SlideShare une entreprise Scribd logo
1  sur  77
Télécharger pour lire hors ligne
Volumes of Solids
Volumes By Discs & Washers
         slice  rotation 
Volumes of Solids
Volumes By Discs & Washers
                   slice  rotation 
About the x axis
Volumes of Solids
Volumes By Discs & Washers
                   slice  rotation 
About the x axis
                   y  f x
       y




                   x
Volumes of Solids
Volumes By Discs & Washers
                       slice  rotation 
About the x axis
                       y  f x
       y



           a       b   x
Volumes of Solids
Volumes By Discs & Washers
                       slice  rotation 
About the x axis
                       y  f x
       y



           a x    b   x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x

                                                   A x     f  x 
                                                                       2


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x

                                                   A x     f  x 
                                                                        2


           a x    b x                         V    f  x   x
                                                                    2


                                       x
Volumes of Solids
Volumes By Discs & Washers
                      slice  rotation 
About the x axis
                      y  f x
       y
                                        y  f x

                                                    A x     f  x 
                                                                         2


           a x    b x                           V    f  x   x
                                                                     2


                                         x
                                 b
                   V  lim    f  x   x
                                        2
                         x 0
                                 xa
Volumes of Solids
Volumes By Discs & Washers
                      slice  rotation 
About the x axis
                      y  f x
       y
                                            y  f x

                                                        A x     f  x 
                                                                             2


           a x    b x                              V    f  x   x
                                                                         2


                                            x
                                 b
                   V  lim    f  x   x
                                            2
                         x 0
                                 xa
                           b
                          f  x  dx
                                       2

                           a
About the y axis
                   y  f x
       y




                   x
About the y axis
                   y  f x
       y
       d

       c

                   x
About the y axis
                   y  f x
       y
       d
      y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                            x
                               y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                            x  g y
                               y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                                           x  g y
                               y
       c

                                    A y    g  y 
                                                       2
                   x
About the y axis
                   y  f x
       y
       d
      y                                           x  g y
                               y
       c

                                    A y    g  y 
                                                       2
                   x

                                     V   g  y   y
                                                           2
About the y axis
                      y  f x
       y
       d
      y                                                   x  g y
                                       y
       c

                                            A y    g  y 
                                                               2
                      x

                                             V   g  y   y
                                                                   2




                                 d
                   V  lim   g  y   y
                                              2
                       y  0
                                y c
About the y axis
                      y  f x
       y
       d
      y                                                   x  g y
                                       y
       c

                                            A y    g  y 
                                                               2
                      x

                                             V   g  y   y
                                                                   2




                                 d
                   V  lim   g  y   y
                                              2
                       y  0
                                y c
                          d
                        g  y  dy
                                       2

                          c
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

    -2          2       x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

    -2     x 2         x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2      x




y  4  x2




             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2       x




y  4  x2

                     A x    4  x    
                                         2 2




             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2          x




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                           2
             y
             4                                    x 0
                                                        x  2
                    y  4 x  2




     -2       x 2          x




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                     0




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                        0
                                                                              2
                                                        16 x  8 x 3  1 x 5 
                                                    2 
                                                               3       5 0  


y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                        0
                                                                              2
                                                        16 x  8 x 3  1 x 5 
                                                    2 
                                                               3       5 0  
                                                        32 64 32 0
                                                    2     
                                                             3 5  
y  4  x2
                                                     512
                                                          units 3
                       A x    4  x    
                                           2 2        15
                  V   16  8 x 2  x 4  x
             x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
          y
          4
                       y3

                         x
                    y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
           y
           4
  (-1,3)        (1,3)   y3

                        x
                   y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)   y3
                x
                           x
                      y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)   y3
                x
                           x
                      y  4  x2




                                   x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)    y3
                x
                            x
                       y  4  x2

                y  3  4  x2  3
                      1 x2



                                     x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)      y3
                x
                             x
                        y  4  x2

                y  3  4  x2  3
                      1 x2

   A x    1  x    
                       2 2


                                     x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)       y3
                x
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3
                x
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x                                           1
                                                    x  2 x3  1 x5 
                                               2 
                         y  4  x2
                                                    3          5 0 

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x                                           1
                                                    x  2 x3  1 x5 
                                               2 
                         y  4  x2
                                                    3          5 0 

                y  3  4  x2  3                 1 2 1 0
                                               2     
                                                    3 5 
                      1 x2
                                                16
                                                    units 3
    A x    1  x    
                        2 2
                                                 15

V   1  2 x 2  x 4  x         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2



                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)

                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)
              y
                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)
              y
                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                x  y2
           (1,1)
              y
                            x

                        1
                 x y   2
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                x  y2
           (1,1)
              y
                            x

                        1
x y   2
                 x y   2
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                 x  y2
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2        
A y     y    y  
            
               2      2 2

            
                          
                           
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2

                                 x  y2
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x
                                                                    1
                                                1 2 1 5 
                                               y  y 
                         1                      2   5 0
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x
                                                                    1
                                                1 2 1 5 
                                               y  y 
                         1                      2   5 0
x y   2
                  x y   2

                                                  1 1 0
                                                 
                                                 2 5 
                                                3
            1  2                              units 3
A y     y    y  
            
               2       2 2                     10
            
                           
                            
 V    y  y 4  y
(iv) (1996)        y
                   1
      x  y2  0            S

                           1                  4     x


                   -1
The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and
the curve x  y  0 . The region is rotated through 360 about the line
                2

x = 4 to form a solid.

When the region is rotated, the line segment S at height y sweeps out
an annulus.
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y               r
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 


                      R
  y
1
x  y2  0        S

                  1   4   x


             -1
1
x  y2  0        S r

                  1     4   x


             -1
1
x  y2  0         S r  4 1
                       3
                  1             4   x


             -1
1
x  y2  0         S r  4 1
                       3
                  1             4   x

                     R
             -1
1
x  y2  0         S r  4 1
                       3
                  1               4   x

                     R  4 x
             -1         4  y2
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                 3
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                                                   
                                          A y    4  y      3 
                                                              2 2    2

                 3
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                                                    
                                          A y    4  y      3 
                                                              2 2       2

                 3
                                                  16  8 y 2  y 4  9 
                                                  y 4  8 y 2  7
b) Hence find the volume of the solid.
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
                                       1

         2  y 5  y 3  7 y 
               1    8
             5
                   3          0
                               
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
                                       1

         2  y 5  y 3  7 y 
               1     8
             5
                    3         0
                               
             1  8   
         2          7 0
             5 3         
          296
                units 3
            15
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy                 Exercise 3A;
               0
                                       1          2, 5, 7, 9, 13, 14, 15
         2  y 5  y 3  7 y 
               1     8
             5
                    3         0
                                                     Exercise 3B;
             1  8   
         2                                    1, 2, 5, 7, 9, 10, 11, 12
                       7 0
             5 3         
          296
                units 3
            15

Contenu connexe

Similaire à X2 T06 01 discs and washers (2010)

X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves IINigel Simmons
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5Garden City
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsNigel Simmons
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)Nigel Simmons
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)Nigel Simmons
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)Nigel Simmons
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsNigel Simmons
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersNigel Simmons
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)Nigel Simmons
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)Nigel Simmons
 

Similaire à X2 T06 01 discs and washers (2010) (20)

X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functions
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & Washers
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Dernier

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Dernier (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

X2 T06 01 discs and washers (2010)

  • 1. Volumes of Solids Volumes By Discs & Washers slice  rotation 
  • 2. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis
  • 3. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y x
  • 4. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y a b x
  • 5. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y a x b x
  • 6. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y a x b x x
  • 7. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x a x b x x
  • 8. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x x
  • 9. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x
  • 10. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x b V  lim    f  x   x 2 x 0 xa
  • 11. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x b V  lim    f  x   x 2 x 0 xa b     f  x  dx 2 a
  • 12. About the y axis y  f x y x
  • 13. About the y axis y  f x y d c x
  • 14. About the y axis y  f x y d y c x
  • 15. About the y axis y  f x y d y x y c x
  • 16. About the y axis y  f x y d y x  g y y c x
  • 17. About the y axis y  f x y d y x  g y y c A y    g  y  2 x
  • 18. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2
  • 19. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2 d V  lim   g  y   y 2 y  0 y c
  • 20. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2 d V  lim   g  y   y 2 y  0 y c d    g  y  dy 2 c
  • 21. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis
  • 22. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 2 x
  • 23. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x
  • 24. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 x
  • 25. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 A x    4  x  2 2 x
  • 26. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 27. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 -2 x 2 x y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 28. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 29. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 2 16 x  8 x 3  1 x 5   2   3 5 0  y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 30. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 2 16 x  8 x 3  1 x 5   2   3 5 0  32 64 32 0  2       3 5  y  4  x2 512  units 3 A x    4  x  2 2 15 V   16  8 x 2  x 4  x x
  • 31. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3
  • 32. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 y3 x y  4  x2
  • 33. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x y  4  x2
  • 34. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2
  • 35. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 x
  • 36. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 x
  • 37. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 x
  • 38. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 39. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 40. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 41. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x 1  x  2 x3  1 x5   2  y  4  x2  3 5 0  y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 42. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x 1  x  2 x3  1 x5   2  y  4  x2  3 5 0  y  3  4  x2  3 1 2 1 0  2       3 5   1 x2 16  units 3 A x    1  x  2 2 15 V   1  2 x 2  x 4  x x
  • 43. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated.
  • 44. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 x
  • 45. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) x
  • 46. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x
  • 47. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x
  • 48. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2
  • 49. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2
  • 50. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2     
  • 51. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 52. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 53. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 54. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 1 2 1 5   y  y  1 2 5 0 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 55. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 1 2 1 5   y  y  1 2 5 0 x y 2 x y 2  1 1 0     2 5  3  1  2   units 3 A y     y    y    2 2 2 10      V    y  y 4  y
  • 56. (iv) (1996) y 1 x  y2  0 S 1 4 x -1 The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and the curve x  y  0 . The region is rotated through 360 about the line 2 x = 4 to form a solid. When the region is rotated, the line segment S at height y sweeps out an annulus.
  • 57. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 
  • 58. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y
  • 59. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y r
  • 60. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R y
  • 61. 1 x  y2  0 S 1 4 x -1
  • 62. 1 x  y2  0 S r 1 4 x -1
  • 63. 1 x  y2  0 S r  4 1 3 1 4 x -1
  • 64. 1 x  y2  0 S r  4 1 3 1 4 x R -1
  • 65. 1 x  y2  0 S r  4 1 3 1 4 x R  4 x -1  4  y2
  • 66. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y
  • 67. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y
  • 68. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1 3
  • 69. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1  A y    4  y   3  2 2 2 3
  • 70. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1  A y    4  y   3  2 2 2 3   16  8 y 2  y 4  9    y 4  8 y 2  7
  • 71. b) Hence find the volume of the solid.
  • 72. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y
  • 73. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1
  • 74. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0
  • 75. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0 1  2  y 5  y 3  7 y  1 8 5  3 0 
  • 76. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0 1  2  y 5  y 3  7 y  1 8 5  3 0  1  8     2  7 0 5 3  296  units 3 15
  • 77. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy Exercise 3A; 0 1 2, 5, 7, 9, 13, 14, 15  2  y 5  y 3  7 y  1 8 5  3 0  Exercise 3B; 1  8     2  1, 2, 5, 7, 9, 10, 11, 12 7 0 5 3  296  units 3 15