SlideShare a Scribd company logo
1 of 83
Download to read offline
MAX-PLANCK-UBC CENTRE FOR
                                                         QUANTUM MATERIALS
                                      International Summer School on Surfaces
                                            and Interfaces in Correlated Oxides
                                                              30th August, 2011




                                          Giacomo Ghiringhelli
                                                 Dipartimento di Fisica
                                                  Politecnico di Milano
                                                                   Italy




giacomo.ghiringhelli@fisi.polimi.it
Introducing myself...


    Picture of POLIMI




                                   Keywords:
                                   • Synchrotron radiation
                                   • Soft x-rays
                                   • Resonant spectroscopy
                                   • 3d transition metal oxides
2           Giacomo Ghiringhelli
Summary

    1. Why synchrotron radiation?
       • Main properties
       • Absorption edges and x-ray energies
    2. XAS: x-ray absorption spectroscopy
       • Basic process and the choice of absorption edges
       • XLD and XMCD: polarization dependent XAS
       • Some examples on oxide interfaces
    3. RIXS: resonant inelastic x-,ray scattering
       • A second order process
       • dd excitations
       • Magnetic excitations

3                   Giacomo Ghiringhelli
Synchrotron radiation, summary




4          Giacomo Ghiringhelli
Undulators: many photons




5       Giacomo Ghiringhelli
Undulators: polarization control


    Elettroni


 Campo                          Luce polarizzata
magnetico                         linearmente


                                 Lu ce po lar izz ata
                                  circolarmente
    Elettroni



 Campo
magnetico




       Full control of the polarization at the source:
       • Linear horizontal or vertical or any orientation (more difficult)
       • Circular Right or Left handed

6                            Giacomo Ghiringhelli
Beam line

    High quality mirrors, gratings and crystals are needed to
    make the beam monochromatic (bandas narrow as possible)
    and to focalize it onto the sample



      State of the art beam lines for resonant spectroscopy
    Parameter                                        Typical figures
    Flux at the sample                               1010 - 1013 photons/s
    Beam size at sample (hoz x ver)                  50 m x 5 m - 1 mm x 1 mm
    Energy bandpass: UV (20 – 50 eV)                 10 - 50 meV
                     soft x rays (300 – 1000 eV)     50 – 500 meV
                     hard x rays (2 - 10 keV)        50 – 500 meV



7                             Giacomo Ghiringhelli
X-ray spectroscopy for 3d Transition Metal systems

              E   3dTM oxides
                                         X-ray resonant spectroscopies
    Ev
                                                  •   XAS: x-ray absorption
          4sp                                         spectroscopy
    EF     3d                                     •   XLD and XMCD: polarization
                                                      dependent XAS
                   Ox 2p                          •   RIXS: resonant inelastic x-ray
         3p                                           scattering

                                                  •   Resonant reflectivity
                                                  •   Resonant Elastic X-ray
         2p                                           Scattering
                                                  •   Resonant Photoemission

         1s

8                          Giacomo Ghiringhelli
X-ray Absorption measurements
                                                         X rays


     Tunable or                             X rays
                      Monochromator
    “white” source
                                                     e



                                                                  nA



                     Detection:
                     • transmission (only hard x-rays)
                     • fluorescence yield
                     • electron yield (including drain current)


9                    Giacomo Ghiringhelli
X-ray Absorption Cross Section
                                                log scale                                                     2.5
                                                                            OK
                                          1                                 530 eV Cu L2,3
                                                                                                       CuO
                                                                                      930-950 eV              2.0
     Absorption coefficient (arb. u.)




                                                    Cu
                                         0.1        M edges
                                                                                                              1.5

                                        0.01                                                        Cu K
                                                                                                    9000 eV   1.0

                                        1E-3            Linear
                                                                                                              0.5
                                                        scale
                                        1E-4
                                                                                                              0.0
                                               10              100                   1000          10000
                                                                     Photon Energy (eV)
10                                                            Giacomo Ghiringhelli
Resonances in the XAS


      3d TM                                    E       Oxygen   Rare Earths
                              4sp                                      6s,5d   EFermi
                              3d                     2p                4f
                                                          2s
     M2,3 edges (28-77 eV)    3p

                                                K edge 530 eV
                                                          1s
     L2,3 edges (400-950 eV) 2p                                         M4,5 edges
                                                                 3d
                                                                      (830-1580 eV)



     K edge (4.5-9.0 keV)     1s                                        L2,3 edges
                                                                 2p
                                                                       (5.5-10 keV)

                                     Strong resonances

11                            Giacomo Ghiringhelli
Core levels
                                             C   O Si     Sc Fe Zn           Y Mo Cd            Ce Gd     Lu   Au        Th
                                                               3dTM            4dTM                  RE                   Actinides


                               100000                                                                               K




                                                                                                                                       Hard X-Rays
                                                                                                                    L3
                               10000
         Binding energy (eV)




                                                                                                                    M3
                                                                                                                    M5




                                                                                                                                       Soft X-Rays
                                 1000



                                  100




                                                                                                                                       UV
                                                 2p3/2 3p
                                   10   1s               3/2     3d5/2 4p3/2       4d5/2

                                        0        10      20       30         40          50     60        70   80        90    100
                                                                          Atomic number Z
                                                                   Giacomo Ghiringhelli
12 - Politecnico di Milano; Source: X-ray data booklet, Lawrence Berkeley National Laboratory
GG                                                                                                                            25/03/02 18:29:59
3p: M2,3 edge XAS
                                                                         Spin-Orbit
                                                                          splitting
                          Spin-Orbit
                           splitting




     Source: S. Nakai, et al PRB 9, 1870 (1974)

13                                                Giacomo Ghiringhelli
2p: L2,3 edge XAS
                                                                          Spin-Orbit
                       Spin-Orbit
                                                                           splitting
                        splitting


                                                                                     Mn L2,3 XAS
                  L3
                                                L3

                                                                                              La0.7Sr0.3MnO3
                                                NiO

                                      Ni metal
                           850            855           860

                                              L2
                           NiO
                                                                                               MnO
                          Ni metal

        850             860            870            880           640      645      650      655      660
                       Photon Energy (eV)                                    photon energy (eV)
     Source: G. Ghiringhelli, N.B. Brookes et al unpublished       Source: C. Aruta, G. Ghiringhelli et al unpublished


14                                          Giacomo Ghiringhelli
Atomic model
      Total E
                       3dTM - O
                                                    2p53dn+2L
                                                    2p53dn+1

                                                     M.S.: Multiplet
                                                           Splitting

                                                     C.I.: Configuration
     3dn+1L                                                Interaction

       3dn
                                           |g>   XAS probes
                                                 orbital occupation
                C.I.   M.S.

15                      Giacomo Ghiringhelli
L3 XAS and multiplets
                              Excit ation               De- excitation s   eout
                E
                                                                                        CuO
                                                                             h ou t

      3d

                     h   in


     2p3/2
                                                                                        928       930         932         934
                                                                                                 Photon Energy (eV)


                                        Excited                                           Ti me
                  Ground
                 Ground                  states
                                      Intermediate                         Fin al
                                                                                                                      MnO
                   state                    stat es                        stat es
                  state
             Resonant scattering without relaxation of intermediate state

                    3d n         2p53d n+1
                    CuO: 3d9  3d10                   One single peak
                    NiO: 3d8  3d9
                                                      Many peaks
                    MnO: 3d5  3d6                                                636     638     640     642       644    646
                                                                                                photon energy (eV)


16                                   Giacomo Ghiringhelli
L3 XAS and valence


                 L3



                            L2                                                           2.1 eV
                                                   CuO: Cu2+ is 3d9




                                                   Cu2O: Cu1+ is 3d10         CuO
                                                                                                     Cu2O
                                                   Cu metal:   3d104s1

                                                                              930              935              940
                                                                                      Photon Energy (eV)




     Source: M. Grioni et al PRB 45, 3309 (1992)                      Source: M. Finazzi et al PRB 61, 4629 (2000)


17                                  Giacomo Ghiringhelli
X-ray absorption intensity
                      Fermi golden rule




                                           Joint density
     Matrix element
                                           of states, separated
                                           by energy h




     Electric dipole perturbation
     associated to a photon

18                  Giacomo Ghiringhelli
Electric dipole selection rules

           f   ε r   i
                                   3    *
                                 r R Ri dr
                                        f               Y ε u rYi d
                                                         *
                                                         f


                         Radial integral                 Angular integral
                          Mind the nodes of R!                                4 0
                           NB what matters is Rf ,                    ε ur       Y1
                                                                               3
                          in the presence of the
                          core hole!

                                                                   Selection rules
                                                                   (via Wigner- Eckart)
     l=0

                                                                   Transitions pd
     l=1                                                           Y2m '* Y1 p Y1m
                                                                      m=-1,0,+1
                                                                      p=-1,0,+1
     l=2                                                              m’=m-1,m,m+1

19                               Giacomo Ghiringhelli
Crystal field

         z   Cu: x2-y2 orbital




                                            x2-y2, z2             x2-y2
                                                        eg                 b1
                                                                  z2
                                                                           a1
     x                           d states      10Dq             10Dq
                                                                   xy
                                                                           b2
                                                                  yz,zx
                                            xy, yz,zx   t2g                eg
                        y
                               Spherical    Cubic             Tetragonal
                                  O3         Oh                   D4h




20              Giacomo Ghiringhelli
3d split states
                                                         t2g states

                                                                       z
                eg states                                   e zx

                            z                        z
           z                                                    x
                                                                           y
                                                                       z
                                                x
     x                                                      y
                     x
                 y
                                    y
                                                    b2 xy       x
     b1 x2-y2            a1 z2                                  e yz       y



21                       Giacomo Ghiringhelli
2p states all occupied:   Spherical harmonics and orbitals




                                                                                    anisotropy in final states
     spherical distribution




                                                                                    3d states partly empty:
                |Y1-1|2 = |Y11|2    |Y10|2
                                                                                        2
                                                |Y2-2|2 = |Y22|2 |Y2-1|2 = |Y22|2 |Y20|


                Y1-1=
                Y11=
                Y10=
22
2p to 3d transitions


         2p3/2                     photon                 3d

     • Spherical distribution                     • Anisotropic occupation
     • No well defined spin                       due to crystal field
     state                                        • Possible spin polarization
     • Spin “parallel” to                         (FM or AF)
     orbital moment                               • Spin-orbit interaction not
                                                  always negligible
                          RCP = Y11
                          LCP = Y1-1
                           z-linear = Y10
                           x-linear = (Y1-1+Y11)/sqrt(2)
23                         Giacomo Ghiringhelli
Transition of a hole from 3d to 2p


                3d                      photon           2p3/2

                  Example: transition to a 3d(x2-y2) orbital




                                     RCP = Y11

     Initial state 3d hole is
      100% spin down

      Final state 2p hole has main spin up character
24                              Giacomo Ghiringhelli
Linear polarization of x-rays: orbital occupation
                                                        Empty 3d state
     Empty 3d state
                                 E                                                  E
                                                                    z
                                     h   in
                                                                                           h   in
                z

                                         E                                                     E
        x                                                    x
                      y                                                     y


            b1 x2-y2 (Y2-2+Y22)                                   a1 z2 Y20


               High absorption         (Y1-1+Y11)                        Weak absorption

                No absorption                 Y10                        High absorption


25                               Giacomo Ghiringhelli
3d hole symmetry in cuprates

     3d9      (2p3/2)33d10




                   h     E


      Result: the hole in Cu2+ has
         100% x2-y2 symmetry




26                      Giacomo Ghiringhelli
Linear polarization of x-rays: magnetization orientation
     Atomic spin                                       Atomic spin
     orientation                                       orientation
                               E                                                 E
                                      h   in
                                                                                       h   in


                                          E                                                E
                                                                         M
                       M


               Different absorption                                  Same absorption

         MAGNETIC LINEAR
             DICHROISM:
     Works for Ferro and AntiFerro
27                              Giacomo Ghiringhelli
Circular polarization of x-rays and ferromagnetic materials
                        XAS-MCD: x-ray absorption magnetic circular dichroism
                            E
                                    z
                                                                                              M
         Fermi level                        LCP
              3d                    m
                                                      L3: 2p3/2 3d                            3d
                                            RCP
                                    M                 L2: 2p1/2 3d
                j=3/2
           2p   j=1/2
                                                                                              2p
                                                                                                 3/2

                                             sample                   number of                matrix
                                                                      free states             elements
                            RCP
             m=-1

                                        z
                                                                      transition
                                                                         rates
                                        z
                 m=1
                         LCP                                         absorption

              XAS-MCD                                                               LCP RCP
         experimental geometry                         M             L3


28                                      Giacomo Ghiringhelli
XMCD: sum rules
                  For late 3dTM sum rules allow to extract spin and orbital magnetic moments
                  directly from spectra without the need of theoretical simulations of spectra
                              8                                                                                           40
                                          Fe           (L3+L2)         Co                           Ni
                              7

                              6
                                     L3           L2              L3          L2               L3          L2             30




                                                                                                                                Integrated Intensity (arb. units)
                              5                                                    (L3+L2)
     Intensity (arb. units)




                              4                                                                                           20

                              3
                                                                                                                (L3+L2)
                              2                                                                                           10

                              1

                              0                                                                                           0
                                                       (L3+L2)                     (L3+L2)          (L3)        (L3+L2)
                              -1           (L3)                        (L3)

                              -2                                                                                          -10
                                   700    720     740     760    780    800        820   840   860     880      900
                                                                 Photon energy (eV)
29                                                         Giacomo Ghiringhelli
XAS: some examples


     Manganite thin films
               • Strain and orbital occupation
               • Magnetic anisotropy (FM and AF)

     STO/LAO interface

     Cuprates: ferromagnetism




30             Giacomo Ghiringhelli
Films of La2/3Sr1/3MnO3: strain and phase separation
     Manganites:
                                                 Mn3+: 3d4
     → Mn3+/Mn4+
                                                 Mn4+: 3d3
     → CMR
                                                 LaMnO3 Mott Hubbard Insulator:
     → Phase separation                           Mn – Mn fluctuations
     → Orbital ordering                          more likely than O - Mn




31                        Giacomo Ghiringhelli
Manganites XAS: strain and orbital occupation
                                              8
                                                  100 u.c.                               V (E//ab)
      XAS (V, H) [a.u.]




                                              6                                          H (E//c)        SrTiO3 substrate      c/a=0.98                                     z2
                                              4                                                                                                            x2- y2   z2
                                                                                                                                                     eg
                                              2                                                                                    z-in                                   x2-y2
                                                                                                           LSMO
                                   0                                                                                                                        Doct
                                 0.3
                                                                                                            STO                                     t2g                   yz xz
     V-H [a.u.]




                                 0.0                                                                                                                        yz xz xy
                          -0.3
                                                                                                                                                                            xy
                          -0.6                              Linear Dichroism=IXAS//ab-IXAS//c

                                                      637           644          651            658          Preferential occupation of in-plane 3dx2-y2 orbitals
                                                                  Photon Energy [eV]


                                                  8
                                                       100 u.c.                         V (E//ab)           LaAlO3 substrate     c/a=1.04
                          XAS (V, H) [a.u.]




                                                  6                                     H (E//c)

                                                  4                                                                                                                      x2- y2
                                                                                                                                                          x2- y2   z2
                                                  2
                                                                                                                                                    eg
                                                0
                                              0.3                                                             LSMO               z-out                                     z2
                                                                                                                                                             Doct
                                              0.0                                                                                                                          xy
                          V-H [a.u.]




                                              -0.3                                                                                                  t2g
                                                                                                                                                           yz xz xy
                                              -0.6
                                                                                                               LAO
                                                                                                                                                                         yz xz

                                                       637           644       651              658
                                                                   Photon Energy [eV]
                                                                                                          Preferential occupation of the out-of-plane 3dz2–r2 orbitals

32                                                                                                    Giacomo Ghiringhelli
Manganites XAS: strain and dimensionality



        How strain and reduced dimensionality influence
               magnetic and orbital anisotropies




33                   Giacomo Ghiringhelli
Manganites XAS: ferromagnetic behavior

          XMCD: FM hysteresis loops




34              Giacomo Ghiringhelli
Manganites XAS: linear dichroism
       LD: magnetic and orbital anisotropy




35           Giacomo Ghiringhelli
Manganites XAS: magnetic linear dichroism
     MLD: ferromagnetic and antiferromagnetic anisotropy




36                    Giacomo Ghiringhelli
Manganite superlattices
                                                                        (SrMnO3)n/(LaMnO3)2n




                                                          LaMnO3 : Mott insulator, Mn3+, 3d4, AFM
                                                          SrMnO3 : band insulator, Mn4+, 3d3, AFM
     Koida et al, PRB 66 144418 (2002)
37   Bhattacharya et al, PRL 100 257003 (2008)   Giacomo Ghiringhelli
Manganite superlattices: the effect of layer thickness
                                                                     n = 1, 5, 8
                                                                     SMO film
                                                                     LMO film


                         MnO2
 La                      LaO
 Sr
                         MnO2
 O
 Mn                      LaO
                         MnO2
                         SrO
                         MnO2


     C. Adamo et al, App. Phys. Lett. 92, 112508 (2008)

38                                            Giacomo Ghiringhelli
LMO/SMO: linear dichroism

                                                                                               XLD at room T, no
                                                                                               magnetic order,
                                                                                               the dichroism is
                                                                                               given only by the
                                                                                               orbital occupation




     C. Aruta, C. Adamo, A. Galdi, P. Orgiani, V. Bisogni, N. B. Brookes, J. C. Cezar, P. Thakur, C. A. Perroni, G. De Filippis, V.
     Cataudella, D. G. Schlom, L. Maritato, and G. Ghiringhelli, Phys. Rev. B 80, 140405(R) (2009),

39                                             Giacomo Ghiringhelli
LMO/SMO: linear dichroism
                                                                    XLD at low T,magnetic+orbital
                                                                    signal, we take out
                                                                    the room T XLD to remain with
                                                                    the magnetic dichroism only




     C. Aruta, C. Adamo, A. Galdi, P. Orgiani, V. Bisogni, N. B. Brookes, J. C. Cezar, P. Thakur, C. A. Perroni, G. De Filippis, V.
     Cataudella, D. G. Schlom, L. Maritato, and G. Ghiringhelli, Phys. Rev. B 80, 140405(R) (2009),

40                                             Giacomo Ghiringhelli
LMO/SMO: linear dichroism

            What do we learn about
            magnetic (AFM+FM) ordering?




     C. Aruta, C. Adamo, A. Galdi, P. Orgiani, V. Bisogni, N. B. Brookes, J. C. Cezar, P. Thakur, C. A. Perroni, G. De Filippis, V.
     Cataudella, D. G. Schlom, L. Maritato, and G. Ghiringhelli, Phys. Rev. B 80, 140405(R) (2009),
41                                             Giacomo Ghiringhelli
LAO/STO XAS: measurements and and Ti4+ calc.


                                                      Looking for Ti3+ signal at the interface:
                                                      → Ti4+ is 3d0
                                                      → Ti3+ is 3d1 (like in LaTiO3)




     Ti L2,3 XAS can be perfectly
     simulated in single ion model
     (just play with Slater integrals
     and lifetime broadening)



42                                  Giacomo Ghiringhelli
LAO/STO XAS: linear dichroism
                                 Linear Dichroism:
                                 LD = Iz - Ix = Ic – Iab = IH-IV
                                 Remember : (001) surface




     M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart,
     M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Phys. Rev. Lett. 102, 166804 (2009),


43                                     Giacomo Ghiringhelli
LAO/STO: anisotropy of empty 3d orbitals




                                       →NO detectable 3d1 signal!
                                       →In plane orbitals ar pulled
                                         down towards EF




                                Vacuum Interf.      Bulk          LAO Interf.

44              Giacomo Ghiringhelli
Interface of STO with other materials
                       0.08                 C. Aruta et al, unpublished           LD
                                                                                  The trend confirms the
     LDnorm (arb.u.)




                       0.04

                                                                                  role of the apical
                       0.00
                                                                                  oxygen at interface: LD
                       -0.04                                     LAO              is stronger when the
                                                                 LGO
                                                                 NGO
                                                                                  overlayer has smaller
                       -0.08
                               458    460    462     464     466     468
                                                                                  lattice parameter
                                      Photon energy (eV)


                                                                                XMCD
                                                                                When coupled to manganites
                                                                                a 3d1 contribution appears
                                                                                with ferromagnetism,
                                                                                revealed by XMCD
                                                                          F.Y. Bruno, et al. Phys. Rev. Lett. 106 147205 (2011)

45                                                     Giacomo Ghiringhelli
Ferromagnetic signal in cuprates




            La2/3Ca1/3MnO3
            YBa2Cu3O7
            superlattice




46          Giacomo Ghiringhelli
Cuprates: weak ferromagnetism




47         Giacomo Ghiringhelli
Cuprates XMCD: not only a question of interface




                                                               Benfatto et al. PRB 74 024416 (2006)



         Djaloszinsky-Moriya interaction at the origin of weak ferromagnetism
          in AF undoped compounds (La2CuO4). XMCD absent in Sr2CuO2Cl2.
                      We find XMCD in doped compounds too.

48                          Giacomo Ghiringhelli
Cuprates XMCD: evaluating the canting angle




49                Giacomo Ghiringhelli
Second order processes

     What about looking at the emitted x-rays
     after a resonant absorption?

     We can access local and collective excitations.
     Electric dipole selection rules are not an obstacle.
     Photon momentum can be used to probe dispersion.
                     h   out
                 x             eout
                               spin

        sample             y


        z

                          h in
                          polarisation




50                             Giacomo Ghiringhelli
RIXS: a resonant inelastic scattering

                                                  Etransferred=h   in-h out


                              |i>
     h   in
                                                  h   out




                                                  3dn+1L     Charge Transfer


                               |f>                    3dn*     dd excitations
                |g>

              RIXS probes charge neutral local excitations

51                         Giacomo Ghiringhelli
RIXS in a metal (if it had worked...)

              E
                                                                  J-DOS
         EF

                                          Eloss                        h   out -h   in
                                                                  0

h   in
                           h    out              The excited electron is bound:
                                              the whole process creates excitations
                                                     across the Fermi level
                                                  (somehow similarly to optical
                                                            absorption).
                                                      h out depends on h in.
                                                Actually spactra a re domiated by
                                                          fluorescence...
                       Giacomo Ghiringhelli
Resonant fluorescence, or XES

              E
                                                             Projected DOS
         EF
                                                                  h   out




h   in
                            h    out


                                          The excited electron is “lost”:
                                        its final energy is not important
                                          and the emission spectrum is
                                               independent of h in.

                        Giacomo Ghiringhelli
RIXS works well if there is a gap
  Gapped systems:                                                      Charge neutral excit.:
  Excitations inside              Charge excit.:                       sharp peaks in the gap
       the gap                     continuum
       E
                              Eloss                                                       h      out -h   in
                                                                                   0
  EF                                         Excitation             De- excitation s
                              E
                                                                                       eout

                                                                                         h out



                                    h   in
 Strongly correlated
   systems usually
give nice RIXS spectra
                                                                                                  Time
                                  Ground             Intermediate                      Fin al
                                   state                 states                        states
                         Giacomo Ghiringhelli
Low energy excitations in L2,3 edge RIXS




                                                               elastic
                                   excited states

                         (C)
Intensity (arb. units)




                   -7      -6    -5    -4     -3    -2    -1     0       1
                                Relative emitted energy (eV)

                                         Energy loss
                                Giacomo Ghiringhelli
Electronic, magnetic and vibrational excitations in RIXS

           What excitations can we observe by RIXS?


           Phonons
                Magnetic
                                          Electronic
                                          dd
            Optical gap                         CT

    1meV     10meV 100meV                   1eV    10eV
                   Giacomo Ghiringhelli
L edge RIXS : energy and momentum transfer

                                            Resonant Inelastic
                                            X-ray Scattering:
                                            • an energy loss experiment
            e           E’, k’, ’
       pl                                   • made with photons of high energy
S am
                                            • at a core absorption resonance




                E, k,
                                      Energy
Scattering plane
                                     h = E - E’             k’

   Conservation laws:
   • Energy
                                             q = k-k’
   • Momentum
                                           Momentum
   • “Angular momentum”                                      k

                    Giacomo Ghiringhelli
Photon momentum and kinematics

                  Photons vs Neutrons: energy and momentum

                       Wavevector of particles used in inelastic scattering

                             Thermal
                             neutrons
            10


                             n   s
                       u tro
             1    Ne                 1st Brillouin zone boundary
k (Ang )
-1




                                                                                     K edges
            0.1




                                                                           L edges
           0.01
                                                                M edges
                                                       s
                                                     on
                                                   ot




           1E-3
                                                  Ph




                   1m                10m   100m    1       10        100      1k      10k      100k
                                                    energy (eV)
                                           Giacomo Ghiringhelli
Cuprates: the “easy” case


     In cuprates Cu is divalent: Cu2+           3d9   CuO


     This makes XAS almost trivial: 1 peak only

               3d9        (2p3/2)33d10
                                                      928    930         932     934
                                                            Photon Energy (eV)




     RIXS can be calculated even by hand:
         3d9         (2p3/2)33d10         (3d9)*

     Even for magnetic excitations (spin waves),
     because fast collision approximation is a very
     good approximation
59                            Giacomo Ghiringhelli
dd excitations in Cu2+ systems
                                           x2-y2
                   x2-y2, z2   eg                   b1
                                            z2
                                                    a1
d states                10Dq             10Dq
                                            xy
                                                    b2
                                           yz,zx
                   xy, yz,zx   t2g                  eg
Spherical          Cubic               Tetragonal           Interatomic
   O3               Oh                     D4h                exchange




           x2-y2
                   b1
            z2
                   a1
       10Dq
            xy
                   b2
           yz,zx
                   eg
                                 3d9              2p53d10        3d9
                           Giacomo Ghiringhelli
Cu L3 edge RIXS: CuO, La2CuO4, Malachite

                                                                             Cu2+ in square
                                                                             approximately
                            21
                                                                          planar coordination
                                                                           Cu-O distances:
 Intensity (ph. s-1 eV-1)




                                  CuO                                      CuO 1.7 – 2-2 Ang
                            14                                             LCO 1.9 – 2.4 Ang
                                                                           Malachite 1.9 – 2.6 Ang

                                 La2CuO                                        Different Cu2+
                                       4                       x2
                            7                                                  coordination,
                                                                                symmetry,
                                 Cu2(OH) CO3                                   hybridization
                                       2
                            0
                                  -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0      Different dd excitations
                                           Energy loss (eV)

61                                                Giacomo Ghiringhelli
Layered cuprates

               By using the calculated RIXS
               cross sections to fit the data the
               energy of all the 3d orbitals can
               be obtained from teh RIXS
               spectra for any compound.




             M. Moretti Sala, V. Bisogni, L. Braicovich, C. Aruta, G. Balestrino,
             H. Berger, N. B. Brookes, G.M. De Luca, D. Di Castro, M. Grioni,
             M. Guarise, P. G. Medaglia, F. Miletto Granozio, M. Minola, M.
             Radovic, M. Salluzzo, T. Schmitt, K.-J. Zhou, G. Ghiringhelli, New
             J. Phys. 13, 043026 (2011)


Giacomo Ghiringhelli
Ni L3 edge: NiO, NiCl2
                                                                              Ni2+ (3d8) in octahedral
                                                                                    coordination

                                                                                    c
                           40
Intensity (ph. s-1 eV-1)




                                                                                                z
                                                                                                        y
                                                                                                            x

                                                                                            b


                                                                                                            a
                                NiO
                           20

                                                                                                            z

                                                                                                    x           y
                                NiCl
                                   2
                           0                                                            a                           b
                                       -4    -3     -2          -1        0
                                            Energy loss (eV)

63                                                 Giacomo Ghiringhelli
Ni2+ in NiO: dependence on incident photon energy
                                     852   853   854     855    856    857    858
                Intensity (arb.u.)
                                                                         NiO
                                                                      Ni L3 XAS
                                                         S
                                           P


                               5
                                     852 853 854 855 856 857 NiO-5 S P
                                                             858                                         P
                                                                                                                   5
                                                                             RIXS            NiO        NiCl
                                                                                                           2
                               4                                                  -4                    x5         4
      Energy loss (eV)




                                                                                                                        Energy loss (eV)
                               3                                                  -3                               3

                               2                                                  -2                               2

                               1                                                  -1                               1

                               0                                                    0                              0

                                     852   853 854 855 856 857                858       0   25 50 75 100
                                             Incident photon energy (eV)                RIXS Intensity (ph. s eV -1 )
                                                                                                          -1



                                           G. Ghiringhelli et al , Phys Rev Lett 102, 027401 (2009)
64                                                    Giacomo Ghiringhelli
Many excited states
                                    relative scattered photon energy (eV)
      Crystal -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
        -4.0 -3.5
                  field model: Sugano-Tanabe diagrams
                                    Ni L RIXS
                                        3
                                                                                                           (x2-y2), (z2)
        intensity (arb. u.)




                                                                                    F                                         eg
                                                                                                               10Dq
                                                                                    H
                                                                                                                              t2g
                                                                                                           (xy), (yz), (zx)
                                                                                        1.5

                                                                                              10Dq (eV)
                                                                                        1.0
                                                                                        0.5                 Single ion
                                                 1
                                                 G           3
                                                             P 1D       3
                                                                        F
                                                                                        0.0               Octahedral C.F.
           1
                                1
                                T2g
                                        1   3
                                        A1g 1g
                                          T
                                                         3
                                                         T2g E1g
                                                                 1          3
                                                                            A2g                            3d spin-orbit
            T
           3 1g
            T1g                                                                                             Exchange
                1
                                                                                        1.5
             E
           1 g
            T2g                                                                         1.0
                                                                                              10Dq (eV)




                                                                                        0.5

                                                     1           3                      0.0
                                                     G           P 1D       3
                                                                                F                           Single ion
                              4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
                                       relative state energy (eV)
                                                                                                          Octahedral C.F.
     G. Ghiringhelli et al, J. Phys. Cond. Mat. 17, 5397 (2005)                                                  S.G.Chiuzbaian, G. Ghiringhelli et al, Phys. Rev. Lett. 95, 197402 (2005)

65                                                                                      Giacomo Ghiringhelli
Mn L3 edge: MnO, LaMnO3

                            15                                                    Mn2+ and Mn3+
                                                                                  in octahedral
                                                                                   coordination
 Intensity (ph. s-1 eV-1)




                            10
                                                                                    Mn2+: 3d5
                                 MnO
                            5


                                 LaMnO3          x10
                            0                                                      Mn3+: 3d4
                                       -10               -5                   0
                                             Energy loss (eV)

66                                                     Giacomo Ghiringhelli
An application to thin film: Mn2+ in LaxMnO3
                                                                           RIXS shows that Mn2+ is at
   LaxMnO3-d/STO films                                                     site A, ie, it replaces La3+
   x=La/Mn ratio
   for x<1 becomes FM (self doping)

        XAS reveals the presence
        of Mn2+ for x<1




                                                            MnO
                                                            x=0.66
                                                            x=0.88
                                                            x=0.98
                                                            x=1.07

P. Orgiani, A. Galdi, C. Aruta, V. Cataudella, G. De Filippis, C.A. Perroni, V. Marigliano Ramaglia, R. Ciancio, N.B. Brookes, M.
                                               Giacomo Ghiringhelli
                          Moretti Sala, G. Ghiringhelli, and L. Maritato, Phys. Rev. B 82, 205122 (2010)
STO/LAO superlattice: RIXS at Ti L3




68           Giacomo Ghiringhelli
Cuprates: not only dd excitations


600

         Sr2CuO2Cl2
500


400


300


200


100


 0
  -8     -6             -4                  -2   0
               Energy loss
              Giacomo Ghiringhelli   (eV)
La2CuO4: 2D spin ½ Heisenberg AF insulator




                                            Oxygen    Copper

                               DIRECT SPACE          RECIPROCAL SPACE
                                                        nuclear BZ
                                                                       ( , )




                                                               (0,0)   ( ,0)




                                                       magnetic BZ
Elementary magnetic excitations are spin waves
                     Giacomo Ghiringhelli
Dispersing peaks: magnetic excitations                                SAXES
                                                                   & Swiss Light Sour ce
                                                                Politecnico di Milano




 La2CuO4




-3.5   -3.0   -2.5     -2.0       -1.5      -1.0   -0.5   0.0             0.5
                        Energy loss (eV)
                     Giacomo Ghiringhelli
LCO, comparing with INS: these are magnons!
                              La2CuO4




                                                                     R. Coldea et al, Phys. Rev. Lett. 86, 5377 (2001).




L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L. Ament, N.B. Brookes, G.M. de Luca, M. Salluzzo, T.
Schmitt, and G. Ghiringhelli PRL 104 077002 (2010)
                                          Giacomo Ghiringhelli
Another example: magnons in SCOC

                                                                             Sr2CuO2Cl2




M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L. Braicovich, H. Berger, J.N. Hancock, D. van der Marel, T.
Schmitt, V.N. Strocov, L.J.P. Ament, J. van den Brink, P.-H. Lin, P. Xu, H. M. Rønnow, and M. Grioni. Phys. Rev. Lett. 105,
157006 (2010)
                                          Giacomo Ghiringhelli
What happens in doped, SC cuprates? NdBCO
                   Superconducting: Tc= 65K                                                                  Insulating (annealed)
                   300
                                                                                                      300




                   200
                                                                                                      200




                   100                                                                                100
Intensity (a.u.)




                                                                                   Intensity (a.u.)
                                                                                                        0
                     0




                                                                                                      -100
                   -100




                                                                                                      -200

                   -200


                          -0.6   -0.4         -0.2    0.0       0.2                                            -0.6   -0.4         -0.2    0.0   0.2
                                        Energy (eV)                                                                          Energy (eV)
                                                            Giacomo Ghiringhelli
YBCO and NdBCO family (Keimer, Le Tacon)




            Giacomo Ghiringhelli
Theory of magnetic RIXS (1)




     Single ion cross section                      Linear spin wave theory
76                          Giacomo Ghiringhelli
Theory of magnetic RIXS (2)




77        Giacomo Ghiringhelli
CaCuO2/SrTiO3 superlattice: superconductor




     D. Di Castro, M. Salvato, A. Tebano, D. Innocenti, P. G. Medaglia, M. Cirillo, and
     G. Balestrino, arXiv1107.2239v1 (2011)

78                              Giacomo Ghiringhelli
CaCuO2/SrTiO3 superlattice: RIXS


                                 100         CCO bulk                                           400       SL n = 2
                                             SL n=2
     Norm. Intensity (arb. u.)




                                                                                                          SL n = 3
                                  80         SL n=3                                                       bulk CCO
                                                                                                300




                                                                                 Energy (meV)
                                  60
                                                                                                200
                                  40
                                                                                                100
                                  20

                                                                                                  0
                                  0
                                                                                                      0   0.5   1.0   1.5         2.0   2.5   3.0
                                       3.0      2.5     2.0      1.5       1.0                                              q//
                                                Energy Loss (eV)




                                 M. Minola, D. Di Castro, G. Ghiringhelli, M. Moretti Sala, N. B. Brookes, P.G.
                                 Medaglia, A. Tebano, G. Balestrino and L. Braicovich, unpublished

79                                                            Giacomo Ghiringhelli
Instrumentation and perspectives
                  With high resolution L edge RIXS
            We can probe orbital and magnetic excitations
        In layered cuprates we can map E(q) of magnons and
     we can thus complement optical spectroscopy, EELS and INS

                            EXPERIMENTS
          the limitations are still E resolution and intensity.




AXES at the ESRF                                SAXES at the SLS
                     Giacomo Ghiringhelli
From AXES (ESRF, ID08) to SAXES (SLS, ADRESS)

                                                                                                                             SAXES
                                                                                                                   & Swiss Light Sour ce
                                                                                                                Politecnico di Milano
                                                                     INFM
                          A dvanced X -Ray Emission Spectroscopy




Since 1994: AXES at beam line                                                             Since 2007: SAXES at beam line
ID08 of the ESRF                                                                          ADRESS of the SLS
L = 2.2 m                                                                                 L = 5.0 m
Design: E/ E = 2,000 at Cu L3 (930 eV)                                                    Design: E/ E = 12,000 at Cu L3
2010: E/ E = 5,000 at Cu L3                                                               2008: E/ E = 10,000 at Cu L3
  C. Dallera et al. J. Synchrotron Radiat. 3, 231 (1996)                                  G. Ghiringhelli, et al Rev. Sci. Instrum. 77, 113108 (2006)
  G. Ghiringhelli et al., Rev. Sci. Instrum. 69, 1610 (1998)                              V. Strocov, T. Schmitt, L. Patthey et al, J. Synch. Rad., 17, 631 (2010).
  M. Dinardo et al., Nucl, Instrum. Meth A 570, 176 (2007)




  Same optical scheme:
  • VLS spherical grating
  • CCD detector
  Different length
                                                                                                                    L
                                                                   Giacomo Ghiringhelli
The future of RIXS instrumentation
       ЄRIXS:The Єuropean RIXS facility (N.B Brookes)
                                                 E down to 30 meV at Cu L3
                                                      and 10 meV at Ti L3




                           10 m
     Other high resolution RIXS projects:
     • Centurion, at NSLS II (Brookhaven Nat Lab)
     • Diamond (UK)
     • MAX IV (Sweden)
     • NSRRC (Taiwan)
     • ...
82                        Giacomo Ghiringhelli
Bibliography




83   Giacomo Ghiringhelli

More Related Content

What's hot

Raman spectroscopy
Raman spectroscopy Raman spectroscopy
Raman spectroscopy Aravind AB
 
Proton Induced X Ray Emission P P
Proton  Induced  X  Ray  Emission  P PProton  Induced  X  Ray  Emission  P P
Proton Induced X Ray Emission P Pguest123ae0
 
Inductively coupled mass spectrometry
Inductively coupled mass spectrometryInductively coupled mass spectrometry
Inductively coupled mass spectrometryAnup Patil
 
XRF Basic Principles
XRF Basic PrinciplesXRF Basic Principles
XRF Basic PrinciplesMarion Becker
 
XRF ( x-ray fluorescence )
XRF ( x-ray fluorescence  )XRF ( x-ray fluorescence  )
XRF ( x-ray fluorescence )nanatwum20
 
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUEHarsh Mohan
 
XRF Theory and Application
XRF Theory and ApplicationXRF Theory and Application
XRF Theory and ApplicationSirwan Hasan
 
Raman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Raman Spectroscopy - Principle, Criteria, Instrumentation and ApplicationsRaman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Raman Spectroscopy - Principle, Criteria, Instrumentation and ApplicationsPrabha Nagarajan
 
Basic Introduction of XANES and EXAFS
Basic Introduction of XANES and EXAFSBasic Introduction of XANES and EXAFS
Basic Introduction of XANES and EXAFSAmlan Roy
 
X-Ray Spectroscopy.pptx
X-Ray Spectroscopy.pptxX-Ray Spectroscopy.pptx
X-Ray Spectroscopy.pptxKarismaDash1
 
Raman Spectroscopy
Raman SpectroscopyRaman Spectroscopy
Raman Spectroscopykrishslide
 
Auger electron spectroscopy
Auger electron spectroscopyAuger electron spectroscopy
Auger electron spectroscopyGulfam Hussain
 
X-ray spectroscopy
X-ray spectroscopyX-ray spectroscopy
X-ray spectroscopyVinit Gohel
 

What's hot (20)

Raman spectroscopy
Raman spectroscopy Raman spectroscopy
Raman spectroscopy
 
Proton Induced X Ray Emission P P
Proton  Induced  X  Ray  Emission  P PProton  Induced  X  Ray  Emission  P P
Proton Induced X Ray Emission P P
 
Inductively coupled mass spectrometry
Inductively coupled mass spectrometryInductively coupled mass spectrometry
Inductively coupled mass spectrometry
 
XRF Basic Principles
XRF Basic PrinciplesXRF Basic Principles
XRF Basic Principles
 
X ray fluorescence (X R F)
X ray fluorescence (X R F)X ray fluorescence (X R F)
X ray fluorescence (X R F)
 
Naa
NaaNaa
Naa
 
XRF ( x-ray fluorescence )
XRF ( x-ray fluorescence  )XRF ( x-ray fluorescence  )
XRF ( x-ray fluorescence )
 
XRF and its types
XRF and its typesXRF and its types
XRF and its types
 
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
2018 HM PIXE PARTICLE -INDUCED X-RAY EMISSION AN ANALYTICAL TECHNIQUE
 
XRF Theory and Application
XRF Theory and ApplicationXRF Theory and Application
XRF Theory and Application
 
Raman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Raman Spectroscopy - Principle, Criteria, Instrumentation and ApplicationsRaman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Raman Spectroscopy - Principle, Criteria, Instrumentation and Applications
 
Neutron diffraction
Neutron diffractionNeutron diffraction
Neutron diffraction
 
Basic Introduction of XANES and EXAFS
Basic Introduction of XANES and EXAFSBasic Introduction of XANES and EXAFS
Basic Introduction of XANES and EXAFS
 
Icp ms
Icp msIcp ms
Icp ms
 
X-Ray Spectroscopy.pptx
X-Ray Spectroscopy.pptxX-Ray Spectroscopy.pptx
X-Ray Spectroscopy.pptx
 
Raman Spectroscopy
Raman SpectroscopyRaman Spectroscopy
Raman Spectroscopy
 
Principles of ftir
Principles of ftirPrinciples of ftir
Principles of ftir
 
Auger electron spectroscopy
Auger electron spectroscopyAuger electron spectroscopy
Auger electron spectroscopy
 
Raman spectroscopy
Raman spectroscopyRaman spectroscopy
Raman spectroscopy
 
X-ray spectroscopy
X-ray spectroscopyX-ray spectroscopy
X-ray spectroscopy
 

Similar to X-Ray Absorption Spectroscopy

X ray generation Radiology information by rahul ppt 2
X ray generation  Radiology information by rahul ppt 2X ray generation  Radiology information by rahul ppt 2
X ray generation Radiology information by rahul ppt 2Rahul Midha
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffractionShivaram
 
B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysB.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysAbhi Hirpara
 
X rayBY sushil kumar
X rayBY sushil kumarX rayBY sushil kumar
X rayBY sushil kumarSushil Kumar
 
B.tech sem i engineering physics u iv chapter 2-x-rays
B.tech sem i engineering physics u iv chapter 2-x-raysB.tech sem i engineering physics u iv chapter 2-x-rays
B.tech sem i engineering physics u iv chapter 2-x-raysRai University
 
Charge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsCharge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsAstroAtom
 
Xps simplified 4 biosurfaces q1 webinar_draft1
Xps simplified 4 biosurfaces q1 webinar_draft1Xps simplified 4 biosurfaces q1 webinar_draft1
Xps simplified 4 biosurfaces q1 webinar_draft1Carl Millholland
 
Glover stanford nov 14 2011
Glover stanford nov 14 2011Glover stanford nov 14 2011
Glover stanford nov 14 2011tegslides
 
Analysis of pharmaceuticals by mani
Analysis of pharmaceuticals by mani Analysis of pharmaceuticals by mani
Analysis of pharmaceuticals by mani ManiKandan1405
 
X- ray crystallography
X- ray crystallographyX- ray crystallography
X- ray crystallographyIshu Sharma
 
X ray crystallography
X ray crystallographyX ray crystallography
X ray crystallographyIshu Sharma
 
INTRODUCTION TO SPECTROSCOPY
INTRODUCTION TO SPECTROSCOPYINTRODUCTION TO SPECTROSCOPY
INTRODUCTION TO SPECTROSCOPYSWAPNIL NIGAM
 

Similar to X-Ray Absorption Spectroscopy (20)

Xrd
XrdXrd
Xrd
 
Surface analysisversion3
Surface analysisversion3Surface analysisversion3
Surface analysisversion3
 
X ray generation Radiology information by rahul ppt 2
X ray generation  Radiology information by rahul ppt 2X ray generation  Radiology information by rahul ppt 2
X ray generation Radiology information by rahul ppt 2
 
Analytical Spectroscopic systems
Analytical Spectroscopic systemsAnalytical Spectroscopic systems
Analytical Spectroscopic systems
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffraction
 
B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysB.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
 
X rayBY sushil kumar
X rayBY sushil kumarX rayBY sushil kumar
X rayBY sushil kumar
 
B.tech sem i engineering physics u iv chapter 2-x-rays
B.tech sem i engineering physics u iv chapter 2-x-raysB.tech sem i engineering physics u iv chapter 2-x-rays
B.tech sem i engineering physics u iv chapter 2-x-rays
 
Charge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsCharge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ions
 
Xps simplified 4 biosurfaces q1 webinar_draft1
Xps simplified 4 biosurfaces q1 webinar_draft1Xps simplified 4 biosurfaces q1 webinar_draft1
Xps simplified 4 biosurfaces q1 webinar_draft1
 
CHM260 - UV-VIS
CHM260 - UV-VISCHM260 - UV-VIS
CHM260 - UV-VIS
 
Glover stanford nov 14 2011
Glover stanford nov 14 2011Glover stanford nov 14 2011
Glover stanford nov 14 2011
 
Radiation detectors
Radiation detectorsRadiation detectors
Radiation detectors
 
Ndt
NdtNdt
Ndt
 
Analysis of pharmaceuticals by mani
Analysis of pharmaceuticals by mani Analysis of pharmaceuticals by mani
Analysis of pharmaceuticals by mani
 
X ray crystallography
X ray crystallographyX ray crystallography
X ray crystallography
 
X- ray crystallography
X- ray crystallographyX- ray crystallography
X- ray crystallography
 
X ray crystallography
X ray crystallographyX ray crystallography
X ray crystallography
 
Laser Basics
Laser BasicsLaser Basics
Laser Basics
 
INTRODUCTION TO SPECTROSCOPY
INTRODUCTION TO SPECTROSCOPYINTRODUCTION TO SPECTROSCOPY
INTRODUCTION TO SPECTROSCOPY
 

More from nirupam12

D Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam EpitaxyD Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam Epitaxynirupam12
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopynirupam12
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesnirupam12
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimernirupam12
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopynirupam12
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometrynirupam12
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfacesnirupam12
 
Resonant X Ray Diffraction
Resonant X Ray DiffractionResonant X Ray Diffraction
Resonant X Ray Diffractionnirupam12
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxidesnirupam12
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopynirupam12
 
Band structure
Band structureBand structure
Band structurenirupam12
 
Piezoelectric mems
Piezoelectric memsPiezoelectric mems
Piezoelectric memsnirupam12
 

More from nirupam12 (12)

D Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam EpitaxyD Schlom - Oxide Molecular-Beam Epitaxy
D Schlom - Oxide Molecular-Beam Epitaxy
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxides
 
Neutron Refractometry - B Kreimer
Neutron Refractometry - B KreimerNeutron Refractometry - B Kreimer
Neutron Refractometry - B Kreimer
 
X-Ray Absorption Spectroscopy
X-Ray Absorption SpectroscopyX-Ray Absorption Spectroscopy
X-Ray Absorption Spectroscopy
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
Polarons in bulk and near surfaces
Polarons in bulk and near surfacesPolarons in bulk and near surfaces
Polarons in bulk and near surfaces
 
Resonant X Ray Diffraction
Resonant X Ray DiffractionResonant X Ray Diffraction
Resonant X Ray Diffraction
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
Piezo Responce Force Microscopy
Piezo Responce Force MicroscopyPiezo Responce Force Microscopy
Piezo Responce Force Microscopy
 
Band structure
Band structureBand structure
Band structure
 
Piezoelectric mems
Piezoelectric memsPiezoelectric mems
Piezoelectric mems
 

Recently uploaded

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 

Recently uploaded (20)

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 

X-Ray Absorption Spectroscopy

  • 1. MAX-PLANCK-UBC CENTRE FOR QUANTUM MATERIALS International Summer School on Surfaces and Interfaces in Correlated Oxides 30th August, 2011 Giacomo Ghiringhelli Dipartimento di Fisica Politecnico di Milano Italy giacomo.ghiringhelli@fisi.polimi.it
  • 2. Introducing myself... Picture of POLIMI Keywords: • Synchrotron radiation • Soft x-rays • Resonant spectroscopy • 3d transition metal oxides 2 Giacomo Ghiringhelli
  • 3. Summary 1. Why synchrotron radiation? • Main properties • Absorption edges and x-ray energies 2. XAS: x-ray absorption spectroscopy • Basic process and the choice of absorption edges • XLD and XMCD: polarization dependent XAS • Some examples on oxide interfaces 3. RIXS: resonant inelastic x-,ray scattering • A second order process • dd excitations • Magnetic excitations 3 Giacomo Ghiringhelli
  • 4. Synchrotron radiation, summary 4 Giacomo Ghiringhelli
  • 5. Undulators: many photons 5 Giacomo Ghiringhelli
  • 6. Undulators: polarization control Elettroni Campo Luce polarizzata magnetico linearmente Lu ce po lar izz ata circolarmente Elettroni Campo magnetico Full control of the polarization at the source: • Linear horizontal or vertical or any orientation (more difficult) • Circular Right or Left handed 6 Giacomo Ghiringhelli
  • 7. Beam line High quality mirrors, gratings and crystals are needed to make the beam monochromatic (bandas narrow as possible) and to focalize it onto the sample State of the art beam lines for resonant spectroscopy Parameter Typical figures Flux at the sample 1010 - 1013 photons/s Beam size at sample (hoz x ver) 50 m x 5 m - 1 mm x 1 mm Energy bandpass: UV (20 – 50 eV) 10 - 50 meV soft x rays (300 – 1000 eV) 50 – 500 meV hard x rays (2 - 10 keV) 50 – 500 meV 7 Giacomo Ghiringhelli
  • 8. X-ray spectroscopy for 3d Transition Metal systems E 3dTM oxides X-ray resonant spectroscopies Ev • XAS: x-ray absorption 4sp spectroscopy EF 3d • XLD and XMCD: polarization dependent XAS Ox 2p • RIXS: resonant inelastic x-ray 3p scattering • Resonant reflectivity • Resonant Elastic X-ray 2p Scattering • Resonant Photoemission 1s 8 Giacomo Ghiringhelli
  • 9. X-ray Absorption measurements X rays Tunable or X rays Monochromator “white” source e nA Detection: • transmission (only hard x-rays) • fluorescence yield • electron yield (including drain current) 9 Giacomo Ghiringhelli
  • 10. X-ray Absorption Cross Section log scale 2.5 OK 1 530 eV Cu L2,3 CuO 930-950 eV 2.0 Absorption coefficient (arb. u.) Cu 0.1 M edges 1.5 0.01 Cu K 9000 eV 1.0 1E-3 Linear 0.5 scale 1E-4 0.0 10 100 1000 10000 Photon Energy (eV) 10 Giacomo Ghiringhelli
  • 11. Resonances in the XAS 3d TM E Oxygen Rare Earths 4sp 6s,5d EFermi 3d 2p 4f 2s M2,3 edges (28-77 eV) 3p K edge 530 eV 1s L2,3 edges (400-950 eV) 2p M4,5 edges 3d (830-1580 eV) K edge (4.5-9.0 keV) 1s L2,3 edges 2p (5.5-10 keV) Strong resonances 11 Giacomo Ghiringhelli
  • 12. Core levels C O Si Sc Fe Zn Y Mo Cd Ce Gd Lu Au Th 3dTM 4dTM RE Actinides 100000 K Hard X-Rays L3 10000 Binding energy (eV) M3 M5 Soft X-Rays 1000 100 UV 2p3/2 3p 10 1s 3/2 3d5/2 4p3/2 4d5/2 0 10 20 30 40 50 60 70 80 90 100 Atomic number Z Giacomo Ghiringhelli 12 - Politecnico di Milano; Source: X-ray data booklet, Lawrence Berkeley National Laboratory GG 25/03/02 18:29:59
  • 13. 3p: M2,3 edge XAS Spin-Orbit splitting Spin-Orbit splitting Source: S. Nakai, et al PRB 9, 1870 (1974) 13 Giacomo Ghiringhelli
  • 14. 2p: L2,3 edge XAS Spin-Orbit Spin-Orbit splitting splitting Mn L2,3 XAS L3 L3 La0.7Sr0.3MnO3 NiO Ni metal 850 855 860 L2 NiO MnO Ni metal 850 860 870 880 640 645 650 655 660 Photon Energy (eV) photon energy (eV) Source: G. Ghiringhelli, N.B. Brookes et al unpublished Source: C. Aruta, G. Ghiringhelli et al unpublished 14 Giacomo Ghiringhelli
  • 15. Atomic model Total E 3dTM - O 2p53dn+2L 2p53dn+1 M.S.: Multiplet Splitting C.I.: Configuration 3dn+1L Interaction 3dn |g> XAS probes orbital occupation C.I. M.S. 15 Giacomo Ghiringhelli
  • 16. L3 XAS and multiplets Excit ation De- excitation s eout E CuO h ou t 3d h in 2p3/2 928 930 932 934 Photon Energy (eV) Excited Ti me Ground Ground states Intermediate Fin al MnO state stat es stat es state Resonant scattering without relaxation of intermediate state 3d n 2p53d n+1 CuO: 3d9  3d10 One single peak NiO: 3d8  3d9 Many peaks MnO: 3d5  3d6 636 638 640 642 644 646 photon energy (eV) 16 Giacomo Ghiringhelli
  • 17. L3 XAS and valence L3 L2 2.1 eV CuO: Cu2+ is 3d9 Cu2O: Cu1+ is 3d10 CuO Cu2O Cu metal: 3d104s1 930 935 940 Photon Energy (eV) Source: M. Grioni et al PRB 45, 3309 (1992) Source: M. Finazzi et al PRB 61, 4629 (2000) 17 Giacomo Ghiringhelli
  • 18. X-ray absorption intensity Fermi golden rule Joint density Matrix element of states, separated by energy h Electric dipole perturbation associated to a photon 18 Giacomo Ghiringhelli
  • 19. Electric dipole selection rules f ε r i 3 * r R Ri dr f Y ε u rYi d * f Radial integral Angular integral Mind the nodes of R! 4 0 NB what matters is Rf , ε ur Y1 3 in the presence of the core hole! Selection rules (via Wigner- Eckart) l=0 Transitions pd l=1 Y2m '* Y1 p Y1m m=-1,0,+1 p=-1,0,+1 l=2 m’=m-1,m,m+1 19 Giacomo Ghiringhelli
  • 20. Crystal field z Cu: x2-y2 orbital x2-y2, z2 x2-y2 eg b1 z2 a1 x d states 10Dq 10Dq xy b2 yz,zx xy, yz,zx t2g eg y Spherical Cubic Tetragonal O3 Oh D4h 20 Giacomo Ghiringhelli
  • 21. 3d split states t2g states z eg states e zx z z z x y z x x y x y y b2 xy x b1 x2-y2 a1 z2 e yz y 21 Giacomo Ghiringhelli
  • 22. 2p states all occupied: Spherical harmonics and orbitals anisotropy in final states spherical distribution 3d states partly empty: |Y1-1|2 = |Y11|2 |Y10|2 2 |Y2-2|2 = |Y22|2 |Y2-1|2 = |Y22|2 |Y20| Y1-1= Y11= Y10= 22
  • 23. 2p to 3d transitions 2p3/2 photon 3d • Spherical distribution • Anisotropic occupation • No well defined spin due to crystal field state • Possible spin polarization • Spin “parallel” to (FM or AF) orbital moment • Spin-orbit interaction not always negligible RCP = Y11 LCP = Y1-1 z-linear = Y10 x-linear = (Y1-1+Y11)/sqrt(2) 23 Giacomo Ghiringhelli
  • 24. Transition of a hole from 3d to 2p 3d photon 2p3/2 Example: transition to a 3d(x2-y2) orbital RCP = Y11 Initial state 3d hole is 100% spin down Final state 2p hole has main spin up character 24 Giacomo Ghiringhelli
  • 25. Linear polarization of x-rays: orbital occupation Empty 3d state Empty 3d state E E z h in h in z E E x x y y b1 x2-y2 (Y2-2+Y22) a1 z2 Y20 High absorption (Y1-1+Y11) Weak absorption No absorption Y10 High absorption 25 Giacomo Ghiringhelli
  • 26. 3d hole symmetry in cuprates 3d9 (2p3/2)33d10 h E Result: the hole in Cu2+ has 100% x2-y2 symmetry 26 Giacomo Ghiringhelli
  • 27. Linear polarization of x-rays: magnetization orientation Atomic spin Atomic spin orientation orientation E E h in h in E E M M Different absorption Same absorption MAGNETIC LINEAR DICHROISM: Works for Ferro and AntiFerro 27 Giacomo Ghiringhelli
  • 28. Circular polarization of x-rays and ferromagnetic materials XAS-MCD: x-ray absorption magnetic circular dichroism E z M Fermi level LCP 3d m L3: 2p3/2 3d 3d RCP M L2: 2p1/2 3d j=3/2 2p j=1/2 2p 3/2 sample number of matrix free states elements RCP m=-1 z transition rates z m=1 LCP absorption XAS-MCD LCP RCP experimental geometry M L3 28 Giacomo Ghiringhelli
  • 29. XMCD: sum rules For late 3dTM sum rules allow to extract spin and orbital magnetic moments directly from spectra without the need of theoretical simulations of spectra 8 40 Fe (L3+L2) Co Ni 7 6 L3 L2 L3 L2 L3 L2 30 Integrated Intensity (arb. units) 5 (L3+L2) Intensity (arb. units) 4 20 3 (L3+L2) 2 10 1 0 0 (L3+L2) (L3+L2) (L3) (L3+L2) -1 (L3) (L3) -2 -10 700 720 740 760 780 800 820 840 860 880 900 Photon energy (eV) 29 Giacomo Ghiringhelli
  • 30. XAS: some examples Manganite thin films • Strain and orbital occupation • Magnetic anisotropy (FM and AF) STO/LAO interface Cuprates: ferromagnetism 30 Giacomo Ghiringhelli
  • 31. Films of La2/3Sr1/3MnO3: strain and phase separation Manganites: Mn3+: 3d4 → Mn3+/Mn4+ Mn4+: 3d3 → CMR LaMnO3 Mott Hubbard Insulator: → Phase separation Mn – Mn fluctuations → Orbital ordering more likely than O - Mn 31 Giacomo Ghiringhelli
  • 32. Manganites XAS: strain and orbital occupation 8 100 u.c. V (E//ab) XAS (V, H) [a.u.] 6 H (E//c) SrTiO3 substrate c/a=0.98 z2 4 x2- y2 z2 eg 2 z-in x2-y2 LSMO 0 Doct 0.3 STO t2g yz xz V-H [a.u.] 0.0 yz xz xy -0.3 xy -0.6 Linear Dichroism=IXAS//ab-IXAS//c 637 644 651 658 Preferential occupation of in-plane 3dx2-y2 orbitals Photon Energy [eV] 8 100 u.c. V (E//ab) LaAlO3 substrate c/a=1.04 XAS (V, H) [a.u.] 6 H (E//c) 4 x2- y2 x2- y2 z2 2 eg 0 0.3 LSMO z-out z2 Doct 0.0 xy V-H [a.u.] -0.3 t2g yz xz xy -0.6 LAO yz xz 637 644 651 658 Photon Energy [eV] Preferential occupation of the out-of-plane 3dz2–r2 orbitals 32 Giacomo Ghiringhelli
  • 33. Manganites XAS: strain and dimensionality How strain and reduced dimensionality influence magnetic and orbital anisotropies 33 Giacomo Ghiringhelli
  • 34. Manganites XAS: ferromagnetic behavior XMCD: FM hysteresis loops 34 Giacomo Ghiringhelli
  • 35. Manganites XAS: linear dichroism LD: magnetic and orbital anisotropy 35 Giacomo Ghiringhelli
  • 36. Manganites XAS: magnetic linear dichroism MLD: ferromagnetic and antiferromagnetic anisotropy 36 Giacomo Ghiringhelli
  • 37. Manganite superlattices (SrMnO3)n/(LaMnO3)2n LaMnO3 : Mott insulator, Mn3+, 3d4, AFM SrMnO3 : band insulator, Mn4+, 3d3, AFM Koida et al, PRB 66 144418 (2002) 37 Bhattacharya et al, PRL 100 257003 (2008) Giacomo Ghiringhelli
  • 38. Manganite superlattices: the effect of layer thickness n = 1, 5, 8 SMO film LMO film MnO2 La LaO Sr MnO2 O Mn LaO MnO2 SrO MnO2 C. Adamo et al, App. Phys. Lett. 92, 112508 (2008) 38 Giacomo Ghiringhelli
  • 39. LMO/SMO: linear dichroism XLD at room T, no magnetic order, the dichroism is given only by the orbital occupation C. Aruta, C. Adamo, A. Galdi, P. Orgiani, V. Bisogni, N. B. Brookes, J. C. Cezar, P. Thakur, C. A. Perroni, G. De Filippis, V. Cataudella, D. G. Schlom, L. Maritato, and G. Ghiringhelli, Phys. Rev. B 80, 140405(R) (2009), 39 Giacomo Ghiringhelli
  • 40. LMO/SMO: linear dichroism XLD at low T,magnetic+orbital signal, we take out the room T XLD to remain with the magnetic dichroism only C. Aruta, C. Adamo, A. Galdi, P. Orgiani, V. Bisogni, N. B. Brookes, J. C. Cezar, P. Thakur, C. A. Perroni, G. De Filippis, V. Cataudella, D. G. Schlom, L. Maritato, and G. Ghiringhelli, Phys. Rev. B 80, 140405(R) (2009), 40 Giacomo Ghiringhelli
  • 41. LMO/SMO: linear dichroism What do we learn about magnetic (AFM+FM) ordering? C. Aruta, C. Adamo, A. Galdi, P. Orgiani, V. Bisogni, N. B. Brookes, J. C. Cezar, P. Thakur, C. A. Perroni, G. De Filippis, V. Cataudella, D. G. Schlom, L. Maritato, and G. Ghiringhelli, Phys. Rev. B 80, 140405(R) (2009), 41 Giacomo Ghiringhelli
  • 42. LAO/STO XAS: measurements and and Ti4+ calc. Looking for Ti3+ signal at the interface: → Ti4+ is 3d0 → Ti3+ is 3d1 (like in LaTiO3) Ti L2,3 XAS can be perfectly simulated in single ion model (just play with Slater integrals and lifetime broadening) 42 Giacomo Ghiringhelli
  • 43. LAO/STO XAS: linear dichroism Linear Dichroism: LD = Iz - Ix = Ic – Iab = IH-IV Remember : (001) surface M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Phys. Rev. Lett. 102, 166804 (2009), 43 Giacomo Ghiringhelli
  • 44. LAO/STO: anisotropy of empty 3d orbitals →NO detectable 3d1 signal! →In plane orbitals ar pulled down towards EF Vacuum Interf. Bulk LAO Interf. 44 Giacomo Ghiringhelli
  • 45. Interface of STO with other materials 0.08 C. Aruta et al, unpublished LD The trend confirms the LDnorm (arb.u.) 0.04 role of the apical 0.00 oxygen at interface: LD -0.04 LAO is stronger when the LGO NGO overlayer has smaller -0.08 458 460 462 464 466 468 lattice parameter Photon energy (eV) XMCD When coupled to manganites a 3d1 contribution appears with ferromagnetism, revealed by XMCD F.Y. Bruno, et al. Phys. Rev. Lett. 106 147205 (2011) 45 Giacomo Ghiringhelli
  • 46. Ferromagnetic signal in cuprates La2/3Ca1/3MnO3 YBa2Cu3O7 superlattice 46 Giacomo Ghiringhelli
  • 47. Cuprates: weak ferromagnetism 47 Giacomo Ghiringhelli
  • 48. Cuprates XMCD: not only a question of interface Benfatto et al. PRB 74 024416 (2006) Djaloszinsky-Moriya interaction at the origin of weak ferromagnetism in AF undoped compounds (La2CuO4). XMCD absent in Sr2CuO2Cl2. We find XMCD in doped compounds too. 48 Giacomo Ghiringhelli
  • 49. Cuprates XMCD: evaluating the canting angle 49 Giacomo Ghiringhelli
  • 50. Second order processes What about looking at the emitted x-rays after a resonant absorption? We can access local and collective excitations. Electric dipole selection rules are not an obstacle. Photon momentum can be used to probe dispersion. h out x eout spin sample y z h in polarisation 50 Giacomo Ghiringhelli
  • 51. RIXS: a resonant inelastic scattering Etransferred=h in-h out |i> h in h out 3dn+1L Charge Transfer |f> 3dn* dd excitations |g> RIXS probes charge neutral local excitations 51 Giacomo Ghiringhelli
  • 52. RIXS in a metal (if it had worked...) E J-DOS EF Eloss h out -h in 0 h in h out The excited electron is bound: the whole process creates excitations across the Fermi level (somehow similarly to optical absorption). h out depends on h in. Actually spactra a re domiated by fluorescence... Giacomo Ghiringhelli
  • 53. Resonant fluorescence, or XES E Projected DOS EF h out h in h out The excited electron is “lost”: its final energy is not important and the emission spectrum is independent of h in. Giacomo Ghiringhelli
  • 54. RIXS works well if there is a gap Gapped systems: Charge neutral excit.: Excitations inside Charge excit.: sharp peaks in the gap the gap continuum E Eloss h out -h in 0 EF Excitation De- excitation s E eout h out h in Strongly correlated systems usually give nice RIXS spectra Time Ground Intermediate Fin al state states states Giacomo Ghiringhelli
  • 55. Low energy excitations in L2,3 edge RIXS elastic excited states (C) Intensity (arb. units) -7 -6 -5 -4 -3 -2 -1 0 1 Relative emitted energy (eV) Energy loss Giacomo Ghiringhelli
  • 56. Electronic, magnetic and vibrational excitations in RIXS What excitations can we observe by RIXS? Phonons Magnetic Electronic dd Optical gap CT 1meV 10meV 100meV 1eV 10eV Giacomo Ghiringhelli
  • 57. L edge RIXS : energy and momentum transfer Resonant Inelastic X-ray Scattering: • an energy loss experiment e E’, k’, ’ pl • made with photons of high energy S am • at a core absorption resonance E, k, Energy Scattering plane h = E - E’ k’ Conservation laws: • Energy q = k-k’ • Momentum Momentum • “Angular momentum” k Giacomo Ghiringhelli
  • 58. Photon momentum and kinematics Photons vs Neutrons: energy and momentum Wavevector of particles used in inelastic scattering Thermal neutrons 10 n s u tro 1 Ne 1st Brillouin zone boundary k (Ang ) -1 K edges 0.1 L edges 0.01 M edges s on ot 1E-3 Ph 1m 10m 100m 1 10 100 1k 10k 100k energy (eV) Giacomo Ghiringhelli
  • 59. Cuprates: the “easy” case In cuprates Cu is divalent: Cu2+ 3d9 CuO This makes XAS almost trivial: 1 peak only 3d9 (2p3/2)33d10 928 930 932 934 Photon Energy (eV) RIXS can be calculated even by hand: 3d9 (2p3/2)33d10 (3d9)* Even for magnetic excitations (spin waves), because fast collision approximation is a very good approximation 59 Giacomo Ghiringhelli
  • 60. dd excitations in Cu2+ systems x2-y2 x2-y2, z2 eg b1 z2 a1 d states 10Dq 10Dq xy b2 yz,zx xy, yz,zx t2g eg Spherical Cubic Tetragonal Interatomic O3 Oh D4h exchange x2-y2 b1 z2 a1 10Dq xy b2 yz,zx eg 3d9 2p53d10 3d9 Giacomo Ghiringhelli
  • 61. Cu L3 edge RIXS: CuO, La2CuO4, Malachite Cu2+ in square approximately 21 planar coordination Cu-O distances: Intensity (ph. s-1 eV-1) CuO CuO 1.7 – 2-2 Ang 14 LCO 1.9 – 2.4 Ang Malachite 1.9 – 2.6 Ang La2CuO Different Cu2+ 4 x2 7 coordination, symmetry, Cu2(OH) CO3 hybridization 2 0 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 Different dd excitations Energy loss (eV) 61 Giacomo Ghiringhelli
  • 62. Layered cuprates By using the calculated RIXS cross sections to fit the data the energy of all the 3d orbitals can be obtained from teh RIXS spectra for any compound. M. Moretti Sala, V. Bisogni, L. Braicovich, C. Aruta, G. Balestrino, H. Berger, N. B. Brookes, G.M. De Luca, D. Di Castro, M. Grioni, M. Guarise, P. G. Medaglia, F. Miletto Granozio, M. Minola, M. Radovic, M. Salluzzo, T. Schmitt, K.-J. Zhou, G. Ghiringhelli, New J. Phys. 13, 043026 (2011) Giacomo Ghiringhelli
  • 63. Ni L3 edge: NiO, NiCl2 Ni2+ (3d8) in octahedral coordination c 40 Intensity (ph. s-1 eV-1) z y x b a NiO 20 z x y NiCl 2 0 a b -4 -3 -2 -1 0 Energy loss (eV) 63 Giacomo Ghiringhelli
  • 64. Ni2+ in NiO: dependence on incident photon energy 852 853 854 855 856 857 858 Intensity (arb.u.) NiO Ni L3 XAS S P 5 852 853 854 855 856 857 NiO-5 S P 858 P 5 RIXS NiO NiCl 2 4 -4 x5 4 Energy loss (eV) Energy loss (eV) 3 -3 3 2 -2 2 1 -1 1 0 0 0 852 853 854 855 856 857 858 0 25 50 75 100 Incident photon energy (eV) RIXS Intensity (ph. s eV -1 ) -1 G. Ghiringhelli et al , Phys Rev Lett 102, 027401 (2009) 64 Giacomo Ghiringhelli
  • 65. Many excited states relative scattered photon energy (eV) Crystal -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 -4.0 -3.5 field model: Sugano-Tanabe diagrams Ni L RIXS 3 (x2-y2), (z2) intensity (arb. u.) F eg 10Dq H t2g (xy), (yz), (zx) 1.5 10Dq (eV) 1.0 0.5 Single ion 1 G 3 P 1D 3 F 0.0 Octahedral C.F. 1 1 T2g 1 3 A1g 1g T 3 T2g E1g 1 3 A2g 3d spin-orbit T 3 1g T1g Exchange 1 1.5 E 1 g T2g 1.0 10Dq (eV) 0.5 1 3 0.0 G P 1D 3 F Single ion 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 relative state energy (eV) Octahedral C.F. G. Ghiringhelli et al, J. Phys. Cond. Mat. 17, 5397 (2005) S.G.Chiuzbaian, G. Ghiringhelli et al, Phys. Rev. Lett. 95, 197402 (2005) 65 Giacomo Ghiringhelli
  • 66. Mn L3 edge: MnO, LaMnO3 15 Mn2+ and Mn3+ in octahedral coordination Intensity (ph. s-1 eV-1) 10 Mn2+: 3d5 MnO 5 LaMnO3 x10 0 Mn3+: 3d4 -10 -5 0 Energy loss (eV) 66 Giacomo Ghiringhelli
  • 67. An application to thin film: Mn2+ in LaxMnO3 RIXS shows that Mn2+ is at LaxMnO3-d/STO films site A, ie, it replaces La3+ x=La/Mn ratio for x<1 becomes FM (self doping) XAS reveals the presence of Mn2+ for x<1 MnO x=0.66 x=0.88 x=0.98 x=1.07 P. Orgiani, A. Galdi, C. Aruta, V. Cataudella, G. De Filippis, C.A. Perroni, V. Marigliano Ramaglia, R. Ciancio, N.B. Brookes, M. Giacomo Ghiringhelli Moretti Sala, G. Ghiringhelli, and L. Maritato, Phys. Rev. B 82, 205122 (2010)
  • 68. STO/LAO superlattice: RIXS at Ti L3 68 Giacomo Ghiringhelli
  • 69. Cuprates: not only dd excitations 600 Sr2CuO2Cl2 500 400 300 200 100 0 -8 -6 -4 -2 0 Energy loss Giacomo Ghiringhelli (eV)
  • 70. La2CuO4: 2D spin ½ Heisenberg AF insulator Oxygen Copper DIRECT SPACE RECIPROCAL SPACE nuclear BZ ( , ) (0,0) ( ,0) magnetic BZ Elementary magnetic excitations are spin waves Giacomo Ghiringhelli
  • 71. Dispersing peaks: magnetic excitations SAXES & Swiss Light Sour ce Politecnico di Milano La2CuO4 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 Energy loss (eV) Giacomo Ghiringhelli
  • 72. LCO, comparing with INS: these are magnons! La2CuO4 R. Coldea et al, Phys. Rev. Lett. 86, 5377 (2001). L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti Sala, L. Ament, N.B. Brookes, G.M. de Luca, M. Salluzzo, T. Schmitt, and G. Ghiringhelli PRL 104 077002 (2010) Giacomo Ghiringhelli
  • 73. Another example: magnons in SCOC Sr2CuO2Cl2 M. Guarise, B. Dalla Piazza, M. Moretti Sala, G. Ghiringhelli, L. Braicovich, H. Berger, J.N. Hancock, D. van der Marel, T. Schmitt, V.N. Strocov, L.J.P. Ament, J. van den Brink, P.-H. Lin, P. Xu, H. M. Rønnow, and M. Grioni. Phys. Rev. Lett. 105, 157006 (2010) Giacomo Ghiringhelli
  • 74. What happens in doped, SC cuprates? NdBCO Superconducting: Tc= 65K Insulating (annealed) 300 300 200 200 100 100 Intensity (a.u.) Intensity (a.u.) 0 0 -100 -100 -200 -200 -0.6 -0.4 -0.2 0.0 0.2 -0.6 -0.4 -0.2 0.0 0.2 Energy (eV) Energy (eV) Giacomo Ghiringhelli
  • 75. YBCO and NdBCO family (Keimer, Le Tacon) Giacomo Ghiringhelli
  • 76. Theory of magnetic RIXS (1) Single ion cross section Linear spin wave theory 76 Giacomo Ghiringhelli
  • 77. Theory of magnetic RIXS (2) 77 Giacomo Ghiringhelli
  • 78. CaCuO2/SrTiO3 superlattice: superconductor D. Di Castro, M. Salvato, A. Tebano, D. Innocenti, P. G. Medaglia, M. Cirillo, and G. Balestrino, arXiv1107.2239v1 (2011) 78 Giacomo Ghiringhelli
  • 79. CaCuO2/SrTiO3 superlattice: RIXS 100 CCO bulk 400 SL n = 2 SL n=2 Norm. Intensity (arb. u.) SL n = 3 80 SL n=3 bulk CCO 300 Energy (meV) 60 200 40 100 20 0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.0 2.5 2.0 1.5 1.0 q// Energy Loss (eV) M. Minola, D. Di Castro, G. Ghiringhelli, M. Moretti Sala, N. B. Brookes, P.G. Medaglia, A. Tebano, G. Balestrino and L. Braicovich, unpublished 79 Giacomo Ghiringhelli
  • 80. Instrumentation and perspectives With high resolution L edge RIXS We can probe orbital and magnetic excitations In layered cuprates we can map E(q) of magnons and we can thus complement optical spectroscopy, EELS and INS EXPERIMENTS the limitations are still E resolution and intensity. AXES at the ESRF SAXES at the SLS Giacomo Ghiringhelli
  • 81. From AXES (ESRF, ID08) to SAXES (SLS, ADRESS) SAXES & Swiss Light Sour ce Politecnico di Milano INFM A dvanced X -Ray Emission Spectroscopy Since 1994: AXES at beam line Since 2007: SAXES at beam line ID08 of the ESRF ADRESS of the SLS L = 2.2 m L = 5.0 m Design: E/ E = 2,000 at Cu L3 (930 eV) Design: E/ E = 12,000 at Cu L3 2010: E/ E = 5,000 at Cu L3 2008: E/ E = 10,000 at Cu L3 C. Dallera et al. J. Synchrotron Radiat. 3, 231 (1996) G. Ghiringhelli, et al Rev. Sci. Instrum. 77, 113108 (2006) G. Ghiringhelli et al., Rev. Sci. Instrum. 69, 1610 (1998) V. Strocov, T. Schmitt, L. Patthey et al, J. Synch. Rad., 17, 631 (2010). M. Dinardo et al., Nucl, Instrum. Meth A 570, 176 (2007) Same optical scheme: • VLS spherical grating • CCD detector Different length L Giacomo Ghiringhelli
  • 82. The future of RIXS instrumentation ЄRIXS:The Єuropean RIXS facility (N.B Brookes) E down to 30 meV at Cu L3 and 10 meV at Ti L3 10 m Other high resolution RIXS projects: • Centurion, at NSLS II (Brookhaven Nat Lab) • Diamond (UK) • MAX IV (Sweden) • NSRRC (Taiwan) • ... 82 Giacomo Ghiringhelli
  • 83. Bibliography 83 Giacomo Ghiringhelli