture of Radio-over-Fiber Trans...Received Power performance in downlink architecture of Radio-over-Fiber Trans...
Received Power performance in downlink architecture of Radio-over-Fiber Trans...
 
Remote method invocation (RMI)
Remote method invocation (RMI)Remote method invocation (RMI)
Remote method invocation (RMI)
 
Source Code Halaman Web Radio Stremaing [RAMEN RADIO]
Source Code Halaman Web Radio Stremaing [RAMEN RADIO]Source Code Halaman Web Radio Stremaing [RAMEN RADIO]
Source Code Halaman Web Radio Stremaing [RAMEN RADIO]
 
Integrated Optical Wireless Network For Next Generation Wireless Systems
Integrated Optical Wireless Network For Next Generation Wireless SystemsIntegrated Optical Wireless Network For Next Generation Wireless Systems
Integrated Optical Wireless Network For Next Generation Wireless Systems
 
Curso de TIC PARA LA ENSEÑANZA Y APRENDIZAJE
Curso de TIC PARA LA ENSEÑANZA Y APRENDIZAJECurso de TIC PARA LA ENSEÑANZA Y APRENDIZAJE
Curso de TIC PARA LA ENSEÑANZA Y APRENDIZAJE
 
Detailed Introduction To Docker
Detailed Introduction To DockerDetailed Introduction To Docker
Detailed Introduction To Docker
 
urbania
urbaniaurbania
urbania
 
BARRIQUE_CATAL_2013_web (1)
BARRIQUE_CATAL_2013_web (1)BARRIQUE_CATAL_2013_web (1)
BARRIQUE_CATAL_2013_web (1)
 
Premio investigación e innovación modificado
Premio investigación e innovación modificadoPremio investigación e innovación modificado
Premio investigación e innovación modificado
 
Programacion orientada objetos-1
Programacion orientada objetos-1Programacion orientada objetos-1
Programacion orientada objetos-1
 
Adconion Direct "RTB: The Future of Cross Channel"
Adconion Direct "RTB: The Future of Cross Channel"Adconion Direct "RTB: The Future of Cross Channel"
Adconion Direct "RTB: The Future of Cross Channel"
 
SmartBits - Soluciones de negocio - www.smartbits.es
SmartBits - Soluciones de negocio - www.smartbits.esSmartBits - Soluciones de negocio - www.smartbits.es
SmartBits - Soluciones de negocio - www.smartbits.es
 
Jsf
JsfJsf
Jsf
 
News Press Capcortes Rc1
News Press Capcortes Rc1News Press Capcortes Rc1
News Press Capcortes Rc1
 
Manual css3 nov2014
Manual css3 nov2014Manual css3 nov2014
Manual css3 nov2014
 
East india securities rating advisory wc
East india securities rating advisory wcEast india securities rating advisory wc
East india securities rating advisory wc
 
60 2016 individuazione e le responsabilità del lavoratore
60    2016   individuazione e le responsabilità del lavoratore60    2016   individuazione e le responsabilità del lavoratore
60 2016 individuazione e le responsabilità del lavoratore
 
Finanzas iv y v unidad
Finanzas   iv y v unidad Finanzas   iv y v unidad
Finanzas iv y v unidad
 
Important for me
Important for meImportant for me
Important for me
 

Similaire à Radio overfiber tutorial_iwt_2013_nggo

Channel Models for Massive MIMO
Channel Models for Massive MIMOChannel Models for Massive MIMO
Channel Models for Massive MIMOCPqD
 
Introduction to Wireless Communication
Introduction to Wireless CommunicationIntroduction to Wireless Communication
Introduction to Wireless CommunicationDilum Bandara
 
Technologies for future mobile transport networks
Technologies for future mobile transport networksTechnologies for future mobile transport networks
Technologies for future mobile transport networksITU
 
ashkkadjhasjdhkae2312433521433.pdf
ashkkadjhasjdhkae2312433521433.pdfashkkadjhasjdhkae2312433521433.pdf
ashkkadjhasjdhkae2312433521433.pdfVidyaDufare
 
Meixia Tao Introduction To Wireless Communications And Recent Advances
Meixia Tao Introduction To Wireless Communications And Recent AdvancesMeixia Tao Introduction To Wireless Communications And Recent Advances
Meixia Tao Introduction To Wireless Communications And Recent Advancesmelvincabatuan
 
communication Systems
communication Systems communication Systems
communication Systems AJAL A J
 
B Huiszoon Vederprijs2008 V Oct2009
B Huiszoon Vederprijs2008 V Oct2009B Huiszoon Vederprijs2008 V Oct2009
B Huiszoon Vederprijs2008 V Oct2009bashuiszoon
 
20CS2007 Computer Communication Networks
20CS2007 Computer Communication Networks 20CS2007 Computer Communication Networks
20CS2007 Computer Communication Networks Kathirvel Ayyaswamy
 
Chapter 1: introduction and Chapter 2: the physical layer
Chapter 1: introduction and Chapter 2: the physical layerChapter 1: introduction and Chapter 2: the physical layer
Chapter 1: introduction and Chapter 2: the physical layerfabimr386
 
Visible Light Communication
Visible Light CommunicationVisible Light Communication
Visible Light CommunicationIJERD Editor
 
Multi antana & its application
Multi antana & its applicationMulti antana & its application
Multi antana & its applicationshahbaz494819
 
MTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptxMTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptxSupriaNandan
 
UCF Wireless SAW Sensor Systems
UCF Wireless SAW Sensor SystemsUCF Wireless SAW Sensor Systems
UCF Wireless SAW Sensor SystemsConvinsys
 
An introduction of 3 gpp long term evolution (lte)
An introduction of 3 gpp long term evolution (lte)An introduction of 3 gpp long term evolution (lte)
An introduction of 3 gpp long term evolution (lte)mojtaba_gh
 
FIBEROPTICS.pdf
FIBEROPTICS.pdfFIBEROPTICS.pdf
FIBEROPTICS.pdfGOUTHAMAB2
 
Graded-index Polymer Multimode Waveguides for 100 Gb/s Board-level Data Trans...
Graded-index Polymer Multimode Waveguides for 100 Gb/s Board-level Data Trans...Graded-index Polymer Multimode Waveguides for 100 Gb/s Board-level Data Trans...
Graded-index Polymer Multimode Waveguides for 100 Gb/s Board-level Data Trans...Jian Chen
 

Similaire à Radio overfiber tutorial_iwt_2013_nggo (20)

Channel Models for Massive MIMO
Channel Models for Massive MIMOChannel Models for Massive MIMO
Channel Models for Massive MIMO
 
Introduction to Wireless Communication
Introduction to Wireless CommunicationIntroduction to Wireless Communication
Introduction to Wireless Communication
 
Technologies for future mobile transport networks
Technologies for future mobile transport networksTechnologies for future mobile transport networks
Technologies for future mobile transport networks
 
ashkkadjhasjdhkae2312433521433.pdf
ashkkadjhasjdhkae2312433521433.pdfashkkadjhasjdhkae2312433521433.pdf
ashkkadjhasjdhkae2312433521433.pdf
 
Meixia Tao Introduction To Wireless Communications And Recent Advances
Meixia Tao Introduction To Wireless Communications And Recent AdvancesMeixia Tao Introduction To Wireless Communications And Recent Advances
Meixia Tao Introduction To Wireless Communications And Recent Advances
 
communication Systems
communication Systems communication Systems
communication Systems
 
B Huiszoon Vederprijs2008 V Oct2009
B Huiszoon Vederprijs2008 V Oct2009B Huiszoon Vederprijs2008 V Oct2009
B Huiszoon Vederprijs2008 V Oct2009
 
Wwwwww
WwwwwwWwwwww
Wwwwww
 
20CS2007 Computer Communication Networks
20CS2007 Computer Communication Networks 20CS2007 Computer Communication Networks
20CS2007 Computer Communication Networks
 
Kazaura
KazauraKazaura
Kazaura
 
Chapter 1: introduction and Chapter 2: the physical layer
Chapter 1: introduction and Chapter 2: the physical layerChapter 1: introduction and Chapter 2: the physical layer
Chapter 1: introduction and Chapter 2: the physical layer
 
Laser Communication
Laser CommunicationLaser Communication
Laser Communication
 
Visible Light Communication
Visible Light CommunicationVisible Light Communication
Visible Light Communication
 
Multi antana & its application
Multi antana & its applicationMulti antana & its application
Multi antana & its application
 
MTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptxMTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptx
 
UCF Wireless SAW Sensor Systems
UCF Wireless SAW Sensor SystemsUCF Wireless SAW Sensor Systems
UCF Wireless SAW Sensor Systems
 
Overview of Radio Communication
Overview of Radio CommunicationOverview of Radio Communication
Overview of Radio Communication
 
An introduction of 3 gpp long term evolution (lte)
An introduction of 3 gpp long term evolution (lte)An introduction of 3 gpp long term evolution (lte)
An introduction of 3 gpp long term evolution (lte)
 
FIBEROPTICS.pdf
FIBEROPTICS.pdfFIBEROPTICS.pdf
FIBEROPTICS.pdf
 
Graded-index Polymer Multimode Waveguides for 100 Gb/s Board-level Data Trans...
Graded-index Polymer Multimode Waveguides for 100 Gb/s Board-level Data Trans...Graded-index Polymer Multimode Waveguides for 100 Gb/s Board-level Data Trans...
Graded-index Polymer Multimode Waveguides for 100 Gb/s Board-level Data Trans...
 

Dernier

1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfJamesConcepcion7
 
20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdfChris Skinner
 
Data Analytics Strategy Toolkit and Templates
Data Analytics Strategy Toolkit and TemplatesData Analytics Strategy Toolkit and Templates
Data Analytics Strategy Toolkit and TemplatesAurelien Domont, MBA
 
Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Americas Got Grants
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...Operational Excellence Consulting
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
Driving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerDriving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerAggregage
 
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOnemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOne Monitar
 
WSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfWSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfJamesConcepcion7
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMVoces Mineras
 
Jewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreJewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreNZSG
 
business environment micro environment macro environment.pptx
business environment micro environment macro environment.pptxbusiness environment micro environment macro environment.pptx
business environment micro environment macro environment.pptxShruti Mittal
 
Interoperability and ecosystems: Assembling the industrial metaverse
Interoperability and ecosystems:  Assembling the industrial metaverseInteroperability and ecosystems:  Assembling the industrial metaverse
Interoperability and ecosystems: Assembling the industrial metaverseSiemens
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFChandresh Chudasama
 
Appkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxAppkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxappkodes
 
Technical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamTechnical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamArik Fletcher
 
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryEffective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryWhittensFineJewelry1
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers referencessuser2c065e
 

Dernier (20)

1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdf
 
20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf
 
Data Analytics Strategy Toolkit and Templates
Data Analytics Strategy Toolkit and TemplatesData Analytics Strategy Toolkit and Templates
Data Analytics Strategy Toolkit and Templates
 
Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors Data
 
Driving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerDriving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon Harmer
 
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptxThe Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
 
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOnemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
 
WSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfWSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdf
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQM
 
Jewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreJewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource Centre
 
business environment micro environment macro environment.pptx
business environment micro environment macro environment.pptxbusiness environment micro environment macro environment.pptx
business environment micro environment macro environment.pptx
 
Interoperability and ecosystems: Assembling the industrial metaverse
Interoperability and ecosystems:  Assembling the industrial metaverseInteroperability and ecosystems:  Assembling the industrial metaverse
Interoperability and ecosystems: Assembling the industrial metaverse
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDF
 
Appkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxAppkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptx
 
Technical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamTechnical Leaders - Working with the Management Team
Technical Leaders - Working with the Management Team
 
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryEffective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers reference
 

Radio overfiber tutorial_iwt_2013_nggo

  • 1. Radio-over-fiber Idelfonso Tafur Monroy E-mail: idtm@fotonik.dtu.dk Neil Guerrero Gonzalez CPqD
  • 2. 2 Metro-access and short range communications group
  • 3. 3 Team members Staff (6) Idelfonso Tafur Monroy, Prof. Darko Zibar, Assoc. Prof. Jesper B. Jensen, Asst. Prof. J.J.Vegas Olmos, Asst. Prof. Antonio Caballero, Postdoc PhD Researchers (12 ) Cyd Delgado Jose Estaran Bomin Li Valeria Arlunno Xiaodan Pang Alexander Lebedev Maisara Othman Roberto Rodes Tien Thang Pham Robert Borkowski Supannee Learkthanakhachon Gerson de Los Santos A Copenhagen based, young and dynamic team, that combines diversity in expertise and cultural backgrounds (15 nationalities) Ongoing MSc students projects (6) David Montero, visit. Asst. Prof.
  • 4. 4 Next generation access networks services Central Office PSTN Internet Private Home with Small Repeater Mobile access Wireless Stuff Wireless Access in the City Requirements: • Versatile – handle a variety of signals • Efficient bandwidth utilization • Bidirectional • Dynamic and reconfigurable • Long-reach (~100 km)
  • 5. 5 Hybrid fiber wireless networks CO Service integration Unified optical network platform Different modulation formats BS Different bit rates Radio over fiber (RoF) technology to increase the capacity, coverage and mobility Challenges: • Integration with existing infrastructures • Fulfill optical power budget • Increase receiver sensitivity, reach and number of users • Improve the tolerance to fiber transmission impairments • Perform signal detection and demodulation of different modulation formats and bit rates
  • 6. 6 Where? Network scenario1 [1] Alcatel Radio-over-Fibre solution, 2007 Convergence between fixed and wireless networks the goal to bring the bandwidth of fixed network to mobile user
  • 7. 7 To take into account: Global data traffic 1 Exabyte = 1018 bytes Drivers for traffic growth Mobility Cloud Video From CISCO analysis
  • 8. 8 Connectivity any time, any where Source: Transfer Jet Toshiba
  • 10. 10 100 Gbit/s wireless links Bring the capacity of baseband optical links to wireless links 1988 1992 1996 2000 2004 2008 2012 10Mbps 100Mbps 1Gbps 10Gbps 100Gbps W ireless links (standard W LAN) W ireless links (research) Optical serial interface (products) Bitrate Year Optical serial interface (research)
  • 11. 11 How to achieve multi gigabit wireless links Higher RF carrier frequencies • GHz of bandwidth available • Higher Air attenuation Courtesy of J. Mitchell, UCL1 Frequency (GHz) 10 GSM 900MHz 1800MHz UMTS ~2GHz WLAN 2.4GHz 5.1GHz LMDS 28GHz 29GHz 31GHz HiperAccess 18GHz 42GHz MVDS 40GHz WIMAX 2.5GHz 3.5GHz 802.20 ~3.5GHz UWB 3.1-10.6 GHz Wireless HD 60GHz 6040 75 110 Future gigabit links Advanced modulation techniques • High spectral efficiency • Stringent requirements on linearity and SNR
  • 12. 12 How to achieve multi gigabit wireless links 75-110GHz An untapped frequency band 1 100 500 Wireless HD 60GHz Saturated frequency bands (i.e GSM, UMTS, WiFi, WiMAX, WLAN, U WB, HiperAccess, LMDS, MVDS...) Frequency (GHz) 300- 500GHz  Augmented reality  HD Video Streaming  Interactive Apps 3D Skype on ipads  Mobile e-Health  Machine-to-machine  synch and go Disaster recovery Need for wireless bandwidth beyond current up to 10 GHz bands
  • 13. 13 BTS Coverage vs Distributed Antenna Systems DAS approach •DAS attributes: •Centralization of complex equipment and simple remote antennas •Handover and load distribution/re-configurability •Power consumption BTS BTS BTS: base transceiver station
  • 14. TU Dresden Communications Laboratory C.G. Schaeffer DTU Feb. 2009 Why Fibre Optics in Radio Systems ? numerous lowcost base stations without RF oscillators & modulators with superior RF properties higher RF carriers: - reduced cell-size - more subscribers per area - frequency-reuse - reduced RF power (EMI) low fibre attenuation for feeding the base stations remote optical generation of RF carriers broadband data signals
  • 15. 15 Radio over fibre: basics Baseband Intermedeiate frequency (IF) up-conversion Frequency up- conversion GHz E/O conversion Light source Optical spectrum THz Optical spectrum fo fo fr fr RF spectrum Intensity modulaiton THz Optical fiber link Radio transmitter Radio-over-fibre
  • 16. TU Dresden Communications Laboratory C.G. Schaeffer DTU Feb. 2009 Intensity Modulation & Direct Detection Optical Receiver Optical to RF Optical Fibre RF Output RF Input Optical Transmitter RF to Optical Optical Power Spectrum Optical Frequency RF-Components contributing to fRF fRF f0 Phase sensitive summation of all optically generated RF-Components at fRF
  • 17. 17 Signal impairments E/O conversion E/O conversion Radio end Fiber dispersion Non-linearities Phase noise RF-powe fading Crosstalk Conversion efficiency Link gain Non-linearities Intermodualtion products
  • 19. TU Dresden Communications Laboratory C.G. Schaeffer DTU Feb. 2009 Intensity Modulation & Fibre Dispersion Fibre length L (km) Periodical RF power transfer: Fibre Dispersion: Wavelength: Velocity of Light: D ps km nm 17 1540nm c m s 3 108 222 cos f c DL 0 2 4 6 8 60 GHz 40 GHz 1 0.5 Opt. power Fundamental 3-dB frequency: DL c f dB 2 1 3
  • 21. TU Dresden Communications Laboratory C.G. Schaeffer DTU Feb. 2009 Intensity Modulator for Sideband Modulation Principle: Mach-Zehnder Interferometer Bias points A B C Electrical voltage V (a.u.) Optical output power 0 0. 5 1 V0 A B C DC bias fMod-input Optical input Optical output Optical Spectrum f0 f1f-1 fRF = fMod Optical Spectrum f0 f1f-1 fRF = 2 fMod Optical Spectrum fop t f0 f1f-1 fRF = 4 fMod f-2 f2
  • 22. 22 Optical Single Sideband + carrier Dalma Novak
  • 24. 24 IF and remote LO transport over fiber
  • 27. 27 Hybrid wireless-fibre systems To metropolitan network Central office Antenna base station: : Optical fibre Goal: Unified optical wireline and wireless signal transport systems Coherent detection and DSP All-optical envelope detection Approaches under study Recovery & protection Broadband wireless bridge Optical fiber link Optical fiber link
  • 28. 28 All-optical envelope detection for wireless signals Modulation (envelope) DC Bias EAM Radio-frequency carrier Outputopticalpower - Vbias Half-wave rectified signal Lightwave carrier Base station Envelope detector Baseband data out •No High frequency mixers and oscillators •No frequency and bandwidth fixed operation For high carrier frequencies and large bandwidth reduced complexity is desirable Envelope detection with straightforward connectivity to fiber links is an interesting approach
  • 29. 29 All-optical envelope detection Example: upstream channel EPON Desirable to use same technology for both wireline and wireless Key enabling techniques based on all-optical wireless-to-optical conversion
  • 30. 30 Challenges/potential Why optical phase-modulation? 0 0.5 1 Transmission MZ phase (rad) 100% 0 2 4 6 0 0.5 1 1.5 2 Outputphase(rad) Drive signal (V) 600% (equivalent) Linearity: • Optical intensity modulators nonlinear  Mach-Zehnder – sinusoidal  EAM – exponential • Optical phase linear  If dominated by linear electro-optic effect Phase-modulation has no fundamental limit on the dynamic range. Large dynamic range enabling wide range of power levels
  • 31. 31 Nonlinear and linear optical phase demodulation 0 0.5 1 Transmission MZ phase (rad) Photocurrent Signal – LO phase difference Large-signal Modulation •Open loop •Closed loop signal LO i~sin( signal - LO) • Sinusoidal response of the receiver Benefits of linear phase-modulation lost 90o optical hybrid LO Signal in I(t) Q(t) Y(t)= I(t)+jQ(t)=exp( (t))exp( (t)) Linear phase demodulation
  • 32. 32 Converged fixed and wireless network Central office Metropolitan network CWlaser Analog-to-digital conversion RFcarrierrecovery Lineardemodulation Digitalcarrierrecovery Digital coherent receiver LO laserc Transmitter Phase modulator b Photonic wireless-wireline converged network a Carrier recovery and demodulation performed using DSP larger tolerances to phase noise and impairment compensation using DSP Same receiver structure for fixed and wireless signal detection OPSCODER project
  • 33. 33 33 Radio over fiber (RoF) systems Phase-modulated (PM) RoF systems
  • 34. 34 The basis: E1 OpticalHybrid Photodetectors Analog-to-Digital Converter 0 90 ELO E2 E3 E4 II(t) IQ(t) DigitalSignal Processing LO laser Optical Modulator ( )data t ES PC ES Transmitter Coherent detector Digital receiver Modulation index ( )s s pi j t data t V s sE P e Optical signal Electrical signal
  • 35. 35 35 The basis: ELO ES PC LO laser E1 OpticalHybrid Photodetectors 0 90 E2 E3 E4 Optical signal Electrical signal ( ) cos( ( ))I out LO pi I t P P t data t V ( ) sin( ( ))Q out LO pi I t P P t data t V ( ( )) ( ) ( )pi j t data t V I Qe I t jI t Coherent receiver
  • 36. 36 36 The basis: E1 OpticalHybrid Photodetectors 0 90 E2 E3 E4 Analog-to-Digital Converter DigitalReceiver ( ( )) ( ) ( )pi j t data t V I Qe I t jI tOptical frequency/ phase offset ( ( )) pi j t data t V e 1. DPLL 2. Linear demodulator 3. RF signal demodulation ( ( )) ln( )pi j data t V e
  • 37. 37 37 Signal parameters estimation: Data clustering
  • 38. 38 38 The basis:Analog-to-Digital Converter DigitalSignal Processing 1. DPLL 2. Linear demodulator 3. RF signal demodulation 0 ( ) 2 Re ( ) j t Basebanddata t S t e Complex baseband representation 0 ( ) 2 Re ( ) j t Basebanddata t S t e Frequency downconversion Quadrature demodulator Synchronizer
  • 39. 39 39 The basis:Analog-to-Digital Converter DPLLand Lineardemodulator Quadrature demodulator Synchronizer ( ) ( ) ( )Baseband I QS t s t js t Symbol 1 Symbol 2 Symbol 3 Symbol 4 I Q
  • 40. 40 40 The basis: problem statement Phase offset ( ) kj k Baseband ky s k e Noise
  • 41. 41 41 Classical solution: Viterbi and Viterbi ( ) kj k Baseband ky s k e 2 ( ) ( ) ( ) ( ) l j M Baseband I Qs k s t js t e 2 ( ) ( ) ( ) ( ) l j M Baseband I Qs k s t js t e 4MQPSK 2 ( ) (2 ) ( ) 1 l j M M j lM Basebands k e e 2 ( ) (2 ) ( ) 1 l j M M j lM Basebands k e e No data (Non-data-aided)
  • 42. 42 Classical solution: Viterbi and Viterbi 2 ( ) (2 ) ( ) 1 l j M M j lM Basebands k e e No data (Non-data-aided) ( ) kjMM M M k Baseband ky s k e Objective function( ) Re kjMM k k k L y eexp[ ]kjM M k k e j y It is maximized for one phasor ky ( )kF y arg( )ky (.) k 1 arg(.) M M ky • How to recover the phase of multi-amplitude signals? • How to estimate other data signal parameters such as modulation format? • How to track time-varying data transmission conditions?
  • 43. 43 A novel point of view: data clustering Phase offset K-means clustering Cluster Centroid • Phase offset estimation and compensation • Reconfigurable phase offset estimation • Modulation format recognition • Frequency offset compensation
  • 44. 44 The principle: Centroid Cluster 1 Centroid Cluster 2 Centroid Cluster 3 Centroid Cluster 4 1u 2u 3u 4u (a) Shortest distance 2u 3u 4u 1u ix 1ix (b) 1d 2d 3d 4d Updated Centroid Cluster 1 1u ix ,1newu 1ix (c)(d)
  • 45. 45 RF phase recovery: Flexible configuration and simple upgrade for supporting different modulation formats Cluster Prototype Phase compensation Symbol 3 Symbol 4 Symbol 5 Symbol 6 Symbol 7 Symbol 8 Symbol 1 Symbol 2 Demodulation
  • 46. 46 12 14 16 18 20 22 4 3 2 B2B, Viterbi & Viterbi B2B, k-means 40 Km, Viterbi & Viterbi 40 Km, k-means -log(BER) OSNR [dB] 1 dB 312.5 Mbaud 8PSK single carrier at 5 GHz Viterbi and Viterbi vs. K-means: K-means performs equally well as Viterbi and Viterbi
  • 47. 47 Reconfigurable phase offset estimation: PSK QAM 16 QAM with phase offset Level threshold Level 1 Level 2 Level 3 Low complex QAM phase recovery
  • 48. 48 Automatic modulation format detection: Level threshold Level 1 Level 2 Level 3 Multilevel detection Centroid k Cluster dmin(k,j+1) dmin(k,j) Centroid k+2 dmin(k+2,j) dmin(k+2,j+1) Centroid minvar( ( , ) )s d k j Condition of symmetry Signal Histogram/ K-means clustering Number of levels/ Number of clusters Multilevel?/ Symmetry? Right 16QAM/8PSK/ QPSK Signal Format Recognition K-means Re-initialization AMFD process Reconfigurable CarrierRecovery Wrong
  • 49. 49 Automatic modulation format detection: Centroid k Cluster dmin(k,j+1) dmin(k,j) Centroid k+2 dmin(k+2,j) dmin(k+2,j+1) Centroid minvar( ( , ) )s d k j Condition of symmetry 100 1000 0,000 0,001 0,002 0,003 0,004 0,005 0,006 0,007 Symmetry Data samples OSNR 20 dB OSNR 24 dB Threshold QPSK 8PSK 0,000 0,005 0,010 0,015 0,020 Threshold Hypothesis Wrong QPSK id. Symmetry True QPSK id. Truedetection Wrongdetection 200 data-samples are required for automatic modulation format detection Modulation format = 8PSK
  • 50. 50 Frequency offset compensation: The reconfigurable k-means clustering algorithm allows multifunctional tasks Frequency offset effect N samples First N/2 samples Second N/2 samples Cluster Centroid Blue constellation rotation by (1: )cleary N ( 1: 2 )darky N N
  • 51. 51 Frequency offset compensation: The reconfigurable k-means clustering algorithm allows multifunctional tasks 12 13 14 15 16 17 18 19 20 21 22 4 3 2 Without frequency offset compensation With frequency offset compensation -log(BER) OSNR [dB] 2.7 dB 1200 1100 1000 900 800 700 600 4 3 OSNR 22 dB OSNR 20 dB -log(BER) Data-symbols / time-blocks Frequency offset 10 kHz a) b) 312.5 Mbaud 8PSK single carrier at 5 GHz
  • 52. 52 52 Heterogeneous optical network: Reconfigurable digital coherent receiver for Metro Access Networs
  • 53. 53 State of the art: converged WDM access link Tx. 1 Tx. 2 Tx. 3 Tx. 4 K. Prince et.al, PTL 2009 • 4 х 21.4 Gbit/s NRZ-DQPSK • 2 х 250 Mbit/s @ 5 GHz coherent Rof with phase modulation • 1 х 3.125 Gbit/s photonically generated IR-UWB • 1 х 256 QAM WiMAX @ 5.8 GHz (12 Mbaud, 70 Mbit/s) 200 GHz spacing between WDM channels NRZ-DQPSK PM RoF IR-UWB QAM-WiMAX Dedicated NRZ-DQPSK Receiver Dedicated PM RoF receiver Dedicated IR-UWB reciever Dedicated QAM-WiMAX receiver 4 dedicated receivers… Less atractive to network operators… - Maintenance & cost issues associated with Mixed receiver hardware Single reconfigurable digital photonic Receiver To support converged service delivery over a single infrastructure
  • 55. 55 55 PM-OFDM Baseband VCSEL AWG AWG 78 km Deployed Fiber EDFA 20mW PPG DATA DATA / MZM /2 CW PPG DATA DATA / VOA 10 dB 1 2 4 IR-UWB AWG TLS M 3 Single Coherent Receiver 10 dBVOA 90°Optical Hybrid PwrMn LO 1 2 3 4 VCSEL DigitalPhotonic Receiver DSO Serial-Parallel Mapper IFFT CP DATAIN AWG VSG CW M 1 m wireless transmission Converged service delivery: • 5 Gbps directly modulated VCSEL • 20 Gbps QPSK baseband • 2 Gbps phase-modulated IR-UWB • 500 Mbps phase-modulated OFDM at 5 GHz carrier frequency Experimental setup
  • 56. 56 56 PM-OFDM Baseband VCSEL AWG AWG 78 km Deployed Fiber EDFA 20mW PPG DATA DATA / MZM /2 CW PPG DATA DATA / VOA 10 dB 1 2 4 IR-UWB AWG TLS M 3 Single Coherent Receiver 10 dBVOA 90°Optical Hybrid PwrMn LO 1 2 3 4 VCSEL DigitalPhotonic Receiver DSO Serial-Parallel Mapper IFFT CP DATAIN AWG VSG CW M 1 m wireless transmission Linear demodulator IR-UWB Digital filtering (HPF) Matched filtering Symbol synchronization Signal demodulation PM-OFDM Symbol synchronization Delete Cyclic Prefix FFT Channel estimation Demapper Parallel-Serial Signal demodulation Optical frequency off-set compensation (DPLL) QPSK Baseband Equalization Clock recovery Binary decision & Differential decoding Carrier recovery IM VCSEL Timing recovery Digital filtering (HPF) Signal demodulation Thresholding Digital chromatic dispersion compensation Reconfigurable digital photonic receiver
  • 57. 57 PM-OFDM Baseband VCSEL AWG AWG 78 km Deployed Fiber EDFA 20mW PPG DATA DATA / MZM /2 CW PPG DATA DATA / VOA 10 dB 1 2 4 IR-UWB AWG TLS M 3 Single Coherent Receiver 10 dBVOA 90°Optical Hybrid PwrMn LO 1 2 3 4 VCSEL DigitalPhotonic Receiver DSO Serial-Parallel Mapper IFFT CP DATAIN AWG VSG CW M 1 m wireless transmission Optical transmission over 78 km of deployed fiber
  • 58. 58 Buy SmartDraw!- purchased copies print this document without a watermark. Visit www.smartdraw.com or call 1-800-768-3729.
  • 60. 60 -26 -25 -24 -23 -22 -21 -20 5 4 3 2 B2B single channel 78km single channel -log(BER) Received Power [dBm] Coherent VCSEL(a) -26 -25 -24 -23 -22 -21 -20 5 4 3 2 B2B single channel 78km single channel 78km all wavelengths -log(BER) Received Power [dBm] Coherent VCSEL(a) No penalty for multichannel case
  • 61. 61 -30 -29 -28 -27 -26 4 3 2 B2B single channel 78km single channel-log(BER) Received Power [dBm] (b) QPSK -30 -29 -28 -27 -26 4 3 2 B2B single channel B2B all wavelengths 78km single channel 78km all wavelengths -log(BER) Received Power [dBm] (b) QPSK 0.5 dB penalty for multichannel case
  • 62. 62 -26 -24 -22 -20 -18 5 4 3 2 1 B2B single channel B2B all wavelengths 78km single channel 78km all wavelengths -log(BER) Received Power [dBm] (c) IR-UWB -26 -24 -22 -20 -18 5 4 3 2 1 B2B single channel 78km single channel -log(BER) Received Power [dBm] (c) IR-UWB No penalty for multichannel case
  • 63. 63 -32 -31 -30 -29 -28 -27 5 4 3 2 B2B single channel 78 km single channel -log(BER) Received Power [dBm] (d) OFDM RoF -32 -31 -30 -29 -28 -27 5 4 3 2 B2B single channel B2B all wavelengths 78 km single channel 78 km all wavelengths -log(BER) Received Power [dBm] (d) OFDM RoF No penalty for multichannel case
  • 64. 64 Receiver sensitivity: • -24 dBm for directly modulated VCSEL • -27 dBm for QPSK baseband • -23 dBm for phase-modulated IR-UWB • -27.5 dBm for phase-modulated OFDM
  • 65. 65 PM-OFDM Baseband VCSEL AWG AWG 78 km Deployed Fiber EDFA 20mW PPG DATA DATA / MZM /2 CW PPG DATA DATA / VOA 10 dB 1 2 4 IR-UWB AWG TLS M 3 Single Coherent Receiver 10 dBVOA 90°Optical Hybrid PwrMn LO 1 2 3 4 VCSEL DigitalPhotonic Receiver DSO Serial-Parallel Mapper IFFT CP DATAIN AWG VSG CW M 1 m wireless transmission Summary: • Successful WDM signal demodulation for all four subsystems was demonstrated • 78 km of optical fiber transmission was achieved • A BER value below FEC threshold was achieved for all four subsystems
  • 66. 100 Gbps Wireless Link in 75-110 GHz Band Using Photonic Technologies
  • 67. 67 DTU Fotonik, Danmarks Tekniske Universitet Applications to gigabit wireless links • Sync and go • All wireless connectivity at business and home • HD video streaming (uncompressed) • Cloud computing • Video-calls http://wirelessgigabitalliance.org/ • Beyond LTE Cellular networks • Disaster recovery links • Fast deployment wireless networks • Extension of optical fiber links Optical fiber Optical fiber Optical fiber
  • 68. 68 DTU Fotonik, Danmarks Tekniske Universitet Principle of RF generation by optical heterodyning •High capacity optical baseband generation •Incoherent beating of the lasers at the PD •Stringent requirement on laser linewidth •Scalable to high RF frequencies [1] U. Gliese et al., MTT 1998 [2] I. Insua et al., OFC 2009 [3] R. Sambaraju et al., PTL 2010 [4] D. Zibar et al., PTL 2011
  • 69. 69 DTU Fotonik, Danmarks Tekniske Universitet Ƭ 16-QAM Optical Baseband Transmitter PolMux Emulator Heterodyne Upconversion PC X Y XX Y Y W-band LNA EDFA x2 LO 37 GHz 75–110 GHz 1551.6nm 1550.9 nm LO PD212.5 Gb/s PPG Ƭ 80GS/sADC Downconversion I/QSeparation TimingOffsetRecovery DecisionandBERTest Equalizer Receiver π/2 87.5 GHz 1550.9 1551.6 PD1 d X Y 36cm 6dB Ƭ 6dB Ƭ Experimental Setup •Optical baseband 16-QAM generation using binary signal generator •Free running ECL (100 kHz linewidth) as LO for photonic up-conversion •Double-stage down-conversion: 1. Electrically W-band to 1-26GHz; 2. Digitally from 1-26 GHz to baseband 16-QAM Optical Baseband Transmitter PC 1550.9 nm 12.5 Gb/s PPG Ƭ π/2 6dB Ƭ 6dB Ƭ 16-QAM Optical Baseband Transmitter PC 1550.9 nm 12.5 Gb/s PPG Ƭ π/2 6dB Ƭ 6dB Ƭ Ƭ PolMux Emulator X Y Ƭ PolMux Emulator X Y Heterodyne Upconversion XX Y Y 1551.6nm LO PD2 PD1 X Y Heterodyne Upconversion XX Y Y 1551.6nm LO PD2 PD1 X Y EDFA W-band LNA x2 LO 37 GHz 80GS/sADC Downconversion I/QSeparation TimingOffsetRecovery DecisionandBERTest Equalizer Receiver W-band LNA x2 LO 37 GHz 80GS/sADC Downconversion I/QSeparation TimingOffsetRecovery DecisionandBERTest Equalizer Receiver 87.5 GHz 1550.9 1551.6
  • 70. 70 DTU Fotonik, Danmarks Tekniske Universitet Experiment Setup • For information: – Both signal laser and LO laser has ~100 kHz linewidth, but drifting fast within the range of 300 MHz; – Signal and LO power are set to be equal; – W-band LNA has 25 dB gain, max input power = -20 dBm; – W-band Mixer is driven by LO at 74 GHz. With input RF with frequency between 75-100 GHz, the output IF lies in the frequency range 1-26 GHz;
  • 71. 71 DTU Fotonik, Danmarks Tekniske Universitet Experiment Setup W-band Antenna 100 GHz PD W1-WR10 Adaptor W-band Antenna W-band LNA W-band Mixer LO IF
  • 72. 72 DTU Fotonik, Danmarks Tekniske Universitet Experiment results -1 0 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 Wireless d = 50cm Wireless d = 150cm Wireless d = 200cm -log(BER) Optical power into PD (dBm) FEC 50 Gbit/s •BER curves for 50 Gbit/s single polarization 16-QAM with different wireless distances -1 0 1 2 3 4 5 6 7 8 9 5 4 3 2 1 Wireless d = 50 cm Wireless d = 75 cm Wireless d = 120 cm -log(BER) Optical power into PD (dBm) FEC 100 Gbit/s •BER curves for 100 Gbit/s PolMux 16-QAM with different wireless distances -1 0 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 Wireless d = 50cm -log(BER) Optical power into PD (dBm) FEC 50 Gbit/s -1 0 1 2 3 4 5 6 7 8 9 10 5 4 3 2 1 Wireless d = 50cm Wireless d = 150cm -log(BER) Optical power into PD (dBm) FEC 50 Gbit/s -1 0 1 2 3 4 5 6 7 8 9 5 4 3 2 1 Wireless d = 50 cm -log(BER) Optical power into PD (dBm) FEC 100 Gbit/s -1 0 1 2 3 4 5 6 7 8 9 5 4 3 2 1 Wireless d = 50 cm Wireless d = 75 cm -log(BER) Optical power into PD (dBm) FEC 100 Gbit/s
  • 73. 73 DTU Fotonik, Danmarks Tekniske Universitet Experiment results Ƭ 16-QAM Optical Baseband Transmitter PolMux Emulator Heterodyne Upconversion PC X Y XX Y Y W-band LNA EDFA x2 LO 37 GHz 75–110 GHz 1551.6nm 1550.9 nm LO PD212.5 Gb/s PPG Ƭ 80GS/sADC Downconversion I/QSeparation TimingOffsetRecovery DecisionandBERTest Equalizer Receiver π/2 87.5 GHz 1550.9 1551.6 PD1 d X Y 36cm 6dB Ƭ 6dB Ƭ X branch Y branch X branch Y branch Constellations for 100 Gbit/s PolMux 16-QAM signal •120 cm wireless distance •8 dBm optical power into the photodiode
  • 74. 74 Introduction to MIMO technique 1. If all Tx antennas transmits the same data: • Increase SNR • Robust against physical disaster 2. If each Tx antenna transmits different data simultaneously: • Increase link capacity • Diversity
  • 75. 75 Training-based MIMO channel estimation 1t ,0 T XT 2 Yt 0, T T Time X Y Training period Training period DATATX TY TX TY t1 t2 DATA DATA DATA x1 2 1 1 2 2 0 0 xx yX X Y Y xy yy RT RT T RT RT T h h h h x 1 1 2 2 1 1 2 2 xx y X X Y Yxy yy RT T RT T RT T RT T h h h h Channel transfer matrix derived Pros  Simple expression Cons Required synchronization Reduced the spectral efficiency due to the overhead
  • 76. 76 Experimental Setup of MIMO-OFDM WDM PON with DM-VCSEL
  • 77. 77 MIMO-OFDM WDM PON with DM-VCSEL Various separationVarious distance  Successfully demodulated below the FEC limit over 7% overhead  198.5 Mb/s net data rate with 5.65 GHz  Training symbols compensate for impairments in wireless link
  • 78. 78 Experimental Setup of 2x2 MIMO-OFDM Fiber-Wireless transmission system based on PDM technique
  • 79. 79 2x2 MIMO-OFDM Fiber-Wireless Transmission System Based on PDM Technique -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 5 4 3 2 1 Pol-x 22.8km SMF d=1m Pol-y 22.8km SMF d=1m Pol-x 22.8km SMF d=2m Pol-y 22.8km SMF d=2m Pol-x 22.8km SMF d=3m Pol-y 22.8km SMF d=3m -log(BER) Received optical power at PD [dBm] FEC -1 1 -1 1 -1 1 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 5 4 3 2 1 Pol-x QPSK 22.8km SMF d=1m Pol-y QPSK 22.8km SMF d=1m Pol-x 16QAM 22.8km SMF d=1m Pol-y 16QAM 22.8km SMF d=1m -log(BER) Received optical power at PD [dBm] FEC -3 -1 1 3 -3 -1 1 3 -3 -1 1 3  4-QAM-OFDM  797 Mb/s  16-QAM-OFDM  1.5 Gb/s  Training symbols compensate the optical polarization rotation and crosstalk in the wireless link
  • 80. Find out more, videos of experiments,… metroaccessgroup idtm@fotonik.dtu.dk We look for: Researchers exchange & collaboration EU Marie Curie postdoc grant applicants, August 2013 MSc & PhD studies and research stays
  • 81. Metro-access and short range communications group
  • 82. 82 Conclusions of MIMO RoF • Increase link capacity • Channel estimation algorithm effectively compensate for impairments in the wireless link • VCSELs are an alternative optical source for next generation access networks • PDM alternative solution to double the capacity • High potential for future in-door networks system supporting gigabit/s wireless service

Notes de l'éditeur

  1. In the central office (CO), two different real valued 64-subcarrier 4-QAM OFDM baseband signals with 198.5 Mb/s net data rate (excluding the training symbols) and 312 MHz of bandwidth are generated by an arbitrary waveform generator (ArbWaveGen). The OFDM symbols are arranged in frames of 10 symbols. The first 3 symbols implement the trainingsequence, and 10% cyclicprefix is added. A dualchannel baseband MIMO-OFDM signal is generated in the ArbWaveGen, which is thenup-converted to a 5.65 GHz radio frequency (RF) carrier; the signal in one arm is up-convertedusing a mixer and the other arm implements RF up-conversionusing the vector signal generator (VSG).