SlideShare une entreprise Scribd logo
1  sur  42
Télécharger pour lire hors ligne
Computazione quantistica con i fotoni


                  P. Mataloni
   Quantum Optics Group, Dipartimento di Fisica
  dell’Università “La Sapienza”, Roma, 00185, Italy


         http://quantumoptics.phys.uniroma1.it
10000      4M
                                                           # Transistors per chip
                                                 16 M
                                                    64 M
                                  1000
                                                           256 M
          Electrons per device
                                                                   1G
                                                                        4G
- Because of the properties of quantum states
             100
                 Why quantum computation?
- Because of the high power guaranteed G the entanglement
                                      16 by
                                    10
                                                                                    ?
                                     1
                                     1988    1992   1996    2000    2004     2008   2012   2016   2020

  By 2015 a single electron can be confined in a transistor

  Example: factorizing a 1024-digit number:

  - Classical computer takes a period > universe lifetime
  - Quantum computer could find the answer in 1sec....
    (P.W. Shor 1994)
- They are easy to generate, manipulate, transmit and detect
- Have low interaction with the enviroment      low decoherence
- Possible to encode the information in different degrees
  of freedom of the photons (polarization, momentum,
  frequency….)

   Why quantum computation with photons?

It has been demonstrated that a universal quantum computer
can be realized by photons and standard linear optical devices
(beam splitters, polarizers, waveplates…..)   KLM, Nature 2001
Outline

- Basic elements
 quantum bit, quantum register, logic gates, entanglement...

- Cluster States of Photons
 properties, One-Way Quantum Computation

- Spontaneous Parametric Down Conversion
 the Roma source, tools for measurements with photons

- One-Way Quantum Computation with photons
 single qubit rotations, C-NOT gate, Grover’s search algorithm

- Optical Quantum Computing in the near future
 doing now, perspectives
Quantum bit (Qubit)
Coherent superposition of the orthogonal states |0> and |1>
                                                  >       >
|Q> = α|0> + β|1> (|α|2 + |β|2 = 1)
  >      >      >|




                           Example:
                         - photon passing through a Mach-Zehnder
                           interferometer: |Q> = α|Path 1> + β|Path 2>
                                             >           >           >
                         - superposition of H and V polarization:
                           |Q> = α|H> + β|V>
                             >       >      >
Quantum register (3-bit register)

 Classical: can store exactly one of the eight different
 numbers, 000, 001, 010, ….., 111

 Quantum: can store up to 8 numbers in a quantum
 superposition → N qubits: up to 2N numbers at once



Classical Bit    Quantum Bit        Classical Register Quantum Register



                                                            000   001
                                                            010   011
0 or 1          0, 1,               101
                         01                                 100   101
                                                            110   111
Logic gates (1)
 Single qubit gate: linear operator in a 2-dimension space
 Complex 2x2 unitary matrix

                                                        U

NOT: X = σx                                                       Z = σZ
                                 Y = σY
 0 1  α   β       0 − i  α   − β   − β         1 0  α   α 
 1 0  β  =  α     i 0  β  = i α  =  α          0 − 1 β  =  − β 
                                                          
                                                                  
                                                               

Any kind of qubit rotation in the Bloch sphere can be realized
by combining in different ways the three Pauli matrices
          Hadamard gate:
                                          0 +1
                                  0→             ≡+
              1 1 1                       2
           H=   
                1 − 1
                                         0 −1
               2                1→             ≡−
                                            2
Logic gates (2)
Two qubit gates: unitary 4x4 matrices


                                              U
Quantum vs. classic
- Classical case: any kind of logic gate can be realized by suitable
  combinations of the NAND gate.
- Quantum case: any N-qubit logic gate can be realized by 1-qubit gates
  and one 2-qubit gate, (C-PHASE, C-NOT)


                                         1       0
 C-PHASE:                                     00
                                                   
                                         0       0
                                              10
             0 ⊗ 1t + 1 c 1 ⊗ (σ Z ) t
CP = 0                                   0   0 1 0
         c
                                                   
                                         0   0 0 −1
                                                   
Logic gates (3)

   C − NOT ⇒ U t ≡ (σ X ) t

                                   Control   Target   Control   Target
             1    0 0 0
                                   0         0        0         0
             0    1 0 0
            =
    C NOT                            0         1        0         1
                   0 0 1
               0
                                    1        0         1        1
             0    0 1 0
                                    1        1         1        0


                                 C NOT ( + 1 ) = C NOT 
                                                       1            
                                                                1
                                                             0+    1 1 =
                                                       2        2
                                            1        1
                                                      
                                       
C-NOT can generate entanglement:
                                        1  0  = 1  0  = 0.0 + 1,1
                                 C NOT
                                        2  1       2 0      2
                                                      
                                            0         1
                                                     
                                                
Circuital model of a quantum computer
                                  1         1      1

                                ∑ ...∑∑ c
                        Ψ=                                                in −1 ⊗ ... ⊗ i0
 Superposition:
                                                          n −1...i1 ,io
                               in−1 = 0   i1 = 0 i0 = 0

  Parallelism


                       Ψ
 Unitary evolution of |Ψ> based on single and two qubit logic gates




                      ...

Linear Optics Quantum Computation:
based on single photon qubits, linear optics devices for single qubit
rotations and two qubit gates (KLM, Nature ‘01)
Entanglement
   |0>a
     >             |0>b
                     >              Left: particle “a” carries the information
                                    “0”, or vice versa.

            S                       Right: particle “b” carries the information
                                    “1”, or vice versa.
   |1>a
     >             |1>b
                     >
                                             0 a1b±1a 0
                                Ψ        =                     b
                                    ab
                                                      2
can not be expressed by the product of single qubit states |Ψ>a and |Ψ>b



Neither of the two qubits carries a definite value:
as soon as one qubit is measured randomly, the other one will immediately
be found to carry the opposite value, independently of the relative distance
(quantum nonlocality)
Quantum nonlocality
                                                 Singlet state:

                                                (                                  )
   ALICE                                       1
                                      −
                                 Ψ                                −V
                                                  H       V                H
                                                      a       b        a       b
                                          ab
                                                2


                                      a                           BOB
Alice measures photon a with
50% probability to detect:
                                                              b
- H or V (|0> or |1>): ,
- 45° or -45° (|+> or |->): ,
               



- L or R:      ,

 Perfect correlations in any basis!
Cluster states in Quantum Information
Particular graph states associated to a n-dimensional lattice


                           Each dots correspond to the qubit:


                            Each link corresponds to a Control σZ gate




       Create a genuine multiqubit entanglement


       Robust entanglement against single qubit measurements


       Fundamental resource for one-way quantum computation
4-qubit linear cluster states

                                             ( + 00 + + + 01 − + − 10 + − − 11 −   )
                                           1
                                    C4 =
                                           2
 1                 2       3    4
                                               ( + 0 + − 1 )⊗ 1 ( 0 + − 1 − )
                                            1
                                         ≠
                                    C4
                                             2                 2
     1         2       3


     (3-qubit) Linear cluster
     1         2       3   4


     (4-qubit) Linear cluster
                                                     Not factorizable!
                       2   1

     Horseshoe
     cluster
                       3   4
                           2
                       1
  Horseshoe
  cluster
  (rotated 180°)
                       4   3
                       1   2

     Box
     cluster
                           3
                       4
One-way quantum computation
(Briegel et al. PRL 01)


     Initialization
     - Preparation of the cluster state

     Manipulation
     - Algorithm: pattern of single qubit measurements
       Qubit j measured in the bases:



     - Feed forward measurements
     - Irreversibility (one-way)

     Read out
     - Feed forward corrections
     - Not measured qubit: output
Building blocks of the logical operations
Logical operation: example
Entangled states with photons

 Allows to generate photon pairs by the spontaneous
 parametric down conversion (SPDC) process




Twin photons created over conical regions, at different
wavelengths, with polarization orthogonal to that of the pump
SPDC features

   Low probability (≅ 10-9)

   Non-deterministic process

   Energy matching:




   Phase matching:



    Degenerate emission:
The Roma source: polarization – momentum
 hyperentanglement of 2 photons




          [                 ]        [              ]
   1                              1
      H a H b + e iθ VaVb            la rb + e iφ ra lb = Φ ⊗ ψ
Π=                              ⊗
    2                              2
  Barbieri et al. PRA 05
  Cinelli et al. PRL 05
                                         2 photons → 4 qubits
  Barbieri et al. PRL 06
Polarization – momentum entanglement


                           Quantum
                                      Bell-CHSH inequality test:
                                           σ
                                      213-σ violation
                             Classical




                                     Bell-CHSH inequality test:
                                          σ
                                     170-σ violation
Photon cluster states

4-photon cluster states (based on the simultaneous generation of 2 photon
pairs      [Zeilinger et al., Nature (05, 07)]



         [                                                         ]
       1
         H a H b H c H d + H a H bVcVd + VaVb H c H d − VaVbVcVd
       4


 Problems:

 - Generation/detection rate ∼ 1 Hz
 - Limited purity of the state
 - Need of post-selection

 Alternative:

 Generate cluster states starting from
 2-photon hyperentangled states
From hyperentangled to cluster states




                                                             HW



             [ H ala a aH b rbb b+ H aaraa Hbblbb + Vaala bVbb rb +a Va rab bVblb   ]
           1 1[H l H r + H r H l + V l V r − V r V l ]
                                                    a                a
               4
           4




- High generation rate (~1000 coincidences per sec detected)
- High purity of the states                              Vallone et al. PRL 07
- No post-selection required
Measurement tools
     Polarization (p)        Momentum (k)
     observables             observables

                                                    l+r
                        sx = x
                                                    l-r
                                        50/50 BS



                        sy = y
                                               BS
                                 Glass plate

                                               l
                        sz= z
                                               r
Single qubit rotation




By choosing α and β
any arbitrary single
qubit rotation can
be performed up to
Pauli errors (corrected
by feed-forward)


                              α         β
                          Rz (α )   Rx (β )   Z   X
Measurement setup: probabilistic QC




- Measurements done by spatial mode matching on a common 50:50 BS
- Qubit rotations performed by using either π or k as output qubit
                                                       Vallone et al. LPL 08
πB
                                                    πA
                                         kA
                               kB
Polarization output qubit


                                         s2 = s3 = 0 :
   output state:




                                              πA
                                    πB                   kA        kB
Linear momentum output qubit


                                         s2 = s3 = 0 :
    output state:
Experimental results with probabilistic QC
Measurement setup: deterministic QC




                                      Vallone et al. PRL 08
Experimental results with deterministic
QC
2-qubit gates
C-NOT gate
Control: linear momentum of photon B; target: polarization of photon B.
Realized by the 4-qubit horseshoe (180° rotated) cluster state.




Qubit 1 measured in the basis |0> , |1> (or |+>, |->)
                                      1/√
Qubit 4 measured in the basis |α±> = 1/√2 [|0> ± e-iα|1>)]
                                                     α


                                         (                       )
                    Ψout = H t C − NOT O + c ⊗ Rz (α ) +     t


             Qubit 1 measured in the basis ( |0> , |1> )

             Qubit 1 measured in the basis ( |+>, |- > )
Grover’s search algorithm
Allows to identify the tagged item in a database within 2M possible solutions
(encoded in M qubits).
Right solution found within √2M steps (classical: 2M /2 )




                                                     Vallone et al. PRA, in press
Conclusion and Perspectives

One-Way Quantum Computation with 2-photon 4-qubit cluster states

       Low decoherence

       High repetition rates

       High fidelity of the algorithms


Need to increase the computational power by using more qubits

Different strategies:

       Use more degrees of freedom

       Use more photons

       Hybrid approach (more photons + more degreees of freedom)
6-qubit cluster state (based on triple entanglement of two photons)

  2-crystal geometry



             Kint


             π

            Kext



             LC6
Integrated system of GRIN lenses with single mode optical fibers

Allows efficient coupling of SPDC radiation belonging to many
optical modes           Multipath Entanglement
Measurement setup




Rossi et al. ar-Xiv: quant-ph 08
70 cm
An important result: use of integrated optics
                                                O’ Brien, Science ‘08


Optical waveguide: allows the propagation
of light in single modes of e.m. field




Miniaturized circuits realized by
directional couplers
                                                       5 mm

           Completely integrated C-NOT gate
           Future quantum circuit architectures
           on chips are now possible
What we need more??


- More and more qubits to put in a cluster state (more
  photons, more degrees of freedom…)
- More efficient and compact sources of entangled photons (to
  be integrated on waveguide chips)
- New optical tools to manipulate photons (i.e. quantum
  converters between different degrees of freedom)
- Efficient error corrections


 but, in particular,

 a REAL, deterministic, high repetition rate source of n-
 photn Fock states
 (in particular single photons     Photon gun)
The team

       Pino Vallone                  Alessandro Rossi
       post-doc                      undergr. student



       Raino Ceccarelli
       undergr. student

Previous members
       Marco Barbieri, post-doc
                                    Enrico Pomarico
       Quantum Technology Lab.
                                    GAP-Optique University
       University of Queensland
                                    of Geneva
       Brisbane
       Institute d’Optique, Paris

        Chiara Cinelli, laurea
        ENEL

Contenu connexe

Similaire à Computazione quantistica con i fotoni -P. Mataloni

Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session SlidesMatthew Leingang
 
CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2carlosgalup
 
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...Jiahao Chen
 
Quantum Cost Calculation of Reversible Circuit
Quantum Cost Calculation of Reversible CircuitQuantum Cost Calculation of Reversible Circuit
Quantum Cost Calculation of Reversible CircuitSajib Mitra
 
Netherhall 2018 m fox
Netherhall 2018 m foxNetherhall 2018 m fox
Netherhall 2018 m fox2idseminar
 
Lesson31 Higher Dimensional First Order Difference Equations Slides
Lesson31   Higher Dimensional First Order Difference Equations SlidesLesson31   Higher Dimensional First Order Difference Equations Slides
Lesson31 Higher Dimensional First Order Difference Equations SlidesMatthew Leingang
 
A short introduction to Quantum Computing and Quantum Cryptography
A short introduction to Quantum Computing and Quantum CryptographyA short introduction to Quantum Computing and Quantum Cryptography
A short introduction to Quantum Computing and Quantum CryptographyFacultad de Informática UCM
 
Quantum computing - A Compilation of Concepts
Quantum computing - A Compilation of ConceptsQuantum computing - A Compilation of Concepts
Quantum computing - A Compilation of ConceptsGokul Alex
 
Quantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum WorldQuantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum WorldAaronTurner9
 
Quantum error correction
Quantum error correctionQuantum error correction
Quantum error correctionPhelim Bradley
 
2007 001-motivation-to-quantum-computing
2007 001-motivation-to-quantum-computing2007 001-motivation-to-quantum-computing
2007 001-motivation-to-quantum-computingVipul Kumar
 
Quantum Computing Fundamentals via OO
Quantum Computing Fundamentals via OOQuantum Computing Fundamentals via OO
Quantum Computing Fundamentals via OOCarl Belle
 
CMOS Analog Design Lect 3
CMOS Analog Design  Lect 3CMOS Analog Design  Lect 3
CMOS Analog Design Lect 3carlosgalup
 

Similaire à Computazione quantistica con i fotoni -P. Mataloni (20)

Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Quantum Computation Introduction
Quantum Computation IntroductionQuantum Computation Introduction
Quantum Computation Introduction
 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
 
CMOS Analog Design Lect 2
CMOS Analog Design   Lect 2CMOS Analog Design   Lect 2
CMOS Analog Design Lect 2
 
02-gates-w.pptx
02-gates-w.pptx02-gates-w.pptx
02-gates-w.pptx
 
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
 
CP Violation in B meson and Belle
CP Violation in B meson and BelleCP Violation in B meson and Belle
CP Violation in B meson and Belle
 
Quantum Cost Calculation of Reversible Circuit
Quantum Cost Calculation of Reversible CircuitQuantum Cost Calculation of Reversible Circuit
Quantum Cost Calculation of Reversible Circuit
 
Netherhall 2018 m fox
Netherhall 2018 m foxNetherhall 2018 m fox
Netherhall 2018 m fox
 
Lesson31 Higher Dimensional First Order Difference Equations Slides
Lesson31   Higher Dimensional First Order Difference Equations SlidesLesson31   Higher Dimensional First Order Difference Equations Slides
Lesson31 Higher Dimensional First Order Difference Equations Slides
 
A short introduction to Quantum Computing and Quantum Cryptography
A short introduction to Quantum Computing and Quantum CryptographyA short introduction to Quantum Computing and Quantum Cryptography
A short introduction to Quantum Computing and Quantum Cryptography
 
Quantum computing - A Compilation of Concepts
Quantum computing - A Compilation of ConceptsQuantum computing - A Compilation of Concepts
Quantum computing - A Compilation of Concepts
 
Quantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum WorldQuantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum World
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
 
Quantum error correction
Quantum error correctionQuantum error correction
Quantum error correction
 
2007 001-motivation-to-quantum-computing
2007 001-motivation-to-quantum-computing2007 001-motivation-to-quantum-computing
2007 001-motivation-to-quantum-computing
 
Quantum Computing Fundamentals via OO
Quantum Computing Fundamentals via OOQuantum Computing Fundamentals via OO
Quantum Computing Fundamentals via OO
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
 
CMOS Analog Design Lect 3
CMOS Analog Design  Lect 3CMOS Analog Design  Lect 3
CMOS Analog Design Lect 3
 
1542 inner products
1542 inner products1542 inner products
1542 inner products
 

Plus de nipslab

Fluidi e superfluidi luminosi
Fluidi e superfluidi luminosiFluidi e superfluidi luminosi
Fluidi e superfluidi luminosinipslab
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazottonipslab
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazottonipslab
 
Spettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicaSpettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicanipslab
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologiconipslab
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolarinipslab
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologiconipslab
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologiconipslab
 
Stringhe, Brane e Olografia
Stringhe, Brane e OlografiaStringhe, Brane e Olografia
Stringhe, Brane e Olografianipslab
 
Econofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridaEconofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridanipslab
 
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYCOHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYnipslab
 
Luce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro FariniLuce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro Farininipslab
 
Il Calore nella Finanza
Il Calore nella FinanzaIl Calore nella Finanza
Il Calore nella Finanzanipslab
 

Plus de nipslab (13)

Fluidi e superfluidi luminosi
Fluidi e superfluidi luminosiFluidi e superfluidi luminosi
Fluidi e superfluidi luminosi
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Spettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteicaSpettroscopia di neutroni e dinamica proteica
Spettroscopia di neutroni e dinamica proteica
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologico
 
La fisica dei motori molecolari
La fisica dei motori molecolariLa fisica dei motori molecolari
La fisica dei motori molecolari
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologico
 
Oltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologicoOltre l'orizzonte cosmologico
Oltre l'orizzonte cosmologico
 
Stringhe, Brane e Olografia
Stringhe, Brane e OlografiaStringhe, Brane e Olografia
Stringhe, Brane e Olografia
 
Econofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibridaEconofisica: alcuni tratti di una scienza ibrida
Econofisica: alcuni tratti di una scienza ibrida
 
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITYCOHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
COHERENCE, SELF-SIMILARITY AND BRAIN ACTIVITY
 
Luce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro FariniLuce Colore e Visione - Alessandro Farini
Luce Colore e Visione - Alessandro Farini
 
Il Calore nella Finanza
Il Calore nella FinanzaIl Calore nella Finanza
Il Calore nella Finanza
 

Dernier

DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 

Dernier (20)

DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 

Computazione quantistica con i fotoni -P. Mataloni

  • 1. Computazione quantistica con i fotoni P. Mataloni Quantum Optics Group, Dipartimento di Fisica dell’Università “La Sapienza”, Roma, 00185, Italy http://quantumoptics.phys.uniroma1.it
  • 2. 10000 4M # Transistors per chip 16 M 64 M 1000 256 M Electrons per device 1G 4G - Because of the properties of quantum states 100 Why quantum computation? - Because of the high power guaranteed G the entanglement 16 by 10 ? 1 1988 1992 1996 2000 2004 2008 2012 2016 2020 By 2015 a single electron can be confined in a transistor Example: factorizing a 1024-digit number: - Classical computer takes a period > universe lifetime - Quantum computer could find the answer in 1sec.... (P.W. Shor 1994)
  • 3. - They are easy to generate, manipulate, transmit and detect - Have low interaction with the enviroment low decoherence - Possible to encode the information in different degrees of freedom of the photons (polarization, momentum, frequency….) Why quantum computation with photons? It has been demonstrated that a universal quantum computer can be realized by photons and standard linear optical devices (beam splitters, polarizers, waveplates…..) KLM, Nature 2001
  • 4. Outline - Basic elements quantum bit, quantum register, logic gates, entanglement... - Cluster States of Photons properties, One-Way Quantum Computation - Spontaneous Parametric Down Conversion the Roma source, tools for measurements with photons - One-Way Quantum Computation with photons single qubit rotations, C-NOT gate, Grover’s search algorithm - Optical Quantum Computing in the near future doing now, perspectives
  • 5. Quantum bit (Qubit) Coherent superposition of the orthogonal states |0> and |1> > > |Q> = α|0> + β|1> (|α|2 + |β|2 = 1) > > >| Example: - photon passing through a Mach-Zehnder interferometer: |Q> = α|Path 1> + β|Path 2> > > > - superposition of H and V polarization: |Q> = α|H> + β|V> > > >
  • 6. Quantum register (3-bit register) Classical: can store exactly one of the eight different numbers, 000, 001, 010, ….., 111 Quantum: can store up to 8 numbers in a quantum superposition → N qubits: up to 2N numbers at once Classical Bit Quantum Bit Classical Register Quantum Register 000 001 010 011 0 or 1 0, 1, 101 01 100 101 110 111
  • 7. Logic gates (1) Single qubit gate: linear operator in a 2-dimension space Complex 2x2 unitary matrix U NOT: X = σx Z = σZ Y = σY  0 1  α   β   0 − i  α   − β   − β   1 0  α   α   1 0  β  =  α   i 0  β  = i α  =  α   0 − 1 β  =  − β                                  Any kind of qubit rotation in the Bloch sphere can be realized by combining in different ways the three Pauli matrices Hadamard gate: 0 +1 0→ ≡+ 1 1 1  2 H=  1 − 1  0 −1 2  1→ ≡− 2
  • 8. Logic gates (2) Two qubit gates: unitary 4x4 matrices U Quantum vs. classic - Classical case: any kind of logic gate can be realized by suitable combinations of the NAND gate. - Quantum case: any N-qubit logic gate can be realized by 1-qubit gates and one 2-qubit gate, (C-PHASE, C-NOT) 1 0 C-PHASE: 00   0 0 10 0 ⊗ 1t + 1 c 1 ⊗ (σ Z ) t CP = 0 0 0 1 0 c   0 0 0 −1  
  • 9. Logic gates (3) C − NOT ⇒ U t ≡ (σ X ) t Control Target Control Target 1 0 0 0   0 0 0 0 0 1 0 0 = C NOT 0 1 0 1 0 0 1 0   1 0 1 1 0 0 1 0   1 1 1 0 C NOT ( + 1 ) = C NOT  1  1 0+ 1 1 = 2 2   1  1     C-NOT can generate entanglement:  1  0  = 1  0  = 0.0 + 1,1 C NOT  2  1  2 0 2      0 1      
  • 10. Circuital model of a quantum computer 1 1 1 ∑ ...∑∑ c Ψ= in −1 ⊗ ... ⊗ i0 Superposition: n −1...i1 ,io in−1 = 0 i1 = 0 i0 = 0 Parallelism Ψ Unitary evolution of |Ψ> based on single and two qubit logic gates ... Linear Optics Quantum Computation: based on single photon qubits, linear optics devices for single qubit rotations and two qubit gates (KLM, Nature ‘01)
  • 11. Entanglement |0>a > |0>b > Left: particle “a” carries the information “0”, or vice versa. S Right: particle “b” carries the information “1”, or vice versa. |1>a > |1>b > 0 a1b±1a 0 Ψ = b ab 2 can not be expressed by the product of single qubit states |Ψ>a and |Ψ>b Neither of the two qubits carries a definite value: as soon as one qubit is measured randomly, the other one will immediately be found to carry the opposite value, independently of the relative distance (quantum nonlocality)
  • 12. Quantum nonlocality Singlet state: ( ) ALICE 1 − Ψ −V H V H a b a b ab 2 a BOB Alice measures photon a with 50% probability to detect: b - H or V (|0> or |1>): , - 45° or -45° (|+> or |->): ,  - L or R: , Perfect correlations in any basis!
  • 13. Cluster states in Quantum Information Particular graph states associated to a n-dimensional lattice Each dots correspond to the qubit: Each link corresponds to a Control σZ gate Create a genuine multiqubit entanglement Robust entanglement against single qubit measurements Fundamental resource for one-way quantum computation
  • 14. 4-qubit linear cluster states ( + 00 + + + 01 − + − 10 + − − 11 − ) 1 C4 = 2 1 2 3 4 ( + 0 + − 1 )⊗ 1 ( 0 + − 1 − ) 1 ≠ C4 2 2 1 2 3 (3-qubit) Linear cluster 1 2 3 4 (4-qubit) Linear cluster Not factorizable! 2 1 Horseshoe cluster 3 4 2 1 Horseshoe cluster (rotated 180°) 4 3 1 2 Box cluster 3 4
  • 15. One-way quantum computation (Briegel et al. PRL 01) Initialization - Preparation of the cluster state Manipulation - Algorithm: pattern of single qubit measurements Qubit j measured in the bases: - Feed forward measurements - Irreversibility (one-way) Read out - Feed forward corrections - Not measured qubit: output
  • 16. Building blocks of the logical operations
  • 18. Entangled states with photons Allows to generate photon pairs by the spontaneous parametric down conversion (SPDC) process Twin photons created over conical regions, at different wavelengths, with polarization orthogonal to that of the pump
  • 19. SPDC features Low probability (≅ 10-9) Non-deterministic process Energy matching: Phase matching: Degenerate emission:
  • 20.
  • 21. The Roma source: polarization – momentum hyperentanglement of 2 photons [ ] [ ] 1 1 H a H b + e iθ VaVb la rb + e iφ ra lb = Φ ⊗ ψ Π= ⊗ 2 2 Barbieri et al. PRA 05 Cinelli et al. PRL 05 2 photons → 4 qubits Barbieri et al. PRL 06
  • 22. Polarization – momentum entanglement Quantum Bell-CHSH inequality test: σ 213-σ violation Classical Bell-CHSH inequality test: σ 170-σ violation
  • 23. Photon cluster states 4-photon cluster states (based on the simultaneous generation of 2 photon pairs [Zeilinger et al., Nature (05, 07)] [ ] 1 H a H b H c H d + H a H bVcVd + VaVb H c H d − VaVbVcVd 4 Problems: - Generation/detection rate ∼ 1 Hz - Limited purity of the state - Need of post-selection Alternative: Generate cluster states starting from 2-photon hyperentangled states
  • 24. From hyperentangled to cluster states HW [ H ala a aH b rbb b+ H aaraa Hbblbb + Vaala bVbb rb +a Va rab bVblb ] 1 1[H l H r + H r H l + V l V r − V r V l ] a a 4 4 - High generation rate (~1000 coincidences per sec detected) - High purity of the states Vallone et al. PRL 07 - No post-selection required
  • 25. Measurement tools Polarization (p) Momentum (k) observables observables l+r sx = x l-r 50/50 BS sy = y BS Glass plate l sz= z r
  • 26. Single qubit rotation By choosing α and β any arbitrary single qubit rotation can be performed up to Pauli errors (corrected by feed-forward) α β Rz (α ) Rx (β ) Z X
  • 27. Measurement setup: probabilistic QC - Measurements done by spatial mode matching on a common 50:50 BS - Qubit rotations performed by using either π or k as output qubit Vallone et al. LPL 08
  • 28. πB πA kA kB Polarization output qubit s2 = s3 = 0 : output state: πA πB kA kB Linear momentum output qubit s2 = s3 = 0 : output state:
  • 29. Experimental results with probabilistic QC
  • 30. Measurement setup: deterministic QC Vallone et al. PRL 08
  • 31. Experimental results with deterministic QC
  • 33. C-NOT gate Control: linear momentum of photon B; target: polarization of photon B. Realized by the 4-qubit horseshoe (180° rotated) cluster state. Qubit 1 measured in the basis |0> , |1> (or |+>, |->) 1/√ Qubit 4 measured in the basis |α±> = 1/√2 [|0> ± e-iα|1>)] α ( ) Ψout = H t C − NOT O + c ⊗ Rz (α ) + t Qubit 1 measured in the basis ( |0> , |1> ) Qubit 1 measured in the basis ( |+>, |- > )
  • 34. Grover’s search algorithm Allows to identify the tagged item in a database within 2M possible solutions (encoded in M qubits). Right solution found within √2M steps (classical: 2M /2 ) Vallone et al. PRA, in press
  • 35. Conclusion and Perspectives One-Way Quantum Computation with 2-photon 4-qubit cluster states Low decoherence High repetition rates High fidelity of the algorithms Need to increase the computational power by using more qubits Different strategies: Use more degrees of freedom Use more photons Hybrid approach (more photons + more degreees of freedom)
  • 36. 6-qubit cluster state (based on triple entanglement of two photons) 2-crystal geometry Kint π Kext LC6
  • 37. Integrated system of GRIN lenses with single mode optical fibers Allows efficient coupling of SPDC radiation belonging to many optical modes Multipath Entanglement
  • 38. Measurement setup Rossi et al. ar-Xiv: quant-ph 08
  • 39. 70 cm
  • 40. An important result: use of integrated optics O’ Brien, Science ‘08 Optical waveguide: allows the propagation of light in single modes of e.m. field Miniaturized circuits realized by directional couplers 5 mm Completely integrated C-NOT gate Future quantum circuit architectures on chips are now possible
  • 41. What we need more?? - More and more qubits to put in a cluster state (more photons, more degrees of freedom…) - More efficient and compact sources of entangled photons (to be integrated on waveguide chips) - New optical tools to manipulate photons (i.e. quantum converters between different degrees of freedom) - Efficient error corrections but, in particular, a REAL, deterministic, high repetition rate source of n- photn Fock states (in particular single photons Photon gun)
  • 42. The team Pino Vallone Alessandro Rossi post-doc undergr. student Raino Ceccarelli undergr. student Previous members Marco Barbieri, post-doc Enrico Pomarico Quantum Technology Lab. GAP-Optique University University of Queensland of Geneva Brisbane Institute d’Optique, Paris Chiara Cinelli, laurea ENEL