SlideShare une entreprise Scribd logo
1  sur  33
Télécharger pour lire hors ligne
(C) Transformations
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  y  f  x   a OR y  a  f  x 
                   (a is grouped with y: shift up or down by a)
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  y  f  x   a OR y  a  f  x 
                   (a is grouped with y: shift up or down by a)

                                    y

                                                           y=f(x)


                                                                      x
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  y  f  x   a OR y  a  f  x 
                   (a is grouped with y: shift up or down by a)

                                    y
                                                           y  f x  a
                           a                               y=f(x)
                                                       a

                                    a
                                                                       x

                                               a
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  y  f  x   a OR y  a  f  x 
                   (a is grouped with y: shift up or down by a)
  y  f  x  a  (a is grouped with x: shift left or right by a)
                                      y
                                                              y  f x  a
                             a                                y=f(x)
                                                          a

                                      a
                                                                          x

                                                 a
(C) Transformations
Given that the graph y = f(x) can be sketches, then it is possible to build
other sketches through appropriate transformations.
  y  f  x   a OR y  a  f  x 
                   (a is grouped with y: shift up or down by a)
  y  f  x  a  (a is grouped with x: shift left or right by a)
                                      y
                                                              y  f x  a
                             a                                y=f(x)
                                                          a
                     b
                                                      b
                                     a
                                                                          x
                                  b
                  b
                                                  a
                                           b
 y  f x  b
 y   f  x  (reflect f(x) in the x axis)
 y   f  x  (reflect f(x) in the x axis)




                                     y

                                               y=f(x)


                                                        x
 y   f  x  (reflect f(x) in the x axis)




                                     y

                                               y=f(x)


                                                             x

                                               y   f x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)




                                     y

                                               y=f(x)


                                                             x

                                               y   f x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)




                                     y

                                               y=f(x)


                                                             x

                                               y   f x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)




                                     y

                                               y=f(x)
    y  f  x 

                                                             x

                                               y   f x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)




                                     y

                                                          y=f(x) x 
                                                          y f


                                                                        x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)




                                     y

                                                          y=f(x) x 
                                                          y f


                                                                        x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)




                                     y

                                                          y=f(x) x 
                                                          y f


                                                                        x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)




                                     y

                                                          y=f(x) x 
                                                          y f


                                                                        x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x    (reflect the part of f(x) where x>0 in the y axis)
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x    (reflect the part of f(x) where x>0 in the y axis)


                                     y

                                                          y=f(x) x 
                                                          y f


                                                                        x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x    (reflect the part of f(x) where x>0 in the y axis)


                                     y

                                                          y=f(x) x 
                                                          y f


                                                                        x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x    (reflect the part of f(x) where x>0 in the y axis)


                                     y

                                                          y=f(x) x 
                                                          y f


                                                                        x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x    (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x    (reflect the part of f(x) where x>0 in the y axis)


                                     y

                                                          y=f(x) x 
                                                          y f


                                                                        x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)

                                     y

                                                            y=f(x)


                                                                         x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)

                                     y                      y  kf  x , k  1
                                                            y=f(x)


                                                                         x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)

                                     y                      y  kf  x , k  1
                                                            y=f(x)

                                                          y  kf  x , k  1
                                                                          x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)

                                     y                      y  kf  x , k  1
                                                            y=f(x)

                                                          y  kf  x , k  1
                                                                          x

Note:
•domain remains same
•x intercepts remain same
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 y  f kx     (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 y  f kx     (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
                                     y

                                                            y=f(x)


                                                                         x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 y  f kx     (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
                                     y
                                         y  f kx , k  1   y=f(x)


                                                                         x
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 y  f kx     (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
                                     y
                                         y  f kx , k  1   y=f(x)


                                                                         x

                                                               y  f kx , k  1
 y   f  x  (reflect f(x) in the x axis)

 y  f  x  (reflect f(x) in the y axis)
 y  f x      (reflect the part of f(x) where f(x)<0 in the x axis)
 y  f x      (reflect the part of f(x) where x>0 in the y axis)
 y  kf  x    (stretch f(x) vertically, k<1 shallower,k>1 steeper)
 y  f kx     (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
                                     y
                                         y  f kx , k  1   y=f(x)


                                                                         x

Note:                                                          y  f kx , k  1
•range remains same
•y intercepts remain same

Contenu connexe

Tendances

Pc12 sol c03_ptest
Pc12 sol c03_ptestPc12 sol c03_ptest
Pc12 sol c03_ptestGarden City
 
11X1 T11 01 locus (2010)
11X1 T11 01 locus (2010)11X1 T11 01 locus (2010)
11X1 T11 01 locus (2010)Nigel Simmons
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsNigel Simmons
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsNigel Simmons
 
3ro medio-a-b-matematica-ppt-n°2-funcion-exponencial-02-al-06-de-noviembre (1)
3ro medio-a-b-matematica-ppt-n°2-funcion-exponencial-02-al-06-de-noviembre (1)3ro medio-a-b-matematica-ppt-n°2-funcion-exponencial-02-al-06-de-noviembre (1)
3ro medio-a-b-matematica-ppt-n°2-funcion-exponencial-02-al-06-de-noviembre (1)JuanBautistaVerdugo
 

Tendances (8)

Pc12 sol c03_ptest
Pc12 sol c03_ptestPc12 sol c03_ptest
Pc12 sol c03_ptest
 
Exercise #10 notes
Exercise #10 notesExercise #10 notes
Exercise #10 notes
 
11X1 T11 01 locus (2010)
11X1 T11 01 locus (2010)11X1 T11 01 locus (2010)
11X1 T11 01 locus (2010)
 
DiffCalculus Week 3
DiffCalculus Week 3DiffCalculus Week 3
DiffCalculus Week 3
 
Calculas
CalculasCalculas
Calculas
 
X2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functionsX2 T04 04 curve sketching - reciprocal functions
X2 T04 04 curve sketching - reciprocal functions
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functions
 
3ro medio-a-b-matematica-ppt-n°2-funcion-exponencial-02-al-06-de-noviembre (1)
3ro medio-a-b-matematica-ppt-n°2-funcion-exponencial-02-al-06-de-noviembre (1)3ro medio-a-b-matematica-ppt-n°2-funcion-exponencial-02-al-06-de-noviembre (1)
3ro medio-a-b-matematica-ppt-n°2-funcion-exponencial-02-al-06-de-noviembre (1)
 

En vedette

X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsNigel Simmons
 
Water Wise Gardening: the Best Plants for Hobsons Bay’s, Australia
Water Wise Gardening: the Best Plants for Hobsons Bay’s, AustraliaWater Wise Gardening: the Best Plants for Hobsons Bay’s, Australia
Water Wise Gardening: the Best Plants for Hobsons Bay’s, AustraliaKaila694m
 
XADREZ - PARTE 2
XADREZ - PARTE 2XADREZ - PARTE 2
XADREZ - PARTE 2Jonasblog
 
Water Efficient Landscape Guidelines - Costa Mesa, California
Water Efficient Landscape Guidelines - Costa Mesa, CaliforniaWater Efficient Landscape Guidelines - Costa Mesa, California
Water Efficient Landscape Guidelines - Costa Mesa, CaliforniaKaila694m
 
Water Efficient Landscape Guidelines - Campbell, California
Water Efficient Landscape Guidelines - Campbell, CaliforniaWater Efficient Landscape Guidelines - Campbell, California
Water Efficient Landscape Guidelines - Campbell, CaliforniaKaila694m
 
Gardenig Posters
Gardenig PostersGardenig Posters
Gardenig PostersKaila694m
 

En vedette (7)

Xachatryan meline
Xachatryan melineXachatryan meline
Xachatryan meline
 
X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel Crosssections
 
Water Wise Gardening: the Best Plants for Hobsons Bay’s, Australia
Water Wise Gardening: the Best Plants for Hobsons Bay’s, AustraliaWater Wise Gardening: the Best Plants for Hobsons Bay’s, Australia
Water Wise Gardening: the Best Plants for Hobsons Bay’s, Australia
 
XADREZ - PARTE 2
XADREZ - PARTE 2XADREZ - PARTE 2
XADREZ - PARTE 2
 
Water Efficient Landscape Guidelines - Costa Mesa, California
Water Efficient Landscape Guidelines - Costa Mesa, CaliforniaWater Efficient Landscape Guidelines - Costa Mesa, California
Water Efficient Landscape Guidelines - Costa Mesa, California
 
Water Efficient Landscape Guidelines - Campbell, California
Water Efficient Landscape Guidelines - Campbell, CaliforniaWater Efficient Landscape Guidelines - Campbell, California
Water Efficient Landscape Guidelines - Campbell, California
 
Gardenig Posters
Gardenig PostersGardenig Posters
Gardenig Posters
 

Similaire à X2 T07 02 transformations (2011)

X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)Nigel Simmons
 
X2 T04 02 curve sketching - transformations
X2 T04 02 curve sketching - transformationsX2 T04 02 curve sketching - transformations
X2 T04 02 curve sketching - transformationsNigel Simmons
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integralsUrbanX4
 
Applying the derivative
Applying the derivativeApplying the derivative
Applying the derivativeInarotul Faiza
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
Reciprocals Oct 13th
Reciprocals Oct 13thReciprocals Oct 13th
Reciprocals Oct 13thingroy
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsMatthew Leingang
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)Nigel Simmons
 
16 partial derivatives
16 partial derivatives16 partial derivatives
16 partial derivativesmath267
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
5 volumes and solids of revolution i x
5 volumes and solids of revolution i x5 volumes and solids of revolution i x
5 volumes and solids of revolution i xmath266
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regionsHimani Asija
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)Nigel Simmons
 

Similaire à X2 T07 02 transformations (2011) (20)

X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)X2 t07 02 transformations (2013)
X2 t07 02 transformations (2013)
 
X2 T04 02 curve sketching - transformations
X2 T04 02 curve sketching - transformationsX2 T04 02 curve sketching - transformations
X2 T04 02 curve sketching - transformations
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Applying the derivative
Applying the derivativeApplying the derivative
Applying the derivative
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Reciprocals Oct 13th
Reciprocals Oct 13thReciprocals Oct 13th
Reciprocals Oct 13th
 
Exercise #9 notes
Exercise #9 notesExercise #9 notes
Exercise #9 notes
 
Lesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and LogarithmsLesson 15: Inverse Functions and Logarithms
Lesson 15: Inverse Functions and Logarithms
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Day 1 examples 2
Day 1 examples 2Day 1 examples 2
Day 1 examples 2
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
18MMA21C-U2.pdf
18MMA21C-U2.pdf18MMA21C-U2.pdf
18MMA21C-U2.pdf
 
16 partial derivatives
16 partial derivatives16 partial derivatives
16 partial derivatives
 
2.5
2.52.5
2.5
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
5 volumes and solids of revolution i x
5 volumes and solids of revolution i x5 volumes and solids of revolution i x
5 volumes and solids of revolution i x
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 

Plus de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Plus de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Dernier

Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 

Dernier (20)

Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 

X2 T07 02 transformations (2011)

  • 2. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.
  • 3. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.  y  f  x   a OR y  a  f  x  (a is grouped with y: shift up or down by a)
  • 4. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.  y  f  x   a OR y  a  f  x  (a is grouped with y: shift up or down by a) y y=f(x) x
  • 5. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.  y  f  x   a OR y  a  f  x  (a is grouped with y: shift up or down by a) y y  f x  a a y=f(x) a a x a
  • 6. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.  y  f  x   a OR y  a  f  x  (a is grouped with y: shift up or down by a)  y  f  x  a  (a is grouped with x: shift left or right by a) y y  f x  a a y=f(x) a a x a
  • 7. (C) Transformations Given that the graph y = f(x) can be sketches, then it is possible to build other sketches through appropriate transformations.  y  f  x   a OR y  a  f  x  (a is grouped with y: shift up or down by a)  y  f  x  a  (a is grouped with x: shift left or right by a) y y  f x  a a y=f(x) a b b a x b b a b y  f x  b
  • 8.  y   f  x  (reflect f(x) in the x axis)
  • 9.  y   f  x  (reflect f(x) in the x axis) y y=f(x) x
  • 10.  y   f  x  (reflect f(x) in the x axis) y y=f(x) x y   f x
  • 11.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis) y y=f(x) x y   f x
  • 12.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis) y y=f(x) x y   f x
  • 13.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis) y y=f(x) y  f  x  x y   f x
  • 14.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)
  • 15.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis) y y=f(x) x  y f x
  • 16.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis) y y=f(x) x  y f x
  • 17.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis) y y=f(x) x  y f x
  • 18.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis) y y=f(x) x  y f x
  • 19.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)
  • 20.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis) y y=f(x) x  y f x
  • 21.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis) y y=f(x) x  y f x
  • 22.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis) y y=f(x) x  y f x
  • 23.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis) y y=f(x) x  y f x
  • 24.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper)
  • 25.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper) y y=f(x) x
  • 26.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper) y y  kf  x , k  1 y=f(x) x
  • 27.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper) y y  kf  x , k  1 y=f(x) y  kf  x , k  1 x
  • 28.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper) y y  kf  x , k  1 y=f(x) y  kf  x , k  1 x Note: •domain remains same •x intercepts remain same
  • 29.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper)  y  f kx  (stretch f(x) horizontally, k<1 shallower,k>1 steeper)
  • 30.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper)  y  f kx  (stretch f(x) horizontally, k<1 shallower,k>1 steeper) y y=f(x) x
  • 31.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper)  y  f kx  (stretch f(x) horizontally, k<1 shallower,k>1 steeper) y y  f kx , k  1 y=f(x) x
  • 32.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper)  y  f kx  (stretch f(x) horizontally, k<1 shallower,k>1 steeper) y y  f kx , k  1 y=f(x) x y  f kx , k  1
  • 33.  y   f  x  (reflect f(x) in the x axis)  y  f  x  (reflect f(x) in the y axis)  y  f x (reflect the part of f(x) where f(x)<0 in the x axis)  y  f x (reflect the part of f(x) where x>0 in the y axis)  y  kf  x  (stretch f(x) vertically, k<1 shallower,k>1 steeper)  y  f kx  (stretch f(x) horizontally, k<1 shallower,k>1 steeper) y y  f kx , k  1 y=f(x) x Note: y  f kx , k  1 •range remains same •y intercepts remain same