SlideShare une entreprise Scribd logo
1  sur  47
Télécharger pour lire hors ligne
Locus and Complex Numbers
Locus and Complex Numbers
  f  z  , find the locus of  or z
given some condition for  or z
Locus and Complex Numbers
  f  z  , find the locus of  or z
given some condition for  or z
(Make the condition the subject)
Locus and Complex Numbers
  f  z  , find the locus of  or z
given some condition for  or z
(Make the condition the subject)
 is purely real  Im   0, arg   0 or 
Locus and Complex Numbers
  f  z  , find the locus of  or z
given some condition for  or z
(Make the condition the subject)
 is purely real  Im   0, arg   0 or 

 is purely imaginary  Re   0, arg   


2
Locus and Complex Numbers
  f  z  , find the locus of  or z
given some condition for  or z
(Make the condition the subject)
 is purely real  Im   0, arg   0 or 

 is purely imaginary  Re   0, arg   


2

 linear function 
arg 
    locus is an arc of a circle
 linear function 
Locus and Complex Numbers
  f  z  , find the locus of  or z
given some condition for  or z
(Make the condition the subject)
 is purely real  Im   0, arg   0 or 

 is purely imaginary  Re   0, arg   


2

 linear function 
arg 
    locus is an arc of a circle
 linear function 



* minor arc if  
* major arc if  

2



* semicircle if  

2


2
z2
e.g .i  Find the locus of w if w 
,z 4
2
z2
e.g .i  Find the locus of w if w 
,z 4
2
z2
w
z
zw  z  2
z2
e.g .i  Find the locus of w if w 
,z 4
2
z2
w
z
zw  z  2
z w  1  2
z2
e.g .i  Find the locus of w if w 
,z 4
2
z2
w
z
zw  z  2
z w  1  2
2
z
w  1
z2
e.g .i  Find the locus of w if w 
,z 4
2
z2
w
z
zw  z  2
z w  1  2
2
z
w  1

2

4
w  1
z2
e.g .i  Find the locus of w if w 
,z 4
2
z2
w
z
zw  z  2
z w  1  2
2
z
w  1

2

4
w  1
2
4
w 1
z2
e.g .i  Find the locus of w if w 
,z 4
2
z2
w
z
zw  z  2
z w  1  2
2
z
w  1

2

4
w  1
2
4
w 1
w 1 

1
2
z2
e.g .i  Find the locus of w if w 
,z 4
2
z2
w
z
zw  z  2
z w  1  2
2
z
w  1

2

4
w  1
2
4
w 1
w 1 

1
2

1
 locus is a circle, centre 1,0  and radius
2
1
2
2
i.e.  x  1  y 
4
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy
w

 x  1  iy  x  1  iy
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy
w

 x  1  iy  x  1  iy

x


2

 1  i x  1 y  i x  1 y  y 2
 x  12  y 2
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy
w

 x  1  iy  x  1  iy

x


2

 1  i x  1 y  i x  1 y  y 2
 x  12  y 2

If w is purely real then Imw  0
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy
w

 x  1  iy  x  1  iy

x


2

 1  i x  1 y  i x  1 y  y 2
 x  12  y 2

If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy
w

 x  1  iy  x  1  iy

x


2

 1  i x  1 y  i x  1 y  y 2
 x  12  y 2

If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy
w

 x  1  iy  x  1  iy

x


2

 1  i x  1 y  i x  1 y  y 2
 x  12  y 2

If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy
w

 x  1  iy  x  1  iy

x


2

 1  i x  1 y  i x  1 y  y 2
 x  12  y 2

If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w

 x  1  iy  x  1  iy

x


2

 1  i x  1 y  i x  1 y  y 2
 x  12  y 2

If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w

 x  1  iy  x  1  iy
 z  1   0 or 
x 2  1  i x  1 y  i x  1 y  y 2
i.e. arg


2
 z 1
 x  1  y 2
If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w

 x  1  iy  x  1  iy
 z  1   0 or 
x 2  1  i x  1 y  i x  1 y  y 2
i.e. arg


2
 z 1
 x  1  y 2
If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 

arg z  1  arg z  1  0 or 
y

x
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w

 x  1  iy  x  1  iy
 z  1   0 or 
x 2  1  i x  1 y  i x  1 y  y 2
i.e. arg


2
 z 1
 x  1  y 2
If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 

arg z  1  arg z  1  0 or 
y

-1

1

x
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w

 x  1  iy  x  1  iy
 z  1   0 or 
x 2  1  i x  1 y  i x  1 y  y 2
i.e. arg


2
 z 1
 x  1  y 2
If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 

arg z  1  arg z  1  0 or 
y

-1

1

x
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w

 x  1  iy  x  1  iy
 z  1   0 or 
x 2  1  i x  1 y  i x  1 y  y 2
i.e. arg


2
 z 1
 x  1  y 2
If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 

arg z  1  arg z  1  0 or 
y

-1

1

x
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w

 x  1  iy  x  1  iy
 z  1   0 or 
x 2  1  i x  1 y  i x  1 y  y 2
i.e. arg


2
 z 1
 x  1  y 2
If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 

arg z  1  arg z  1  0 or 
y

-1

1

x

locus is y  0, excluding  1,0 
z 1
ii  Find the locus of z if w 
and w is purely real
z 1
 x  1  iy  x  1  iy OR If w is purely real then arg w  0 or 
w

 x  1  iy  x  1  iy
 z  1   0 or 
x 2  1  i x  1 y  i x  1 y  y 2
i.e. arg


2
 z 1
 x  1  y 2
If w is purely real then Imw  0
i.e.   x  1 y   x  1 y  0
 xy  y  xy  y  0
 2y  0
y0
 locus is y  0, excluding 1,0 

 z  1  0, bottom of fraction  0 

arg z  1  arg z  1  0 or 
y

-1

1

x

locus is y  0, excluding  1,0 
Note : locus is y  0, excluding 1,0  only

i.e. answer the original question
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
arg

 z  4 6
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
arg

 z  4 6
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
arg

 z  4 6

arg z  arg z  4  
6
y

x
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
arg

 z  4 6

arg z  arg z  4  
6
y

4x


6
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
arg

 z  4 6

arg z  arg z  4  
6
y

4x


6
NOTE: arg z  arg z-4 
 below axis
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
arg

 z  4 6

arg z  arg z  4  
6
y

2
4x


6
NOTE: arg z  arg z-4 
 below axis
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
arg

 z  4 6

arg z  arg z  4  
6
y

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis
 z 
iii  Find the locus of z if arg

 z  4 6
 z 
arg

 z  4 6

arg z  arg z  4  
6
y

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis

30
 z 
iii  Find the locus of z if arg

 z  4 6
y
 z 
 tan 60
arg

2
 z  4 6

arg z  arg z  4  
y



6

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis

30
 z 
iii  Find the locus of z if arg

 z  4 6
y
 z 
 tan 60
arg

2
 z  4 6

y  2 tan 60
arg z  arg z  4  
6
2 3
y

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis

30
 z 
iii  Find the locus of z if arg

 z  4 6
y
 z 
 tan 60
arg

2
 z  4 6

y  2 tan 60
arg z  arg z  4  
6
2 3
y

 centre is 2,2 3 

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis

30
 z 
iii  Find the locus of z if arg

 z  4 6
y
 z 
 tan 60
arg

2
 z  4 6

y  2 tan 60
arg z  arg z  4  
6
2 3
y

 centre is 2,2 3 

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis

30

r 2  2 2  2 3 

2
 z 
iii  Find the locus of z if arg

 z  4 6
y
 z 
 tan 60
arg

2
 z  4 6

y  2 tan 60
arg z  arg z  4  
6
2 3
y

 centre is 2,2 3 

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis

30

r 2  2 2  2 3 

2

r 2  16
r4
 z 
iii  Find the locus of z if arg

 z  4 6
y
 z 
 tan 60
arg

2
 z  4 6

y  2 tan 60
arg z  arg z  4  
6
2 3
y

r 2  2 2  2 3 

2

r 2  16
r4

 centre is 2,2 3 
 locus is the major arc of the circle

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis

 x  2   y  2 3   16 formed by the
chord joining 0,0  and 4,0  but not
2

2

30 including these points.
 z 
iii  Find the locus of z if arg

 z  4 6
y
 z 
 tan 60
arg

2
 z  4 6

y  2 tan 60
arg z  arg z  4  
6
2 3
y

r 2  2 2  2 3 

2

r 2  16
r4

 centre is 2,2 3 
 locus is the major arc of the circle

2
r 4x
(2,y)


6
NOTE: arg z  arg z-4 
 below axis

 x  2   y  2 3   16 formed by the
chord joining 0,0  and 4,0  but not
2

2

30 including these points.
Patel: Exercise 4N; 5, 6
Cambridge: Exercise 1F; 10 to 20
HSC Geometrical Complex Numbers Questions

Contenu connexe

Tendances

Limiti i Funksionit USHTRIME
Limiti i Funksionit USHTRIMELimiti i Funksionit USHTRIME
Limiti i Funksionit USHTRIMELiridon Muqaku
 
ملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصري
ملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصريملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصري
ملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصريOnline
 
X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2Nigel Simmons
 
บทที่ 1 เรื่องฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึม
บทที่ 1 เรื่องฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึมบทที่ 1 เรื่องฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึม
บทที่ 1 เรื่องฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึมภัชรณันติ์ ศรีประเสริฐ
 
Bảng công thức tích phân + mũ lôga
Bảng công thức tích phân + mũ lôgaBảng công thức tích phân + mũ lôga
Bảng công thức tích phân + mũ lôgaPhương Thảo Nguyễn
 
Luonggiac chuong2
Luonggiac chuong2Luonggiac chuong2
Luonggiac chuong2Huynh ICT
 
Bài tập có lời giải chương 1
Bài tập có lời giải chương 1Bài tập có lời giải chương 1
Bài tập có lời giải chương 1TheSPDM
 
Chuyên đề 6 góc lượng giác và công thức lượng giác
Chuyên đề 6 góc lượng giác và công thức lượng giácChuyên đề 6 góc lượng giác và công thức lượng giác
Chuyên đề 6 góc lượng giác và công thức lượng giácphamchidac
 
Ficha formativa_ Casos Notáveis(II)
Ficha formativa_ Casos Notáveis(II)Ficha formativa_ Casos Notáveis(II)
Ficha formativa_ Casos Notáveis(II)Raquel Antunes
 
Integrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamatIntegrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamatinesperezz
 
Toadovecto bookbooming
Toadovecto   bookboomingToadovecto   bookbooming
Toadovecto bookboomingbookbooming
 

Tendances (16)

Limiti i Funksionit USHTRIME
Limiti i Funksionit USHTRIMELimiti i Funksionit USHTRIME
Limiti i Funksionit USHTRIME
 
ملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصري
ملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصريملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصري
ملزمة الرياضيات لشيخ الرياضيات - كامل موسى الناصري
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2
 
บทที่ 1 เรื่องฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึม
บทที่ 1 เรื่องฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึมบทที่ 1 เรื่องฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึม
บทที่ 1 เรื่องฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึม
 
Bảng công thức tích phân + mũ lôga
Bảng công thức tích phân + mũ lôgaBảng công thức tích phân + mũ lôga
Bảng công thức tích phân + mũ lôga
 
Luonggiac chuong2
Luonggiac chuong2Luonggiac chuong2
Luonggiac chuong2
 
Luong giac
Luong giacLuong giac
Luong giac
 
Bài tập nguyên hàm tích phân
Bài tập nguyên hàm tích phânBài tập nguyên hàm tích phân
Bài tập nguyên hàm tích phân
 
Bài tập có lời giải chương 1
Bài tập có lời giải chương 1Bài tập có lời giải chương 1
Bài tập có lời giải chương 1
 
Chuyên đề 6 góc lượng giác và công thức lượng giác
Chuyên đề 6 góc lượng giác và công thức lượng giácChuyên đề 6 góc lượng giác và công thức lượng giác
Chuyên đề 6 góc lượng giác và công thức lượng giác
 
Ficha formativa_ Casos Notáveis(II)
Ficha formativa_ Casos Notáveis(II)Ficha formativa_ Casos Notáveis(II)
Ficha formativa_ Casos Notáveis(II)
 
Integral definida clase2
Integral definida clase2Integral definida clase2
Integral definida clase2
 
Nhnn
NhnnNhnn
Nhnn
 
Integrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamatIntegrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamat
 
Toadovecto bookbooming
Toadovecto   bookboomingToadovecto   bookbooming
Toadovecto bookbooming
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

X2 t01 08 locus & complex nos 2 (2013)

  • 2. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z
  • 3. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)
  • 4. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or 
  • 5. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or   is purely imaginary  Re   0, arg     2
  • 6. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or   is purely imaginary  Re   0, arg     2  linear function  arg      locus is an arc of a circle  linear function 
  • 7. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or   is purely imaginary  Re   0, arg     2  linear function  arg      locus is an arc of a circle  linear function   * minor arc if   * major arc if   2  * semicircle if   2  2
  • 8. z2 e.g .i  Find the locus of w if w  ,z 4 2
  • 9. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2
  • 10. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2
  • 11. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1
  • 12. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1 2  4 w  1
  • 13. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1 2  4 w  1 2 4 w 1
  • 14. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1 2  4 w  1 2 4 w 1 w 1  1 2
  • 15. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1 2  4 w  1 2 4 w 1 w 1  1 2 1  locus is a circle, centre 1,0  and radius 2 1 2 2 i.e.  x  1  y  4
  • 16. z 1 ii  Find the locus of z if w  and w is purely real z 1
  • 17. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy
  • 18. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2
  • 19. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0
  • 20. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0
  • 21. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0
  • 22. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0
  • 23. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 24. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 25. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
  • 26. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y x
  • 27. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x
  • 28. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x
  • 29. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x
  • 30. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x locus is y  0, excluding  1,0 
  • 31. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x locus is y  0, excluding  1,0  Note : locus is y  0, excluding 1,0  only i.e. answer the original question
  • 32.  z  iii  Find the locus of z if arg   z  4 6
  • 33.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6
  • 34.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6
  • 35.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y x
  • 36.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 4x  6
  • 37.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 4x  6 NOTE: arg z  arg z-4   below axis
  • 38.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 2 4x  6 NOTE: arg z  arg z-4   below axis
  • 39.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis
  • 40.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30
  • 41.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6 arg z  arg z  4   y  6 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30
  • 42.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30
  • 43.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y  centre is 2,2 3  2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30
  • 44.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y  centre is 2,2 3  2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30 r 2  2 2  2 3  2
  • 45.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y  centre is 2,2 3  2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30 r 2  2 2  2 3  2 r 2  16 r4
  • 46.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y r 2  2 2  2 3  2 r 2  16 r4  centre is 2,2 3   locus is the major arc of the circle 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis  x  2   y  2 3   16 formed by the chord joining 0,0  and 4,0  but not 2 2 30 including these points.
  • 47.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y r 2  2 2  2 3  2 r 2  16 r4  centre is 2,2 3   locus is the major arc of the circle 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis  x  2   y  2 3   16 formed by the chord joining 0,0  and 4,0  but not 2 2 30 including these points. Patel: Exercise 4N; 5, 6 Cambridge: Exercise 1F; 10 to 20 HSC Geometrical Complex Numbers Questions