SlideShare une entreprise Scribd logo
1  sur  77
Volumes of Solids
Volumes By Discs & Washers
         ( slice ⊥ rotation )
Volumes of Solids
Volumes By Discs & Washers
                   ( slice ⊥ rotation )
About the x axis
Volumes of Solids
Volumes By Discs & Washers
                   ( slice ⊥ rotation )
About the x axis
       y           y = f ( x)



                   x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)



           a       b   x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)



           a ∆x    b   x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y


           a ∆x    b   x
                                          ∆x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y = f ( x)


           a ∆x    b   x
                                          ∆x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y = f ( x)

                                                       A( x ) = π [ f ( x ) ]
                                                                                2


           a ∆x    b   x
                                          ∆x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y = f ( x)

                                                       A( x ) = π [ f ( x ) ]
                                                                                2


           a ∆x    b   x                           ∆V = π [ f ( x ) ] ⋅ ∆x
                                                                         2


                                          ∆x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y = f ( x)

                                                       A( x ) = π [ f ( x ) ]
                                                                                2


           a ∆x    b   x                           ∆V = π [ f ( x ) ] ⋅ ∆x
                                                                         2


                                          ∆x
                                   b
                   V = lim ∑ π [ f ( x ) ] ⋅ ∆x
                                          2
                           ∆x →0
                                   x=a
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                              y = f ( x)

                                                           A( x ) = π [ f ( x ) ]
                                                                                    2


           a ∆x    b   x                               ∆V = π [ f ( x ) ] ⋅ ∆x
                                                                             2


                                              ∆x
                                   b
                   V = lim ∑ π [ f ( x ) ] ⋅ ∆x
                                              2
                           ∆x →0
                                   x=a
                             b
                       = π ∫ [ f ( x ) ] dx
                                         2

                             a
About the y axis
       y           y = f ( x)




                   x
About the y axis
       y           y = f ( x)
       d

       c

                   x
About the y axis
       y           y = f ( x)
       d
      ∆y
       c

                   x
About the y axis
       y           y = f ( x)
       d
                                     x
      ∆y                        ∆y
       c

                   x
About the y axis
       y           y = f ( x)
       d
                                     x = g( y)
      ∆y                        ∆y
       c

                   x
About the y axis
       y           y = f ( x)
       d
                                                      x = g( y)
      ∆y                        ∆y
       c

                                     A( y ) = π [ g ( y ) ]
                   x                                          2
About the y axis
       y           y = f ( x)
       d
                                                      x = g( y)
      ∆y                        ∆y
       c

                                     A( y ) = π [ g ( y ) ]
                   x                                          2



                                             [ g ( y ) ] 2 ⋅ ∆y
                                      ∆V = π
About the y axis
       y               y = f ( x)
       d
                                                               x = g( y)
      ∆y                                 ∆y
       c

                                              A( y ) = π [ g ( y ) ]
                      x                                                2



                                                      [ g ( y ) ] 2 ⋅ ∆y
                                               ∆V = π


                                   d
                   V = lim ∑ π [ g ( y ) ] ⋅ ∆y
                                                 2
                          ∆y →0
                                  y =c
About the y axis
       y               y = f ( x)
       d
                                                               x = g( y)
      ∆y                                 ∆y
       c

                                              A( y ) = π [ g ( y ) ]
                      x                                                2



                                                      [ g ( y ) ] 2 ⋅ ∆y
                                               ∆V = π


                                   d
                   V = lim ∑ π [ g ( y ) ] ⋅ ∆y
                                                 2
                          ∆y →0
                                  y =c
                            d
                     = π ∫ [ g ( y ) ] dy
                                         2

                            c
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
         the x axis is rotated about the x axis
            y
            4
                   y = 4 − x2

    -2             2       x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
         the x axis is rotated about the x axis
            y
            4
                   y = 4 − x2

             ∆x 2
    -2                     x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y = 4 − x2

              ∆x 2
     -2                     x




y = 4 − x2




             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y = 4 − x2

              ∆x 2
     -2                     x




y = 4 − x2

                       A( x ) = π ( 4 − x   )
                                            22




             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y = 4 − x2

              ∆x 2
     -2                     x




y = 4 − x2

                       A( x ) = π ( 4 − x   )
                                            22


                  ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
                                              V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x
                                                           2

             4                                    ∆x →0
                                                        x = −2
                    y = 4− x  2




               ∆x 2
     -2                      x




y = 4 − x2

                        A( x ) = π ( 4 − x   )
                                             22


                   ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
                                              V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x
                                                            2

             4                                     ∆x →0
                                                         x = −2
                    y = 4− x  2
                                                       2
                                                 = 2π ∫ (16 − 8 x 2 + x 4 ) dx
                                                       0
               ∆x 2
     -2                      x




y = 4 − x2

                        A( x ) = π ( 4 − x   )
                                             22


                   ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
                                              V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x
                                                            2

             4                                     ∆x →0
                                                         x = −2
                    y = 4− x  2
                                                       2
                                                 = 2π ∫ (16 − 8 x 2 + x 4 ) dx
                                                          0
               ∆x 2
     -2                      x                                                  2
                                                          16 x − 8 x 3 + 1 x 5 
                                                     = 2π 
                                                                          5 0
                                                                               
                                                                  3


y = 4 − x2

                        A( x ) = π ( 4 − x   )
                                             22


                   ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
                                              V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x
                                                            2

             4                                     ∆x →0
                                                         x = −2
                    y = 4− x  2
                                                       2
                                                 = 2π ∫ (16 − 8 x 2 + x 4 ) dx
                                                          0
               ∆x 2
     -2                      x                                                  2
                                                          16 x − 8 x 3 + 1 x 5 
                                                     = 2π 
                                                                          5 0
                                                                               
                                                                  3
                                                          32 − 64 + 32 − 0
                                                     = 2π                 
                                                                          
                                                                 35
y = 4 − x2
                                                       512π
                                                     =       units 3
                        A( x ) = π ( 4 − x   )
                                             22         15
                   ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
          y
          4
                       y=3

                         x
                    y = 4 − x2
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
           y
           4
                        y=3
                (1,3)
  (-1,3)

                        x
                   y = 4 − x2
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                          y=3
   (-1,3)         (1,3)
                ∆x
                           x
                      y = 4 − x2
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                          y=3
   (-1,3)         (1,3)
                ∆x
                           x
                      y = 4 − x2




                                   ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                           y=3
   (-1,3)         (1,3)
                ∆x
                            x
                       y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2



                                     ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                            y=3
   (-1,3)         (1,3)
                ∆x
                             x
                        y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2

   A( x ) = π (1 − x   )
                       22


                                     ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                             y=3
   (-1,3)         (1,3)
                ∆x
                              x
                         y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2

    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
                                                         π (1 − 2 x 2 + x 4 ) ⋅ ∆x
                                                         1

                                                       ∑
                                            V = lim
            4                                  ∆x →0
                                                       x = −1
                             y=3
   (-1,3)         (1,3)
                ∆x
                              x
                         y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2

    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
                                                          π (1 − 2 x 2 + x 4 ) ⋅ ∆x
                                                          1

                                                        ∑
                                            V = lim
            4                                  ∆x →0
                                                        x = −1
                             y=3
   (-1,3)         (1,3)                             1
                                              = 2π ∫ (1 − 2 x 2 + x 4 ) dx
                ∆x
                                                    0
                              x
                         y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2

    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
                                                          π (1 − 2 x 2 + x 4 ) ⋅ ∆x
                                                          1

                                                        ∑
                                            V = lim
            4                                  ∆x →0
                                                        x = −1
                             y=3
   (-1,3)         (1,3)                             1
                                              = 2π ∫ (1 − 2 x 2 + x 4 ) dx
                ∆x
                                                    0
                              x                                           1
                                                    x − 2 x3 + 1 x5 
                                              = 2π 
                         y = 4 − x2
                                                                5 0
                                                   3                

                y − 3 = 4 − x2 − 3
                     = 1− x2

    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
                                                          π (1 − 2 x 2 + x 4 ) ⋅ ∆x
                                                          1

                                                        ∑
                                            V = lim
            4                                  ∆x →0
                                                        x = −1
                             y=3
   (-1,3)         (1,3)                             1
                                              = 2π ∫ (1 − 2 x 2 + x 4 ) dx
                ∆x
                                                    0
                              x                                           1
                                                    x − 2 x3 + 1 x5 
                                              = 2π 
                         y = 4 − x2
                                                                5 0
                                                   3                
                                                   1 − 2 + 1 − 0
                y − 3 = 4 − x2 − 3            = 2π              
                                                       35 
                     = 1− x2
                                                16π
                                              =      units 3
                                                 15
    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                             x = y2



                         x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                             x = y2
           (1,1)

                         x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                             x = y2
           (1,1)
               ∆y
                         x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                             x = y2
           (1,1)
               ∆y
                         x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                                x = y2
           (1,1)
               ∆y
                            x

                        1
                 x= y   2
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                                x = y2
           (1,1)
               ∆y
                            x

                        1
x= y   2
                 x= y   2
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                                x = y2
           (1,1)
               ∆y
                            x

                        1
x= y   2
                 x= y   2




            1  2       
A( y ) = π  y  − ( y ) 
                       22
               2
            
                       
                         
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y

                                 x = y2
            (1,1)
                ∆y
                             x

                         1
x= y   2
                  x= y   2




            1  2         
A( y ) = π  y  − ( y ) 
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y
                                            V = lim ∑ π ( y − y 4 ) ⋅ ∆y
                                                           1

                                 x= y   2
                                                 ∆y → 0
                                                          y =0
            (1,1)
                ∆y
                             x

                         1
x= y   2
                  x= y   2




            1  2         
A( y ) = π  y  − ( y ) 
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y
                                            V = lim ∑ π ( y − y 4 ) ⋅ ∆y
                                                           1

                                 x= y   2
                                                 ∆y → 0
                                                          y =0
            (1,1)                                  1
                                              = π ∫ ( y − y 4 ) dy
                ∆y
                             x                     0



                         1
x= y   2
                  x= y   2




            1  2         
A( y ) = π  y  − ( y ) 
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y
                                            V = lim ∑ π ( y − y 4 ) ⋅ ∆y
                                                           1

                                 x= y   2
                                                 ∆y → 0
                                                          y =0
            (1,1)                                  1
                                              = π ∫ ( y − y 4 ) dy
                ∆y
                             x                     0
                                                                     1
                                                1 y 2 − 1 y5 
                                              =π
                                                         5 0
                                                2            
                         1
x= y   2
                  x= y   2




            1  2         
A( y ) = π  y  − ( y ) 
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y
                                            V = lim ∑ π ( y − y 4 ) ⋅ ∆y
                                                           1

                                 x= y   2
                                                 ∆y → 0
                                                          y =0
            (1,1)                                  1
                                              = π ∫ ( y − y 4 ) dy
                ∆y
                             x                     0
                                                                     1
                                                1 y 2 − 1 y5 
                                              =π
                                                         5 0
                                                2            
                         1
x= y   2
                  x= y   2

                                                  1 − 1 − 0
                                              =π           
                                                  25 
                                                3π
                                              =    units 3
            1  2         
A( y ) = π  y  − ( y )                      10
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
y
(iv) (1996)
                    1
      x + y2 = 0            S

                            1                  4     x


                   -1
The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and
the curve x + y = 0. The region is rotated through 360about the line x
                2


= 4 to form a solid.

When the region is rotated, the line segment S at height y sweeps out an
annulus.
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )




  ∆y
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )




                   r
  ∆y
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )


                     R
  ∆y
1
x + y2 = 0        S

                  1   4   x


             -1
1
x + y2 = 0        Sr

                  1    4   x


             -1
1
x + y2 = 0         S r = 4 −1
                       =3
                  1             4   x


             -1
1
x + y2 = 0         S r = 4 −1
                       =3
                  1             4   x

                     R
             -1
1
x + y2 = 0         S r = 4 −1
                       =3
                  1               4   x

                     R = 4− x
                       = 4 + y2
             -1
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )




  ∆y
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )

                              R = 4− x
                                  = 4 + y2
  ∆y
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )

                              R = 4− x
                                 = 4 + y2
  ∆y


              r = 4 −1
                =3
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )

                              R = 4− x
                                 = 4 + y2
  ∆y



                                                   {                         }
              r = 4 −1
                                         A( y ) = π ( 4 + y   ) − ( 3)
                                                              22         2

                =3
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )

                              R = 4− x
                                 = 4 + y2
  ∆y



                                                   {                         }
              r = 4 −1
                                         A( y ) = π ( 4 + y   ) − ( 3)
                                                              22         2

                =3
                                               = π (16 + 8 y 2 + y 4 − 9 )
                                               = π ( y 4 + 8 y 2 + 7)
b) Hence find the volume of the solid.
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
             1
       = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy
             0
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
             1
       = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy
             0
                                       1

       = 2π  y 5 + y 3 + 7 y 
              1    8
            5                0
                             
                   3
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
             1
       = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy
             0
                                       1

       = 2π  y 5 + y 3 + 7 y 
              1     8
            5                0
                             
                    3
            1 + 8 + 7 − 0 
       = 2π               
                          
               53
         296π
       =        units 3
           15
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
             1
       = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy                Exercise 3A;
             0
                                                 2, 5, 7, 9, 13, 14, 15
                                       1

       = 2π  y 5 + y 3 + 7 y 
              1     8
            5                0
                             
                    3                                Exercise 3B;
            1 + 8 + 7 − 0                     1, 2, 5, 7, 9, 10, 11, 12
       = 2π               
                          
               53
         296π
       =        units 3
           15

Contenu connexe

Tendances

Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsNigel Simmons
 
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) Charles Deledalle
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet AllMoe Han
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integralsUrbanX4
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」Ken'ichi Matsui
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Gabriel Peyré
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」Ken'ichi Matsui
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!A Jorge Garcia
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Matthew Leingang
 

Tendances (19)

Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Derivadas
DerivadasDerivadas
Derivadas
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Image denoising
Image denoisingImage denoising
Image denoising
 
Proga 0622
Proga 0622Proga 0622
Proga 0622
 
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
Regras diferenciacao
Regras diferenciacaoRegras diferenciacao
Regras diferenciacao
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
 

En vedette

Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.PresentationSums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.PresentationDragan (dragancn)
 
Math Investigation
Math InvestigationMath Investigation
Math Investigationgrade5a
 
11X1 T14 04 sums of a sequence (2011)
11X1 T14 04 sums of a sequence (2011)11X1 T14 04 sums of a sequence (2011)
11X1 T14 04 sums of a sequence (2011)Nigel Simmons
 
Representations of S_n
Representations of S_nRepresentations of S_n
Representations of S_njchodoriwsky
 
2015 spring hist_3001
2015 spring hist_30012015 spring hist_3001
2015 spring hist_3001Jolene W
 
Add 2 to 3- digit numbers mentally with sums up to 300 with out regrouping
Add 2  to 3- digit numbers mentally with sums up to 300 with out regroupingAdd 2  to 3- digit numbers mentally with sums up to 300 with out regrouping
Add 2 to 3- digit numbers mentally with sums up to 300 with out regroupingMaylord Bonifaco
 
Partial sums-addition-algorithm
Partial sums-addition-algorithmPartial sums-addition-algorithm
Partial sums-addition-algorithmkadair26
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)Nigel Simmons
 
Partitions of a number sb
Partitions of a number sbPartitions of a number sb
Partitions of a number sbScott Bailey
 
Some Sums - Making mistakes in mobile game development
Some Sums - Making mistakes in mobile game developmentSome Sums - Making mistakes in mobile game development
Some Sums - Making mistakes in mobile game developmentTaner Baubec
 
Stars investigation
Stars investigationStars investigation
Stars investigationDanielPearcy
 
Math Investigation "Be There or Be Square"
Math Investigation "Be There or Be Square"Math Investigation "Be There or Be Square"
Math Investigation "Be There or Be Square"Michael Chan
 
Math investigation (bounces)
Math investigation (bounces)Math investigation (bounces)
Math investigation (bounces)Geraldine Cachero
 
Semi-Detailed Lesson Plan in Math VI
Semi-Detailed Lesson Plan in Math VISemi-Detailed Lesson Plan in Math VI
Semi-Detailed Lesson Plan in Math VIJustine de Castro
 
Investigatory project. yani gustilo
Investigatory project. yani gustiloInvestigatory project. yani gustilo
Investigatory project. yani gustiloyanireckless
 
DETAILED LESSON PLAN (MATH 6)
DETAILED LESSON PLAN (MATH 6)DETAILED LESSON PLAN (MATH 6)
DETAILED LESSON PLAN (MATH 6)Ryan Parpa
 

En vedette (20)

Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.PresentationSums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
 
Math Investigation
Math InvestigationMath Investigation
Math Investigation
 
11X1 T14 04 sums of a sequence (2011)
11X1 T14 04 sums of a sequence (2011)11X1 T14 04 sums of a sequence (2011)
11X1 T14 04 sums of a sequence (2011)
 
Representations of S_n
Representations of S_nRepresentations of S_n
Representations of S_n
 
2015 spring hist_3001
2015 spring hist_30012015 spring hist_3001
2015 spring hist_3001
 
Add 2 to 3- digit numbers mentally with sums up to 300 with out regrouping
Add 2  to 3- digit numbers mentally with sums up to 300 with out regroupingAdd 2  to 3- digit numbers mentally with sums up to 300 with out regrouping
Add 2 to 3- digit numbers mentally with sums up to 300 with out regrouping
 
Partial sums-addition-algorithm
Partial sums-addition-algorithmPartial sums-addition-algorithm
Partial sums-addition-algorithm
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
Partitions of a number sb
Partitions of a number sbPartitions of a number sb
Partitions of a number sb
 
Some Sums - Making mistakes in mobile game development
Some Sums - Making mistakes in mobile game developmentSome Sums - Making mistakes in mobile game development
Some Sums - Making mistakes in mobile game development
 
Stars investigation
Stars investigationStars investigation
Stars investigation
 
Math Investigation "Be There or Be Square"
Math Investigation "Be There or Be Square"Math Investigation "Be There or Be Square"
Math Investigation "Be There or Be Square"
 
Math investigation (bounces)
Math investigation (bounces)Math investigation (bounces)
Math investigation (bounces)
 
Math investigation (STARS)
Math investigation (STARS)Math investigation (STARS)
Math investigation (STARS)
 
Investigatory project: Trig-DaMath
Investigatory project: Trig-DaMathInvestigatory project: Trig-DaMath
Investigatory project: Trig-DaMath
 
Semi-Detailed Lesson Plan in Math VI
Semi-Detailed Lesson Plan in Math VISemi-Detailed Lesson Plan in Math VI
Semi-Detailed Lesson Plan in Math VI
 
Investigatory project. yani gustilo
Investigatory project. yani gustiloInvestigatory project. yani gustilo
Investigatory project. yani gustilo
 
Investigatory project parts
Investigatory project partsInvestigatory project parts
Investigatory project parts
 
DETAILED LESSON PLAN (MATH 6)
DETAILED LESSON PLAN (MATH 6)DETAILED LESSON PLAN (MATH 6)
DETAILED LESSON PLAN (MATH 6)
 
Sample of Semi Detailed Lesson Plan
Sample of Semi Detailed Lesson PlanSample of Semi Detailed Lesson Plan
Sample of Semi Detailed Lesson Plan
 

Similaire à X2 T06 01 Discs & Washers

Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...SEENET-MTP
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial DerivativesMatthew Leingang
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topSEENET-MTP
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันThipayarat Mocha
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันThipayarat Mocha
 
Additional notes EC220
Additional notes EC220Additional notes EC220
Additional notes EC220Guo Xu
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Mel Anthony Pepito
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers IIMatthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IIguestf32826
 
Manage your expectation
Manage your expectationManage your expectation
Manage your expectationGregory Rho
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Matthew Leingang
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normalscoburgmaths
 
Operations With Functions May 25 2009
Operations With Functions May 25 2009Operations With Functions May 25 2009
Operations With Functions May 25 2009ingroy
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculoHenry Romero
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 

Similaire à X2 T06 01 Discs & Washers (20)

Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski top
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
Additional notes EC220
Additional notes EC220Additional notes EC220
Additional notes EC220
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Manage your expectation
Manage your expectationManage your expectation
Manage your expectation
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Operations With Functions May 25 2009
Operations With Functions May 25 2009Operations With Functions May 25 2009
Operations With Functions May 25 2009
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Dernier

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsRommel Regala
 
EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxElton John Embodo
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxJanEmmanBrigoli
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 

Dernier (20)

Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
The Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World PoliticsThe Contemporary World: The Globalization of World Politics
The Contemporary World: The Globalization of World Politics
 
EMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docxEMBODO Lesson Plan Grade 9 Law of Sines.docx
EMBODO Lesson Plan Grade 9 Law of Sines.docx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Millenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptxMillenials and Fillennials (Ethical Challenge and Responses).pptx
Millenials and Fillennials (Ethical Challenge and Responses).pptx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 

X2 T06 01 Discs & Washers

  • 1. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation )
  • 2. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis
  • 3. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) x
  • 4. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) a b x
  • 5. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) a ∆x b x
  • 6. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y a ∆x b x ∆x
  • 7. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) a ∆x b x ∆x
  • 8. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) A( x ) = π [ f ( x ) ] 2 a ∆x b x ∆x
  • 9. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) A( x ) = π [ f ( x ) ] 2 a ∆x b x ∆V = π [ f ( x ) ] ⋅ ∆x 2 ∆x
  • 10. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) A( x ) = π [ f ( x ) ] 2 a ∆x b x ∆V = π [ f ( x ) ] ⋅ ∆x 2 ∆x b V = lim ∑ π [ f ( x ) ] ⋅ ∆x 2 ∆x →0 x=a
  • 11. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) A( x ) = π [ f ( x ) ] 2 a ∆x b x ∆V = π [ f ( x ) ] ⋅ ∆x 2 ∆x b V = lim ∑ π [ f ( x ) ] ⋅ ∆x 2 ∆x →0 x=a b = π ∫ [ f ( x ) ] dx 2 a
  • 12. About the y axis y y = f ( x) x
  • 13. About the y axis y y = f ( x) d c x
  • 14. About the y axis y y = f ( x) d ∆y c x
  • 15. About the y axis y y = f ( x) d x ∆y ∆y c x
  • 16. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c x
  • 17. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c A( y ) = π [ g ( y ) ] x 2
  • 18. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c A( y ) = π [ g ( y ) ] x 2 [ g ( y ) ] 2 ⋅ ∆y ∆V = π
  • 19. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c A( y ) = π [ g ( y ) ] x 2 [ g ( y ) ] 2 ⋅ ∆y ∆V = π d V = lim ∑ π [ g ( y ) ] ⋅ ∆y 2 ∆y →0 y =c
  • 20. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c A( y ) = π [ g ( y ) ] x 2 [ g ( y ) ] 2 ⋅ ∆y ∆V = π d V = lim ∑ π [ g ( y ) ] ⋅ ∆y 2 ∆y →0 y =c d = π ∫ [ g ( y ) ] dy 2 c
  • 21. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis
  • 22. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 -2 2 x
  • 23. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆x 2 -2 x
  • 24. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆x 2 -2 x y = 4 − x2 ∆x
  • 25. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆x 2 -2 x y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆x
  • 26. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆x 2 -2 x y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 27. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x 2 4 ∆x →0 x = −2 y = 4− x 2 ∆x 2 -2 x y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 28. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x 2 4 ∆x →0 x = −2 y = 4− x 2 2 = 2π ∫ (16 − 8 x 2 + x 4 ) dx 0 ∆x 2 -2 x y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 29. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x 2 4 ∆x →0 x = −2 y = 4− x 2 2 = 2π ∫ (16 − 8 x 2 + x 4 ) dx 0 ∆x 2 -2 x 2 16 x − 8 x 3 + 1 x 5  = 2π  5 0   3 y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 30. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x 2 4 ∆x →0 x = −2 y = 4− x 2 2 = 2π ∫ (16 − 8 x 2 + x 4 ) dx 0 ∆x 2 -2 x 2 16 x − 8 x 3 + 1 x 5  = 2π  5 0   3 32 − 64 + 32 − 0 = 2π     35 y = 4 − x2 512π = units 3 A( x ) = π ( 4 − x ) 22 15 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 31. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3
  • 32. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 x y = 4 − x2
  • 33. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (1,3) (-1,3) x y = 4 − x2
  • 34. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2
  • 35. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 ∆x
  • 36. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 ∆x
  • 37. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆x
  • 38. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 39. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y π (1 − 2 x 2 + x 4 ) ⋅ ∆x 1 ∑ V = lim 4 ∆x →0 x = −1 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 40. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y π (1 − 2 x 2 + x 4 ) ⋅ ∆x 1 ∑ V = lim 4 ∆x →0 x = −1 y=3 (-1,3) (1,3) 1 = 2π ∫ (1 − 2 x 2 + x 4 ) dx ∆x 0 x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 41. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y π (1 − 2 x 2 + x 4 ) ⋅ ∆x 1 ∑ V = lim 4 ∆x →0 x = −1 y=3 (-1,3) (1,3) 1 = 2π ∫ (1 − 2 x 2 + x 4 ) dx ∆x 0 x 1  x − 2 x3 + 1 x5  = 2π  y = 4 − x2 5 0 3  y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 42. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y π (1 − 2 x 2 + x 4 ) ⋅ ∆x 1 ∑ V = lim 4 ∆x →0 x = −1 y=3 (-1,3) (1,3) 1 = 2π ∫ (1 − 2 x 2 + x 4 ) dx ∆x 0 x 1  x − 2 x3 + 1 x5  = 2π  y = 4 − x2 5 0 3  1 − 2 + 1 − 0 y − 3 = 4 − x2 − 3 = 2π    35  = 1− x2 16π = units 3 15 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 43. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated.
  • 44. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 x
  • 45. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) x
  • 46. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x
  • 47. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x
  • 48. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x 1 x= y 2
  • 49. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x 1 x= y 2 x= y 2
  • 50. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x 1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2      
  • 51. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x 1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 52. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y V = lim ∑ π ( y − y 4 ) ⋅ ∆y 1 x= y 2 ∆y → 0 y =0 (1,1) ∆y x 1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 53. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y V = lim ∑ π ( y − y 4 ) ⋅ ∆y 1 x= y 2 ∆y → 0 y =0 (1,1) 1 = π ∫ ( y − y 4 ) dy ∆y x 0 1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 54. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y V = lim ∑ π ( y − y 4 ) ⋅ ∆y 1 x= y 2 ∆y → 0 y =0 (1,1) 1 = π ∫ ( y − y 4 ) dy ∆y x 0 1 1 y 2 − 1 y5  =π 5 0 2  1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 55. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y V = lim ∑ π ( y − y 4 ) ⋅ ∆y 1 x= y 2 ∆y → 0 y =0 (1,1) 1 = π ∫ ( y − y 4 ) dy ∆y x 0 1 1 y 2 − 1 y5  =π 5 0 2  1 x= y 2 x= y 2  1 − 1 − 0 =π   25  3π = units 3  1  2  A( y ) = π  y  − ( y )  10 22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 56. y (iv) (1996) 1 x + y2 = 0 S 1 4 x -1 The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and the curve x + y = 0. The region is rotated through 360about the line x 2 = 4 to form a solid. When the region is rotated, the line segment S at height y sweeps out an annulus.
  • 57. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )
  • 58. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) ∆y
  • 59. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) r ∆y
  • 60. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R ∆y
  • 61. 1 x + y2 = 0 S 1 4 x -1
  • 62. 1 x + y2 = 0 Sr 1 4 x -1
  • 63. 1 x + y2 = 0 S r = 4 −1 =3 1 4 x -1
  • 64. 1 x + y2 = 0 S r = 4 −1 =3 1 4 x R -1
  • 65. 1 x + y2 = 0 S r = 4 −1 =3 1 4 x R = 4− x = 4 + y2 -1
  • 66. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) ∆y
  • 67. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R = 4− x = 4 + y2 ∆y
  • 68. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R = 4− x = 4 + y2 ∆y r = 4 −1 =3
  • 69. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R = 4− x = 4 + y2 ∆y { } r = 4 −1 A( y ) = π ( 4 + y ) − ( 3) 22 2 =3
  • 70. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R = 4− x = 4 + y2 ∆y { } r = 4 −1 A( y ) = π ( 4 + y ) − ( 3) 22 2 =3 = π (16 + 8 y 2 + y 4 − 9 ) = π ( y 4 + 8 y 2 + 7)
  • 71. b) Hence find the volume of the solid.
  • 72. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
  • 73. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1
  • 74. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1 1 = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy 0
  • 75. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1 1 = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy 0 1 = 2π  y 5 + y 3 + 7 y  1 8 5 0   3
  • 76. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1 1 = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy 0 1 = 2π  y 5 + y 3 + 7 y  1 8 5 0   3 1 + 8 + 7 − 0  = 2π     53 296π = units 3 15
  • 77. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1 1 = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy Exercise 3A; 0 2, 5, 7, 9, 13, 14, 15 1 = 2π  y 5 + y 3 + 7 y  1 8 5 0   3 Exercise 3B; 1 + 8 + 7 − 0  1, 2, 5, 7, 9, 10, 11, 12 = 2π     53 296π = units 3 15