SlideShare une entreprise Scribd logo
1  sur  54
Télécharger pour lire hors ligne
Conics
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse


   e=1           parabola
Conics
The locus of points whose distance from a fixed point (focus) is a
multiple, e, (eccentricity) of its distance from a fixed line (directrix)


   e=0           circle


   e<1           ellipse


   e=1           parabola


   e>1           hyperbola
Ellipse (e < 1)
     y

     b
A’         A
-a        a    x
     -b
Ellipse (e < 1)
     y

     b
A’             A
-a        S   a    Z x
     -b
Ellipse (e < 1)
           y

            b
  A’                   A
  -a             S    a       Z x
           -b

SA = eAZ   and   SA’ = eA’Z
Ellipse (e < 1)
                y

                 b
    A’                        A
    -a                   S   a       Z x
                -b

 SA = eAZ      and      SA’ = eA’Z
(1) SA’ + SA = 2a
(2) SA’ – SA = e(A’Z – AZ)
Ellipse (e < 1)
                y

                 b
    A’                        A
    -a                   S   a       Z x
                -b

 SA = eAZ      and      SA’ = eA’Z
(1) SA’ + SA = 2a
(2) SA’ – SA = e(A’Z – AZ)
            = e(AA’)
            = e(2a)
            = 2ae
b
             A’                      A
             -a                 S   a    Z x
                         -b

(1) + (2);   2SA’ = 2a(1 + e)
              SA’ = a(1 + e)
b
             A’                         A
             -a                 S      a     Z x
                         -b

(1) + (2);   2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
              SA’ = a(1 + e)                  SA = a(1 - e)
b
              A’                         A
              -a                 S      a     Z x
                          -b

 (1) + (2);   2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
               SA’ = a(1 + e)                  SA = a(1 - e)
Focus
OS = OA - SA
b
                A’                         A
                -a                 S      a     Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)   (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                  SA = a(1 - e)
Focus
OS = OA - SA
   = a – a(1 – e)
   = ae
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
   = a – a(1 – e)
   = ae
 S  ae,0 
b
                A’                             A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
                                             SA
   = a – a(1 – e)                      OA             SA  eAZ 
   = ae                                       e
 S  ae,0 
b
                A’                              A
                -a                     S       a    Z x
                            -b

 (1) + (2);     2SA’ = 2a(1 + e)       (1) - (2);   2SA = 2a(1 - e)
                 SA’ = a(1 + e)                      SA = a(1 - e)
Focus                              Directrix
OS = OA - SA                       OZ = OA + AZ
                                             SA
   = a – a(1 – e)                      OA           SA  eAZ 
   = ae                                       e
                                        ae a1  e 
 S  ae,0                           
                                         e      e                     a
                                        a          directrices x  
                                                                     e
                                        e
S ae,0 
                  b        P
P  x, y 
                                    N
             A’                 A
             -a                a
N , y
   a                   S            Z x
     
 e              -b
S ae,0 
                        b        P
P  x, y 
                                          N
                 A’                   A
                 -a                  a
N , y
   a                         S            Z x
     
 e                    -b
             SP  ePN
S ae,0 
                                         b             P
P  x, y 
                                                               N
                        A’                                 A
                        -a                                 a
N , y
   a                                               S           Z x
     
 e                                     -b
                  SP  ePN
                                     2

 x  ae 2   y  02  e  x     y  y 2
                                 a
                                  
                               e
                                   2
                        2    a
       x  ae   y  e  x  
                2   2

                             e
S ae,0 
                                                     b        P
   P  x, y 
                                                                       N
                                 A’                                A
                                 -a                               a
  N , y
     a                                                    S            Z x
       
   e                                               -b
                        SP  ePN
                                                 2

   x  ae 2   y  02  e  x     y  y 2
                                   a
                                    
                                          e
                                                 2
                              2       a
         x  ae   y  e  x  
                  2     2

                                      e
x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2
         x 2 1  e 2   y 2  a 2 1  e 2 
S ae,0 
                                                     b        P
   P  x, y 
                                                                      N
                                 A’                               A
                                 -a                               a
  N , y
     a                                                    S           Z x
       
   e                                               -b
                        SP  ePN
                                                 2

   x  ae 2   y  02  e  x     y  y 2
                                   a
                                    
                                          e
                                                 2
                              2       a
         x  ae   y  e  x  
                  2     2

                                      e
x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2
         x 2 1  e 2   y 2  a 2 1  e 2 

                 x2     y2
                     2       1
                 a a 1  e 
                  2        2
b2
when x  0, y  b                  1
                         a 1  e 
                     i.e. 2      2


                               b 2  a 2 1  e 2 
b2
when x  0, y  b                      1
                             a 1  e 
                         i.e. 2      2


                                     b 2  a 2 1  e 2 

 Ellipse: (a > b)              x2 y2
                                2
                                   2 1
                               a b

 where; b 2  a 2 1  e 2 
           focus :  ae,0 
                              a
           directrices : x  
                              e
            e is the eccentricity
 major semi-axis = a units
 minor semi-axis = b units
b2
when x  0, y  b                     1
                            a 1  e 
                        i.e. 2      2


                                      b 2  a 2 1  e 2 

 Ellipse: (a > b)               x2 y2                  Note: If b > a
                                 2
                                    2 1
                                a b                    foci on the y axis

 where; b  a 1  e
            2       2   2
                                                       a 2  b 2 1  e 2 

          focus :  ae,0                             focus : 0,be 
                              a                                            b
          directrices : x                            directrices : y  
                              e                                            e
           e is the eccentricity
 major semi-axis = a units
 minor semi-axis = b units
b2
when x  0, y  b                     1
                            a 1  e 
                        i.e. 2      2


                                      b 2  a 2 1  e 2 

 Ellipse: (a > b)               x2 y2                  Note: If b > a
                                 2
                                    2 1
                                a b                    foci on the y axis

 where; b  a 1  e
            2       2   2
                                                       a 2  b 2 1  e 2 

          focus :  ae,0                             focus : 0,be 
                              a                                            b
          directrices : x                            directrices : y  
                              e                                            e
           e is the eccentricity
 major semi-axis = a units                                   Area  ab
 minor semi-axis = b units
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1
      9 5

       a2  9
        a3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
       a2  9
        a3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
                       91  e 2   5
       a2  9
        a3
                                     5
                          1 e 2

                                     9
                                     4
                              e 
                                2

                                     9
                                     2
                                e
                                     3
e.g. Find the eccentricity, foci and directrices of the ellipse
     x2 y2
             1 and sketch the ellipse showing all of the important
      9 5
     features.
      x2 y2
           1             b2  5
      9 5
                      a 2 1  e 2   5
                       91  e 2   5
       a2  9
                                                            2
        a3                                 eccentricity 
                                     5                      3
                          1 e 2

                                     9         foci :  2,0 
                                     4
                              e 
                                2
                                                                    3
                                     9       directrices : x  3 
                                                                    2
                                     2
                                e                              9
                                     3                    x
                                                                2
y

         Auxiliary circle




-3                 3        x
b    5
     y                      a  3 
                                  
         Auxiliary circle




-3                 3             x
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
      y                          a  3 
                                       
              Auxiliary circle
          5




-3                      3             x



      5
b    5
                y                          a  3 
                                                 
                        Auxiliary circle
                    5




-3   S’(-2,0)            S(2,0)   3             x



             5
b    5
                    y                             a  3 
                                                        
                            Auxiliary circle
                        5




    -3   S’(-2,0)            S(2,0)   3                x



                 5
    9                                             9
x                                            x
    2                                             2
b    5
                        y                                 a  3 
                                                                
                                Auxiliary circle
                            5




       -3   S’(-2,0)             S(2,0)   3                    x



                        5
     9                                                9
 x                                               x
     2                                                2
Major axis = 6 units             Minor axis  2 5 units
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                           1
         4           9
      centre : (1,2)
      b2  9
       b3
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                            1
         4            9
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                   e
                      3
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22
                            1
         4            9
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                 e
                      3
  foci :  1,2  5 
                                               9
                         directrices : y  2 
                                                5
(ii) 9 x 2  4 y 2  18 x  16 y  11  0
     x 2  2 x y 2  4 y 11
                       
         4         9      36
      x  12  y  22 11 1 4
                         
          4        9      36 4 9
       x  12  y  22                   Exercise 6A; 1, 2, 3, 5, 7,
                            1
         4            9                         8, 9, 11, 13, 15
      centre : (1,2)
      b2  9       a 2  b 2 1  e 2 
       b3         4  91  e 2 
                       5
                 e
                      3
  foci :  1,2  5 
                                               9
                         directrices : y  2 
                                                5

Contenu connexe

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Dernier

PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 

Dernier (20)

PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 

X2 T03 01 ellipse (2011)

  • 2. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix)
  • 3. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix)
  • 4. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle
  • 5. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse
  • 6. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola
  • 7. Conics The locus of points whose distance from a fixed point (focus) is a multiple, e, (eccentricity) of its distance from a fixed line (directrix) e=0 circle e<1 ellipse e=1 parabola e>1 hyperbola
  • 8. Ellipse (e < 1) y b A’ A -a a x -b
  • 9. Ellipse (e < 1) y b A’ A -a S a Z x -b
  • 10. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z
  • 11. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z (1) SA’ + SA = 2a (2) SA’ – SA = e(A’Z – AZ)
  • 12. Ellipse (e < 1) y b A’ A -a S a Z x -b SA = eAZ and SA’ = eA’Z (1) SA’ + SA = 2a (2) SA’ – SA = e(A’Z – AZ) = e(AA’) = e(2a) = 2ae
  • 13. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) SA’ = a(1 + e)
  • 14. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e)
  • 15. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus OS = OA - SA
  • 16. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus OS = OA - SA = a – a(1 – e) = ae  S  ae,0 
  • 17. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ = a – a(1 – e) = ae  S  ae,0 
  • 18. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e  S  ae,0 
  • 19. b A’ A -a S a Z x -b (1) + (2); 2SA’ = 2a(1 + e) (1) - (2); 2SA = 2a(1 - e) SA’ = a(1 + e) SA = a(1 - e) Focus Directrix OS = OA - SA OZ = OA + AZ SA = a – a(1 – e)  OA   SA  eAZ  = ae e ae a1  e   S  ae,0    e e a a  directrices x    e e
  • 20. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b
  • 21. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN
  • 22. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e
  • 23. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2 
  • 24. S ae,0  b P P  x, y  N A’ A -a a N , y a S Z x   e  -b SP  ePN 2  x  ae 2   y  02  e  x     y  y 2 a    e 2 2 a  x  ae   y  e  x   2 2  e x 2  2aex  a 2 e 2  y 2  e 2 x 2  2aex  a 2 x 2 1  e 2   y 2  a 2 1  e 2  x2 y2  2 1 a a 1  e  2 2
  • 25. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2 
  • 26. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 2  2 1 a b where; b 2  a 2 1  e 2  focus :  ae,0  a directrices : x   e e is the eccentricity major semi-axis = a units minor semi-axis = b units
  • 27. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity major semi-axis = a units minor semi-axis = b units
  • 28. b2 when x  0, y  b 1 a 1  e  i.e. 2 2 b 2  a 2 1  e 2  Ellipse: (a > b) x2 y2 Note: If b > a 2  2 1 a b foci on the y axis where; b  a 1  e 2 2 2  a 2  b 2 1  e 2  focus :  ae,0  focus : 0,be  a b directrices : x   directrices : y   e e e is the eccentricity major semi-axis = a units Area  ab minor semi-axis = b units
  • 29. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features.
  • 30. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 9 5 a2  9 a3
  • 31. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 a2  9 a3
  • 32. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 91  e 2   5 a2  9 a3 5 1 e 2 9 4 e  2 9 2 e 3
  • 33. e.g. Find the eccentricity, foci and directrices of the ellipse x2 y2   1 and sketch the ellipse showing all of the important 9 5 features. x2 y2  1 b2  5 9 5 a 2 1  e 2   5 91  e 2   5 a2  9 2 a3  eccentricity  5 3 1 e 2 9 foci :  2,0  4 e  2 3 9 directrices : x  3  2 2 e 9 3 x 2
  • 34. y Auxiliary circle -3 3 x
  • 35. b 5 y a  3    Auxiliary circle -3 3 x
  • 36. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 37. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 38. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 39. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 40. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 41. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 42. b 5 y a  3    Auxiliary circle 5 -3 3 x  5
  • 43. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5
  • 44. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2
  • 45. b 5 y a  3    Auxiliary circle 5 -3 S’(-2,0) S(2,0) 3 x  5 9 9 x x 2 2 Major axis = 6 units Minor axis  2 5 units
  • 46. (ii) 9 x 2  4 y 2  18 x  16 y  11  0
  • 47. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36
  • 48. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9
  • 49. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9
  • 50. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2)
  • 51. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 b3
  • 52. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3
  • 53. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22  1 4 9 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3 foci :  1,2  5  9 directrices : y  2  5
  • 54. (ii) 9 x 2  4 y 2  18 x  16 y  11  0 x 2  2 x y 2  4 y 11   4 9 36  x  12  y  22 11 1 4     4 9 36 4 9  x  12  y  22 Exercise 6A; 1, 2, 3, 5, 7,  1 4 9 8, 9, 11, 13, 15 centre : (1,2) b2  9 a 2  b 2 1  e 2  b3 4  91  e 2  5 e 3 foci :  1,2  5  9 directrices : y  2  5