SlideShare a Scribd company logo
1 of 60
Download to read offline
Complex Numbers
Solving Quadratics
Complex Numbers
Solving Quadratics
              x2 1  0
Complex Numbers
Solving Quadratics
                 x2 1  0
                x 2  1
           no real solutions
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number

                    i  1    or   i 2  1
                   i is an imaginary number
Complex Numbers
Solving Quadratics
                              x2 1  0
                             x 2  1
                        no real solutions
In order to solve this equation we define a new number

                    i  1    or    i 2  1
                   i is an imaginary number

                         x 2  1
                          x   1
                          x  i
e.g . x 2  3 x  7  0
e.g . x 2  3 x  7  0

       3  9  28
   x
            2
       3   19
    
           2
e.g . x 2  3 x  7  0

       3  9  28
   x
            2
       3   19
    
           2
       3  19i
    
           2
e.g . x 2  3 x  7  0

       3  9  28
  x
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0          x 2  3x  7  0

       3  9  28
  x                        OR
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0            x 2  3x  7  0
                                         2
                                 x  3  19
       3  9  28                       0
  x                        OR       2     4
            2
       3   19
   
           2
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0            x 2  3x  7  0
                                         2
                                 x  3  19
       3  9  28                       0
  x                        OR       2     4
            2                            2
       3   19                   3  19 2
                                x   i  0
           2                       2   4
       3  19i
    
           2
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0                 x 2  3x  7  0
                                              2
                                      x  3  19
       3  9  28                            0
  x                        OR            2     4
            2                                 2
       3   19                        3  19 2
                                     x   i  0
           2                            2   4
       3  19i                    3  19      3  19 
                                x    i  x     i  0
           2                       2  2       2  2 
    3  19i          3  19i
x            or x 
        2                 2
e.g . x 2  3 x  7  0                 x 2  3x  7  0
                                              2
                                      x  3  19
       3  9  28                            0
  x                        OR            2     4
            2                                 2
       3   19                        3  19 2
                                     x   i  0
           2                            2   4
       3  19i                    3  19      3  19 
                                x    i  x     i  0
           2                       2  2       2  2 
    3  19i          3  19i
x            or x                 3  19           3  19
        2                 2      x     i or x       i
                                    2  2            2  2
All complex numbers (z) can be written as; z = x + iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
          Re z   3
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                           Re z   x
                           Im z   y
    e.g . z  3  5i
          Re z   3   Im z   5
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                             Re z   x
                             Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                             Re z   x
                             Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
(4) Every complex number z = x + iy, has a complex conjugate
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
         3
    e.g . ,  , e,4
         4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
          3
    e.g . ,  , e,4
          4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
    e.g . z  2  7i
All complex numbers (z) can be written as; z = x + iy
Definitions;
(1) All complex numbers contain a real and an imaginary part

                            Re z   x
                            Im z   y
     e.g . z  3  5i
           Re z   3       Im z   5
(2) If Re(z) = 0, then z is a pure imaginary number
     e.g . 3i,6i
(3) If Im(z) = 0, then z is a real number
          3
    e.g . ,  , e,4
          4
(4) Every complex number z = x + iy, has a complex conjugate
                               z  x  iy
    e.g . z  2  7i               z  2  7i
Complex Numbers
     x + iy
Complex Numbers
     x + iy

             Real Numbers
                  y=0
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
                         Rational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers          Real Numbers
      y0                       y=0
                         Rational Numbers




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals
                                           Zero




                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
                      Fractions      Integers
                                     Naturals
                                           Zero

                         Negatives



                         Irrational Numbers
Complex Numbers
                   x + iy
Imaginary Numbers           Real Numbers
      y0                        y=0
                         Rational Numbers
       Pure           Fractions      Integers
Imaginary Numbers                    Naturals
    x  0, y  0
                                           Zero

                         Negatives



                         Irrational Numbers
Complex Numbers
                      x + iy
   Imaginary Numbers            Real Numbers
         y0                         y=0
                             Rational Numbers
          Pure            Fractions      Integers
   Imaginary Numbers                     Naturals
       x  0, y  0
                                               Zero

                             Negatives
NOTE: Imaginary numbers
   cannot be ordered

                             Irrational Numbers
Basic Operations
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
          4  3i    8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition
          4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i 
         32  8i  24i  6i 2
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i        4  3i     8  2i 
         32  8i  24i  6i 2               
                                    8  2i   8  2i 
         32  32i  6
         26  32i
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i         4  3i     8  2i 
         32  8i  24i  6i 2                
                                     8  2i   8  2i 
         32  32i  6
                                     32  8i  24i  6
         26  32i               
                                          64  4
Basic Operations
As i a surd, the operations with complex numbers are the same as surds
Addition                               Subtraction
          4  3i    8  2i                4  3i    8  2i 
         4  i                               12  5i

Multiplication                    Division (Realising The Denominator)
         4  3i  8  2i         4  3i     8  2i 
         32  8i  24i  6i 2                
                                     8  2i   8  2i 
         32  32i  6
                                     32  8i  24i  6
         26  32i               
                                          64  4
                                     38  16i
                                  
                                        68
                                     19 8
                                         i
                                     34 34
Exercise 4A; 1 to 16 evens

More Related Content

What's hot

What's hot (15)

09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau09 sistema de equação do primeiro grau
09 sistema de equação do primeiro grau
 
Matematica
MatematicaMatematica
Matematica
 
Unexpected ineq
Unexpected ineqUnexpected ineq
Unexpected ineq
 
0307 ch 3 day 7
0307 ch 3 day 70307 ch 3 day 7
0307 ch 3 day 7
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
0308 ch 3 day 8
0308 ch 3 day 80308 ch 3 day 8
0308 ch 3 day 8
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Ca8e Ppt 5 6
Ca8e Ppt 5 6Ca8e Ppt 5 6
Ca8e Ppt 5 6
 
MODULE 5- Inequalities
MODULE 5- InequalitiesMODULE 5- Inequalities
MODULE 5- Inequalities
 
9-8 Graphing Equations
9-8 Graphing Equations9-8 Graphing Equations
9-8 Graphing Equations
 
Stepenovanje
StepenovanjeStepenovanje
Stepenovanje
 
9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane9-7 Graphing Points in Coordinate Plane
9-7 Graphing Points in Coordinate Plane
 
Graphing y = ax^2 + c
Graphing y = ax^2 + cGraphing y = ax^2 + c
Graphing y = ax^2 + c
 
Ch02 31
Ch02 31Ch02 31
Ch02 31
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
 

Similar to X2 T01 01 definitions (2011)

X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)Nigel Simmons
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)Nigel Simmons
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)Nigel Simmons
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
Taller matemáticas empresariales.
Taller matemáticas empresariales.Taller matemáticas empresariales.
Taller matemáticas empresariales.Daniela Vélez
 
Taller matemáticas empresariales
Taller matemáticas empresarialesTaller matemáticas empresariales
Taller matemáticas empresarialesDaniela Vélez
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)Nigel Simmons
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)Nigel Simmons
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational formLily Maryati
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 

Similar to X2 T01 01 definitions (2011) (20)

X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 
11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)11 x1 t01 09 simultaneous equations (2013)
11 x1 t01 09 simultaneous equations (2013)
 
11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)11X1 T01 08 simultaneous equations (2011)
11X1 T01 08 simultaneous equations (2011)
 
11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)11 x1 t01 09 simultaneous equations (2012)
11 x1 t01 09 simultaneous equations (2012)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
Taller matemáticas empresariales.
Taller matemáticas empresariales.Taller matemáticas empresariales.
Taller matemáticas empresariales.
 
Taller matemáticas empresariales
Taller matemáticas empresarialesTaller matemáticas empresariales
Taller matemáticas empresariales
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 

Recently uploaded (20)

Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 

X2 T01 01 definitions (2011)

  • 3. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions
  • 4. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number
  • 5. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number
  • 6. Complex Numbers Solving Quadratics x2 1  0 x 2  1 no real solutions In order to solve this equation we define a new number i  1 or i 2  1 i is an imaginary number x 2  1 x   1 x  i
  • 7. e.g . x 2  3 x  7  0
  • 8. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2
  • 9. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2
  • 10. e.g . x 2  3 x  7  0  3  9  28 x 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 11. e.g . x 2  3 x  7  0 x 2  3x  7  0  3  9  28 x OR 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 12. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2  3   19  2  3  19i  2  3  19i  3  19i x or x  2 2
  • 13. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  3  19 2  x   i  0 2  2 4  3  19i  2  3  19i  3  19i x or x  2 2
  • 14. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  3  19 2  x   i  0 2  2 4  3  19i  3 19  3 19   x  i  x   i  0 2  2 2  2 2   3  19i  3  19i x or x  2 2
  • 15. e.g . x 2  3 x  7  0 x 2  3x  7  0 2 x 3  19  3  9  28    0 x OR  2 4 2 2  3   19  3  19 2  x   i  0 2  2 4  3  19i  3 19  3 19   x  i  x   i  0 2  2 2  2 2   3  19i  3  19i x or x  3 19 3 19 2 2 x  i or x    i 2 2 2 2
  • 16. All complex numbers (z) can be written as; z = x + iy
  • 17. All complex numbers (z) can be written as; z = x + iy Definitions;
  • 18. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part
  • 19. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y
  • 20. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i
  • 21. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3
  • 22. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5
  • 23. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number
  • 24. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i
  • 25. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number
  • 26. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4
  • 27. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate
  • 28. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy
  • 29. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy e.g . z  2  7i
  • 30. All complex numbers (z) can be written as; z = x + iy Definitions; (1) All complex numbers contain a real and an imaginary part Re z   x Im z   y e.g . z  3  5i Re z   3 Im z   5 (2) If Re(z) = 0, then z is a pure imaginary number e.g . 3i,6i (3) If Im(z) = 0, then z is a real number 3 e.g . ,  , e,4 4 (4) Every complex number z = x + iy, has a complex conjugate z  x  iy e.g . z  2  7i z  2  7i
  • 31. Complex Numbers x + iy
  • 32. Complex Numbers x + iy Real Numbers y=0
  • 33. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0
  • 34. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers
  • 35. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Irrational Numbers
  • 36. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Irrational Numbers
  • 37. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Irrational Numbers
  • 38. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Irrational Numbers
  • 39. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Zero Irrational Numbers
  • 40. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Fractions Integers Naturals Zero Negatives Irrational Numbers
  • 41. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Pure Fractions Integers Imaginary Numbers Naturals x  0, y  0 Zero Negatives Irrational Numbers
  • 42. Complex Numbers x + iy Imaginary Numbers Real Numbers y0 y=0 Rational Numbers Pure Fractions Integers Imaginary Numbers Naturals x  0, y  0 Zero Negatives NOTE: Imaginary numbers cannot be ordered Irrational Numbers
  • 44. Basic Operations As i a surd, the operations with complex numbers are the same as surds
  • 45. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition
  • 46. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i 
  • 47. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition 4  3i    8  2i   4  i
  • 48. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i   4  i
  • 49. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i
  • 50. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i
  • 51. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication
  • 52. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i 
  • 53. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2
  • 54. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6
  • 55. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 56. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i   32  8i  24i  6i 2  32  32i  6  26  32i
  • 57. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  26  32i
  • 58. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  32  8i  24i  6  26  32i  64  4
  • 59. Basic Operations As i a surd, the operations with complex numbers are the same as surds Addition Subtraction 4  3i    8  2i  4  3i    8  2i   4  i  12  5i Multiplication Division (Realising The Denominator) 4  3i  8  2i  4  3i   8  2i   32  8i  24i  6i 2   8  2i   8  2i   32  32i  6  32  8i  24i  6  26  32i  64  4  38  16i  68  19 8   i 34 34
  • 60. Exercise 4A; 1 to 16 evens