SlideShare uma empresa Scribd logo
1 de 12
Baixar para ler offline
1
As regularidades do nosso Sistema Solar
1. Cada planeta está relativamente isolado no espaço.
2. As órbitas planetárias são aproximadamente circulares (com exceção
Das de Plutão e Mercúrio).
3. As órbitas dos planetas estão situadas, aproximadamente, no mesmo
plano.
4. A direção da órbita dos planetas ao redor do Sol é a mesma com que o
Sol gira, em movimento de rotação, em torno de seu eixo.
5. A direção do movimento de rotação da maioria dos planetas em torno
de seus eixos (exceção feita ao planeta Vênus) é a mesma com que o
Sol gira em torno de seu eixo.
6. A maioria dos satélites conhecidos que giram ao redor dos planetas
tem a mesma direção orbital que o movimento de rotação desses
mesmos planetas.
7. Nosso Sistema Solar é bem diferenciado: há os planetas próximos ao
Sol, parecidos com a Terra (telúricos) – rochosos de alta densidade e
poucos satélites, de atmosferas moderadas e pequena velocidade de
rotação – e os parecidos com Júpiter (jovianos) – mais afastados do
Sol, gasosos e com baixa densidade, atmosferas espessas, movimento
de rotação muito rápido e muitos satélites.
8. Os asteróides são muito antigos e têm características que não são
típicas de planetas ou satélites.
9. Os cometas são da época primitiva, fragmentos de blocos de gelo que
não têm órbitas no plano da eclíptica (plano em que orbitam os
planetas) e encontram-se a enormes distâncias do Sol.
1. A formação do Sistema Solar
Explicar teoricamente a evolução da matéria primitiva que
deu origem ao Sistema Solar não é tarefa fácil, tanto mais
porque não se conhecem, exatamente, quais as condições
reinantes naquele momento. Nenhum dos modelos propostos
explica definitivamente todas as características do Sistema
Solar na atualidade. A teoria nebular é um exemplo de
uma teoria evolutiva que descreve o desenvolvimento do sistema solar como uma
série de passos graduais e naturais, compreensível em termos de princípios
físicos bem estabelecidos. Já a teoria das catástrofes invoca eventos celestiais
acidentais. Astrônomos normalmente não gostam de invocar catástrofes para
explicar o universo, porém, há exemplos em que só o puro acaso pode ter
determinado certos aspectos do Sistema Solar. As hipóteses propostas tentam
esclarecer os seguintes fatos observados:
ASTRONOMIA AULA - 3
SISTEMA SOLAR - FORMAÇÃO
Figura 3 - Gás interstelar e faixas de
poeira cósmica escura marcam esta
região de formação de estrelas. A nuvem
escura conhecida como Barnard 86
(esquerda) margeia um agrupamento de
estrelas azuis jovens chamado NGC
6520 (direito). Barnard 86 pode fazer
parte de uma nuvem interestelar maior
que deu origem a estas estrelas.
Figura 1 - Os planetas do Sistema
Solares têm movimento de rotação no
mesmo sentido que seu movimento de
translação em torno do Sol, a exceção
feita ao planeta Vênus. Esse possui
movimento de rotação retrógrado.
Figura 2 – A galáxia de Andrômeda,
assim como a nossa própria Via
Láctea, possui estrelas jovens e
estrelas velhas. O fim da vida
evolutiva dessas estrelas velhas
resulta, entre outras coisas, em
nuvens de gás e poeira interestelar
que servirão de matéria-prima para a
formação de novas estrelas.
2
Todos os fatos observados sugerem, fortemente, um alto grau de ordem dentro do
nosso Sistema Solar. O sistema inteiro não é um punhado fortuito de objetos que
giram ou orbitam aleatoriamente. Por conseguinte, é improvável que nosso
Sistema Solar tenha sido formado casualmente, devido à acumulação lenta de
"planetas" interestelares já prontos e apenas capturados pelo nosso Sol ao longo
de bilhões de anos. A arquitetura global de nosso Sistema Solar é muito
organizada, e a idade de seus componentes é muito uniforme para ser o resultado
de eventos caóticos fortuitos. Os fatos apontam para uma formação única, há 4,6
bilhões de anos. É importante perceber o que nossa teoria do Sistema Solar não
precisa explicar. Houve bastante tempo para que os planetas evoluíssem depois
de sua formação, assim circunstâncias que não estão diretamente associadas ao
desenvolvimento do estado inicial do Sistema Solar não foram incluídas na nossa
lista. Alguns exemplos disso são, o intenso efeito estufa em Vênus, a rotação
sincrônica da Lua, o aparecimento de vida na Terra, os anéis dos planetas
jovianos e outros fenômenos mais.
Além de suas muitas regularidades, nosso Sistema Solar também tem muitas
irregularidades notáveis, algumas das quais já mencionamos. A teoria explicativa
da formação do Sistema Solar deve prover razões fortes para as características
planetárias observadas sendo, contudo, flexível o bastante para permitir e
explicar também as divergências.
2. Teoria da nebulosa primitiva
Um dos primeiros modelos explicativos da origem do Sistema Solar foi sugerido,
em 1755, pelo filósofo alemão Immanuel Kant (1724-1804), e desenvolvido, em
1796, pelo matemático francês Pierre-Simon de Laplace (1749-1827), em seu
livro Exposition du System du Monde. Laplace, que desenvolveu a teoria das
probabilidades, calculou que como todos os planetas estão no mesmo plano,
giram em torno do Sol na mesma direção, e também giram em torno de si
mesmos na mesma direção (com exceção de Vênus), só poderiam ter-se formado
de uma mesma grande nuvem de partículas em rotação (figura 5a). Essa hipótese
sugeria que uma grande nuvem rotante de gás interestelar, a nebulosa solar,
colapsou para dar origem ao Sol e aos planetas. Uma vez que a contração se
iniciou, a força gravitacional da nuvem atuando em si mesma acelerou o colapso.
À medida que a nuvem colapsava, a rotação da nuvem aumentava por
conservação do momentum angular, e eventualmente a massa de gás rotante
assumiria uma forma discoidal, com uma concentração central que deu origem ao
Sol. Os planetas teriam se formado a partir do material no disco (figura 5b).
3. Teoria da condensação
A hipótese moderna para a origem do Sistema Solar é baseada na hipótese
nebular e é denominada teoria da condensação. As observações modernas
indicam que muitas nuvens de gás interestelar estão no processo de colapsar em
estrelas, e os argumentos físicos que predizem o achatamento e o aumento da
taxa de rotação estão corretos. A contribuição moderna à hipótese nebular diz
respeito principalmente a como os planetas se formaram a partir do gás no disco,
e foi desenvolvida nos anos 40 pelo físico alemão C. Von Weizäker.
Após colapsar, a nuvem começou a esfriar-se; apenas o Proto-Sol, no centro,
manteve sua temperatura. O resfriamento acarretou a condensação rápida do
material, o que deu origem aos planetesimais, agregados de material com
tamanhos da ordem de quilômetros de diâmetro.
Figura 5 - Laplace imaginou que, ao
girar, a nebulosa solar deixaria para
trás uma série de anéis
concêntricos, que viriam a
transformar-se em protoplanetas
orbitando em torno de um proto-sol
- bola quente de gás que evoluiria
até tornar-se o Sol. A descrição do
colapso e do achatamento da
nebulosa solar está essencialmente
correta, mas quando os astrônomos
modernos usaram computadores
para estudar os aspectos mais sutis
do problema, alguns erros foram
verificados na teoria nebular de
Laplace. Os cálculos mostraram que
os anéis do tipo previsto pela teoria,
provavelmente não se formariam e,
se isso ocorresse, eles não se
condensariam para formar planetas.
Na realidade, os cálculos de
computador verificaram que os anéis
tenderiam a dispersar-se.
Figura 4 - A estrela HD 65750 na
constelação de Carina é uma das
muitas observadas que lançam
material ao espaço. Parte desse
material ejetado condensa-se em
grãos de poeira interestelar,
formando a nebulosa (IC 2220) que
reflete a luz da estrela (foto acima).
3
Primeira fase
De acordo com a teoria da condensação, os planetas foram formados em
três estágios. Inicialmente, grãos de poeira cósmica interestelar dentro da
nebulosa formaram núcleos de condensação em torno dos quais a
matéria começou a se acumular. Isso acelerou o processo da formação
das primeiras aglomerações pequenas de matéria. Uma vez formadas,
essas aglomerações cresceram rapidamente aderindo umas às outras.
Elas cresceram gradualmente, transformando-se em objetos que
variaram seu tamanho de um seixo, para o de uma bola de beisebol,
aumentando cada vez mais. Esse processo de acresção — o gradual
crescimento dos pequenos objetos devido às colisões e fusão deles —
criou objetos maiores, com algumas centenas de quilômetros. Ao término
desta primeira fase, o Sistema Solar ficou composto de hidrogênio e gás
de hélio e milhões de planetesimais - objetos do tamanho de luas
pequenas, com campos gravitacionais fortes o bastante para afetar seus
vizinhos.
Segunda fase
Na segunda fase do processo de crescimento, ao longo de cerca de cem
milhões de anos, as forças gravitacionais entre o planetesimais os
fizeram colidir e fundir, formando objetos cada vez maiores. Aos poucos,
quase todo o material dos planetesimais foi lançado para algum dos
grandes protoplanetas – grandes acúmulos de matéria que
posteriormente evoluiriam transformando-se nos planetas que
conhecemos hoje. Na figura acima, vemos uma simulação em
computador do crescimento no sistema solar interno. Note como, a
redução de corpos leva ao espaçamento das órbitas que são
praticamente circulares.
Terceira fase
Quando, os protoplanetas se formam, outro processo importante tem
início. Os campos gravitacionais fortes produzem muitas colisões de alta
velocidade entre os planetesimais e os protoplanetas. Estas colisões
conduzem à fragmentação. Assim, os objetos maiores absorvem os
restos dos menores, ficando ainda mais massivos. Alguns desses
fragmentos produziram o intenso bombardeamento meteórico que nós
sabemos ter acontecido no início da formação dos planetas e satélites.
Um número relativamente pequeno de fragmentos, com dimensões entre
10 e 100km, escaparam de ser capturados por um planeta ou um satélite
e se tornaram os asteróides e cometas do nosso Sistema Solar.
A formação dos planetesimais
Figura 6 - O modelo atualmente
adotado pela maioria dos astrônomos
é uma versão mais requintada da
teoria nebular. Conhecida como a
teoria de condensação, combina as
características boas da teoria nebular
velha com informação nova sobre
química interestelar, eliminando a
maioria dos problemas da teoria velha.
O ingrediente novo fundamental no
quadro moderno é a presença da
poeira cósmica interestelar na
nebulosa solar. Os astrônomos
reconhecem agora que o espaço entre
as estrelas está permeado com grãos
de pó microscópicos, decorrente da
acumulação de matéria ejetada
durante a sua destruição no final de
sua vida evolutiva. Essas partículas
foram formadas nas atmosferas menos
quentes das estrelas velhas de então.
O resultado é que nossa galáxia inteira
está coberta de lixo com pedaços
grossos e pequenos de matéria fria e
rochosa que têm tamanhos em torno
de 0,02mm de diâmetro.
Figura 7 – Formação do Sistema Solar.
4
4. A formação dos protoplanetas
Modelos matemáticos indicam que, depois de aproximadamente 100 milhões de
anos, o Sistema Solar primitivo evoluiu em nove protoplanetas, dúzias de proto-
satélites, e o proto-Sol. Simulações em computador mostram o espaçamento
crescente entre os planetas, embora a razão para a regularidade vista no
espaçamento planetário atual permanece obscuro. Um bilhão de anos mais foram
necessários para limpar o Sistema Solar do lixo interplanetário. Foi nesse período
que ocorreu o bombardeio meteorítico mais pesado, ao mesmo tempo em que o
número de planetesimais diminuía. Os planetesimais a seguir cresceram por
acreção de material para dar origem a objetos maiores, os núcleos planetários.
Sua composição dependia da distância ao Sol: regiões mais externas tinham
temperaturas mais baixas, e mesmo os materiais voláteis tinham condições de se
condensar, ao passo que nas regiões mais internas e quentes, as substâncias
voláteis foram perdidas.
Na parte externa do Sistema Solar, onde o material condensado da nebulosa
continha silicatos e gelos, esses núcleos cresceram até atingirem massas da
ordem de 10 vezes a massa da Terra, ficando tão grandes a ponto de poderem
atrair o gás a seu redor, e então cresceram mais ainda por acreção de grande
quantidade de hidrogênio e hélio da nebulosa solar. Deram origem assim aos
planetas jovianos. Na parte interna, onde apenas os silicatos estavam presentes, o
núcleo planetário não pôde crescer muito, dando origem aos planetas telúricos.
O papel da temperatura
O Sistema Solar primitivo contraiu-se sob a influência da força gravitacional que o
aqueceu e o aplainou na forma de um disco. A densidade e temperatura eram
maiores próximo do proto-Sol central e muito mais baixas nas regiões periféricas.
Cálculos detalhados indicam que a temperatura do gás perto do centro do istema
era de vários milhares de kelvins. A uma distância de 10 UA, onde Saturno se
encontra na atualidade, a temperatura era só de aproximadamente 100 K. A
maior parte do gás e poeira cósmica original no Sistema Solar interno
desapareceu nesta fase, mas os grãos nas partes externas provavelmente
permaneceram em grande parte intactos. Figura 8 - A teoria da condensação e
de formação de planetas:
(a) Nuvem de gás e poeira cósmica
(b) A nebulosa solar se contrai e se
aplaina em um disco girando. A
concentração grande no centro se
tornará o Sol. As concentrações
menores nas regiões exteriores virão a
tornar-se planetas jovianos (gigantes
gasosos).
(c) A poeira cósmica se aglomera em
núcleos de condensação, formando
acúmulos de matéria que colidem e se
fundem gerando os planetesimais com
o tamanho de pequenas luas.
(d) Ventos fortes do Sol, que ainda se
está formando, expelem o gás da
nebulosa (esse processo chama-se T-
Tauri).
(e) Planetesimais continuam colidindo
e crescendo.
(f) Passados cerca de cem milhões de
anos, planetesimais formam alguns
planetas grandes que viajam em
órbitas aproximadamente circulares.
Com o passar do tempo, o
gás irradiou seu calor para
fora e a temperatura
diminuiu em todos os locais,
menos no centro, onde o Sol
estava-se formando. Em
todos lugares além do proto-
Sol, grãos de pó novos
começavam a condensar-se
(ou cristalizar-se). Quando a
poeira se refez, a
distribuição de grãos era
muito diferente. Como
mostra o diagrama ao lado,
nas regiões próximas ao
proto-Sol, onde hoje
encontramos a órbita do
planeta Mercúrio, poderiam
formar-se só grãos
metálicos.
. Estava simplesmente muito quente para qualquer outra
coisa existir. Um pouco mais distante, a aproximadamente 1UA, era possível
que grânulos rochosos e de silicatos se formassem. Há aproximadamente 3UA
ou 4UA, gelo poderia existir, e assim por diante. Quanto maior a distância ao
proto-Sol, mais matéria conseguiria condensar-se.
5
5. Limpando os escombros
Depois que os planetas principais se formaram, a maioria do planetesimais que
restaram ou colidiu com um dos novos planetas ou foi lançado para a nuvem de
Oort, só restando uma pequena fração de material sólido.
Mas o que aconteceu com o gás que compunha a maior parte da nuvem original?
Ao que parece, a explicação está no fato de que as estrelas jovens experimentam
uma fase evolutiva altamente ativa conhecida como fase T Tauri (figura 9)
durante a qual sua radiação e ventos estelares são muito intensos. Quando o Sol
entrou nesta fase, logo antes das reações nucleares começarem a queimá-lo em
seu centro, o gás que permanecia entre os planetas foi soprado para fora no
espaço interstelar pelo vento solar e pela pressão de radiação do Sol. O que
restou, após esse período, foram os protoplanetas e fragmentos de planetesimais,
que continuaram a longa evolução para tornar-se o Sistema Solar que
conhecemos hoje.
6. Os planetas de jovianos
Nas regiões medianas e exteriores do sistema planetário primitivo, para além de
aproximadamente 5UA do centro, a temperatura era bastante baixa o suficiente
para que ocorresse a condensação de vários gases abundantes. Depois do
hidrogênio e hélio, os materiais mais comuns na nebulosa solar (assim como no
universo) eram o carbono, nitrogênio e oxigênio. As combinações mais comuns
de substâncias químicas contendo esses elementos eram o vapor de água, a
amônia e o metano. Estas combinações ainda são os componentes principais das
atmosferas dos planetas jovianos.
Sob condições frias, temperaturas de 100K ou menos, e baixa densidade, estes
gases condensaram-se formando os fragmentos primordiais destinados a tornar-se
núcleos dos planetas jovianos. Os planetesimais formados a essas distâncias eram
predominantemente compostos de gelo. Os planetas exteriores começaram seu
crescimento mais cedo e cresceram rapidamente, aumentando sua massa não só
com grãos de poeira, mas também com gás, o que resultou na formação dos
quatro planetas gigantescos, mundos ricos em hidrogênio.
7. Os planetas terrestres
Nas regiões internas do Sistema Solar primitivo, começou a condensação de gás
para sólido quando a temperatura era aproximadamente 1000K. O ambiente era
muito quente para que o gelo resistisse. Muitos dos elementos abundantes e mais
pesados, como o silício, ferro, magnésio, níquel e alumínio combinaram-se com
o oxigênio para produzir uma variedade de materiais rochosos. Assim, os
planetesimais no Sistema Solar interno eram rochosos e viriam a formar
protoplanetas e, posteriormente, planetas também desses materiais mais pesados.
A temperatura de superfície dos planetas internos era muito alta, e a gravidade
deles muito baixa.
Figura 9- (a) Ventos estelares
fortes de estrelas recém nascidas
foram responsáveis por varrer
qualquer poeira cósmica e gás
que restasse do processo de
formação da estrela
(b) Quando o gás e poeira foram
lançados para fora do sistema
planetário, deixaram para trás os
protoplanetas e os planetesimais.
Figura 10 - Júpiter, Saturno, Urano e
Netuno são chamados de jovianos ou
planetas externos, pois têm
características típicas de Júpiter, tais
como baixa densidade. São constituídos
principalmente de hidrogênio, hélio, gelo
(H2O), dióxido de carbono, metano e
amônia.
Figura 11 - Os planetas
telúricos, Terra, Mercúrio,
Vênus e Marte, assemelham-se
à Terra, têm densidade maior e
são constituídos de rochas
(silicatos e óxidos) e metais, tais
como níquel e ferro. O planeta
Plutão não possui uma
classificação definida.
6
8. A teoria das catástrofes
A teoria da condensação responde pelos nove pontos
"característicos" listados no início da aula 5. Como já foi
dito, um aspecto importante de qualquer teoria explicativa
da origem e formação do Sistema Solar é sua flexibilidade
para permitir a possibilidade de divergências do esquema
bem ordenado das coisas.
Na teoria da condensação essa capacidade é devida a
aleatoriedade inerente aos encontros que fundem os
planetesimais em protoplanetas. Com a diminuição de
corpos grandes e o aumento de suas massas, as colisões
individuais adquiriram maior importância. Ainda podem
ser vistos os efeitos destas colisões em muitas partes do
Sistema Solar, por exemplo, as grandes crateras presentes
em muitos dos longínquos satélites que estudamos hoje.
Começou-se com nove pontos regulares para explicar a
formação de nosso sistema planetário e termina-se com
oito características irregulares do Sistema Solar. É
impossível testar quaisquer destas afirmações diretamente, mas é razoável supor
que alguns, ou até mesmo todos, dos seguintes aspectos "estranhos" do Sistema
Solar podem ser explicados em termos de colisões nas fases formativas do
sistema protoplanetário. Nem todos os astrônomos estão de acordo com todas
essas explicações, porém, a maioria deles aceita boa parte delas.
As irregularidades do nosso Sistema Solar
1. O núcleo de níquel-ferro excepcionalmente grande de Mercúrio pode ser
o resultado de uma colisão entre dois protoplanetas parcialmente
diferenciados. Os núcleos podem ter-se fundido, e parte do material do
manto ter-se perdido.
2. Dois corpos grandes poderiam ter-se fundido para formar Vênus, sendo
essa a causa de sua baixa velocidade de rotação e de seu movimento
retrógrado.
3. O sistema Terra-Lua pode ter-se formado da colisão entre a proto-Terra e
um objeto do tamanho do Marte.
4. Uma recente colisão com um planetesimal grande pode ter causado a
curiosa assimetria norte-sul de Marte e pode ter lançado parte da
atmosfera do planeta.
5. O eixo de rotação inclinado de Urano pode ter sido causado por uma
colisão com um planetesimal suficientemente grande, ou pela fusão de
dois planetas menores.
6. A lua de Urano, Miranda, com sua estranha superfície, pode ter sido
quase destruída numa colisão com um planetesimal.
7. Interações entre o protoplanetas jovianos e um ou mais planetesimais
podem ser a resposta pelas luas irregulares desses planetas e, em
particular, pelo movimento retrógrado de Tritão.
8. Plutão simplesmente pode ser um representante do grande cinturão de
Kuiper, e o sistema Plutão -Caronte pode ser o resultado de uma colisão
entre dois planetesimais frios antes que a maioria fosse lançada através
de interações com os planetas jovianos.
Dois corpos grandes poderiam ter-se fundido
para formar Vênus, sendo essa a causa de
sua baixa velocidade de rotação
O eixo de rotação inclinado de Urano pode ter
sido causado por uma colisão com um
planetesimal suficientemente grande, ou pela
fusão de dois planetas menores.
O núcleo de níquel-ferro excepcionalmente
grande de Mercúrio pode ser o resultado de
uma colisão entre dois protoplanetas
parcialmente diferenciados.
7
9. Os planetas extrassolares
O número de planetas em órbita de outras estrelas, ou seja, que estão fora do
Sistema Solar, atinge 60 até junho de 2001, sem contar 17 descobertas ainda não
confirmadas. No mesmo ano, os cientistas verificam a possibilidade da existência
de planetas sem estrelas. Eles flutuariam livres no espaço interestelar, sem estar
presos pela gravidade de nenhum sol. A descoberta ainda não pode ser
considerada definitiva, pois é preciso checar se realmente não havia estrelas tão
pequenas que não chegavam a brilhar. Das estrelas dotadas de sistema planetário,
apenas duas têm mais de um planeta: a Ípsilon de Andrômeda arrasta a seu redor
um sistema com três corpos. Em julho de 1999, uma equipe do Observatório do
Sul Europeu localiza, em torno da estrela Iota da Constelação do Relógio, a 56
anos-luz da Terra, o primeiro corpo com uma órbita semelhante à da Terra em
torno do Sol, completando uma translação a cada 320 dias. Em agosto daquele
ano é encontrado o primeiro planeta a orbitar duas estrelas.
Características
A maioria dos planetas extrassolares tem várias vezes a massa de Júpiter, o maior
planeta do Sistema Solar, e mantém órbitas próximas a sua estrela, ao contrário
do que acontece com os grandes planetas que orbitam o Sol. Os astrônomos
buscam novas teorias para explicar como corpos tão grandes conseguem
perambular por regiões tão próximas da estrela. Eles avaliam também que
nenhum dos novos planetas parece oferecer condições ao desenvolvimento da
vida. Nesse aspecto, a Terra - com órbita quase circular, a uma distância segura
do Sol, temperatura amena, água em fartura e atmosfera estável - ainda é exceção
no Universo. Isso não significa que planetas semelhantes não existam. Eles
apenas podem ser pequenos demais para ser detectados pelos instrumentos e
pelas técnicas da astronomia atual. Como não emitem luz, só podem ser
localizados indiretamente.Uma das técnicas para confirmar a existência desses
planetas consiste em captar movimentos sutis da estrela central ao ser puxada
pela força da gravidade do corpo que a circunda. Outra forma é medir variações
em seu brilho, que denunciam a passagem de um corpo escuro entre ela e o
observador na Terra. Mais recentemente, vem-se tentando observar diretamente a
forma escura de um possível planeta ao passar à frente de sua estrela. Pelo menos
um planeta, já identificado anteriormente, teria sido registrado dessa forma.
A nebulosa de Órion (M42) é uma região
de formação de estrelas localizada a
1500 anos-luz da Terra. Ela está junto às
estrelas que compõem a espada do
caçador que está representado na
constelação.
Detalhe de uma região de apenas 0,14
ano-luz, na nebulosa de Órion, mostra
o disco de material de onde se
formarão planetas.
Figura 7 - Recentemente, astrônomos têm
conseguido observar discos de matéria cercando
estrelas em formação. Esses discos são chamados de
protoplanetários, pois essas nuvens de gás e poeira
cósmica poderão eventualmente transformar-se em
planetas. De fato, os protoplanetários são sistemas
solares em construção e com o estudo desses
sistemas os astrônomos têm conseguido examinar o
que deve ter sido a nossa nebulosa planetária há
cinco bilhões de anos. Na foto, obtida pelo telescópio
Hubble, vemos vários protoplanetários que foram
encontrados na nebulosa de Órion numa região muito
ativa de formação de estrelas. Em todos eles,
observa-se que a estrela está bem visível no centro do
disco protoplanetário, o que reforça a idéia de que
nosso Sol deve ter brilhado antes que os planetas
estivessem completamente formados.
8
Figura 8 – A figura mostra os
planetas que orbitam em torno de
outras estrelas. Para que possamos
comparar, o arranjo dos planetas
internos em nosso Sistema Solar é
mostrado no alto da figura. A escala
logo abaixo da figura mostra a
média das distâncias entre cada
planeta e sua respectiva estrela
(semi-eixo maior de sua órbita). As
dimensões dos planetas
extrassolares mostrados, não estão
em escala com relação às suas
estrelas e os seus tamanhos
relativos foram apenas estimados.
As massas estão descritas em
função da massa de Júpiter.
Planetas que orbitam em
torno de estrelas
47 Uma
51 Peg
55 Cancri
Tau Bootis
Upsilon Andromedae
70 Vir
HD 114762
16 Cyg B
Rho Cr B
0 1 2
(UA)
Esta é, possivelmente, a primeira
foto tirada de um planeta que se
encontra fora do nosso Sistema
Solar. A luz central, mostrada pela
imagem obtida pelo telescópio
Hubble, é de um jovem sistema
estelar binário – duas estrelas, uma
girando em torno da outra. Abaixo
do sistema binário, podemos
observar uma faixa brilhante com
cerca de 1400UA de comprimento e
ao final dela, um ponto brilhante.
Esse ponto pode ser um
protoplaneta jovem com massa
algumas vezes maior que a de
Júpiter.
Anãs marrons são objetos como
estrelas, mas que tem massa
insuficiente para que reações
nucleares comecem em seu interior.
Elas são, no entanto, bastante mais
massivas que os maiores planetas
jovianos de nosso sistema solar. Na
foto ao lado temos uma anã marrom
com massa estimada de 30 a 50
vezes maior que a de Júpiter, em
órbita a uma distância de 44UA em
torno da estrela Gliese 229.
Figura - Na foto , obtida pelo
telescópio Hubble, vemos vários
protoplanetários que foram
encontrados na nebulosa de Órion
numa região muito ativa de
formação de estrelas. Num estudo
de 110 estrelas na nebulosa de
Órion, detectou-se a presença de
protoplanetários em 56 delas.
Esse fato sugere que existem
sistemas planetários em torno de
uma parte substancial das
estrelas.
9
Alguns elementos químicos são muito comuns no nosso sistema planetário, mas
outros são bastante raros. Hidrogênio é o mais abundante – três quartos da massa
do sistema. Hélio é o segundo elemento mais abundante. Ele e o hidrogênio,
juntos, são responsáveis por 98% de toda a massa do Sistema Solar, ficando os
demais elementos com apenas os 2% restantes. A predominância de H e He é
uma característica observada em todo universo e os elementos de que a Terra é
feita – principalmente ferro e níquel – assim como os elementos necessários para
o surgimento de vida – carbono, oxigênio, nitrogênio, fósforo e alguns mais – são
relativamente raros. Mas qual a razão dessa presença mássica de H e He no
universo?
Os astrônomos acreditam que o universo surgiu há 15 bilhões de anos, a partir de
uma grande explosão (o Big Bang) com grande liberação de energia. Após algum
tempo, formaram-se apenas elementos leves, tais como o hidrogênio, hélio, lítio e
o berílio. Já todos os elementos pesados foram posteriormente formados no
interior de estrelas produto das reações nucleares ali existentes ou devido a
violentas explosões que marcam o fim da vida evolucionária das estrelas
massivas. Esse material lançado pelas explosões de supernovas abastece o espaço
interestelar de onde surgirão novas estrelas ricas desses elementos pesados e,
eventualmente, sistemas planetários, satélites, cometas e asteróides.
Fronteiras do sistema solar
O nosso sistema planetário não se limita ao conjunto dos nove planetas
principais que, com seus 54 satélites e milhares de asteróides e cometas, giram
ao redor do Sol. Ele compreende também um meio interplanetário cuja densidade
é muito fraca para afetar de modo sensível os movimentos desses corpos
relativamente maciços. No entanto, essa tênue matéria difusa apresenta uma
enorme importância do ponto de vista prático, pois pode constituir um risco para
os veículos espaciais bem como um futuro meio de locomoção no espaço. Do
ponto de vista teórico, a compreensão dos fenômenos relacionados ao meio
10. A abundância relativa dos elementos resultantes
dos processos cósmicos
O ouro – raro no também
no universo
Estrelas produzem diferentes
elementos pesados em
determinadas situações. Por
exemplo, elementos tais como
carbono, ferro e oxigênio, são
freqüentemente criados no interior
de estrelas massivas. Alguns
elementos como, por exemplo, o
ouro, são criados apenas em
circunstâncias especiais. Isso
explica porque carbono é
comparativamente mais abundante
e o ouro um elemento mais raro –
para cada 10
12
átomos de
hidrogênio no Sistema Solar, apenas
seis são de ouro.
Apêndice
Texto do astrônomo
Ronaldo de Freitas
Mourão
10
interplanetário é fundamental ao estudo da origem e evolução do Sistema Solar.
Com o desenvolvimento das sondas espaciais, tornou-se possível conhecer as
características dos dois principais componentes do meio interplanetário: as
nuvens de poeira — o constituinte sólido — provenientes dos fragmentos
residuais da nebulosidade que deu origem ao Sistema Solar bem como da
decomposição dos cometas, meteoritos e asteróides; o vento solar, segundo
componente, gasoso, ionizado, que a coroa solar expele a uma velocidade
supersônica. Este meio interplanetário — percorrido em todos os sentidos por
radiações eletromagnéticas de origens diversas — é, por outro lado, perturbado
pelos campos magnéticos de determinados planetas, em particular pelos da Terra,
de Júpiter e de Saturno.
As fronteiras do Sistema Solar não se limitam, como se poderia a priori supor, à
órbita do último planeta conhecido. Existem milhares de cometas gravitando em
volta do Sol à enorme distância de cerca de um ano-luz, e apenas alguns se
aproximam muito do Sol para se tornarem visíveis na Terra. Acredita-se atual-
mente que além da órbita de Plutão — último limite sensível, que se situa a 40 U.
A. (40 x 150 milhões de quilômetros), existam as nuvens de Oort — esfera-
reservatório de 500 bilhões de cometas novos e congelados da qual sai, às vezes,
um cometa que, ao se aproximar do Sol, se torna visível da Terra — que
constituem a última fronteira do Sistema Solar. O interior da esfera é dominado
pelo vento solar — radiação de alta energia emitida por ele e que se estende até
encontrar o vento interestelar — radiação emitida pelas outras estrelas da galáxia
à velocidade de 40 km/s. O ponto de interação destas ondas, no qual a pressão do
vento solar contrabalança o fluxo interestelar, recebe o nome de heliopausa.
Evidentemente, pouco se conhece desta fronteira quase indefinida entre o meio
interestelar e o interplanetário. Supõe-se que a heliosfera — domínio do campo
magnético do Sol — esteja situada a cerca de 100 U. A., ou seja, 15 bilhões de
quilômetros do Sol. Assim, enquanto a luz leva cinco horas, à velocidade de
300.000 km/s, para ir do Sol a Plutão, precisará de 23 horas para atingir a
heliosfera. Na realidade, o Sol desloca-se à velocidade de 20 km por segundo em
relação às estrelas vizinhas, e leva 200 milhões de anos para dar uma volta
completa ao redor do centro da Galáxia. Assim como os planetas orbitam o Sol
movendo-se através do vento solar, o Sistema Solar órbita o centro galáctico
movendo-se através do vento interestelar. O bordo exterior do sistema solar, ao
se encontrar com o vento interestelar a 300 U. A. do Sol (300 x 150 milhões de
quilômetros), produz uma onda de choque, na direção da constelação de
Hércules, para onde nosso sistema planetário se desloca. No lado oposto está a
heliocauda. Todas as dimensões estimadas dessas regiões são incertas.
Atualmente existe uma flotilha de quatro sondas interplanetárias que estão
deixando o Sistema Solar: Pioneer 10, Pioneer 11, Voyager 1 e Voyager 2. Em
13 de junho de 1983, a primeira sonda espacial construída pelo homem —
Pioneer 10 — ultrapassou a órbita de Netuno — o planeta mais afastado do
Sistema Solar — depois de ter ultrapassado três meses antes a de Plutão. No
momento ela se dirige para as fronteiras do sistema solar e segue para o espaço
exterior. Nenhuma sonda foi tão longe desde que se iniciou a pesquisa espacial
com o lançamento do primeiro Sputnik em 1957. Nessa longa viagem iniciada há
quase 30 anos (3 de marco de 1972), a Pioneer 10 só tem surpreendido os astrô-
nomos com o seu desempenho. Apesar da sua distância — cerca de cinco bilhões
de quilômetros da Terra — e do seu tempo de permanência no espaço, a Pioneer
10 vem enviando regularmente, por rádio, as mais valiosas informações sobre o
meio interplanetário ao centro do controle da missão, em Mountain View, na
Califórnia. Na realidade, a longa viagem destas quatro sondas foi uma vitória da
tecnologia espacial.
Vários obstáculos tiveram de ser ultrapassados. Para atingir Júpiter, foi
necessário percorrer mais de um bilhão de quilômetros e atravessar a zona dos
asteróides, ou pequenos planetas, entre Marte e Júpiter, onde a
11
possibilidade de colisão com algumas rochas existentes
nessa região poderia, como receavam os astrônomos,
pôr em risco o êxito destas missões. Os grandes
momentos dessas naves foram os encontros com
Júpiter, Saturno e Urano, quando sobrevoaram os
planetas, conseguindo reunir as mais nítidas fotografias
de alta resolução da superfície desses planetas e de seus
satélites. O momento do encontro com o campo
gravitacional desses planetas foi usado para aumentar,
ou melhor, acelerar o movimento das naves em direção
ao espaço extraplanetário. Uma das maiores surpresas
foi a grande contabilidade dos geradores de isótopos
radioativos, que continuam em funcionamento,
emitindo sinais sobre o meio interplanetário totalmente
desconhecido. Assim, foi possível verificar que a
influência do campo magnético solar vai além da órbita
de Júpiter, ao contrário da idéia aceita inicialmente de
que a heliosfera não ultrapassava este planeta. Plutão
deveria ser o último planeta a ser ultrapassado pelas
sondas espaciais. Entretanto, sua órbita é uma elipse de
excentricidade muito acentuada, ao contrário das órbitas
quase circulares dos outros planetas. Ocorre que Plutão
estará na região em que a sua órbita é circunscrita pela
de Netuno. Desse modo, Netuno passa a ser o planeta
mais afastado do Sol — o limite observacional co-
nhecido do Sistema Solar durante os próximos 15 anos.
Assim, ao cruzar a órbita de Netuno, a Pioneer saiu dos
limites sensíveis do nosso sistema planetário, numa
aventura jamais imaginada pelos cientistas, que não
esperavam poder continuar a receber inforrnações do
espaço interestelar. Estima-se que, daqui a oito milhões
de anos, a Pioneer 10 deverá alcançar um ponto no
espaço onde se encontra atualmente a estrela Aldebarã,
cuja distância da Terra é de 64 anos-luz.
Unidade astronômica (UA) 149.597.870 km
Velocidade da luz no vácuo (c) 299.792.458 km/s
Paralaxe solar 8.794148 arc seconds
Massa do Sol 1.9891 × 10
30
kg
Massa da Terra 5.9742 × 10
24
kg
Massa da Lua 7.3483 × 10
22
kg
Ano-luz (al) 9.4605 × 10
12
km = 0.30660 pc
Parsec (pc) 30.857 × 10
12
km = 3.26161 al
12
1. O momento angular L de um planeta em órbita circular é determinado pelo
produto: (considere = 3)
a) Compare o momento angular da Terra, Júpiter e Saturno.
b) Calcule o momento angular orbital de um cometa da nuvem de Oort, com
massa de 1013
kg e movendo-se em uma órbita circular de raio 50.000UA do Sol.
2. Quantos planetesimais de 100 km de diâmetro e densidade de 3500 kg/m3
seriam necessários para formar o planeta Terra?
(considere = 3)
3. Um cometa típico tem cerca de 1013
kg de gelo.
a) Quantos cometas deveriam chocar-se contra a Terra para totalizar os 2.1021
kg
b) de água que hoje estão presentes em nosso planeta?
Se esse total de água foi acumulado ao longo de 0,5 bilhões de anos (5.108
anos),
com que freqüência a Terra deve ter sido atingida por cometas ao longo desse
tempo?
4. Um asteróide rochoso e esférico de 2 km de diâmetro cuja densidade vale
2500 kg/m3
, choca-se contra a Terra com uma velocidade de 25 km/s.
a) Qual é a energia cinética do asteróide no momento do impacto?
b) Compare a energia liberada na colisão com a energia liberada pela bomba
nuclear que explodiu em Hiroxima no Japão em 6 de agosto de 1945.
5. Suponha que nave espacial está pousada em Europa, um dos satélites de
Júpiter, que tem um diâmetro de 3138 km e massa de 4,8.1022
kg. Sabe-se que
Europa tem uma órbita em torno de Júpiter de raio médio 6700,0 km. Após
coletar amostras de material na superfície do satélite a nave está pronta para
decolar e retornar a Terra.
a) Determine qual é a velocidade de escape de Europa.
b) Determine qual é a velocidade de escape de Júpiter na distância orbital do
satélite.
c) Qual deverá ser a velocidade da nave espacial para conseguir retornar a Terra?
L = M . V . R
M = massa do planeta
V = velocidade orbital
R = distância do planeta até o Sol
1 UA = 1,5 . 10
8
km
Perímetro da circunferência: p = 2. . R
Velocidade orbital: V = 2. . R
Massas: Terra = 6.10
24
kg
Júpiter = 1,9.10
27
kg
Saturno = 5,7.10
26
kg
t
Volume da esfera = 4. . R
3
3
Energia liberada pela bomba
nuclear lançada sobre
Hiroxima = 20 kiloton
1 kiloton de TNT (dinamite)
equivale a liberação de
4,2.10
12
J de energia
Energia cinética: Ec = M .V
2
M = Massa
V = velocidade do asteróide
Volume da esfera = 4. . R
3
2
3
Velocidade de escape:
ve = 2.G.M
G = 6,67.10
-11
N.m
2
/kg
2
Massa de Júpiter = 1,9.10
27
kg
R
Exercícios Aulas 5 e 6

Mais conteúdo relacionado

Mais procurados

Cruzadinha Planeta Terra.pdf
Cruzadinha Planeta Terra.pdfCruzadinha Planeta Terra.pdf
Cruzadinha Planeta Terra.pdfMary Alvarenga
 
27580175 propriedades-gerais-da-materia
27580175 propriedades-gerais-da-materia27580175 propriedades-gerais-da-materia
27580175 propriedades-gerais-da-materiacristiana Leal
 
Seres vivos-e-suas-caracteristicas
Seres vivos-e-suas-caracteristicasSeres vivos-e-suas-caracteristicas
Seres vivos-e-suas-caracteristicasMarta Alves
 
Avaliação ciências
Avaliação ciências Avaliação ciências
Avaliação ciências Isa ...
 
Reforço de Ciências (Respostas)
Reforço de Ciências (Respostas)Reforço de Ciências (Respostas)
Reforço de Ciências (Respostas)joana71
 
Cruzadinha de ciências
Cruzadinha de ciências Cruzadinha de ciências
Cruzadinha de ciências Mary Alvarenga
 
Atividade de celula
Atividade de celulaAtividade de celula
Atividade de celulamaricel loch
 
Ciências 5º ano
Ciências 5º anoCiências 5º ano
Ciências 5º anoIvaildo
 
Simulado 02 (ciências 5º ano)
Simulado 02  (ciências 5º ano)Simulado 02  (ciências 5º ano)
Simulado 02 (ciências 5º ano)Cidinha Paulo
 
atividade maquina simples para hoje 2.pdf
atividade maquina simples para hoje  2.pdfatividade maquina simples para hoje  2.pdf
atividade maquina simples para hoje 2.pdfFernandaCruzDeAraujo
 
Exercicios Fontes de Energia - 5º ano E.F
Exercicios Fontes de Energia - 5º ano E.FExercicios Fontes de Energia - 5º ano E.F
Exercicios Fontes de Energia - 5º ano E.FShaieny Leite
 
Prova 6 ano iv unidade.
Prova 6 ano iv unidade.Prova 6 ano iv unidade.
Prova 6 ano iv unidade.Luciana Souza
 
Fotossíntese - Texto e atividade de Ciências
Fotossíntese - Texto e atividade de CiênciasFotossíntese - Texto e atividade de Ciências
Fotossíntese - Texto e atividade de CiênciasMary Alvarenga
 

Mais procurados (20)

Avaliação de língua portuguesa sistema solar
Avaliação de língua portuguesa sistema solarAvaliação de língua portuguesa sistema solar
Avaliação de língua portuguesa sistema solar
 
Cruzadinha Planeta Terra.pdf
Cruzadinha Planeta Terra.pdfCruzadinha Planeta Terra.pdf
Cruzadinha Planeta Terra.pdf
 
27580175 propriedades-gerais-da-materia
27580175 propriedades-gerais-da-materia27580175 propriedades-gerais-da-materia
27580175 propriedades-gerais-da-materia
 
AVALIAÇÃO DE CIÊNCIAS: 5º ANO DO ENSINO FUNDAMENTAL 1 - II CICLO
AVALIAÇÃO DE CIÊNCIAS: 5º ANO DO ENSINO FUNDAMENTAL 1 - II CICLOAVALIAÇÃO DE CIÊNCIAS: 5º ANO DO ENSINO FUNDAMENTAL 1 - II CICLO
AVALIAÇÃO DE CIÊNCIAS: 5º ANO DO ENSINO FUNDAMENTAL 1 - II CICLO
 
Seres vivos-e-suas-caracteristicas
Seres vivos-e-suas-caracteristicasSeres vivos-e-suas-caracteristicas
Seres vivos-e-suas-caracteristicas
 
Avaliação ciências
Avaliação ciências Avaliação ciências
Avaliação ciências
 
Reforço de Ciências (Respostas)
Reforço de Ciências (Respostas)Reforço de Ciências (Respostas)
Reforço de Ciências (Respostas)
 
Cruzadinha de ciências
Cruzadinha de ciências Cruzadinha de ciências
Cruzadinha de ciências
 
Atividade de celula
Atividade de celulaAtividade de celula
Atividade de celula
 
Ficha de trabalho nº1
Ficha de trabalho nº1Ficha de trabalho nº1
Ficha de trabalho nº1
 
Sistema solar em tiras
Sistema solar em tirasSistema solar em tiras
Sistema solar em tiras
 
Ciências 5º ano
Ciências 5º anoCiências 5º ano
Ciências 5º ano
 
Atividade Avaliativa de Ciências
Atividade Avaliativa de CiênciasAtividade Avaliativa de Ciências
Atividade Avaliativa de Ciências
 
Planeta Terra
Planeta Terra Planeta Terra
Planeta Terra
 
EXERCÍCIOS DA APOSTILA "MATÉRIA E ENERGIA"
EXERCÍCIOS DA APOSTILA "MATÉRIA E ENERGIA"EXERCÍCIOS DA APOSTILA "MATÉRIA E ENERGIA"
EXERCÍCIOS DA APOSTILA "MATÉRIA E ENERGIA"
 
Simulado 02 (ciências 5º ano)
Simulado 02  (ciências 5º ano)Simulado 02  (ciências 5º ano)
Simulado 02 (ciências 5º ano)
 
atividade maquina simples para hoje 2.pdf
atividade maquina simples para hoje  2.pdfatividade maquina simples para hoje  2.pdf
atividade maquina simples para hoje 2.pdf
 
Exercicios Fontes de Energia - 5º ano E.F
Exercicios Fontes de Energia - 5º ano E.FExercicios Fontes de Energia - 5º ano E.F
Exercicios Fontes de Energia - 5º ano E.F
 
Prova 6 ano iv unidade.
Prova 6 ano iv unidade.Prova 6 ano iv unidade.
Prova 6 ano iv unidade.
 
Fotossíntese - Texto e atividade de Ciências
Fotossíntese - Texto e atividade de CiênciasFotossíntese - Texto e atividade de Ciências
Fotossíntese - Texto e atividade de Ciências
 

Destaque

4 ano simulado ciências sistema solar
4 ano simulado ciências sistema solar4 ano simulado ciências sistema solar
4 ano simulado ciências sistema solarFlávia Freitas Morais
 
Avaliação de Ciência Helena Andrade
Avaliação de Ciência Helena AndradeAvaliação de Ciência Helena Andrade
Avaliação de Ciência Helena AndradeAngela Maria
 
UNIVERSO 4°ANO - CIÊNCIAS
UNIVERSO 4°ANO - CIÊNCIASUNIVERSO 4°ANO - CIÊNCIAS
UNIVERSO 4°ANO - CIÊNCIASRegina E Franck
 
Ficha de trabalho 2 estações do ano 7º10
Ficha de trabalho 2   estações do ano  7º10Ficha de trabalho 2   estações do ano  7º10
Ficha de trabalho 2 estações do ano 7º10dinartegaspar
 
Ati geo7 uni5
Ati geo7 uni5Ati geo7 uni5
Ati geo7 uni5maritese
 
atividade de geografia
atividade de geografiaatividade de geografia
atividade de geografiaBroma Spazi
 
Proposta de trabalho com os alunos do 5º ano
Proposta de trabalho com os alunos  do 5º anoProposta de trabalho com os alunos  do 5º ano
Proposta de trabalho com os alunos do 5º anoLeisy Anne Tebaldi
 
Ciencias - 5°ano - conhecendo o universo
Ciencias - 5°ano - conhecendo o universoCiencias - 5°ano - conhecendo o universo
Ciencias - 5°ano - conhecendo o universoAri Filho
 
Apresentação do conto chapeuzinho vermelho
Apresentação do conto  chapeuzinho vermelhoApresentação do conto  chapeuzinho vermelho
Apresentação do conto chapeuzinho vermelhoeliane
 
Coordenadas geograficas
Coordenadas geograficasCoordenadas geograficas
Coordenadas geograficasJoao Paulo
 
Fontes De Energia
Fontes De EnergiaFontes De Energia
Fontes De Energiaguest3ad92c
 
Plano de aula 05 sistema excretor e respiratório
Plano de aula 05 sistema excretor e respiratórioPlano de aula 05 sistema excretor e respiratório
Plano de aula 05 sistema excretor e respiratóriofamiliaestagio
 
6. diagnotico _4_ano_lp
6. diagnotico _4_ano_lp6. diagnotico _4_ano_lp
6. diagnotico _4_ano_lpMara Sueli
 
Proposta de atividades para uma biblioteca dinâmica
Proposta de atividades para uma biblioteca dinâmicaProposta de atividades para uma biblioteca dinâmica
Proposta de atividades para uma biblioteca dinâmicaArmanda Ribeiro
 
Aula de Física (Ensino Fundamental) - Trabalho, potência, máquinas e energia I
Aula de Física (Ensino Fundamental) - Trabalho, potência, máquinas e energia IAula de Física (Ensino Fundamental) - Trabalho, potência, máquinas e energia I
Aula de Física (Ensino Fundamental) - Trabalho, potência, máquinas e energia IRonaldo Santana
 

Destaque (20)

Avaliação de ciências
Avaliação de ciênciasAvaliação de ciências
Avaliação de ciências
 
4 ano simulado ciências sistema solar
4 ano simulado ciências sistema solar4 ano simulado ciências sistema solar
4 ano simulado ciências sistema solar
 
Av 1 cie 4°ano
Av 1 cie 4°anoAv 1 cie 4°ano
Av 1 cie 4°ano
 
Avaliação de Ciência Helena Andrade
Avaliação de Ciência Helena AndradeAvaliação de Ciência Helena Andrade
Avaliação de Ciência Helena Andrade
 
UNIVERSO 4°ANO - CIÊNCIAS
UNIVERSO 4°ANO - CIÊNCIASUNIVERSO 4°ANO - CIÊNCIAS
UNIVERSO 4°ANO - CIÊNCIAS
 
Ficha de trabalho 2 estações do ano 7º10
Ficha de trabalho 2   estações do ano  7º10Ficha de trabalho 2   estações do ano  7º10
Ficha de trabalho 2 estações do ano 7º10
 
Plano de aula corpos celestes
Plano de aula corpos celestesPlano de aula corpos celestes
Plano de aula corpos celestes
 
Ati geo7 uni5
Ati geo7 uni5Ati geo7 uni5
Ati geo7 uni5
 
atividade de geografia
atividade de geografiaatividade de geografia
atividade de geografia
 
Proposta de trabalho com os alunos do 5º ano
Proposta de trabalho com os alunos  do 5º anoProposta de trabalho com os alunos  do 5º ano
Proposta de trabalho com os alunos do 5º ano
 
Ciencias - 5°ano - conhecendo o universo
Ciencias - 5°ano - conhecendo o universoCiencias - 5°ano - conhecendo o universo
Ciencias - 5°ano - conhecendo o universo
 
Apresentação do conto chapeuzinho vermelho
Apresentação do conto  chapeuzinho vermelhoApresentação do conto  chapeuzinho vermelho
Apresentação do conto chapeuzinho vermelho
 
Coordenadas geograficas
Coordenadas geograficasCoordenadas geograficas
Coordenadas geograficas
 
Coordenadas Geograficas
Coordenadas GeograficasCoordenadas Geograficas
Coordenadas Geograficas
 
Fontes De Energia
Fontes De EnergiaFontes De Energia
Fontes De Energia
 
Plano de aula 05 sistema excretor e respiratório
Plano de aula 05 sistema excretor e respiratórioPlano de aula 05 sistema excretor e respiratório
Plano de aula 05 sistema excretor e respiratório
 
6. diagnotico _4_ano_lp
6. diagnotico _4_ano_lp6. diagnotico _4_ano_lp
6. diagnotico _4_ano_lp
 
Como fazer uma ficha de leitura
Como fazer uma ficha de leituraComo fazer uma ficha de leitura
Como fazer uma ficha de leitura
 
Proposta de atividades para uma biblioteca dinâmica
Proposta de atividades para uma biblioteca dinâmicaProposta de atividades para uma biblioteca dinâmica
Proposta de atividades para uma biblioteca dinâmica
 
Aula de Física (Ensino Fundamental) - Trabalho, potência, máquinas e energia I
Aula de Física (Ensino Fundamental) - Trabalho, potência, máquinas e energia IAula de Física (Ensino Fundamental) - Trabalho, potência, máquinas e energia I
Aula de Física (Ensino Fundamental) - Trabalho, potência, máquinas e energia I
 

Semelhante a As principais regularidades do Sistema Solar

Origem do Sol e dos Planetas
Origem do Sol e dos PlanetasOrigem do Sol e dos Planetas
Origem do Sol e dos PlanetasRita Galrito
 
FormaçãO Do Sistema Solar
FormaçãO Do Sistema SolarFormaçãO Do Sistema Solar
FormaçãO Do Sistema SolarCidalia Aguiar
 
Capítulo 3 o sistema solar_Fundamentos da Astronomia
Capítulo 3   o sistema solar_Fundamentos da AstronomiaCapítulo 3   o sistema solar_Fundamentos da Astronomia
Capítulo 3 o sistema solar_Fundamentos da AstronomiaBeatriz Furtado
 
(2) biologia e geologia 10º ano - geologia - a terra, um planeta muito espe...
(2) biologia e geologia   10º ano - geologia - a terra, um planeta muito espe...(2) biologia e geologia   10º ano - geologia - a terra, um planeta muito espe...
(2) biologia e geologia 10º ano - geologia - a terra, um planeta muito espe...Hugo Martins
 
A Terra, um planeta muito especial
A Terra, um planeta muito especialA Terra, um planeta muito especial
A Terra, um planeta muito especialessg
 
Material OBA Pt.3
Material OBA Pt.3Material OBA Pt.3
Material OBA Pt.3eing2010
 
C:\Fakepath\FormaçãO Do Sistema Solar
C:\Fakepath\FormaçãO Do Sistema SolarC:\Fakepath\FormaçãO Do Sistema Solar
C:\Fakepath\FormaçãO Do Sistema Solarguestd7f9cbb
 
Formação do Sistema Solar
Formação do Sistema SolarFormação do Sistema Solar
Formação do Sistema SolarTânia Reis
 
Formação do Sistema Solar
Formação do Sistema SolarFormação do Sistema Solar
Formação do Sistema Solarguestdbe434
 
6 ano-atividade-complementar-2-o-sistema-solar
6 ano-atividade-complementar-2-o-sistema-solar6 ano-atividade-complementar-2-o-sistema-solar
6 ano-atividade-complementar-2-o-sistema-solarAdemir Santana
 
Sistema Solar Guião
Sistema Solar GuiãoSistema Solar Guião
Sistema Solar GuiãoTânia Reis
 
Sistema solar ricardo
Sistema solar ricardoSistema solar ricardo
Sistema solar ricardoHelena Amaral
 
Rodrigo_sistema_solar.ppt sistema Solar e sua composição
Rodrigo_sistema_solar.ppt sistema Solar e sua composiçãoRodrigo_sistema_solar.ppt sistema Solar e sua composição
Rodrigo_sistema_solar.ppt sistema Solar e sua composiçãoEdcleisonGaldino
 
sistema_solar (1).ppt
sistema_solar (1).pptsistema_solar (1).ppt
sistema_solar (1).pptrobson226649
 
FormaçãO Do Sistema Solar
FormaçãO Do Sistema SolarFormaçãO Do Sistema Solar
FormaçãO Do Sistema SolarNuno Correia
 
A Terra no Sistema Solar.pdf
A Terra no Sistema Solar.pdfA Terra no Sistema Solar.pdf
A Terra no Sistema Solar.pdfAshe Sampaio
 

Semelhante a As principais regularidades do Sistema Solar (20)

Origem do Sol e dos Planetas
Origem do Sol e dos PlanetasOrigem do Sol e dos Planetas
Origem do Sol e dos Planetas
 
FormaçãO Do Sistema Solar
FormaçãO Do Sistema SolarFormaçãO Do Sistema Solar
FormaçãO Do Sistema Solar
 
Capítulo 3 o sistema solar_Fundamentos da Astronomia
Capítulo 3   o sistema solar_Fundamentos da AstronomiaCapítulo 3   o sistema solar_Fundamentos da Astronomia
Capítulo 3 o sistema solar_Fundamentos da Astronomia
 
(2) biologia e geologia 10º ano - geologia - a terra, um planeta muito espe...
(2) biologia e geologia   10º ano - geologia - a terra, um planeta muito espe...(2) biologia e geologia   10º ano - geologia - a terra, um planeta muito espe...
(2) biologia e geologia 10º ano - geologia - a terra, um planeta muito espe...
 
A Terra, um planeta muito especial
A Terra, um planeta muito especialA Terra, um planeta muito especial
A Terra, um planeta muito especial
 
Material OBA Pt.3
Material OBA Pt.3Material OBA Pt.3
Material OBA Pt.3
 
C:\Fakepath\FormaçãO Do Sistema Solar
C:\Fakepath\FormaçãO Do Sistema SolarC:\Fakepath\FormaçãO Do Sistema Solar
C:\Fakepath\FormaçãO Do Sistema Solar
 
Formação do Sistema Solar
Formação do Sistema SolarFormação do Sistema Solar
Formação do Sistema Solar
 
Formação do Sistema Solar
Formação do Sistema SolarFormação do Sistema Solar
Formação do Sistema Solar
 
Sistema solar
Sistema solarSistema solar
Sistema solar
 
ASTRONOMIA
ASTRONOMIAASTRONOMIA
ASTRONOMIA
 
6 ano-atividade-complementar-2-o-sistema-solar
6 ano-atividade-complementar-2-o-sistema-solar6 ano-atividade-complementar-2-o-sistema-solar
6 ano-atividade-complementar-2-o-sistema-solar
 
Sistema Solar Guião
Sistema Solar GuiãoSistema Solar Guião
Sistema Solar Guião
 
Vanuza ativ5
Vanuza ativ5Vanuza ativ5
Vanuza ativ5
 
Sistema solar ricardo
Sistema solar ricardoSistema solar ricardo
Sistema solar ricardo
 
S.T.C. 7 - O Universo
S.T.C. 7 - O UniversoS.T.C. 7 - O Universo
S.T.C. 7 - O Universo
 
Rodrigo_sistema_solar.ppt sistema Solar e sua composição
Rodrigo_sistema_solar.ppt sistema Solar e sua composiçãoRodrigo_sistema_solar.ppt sistema Solar e sua composição
Rodrigo_sistema_solar.ppt sistema Solar e sua composição
 
sistema_solar (1).ppt
sistema_solar (1).pptsistema_solar (1).ppt
sistema_solar (1).ppt
 
FormaçãO Do Sistema Solar
FormaçãO Do Sistema SolarFormaçãO Do Sistema Solar
FormaçãO Do Sistema Solar
 
A Terra no Sistema Solar.pdf
A Terra no Sistema Solar.pdfA Terra no Sistema Solar.pdf
A Terra no Sistema Solar.pdf
 

Mais de Nuricel Aguilera

Como preparar uma boa apresentação científica
Como preparar uma boa apresentação científicaComo preparar uma boa apresentação científica
Como preparar uma boa apresentação científicaNuricel Aguilera
 
Emi enem see ac química 2
Emi enem see ac química 2Emi enem see ac química 2
Emi enem see ac química 2Nuricel Aguilera
 
Como as crianças aprendem e se comportam
Como as crianças aprendem e se comportamComo as crianças aprendem e se comportam
Como as crianças aprendem e se comportamNuricel Aguilera
 
Astronomia 2 - A esfera celeste
Astronomia 2 - A esfera celesteAstronomia 2 - A esfera celeste
Astronomia 2 - A esfera celesteNuricel Aguilera
 
Astronomia 1 - A astronomia na Antigüidade
Astronomia 1 - A astronomia na AntigüidadeAstronomia 1 - A astronomia na Antigüidade
Astronomia 1 - A astronomia na AntigüidadeNuricel Aguilera
 

Mais de Nuricel Aguilera (9)

Filosofia - you tube
Filosofia  - you tubeFilosofia  - you tube
Filosofia - you tube
 
Olimpíada de matemática
Olimpíada de matemáticaOlimpíada de matemática
Olimpíada de matemática
 
Como preparar uma boa apresentação científica
Como preparar uma boa apresentação científicaComo preparar uma boa apresentação científica
Como preparar uma boa apresentação científica
 
Emi enem see ac química 2
Emi enem see ac química 2Emi enem see ac química 2
Emi enem see ac química 2
 
Quimica 1
Quimica 1Quimica 1
Quimica 1
 
Biologia citologia - b1
Biologia   citologia - b1Biologia   citologia - b1
Biologia citologia - b1
 
Como as crianças aprendem e se comportam
Como as crianças aprendem e se comportamComo as crianças aprendem e se comportam
Como as crianças aprendem e se comportam
 
Astronomia 2 - A esfera celeste
Astronomia 2 - A esfera celesteAstronomia 2 - A esfera celeste
Astronomia 2 - A esfera celeste
 
Astronomia 1 - A astronomia na Antigüidade
Astronomia 1 - A astronomia na AntigüidadeAstronomia 1 - A astronomia na Antigüidade
Astronomia 1 - A astronomia na Antigüidade
 

Último

ELETIVA TEXTOS MULTIMODAIS LINGUAGEM VER
ELETIVA TEXTOS MULTIMODAIS LINGUAGEM VERELETIVA TEXTOS MULTIMODAIS LINGUAGEM VER
ELETIVA TEXTOS MULTIMODAIS LINGUAGEM VERDeiciane Chaves
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfEditoraEnovus
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.keislayyovera123
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMVanessaCavalcante37
 
Universidade Empreendedora como uma Plataforma para o Bem comum
Universidade Empreendedora como uma Plataforma para o Bem comumUniversidade Empreendedora como uma Plataforma para o Bem comum
Universidade Empreendedora como uma Plataforma para o Bem comumPatrícia de Sá Freire, PhD. Eng.
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumGÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumAugusto Costa
 
Simulado 2 Etapa - 2024 Proximo Passo.pdf
Simulado 2 Etapa  - 2024 Proximo Passo.pdfSimulado 2 Etapa  - 2024 Proximo Passo.pdf
Simulado 2 Etapa - 2024 Proximo Passo.pdfEditoraEnovus
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavrasMary Alvarenga
 
Orações subordinadas substantivas (andamento).pptx
Orações subordinadas substantivas (andamento).pptxOrações subordinadas substantivas (andamento).pptx
Orações subordinadas substantivas (andamento).pptxKtiaOliveira68
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024Jeanoliveira597523
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptxthaisamaral9365923
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.silves15
 
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...ArianeLima50
 
E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?Rosalina Simão Nunes
 

Último (20)

ELETIVA TEXTOS MULTIMODAIS LINGUAGEM VER
ELETIVA TEXTOS MULTIMODAIS LINGUAGEM VERELETIVA TEXTOS MULTIMODAIS LINGUAGEM VER
ELETIVA TEXTOS MULTIMODAIS LINGUAGEM VER
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdf
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
 
Universidade Empreendedora como uma Plataforma para o Bem comum
Universidade Empreendedora como uma Plataforma para o Bem comumUniversidade Empreendedora como uma Plataforma para o Bem comum
Universidade Empreendedora como uma Plataforma para o Bem comum
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumGÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
 
Simulado 2 Etapa - 2024 Proximo Passo.pdf
Simulado 2 Etapa  - 2024 Proximo Passo.pdfSimulado 2 Etapa  - 2024 Proximo Passo.pdf
Simulado 2 Etapa - 2024 Proximo Passo.pdf
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavras
 
Orações subordinadas substantivas (andamento).pptx
Orações subordinadas substantivas (andamento).pptxOrações subordinadas substantivas (andamento).pptx
Orações subordinadas substantivas (andamento).pptx
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024
 
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.
 
Bullying, sai pra lá
Bullying,  sai pra láBullying,  sai pra lá
Bullying, sai pra lá
 
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
Cultura e Literatura indígenas: uma análise do poema “O silêncio”, de Kent Ne...
 
E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?
 
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
 

As principais regularidades do Sistema Solar

  • 1. 1 As regularidades do nosso Sistema Solar 1. Cada planeta está relativamente isolado no espaço. 2. As órbitas planetárias são aproximadamente circulares (com exceção Das de Plutão e Mercúrio). 3. As órbitas dos planetas estão situadas, aproximadamente, no mesmo plano. 4. A direção da órbita dos planetas ao redor do Sol é a mesma com que o Sol gira, em movimento de rotação, em torno de seu eixo. 5. A direção do movimento de rotação da maioria dos planetas em torno de seus eixos (exceção feita ao planeta Vênus) é a mesma com que o Sol gira em torno de seu eixo. 6. A maioria dos satélites conhecidos que giram ao redor dos planetas tem a mesma direção orbital que o movimento de rotação desses mesmos planetas. 7. Nosso Sistema Solar é bem diferenciado: há os planetas próximos ao Sol, parecidos com a Terra (telúricos) – rochosos de alta densidade e poucos satélites, de atmosferas moderadas e pequena velocidade de rotação – e os parecidos com Júpiter (jovianos) – mais afastados do Sol, gasosos e com baixa densidade, atmosferas espessas, movimento de rotação muito rápido e muitos satélites. 8. Os asteróides são muito antigos e têm características que não são típicas de planetas ou satélites. 9. Os cometas são da época primitiva, fragmentos de blocos de gelo que não têm órbitas no plano da eclíptica (plano em que orbitam os planetas) e encontram-se a enormes distâncias do Sol. 1. A formação do Sistema Solar Explicar teoricamente a evolução da matéria primitiva que deu origem ao Sistema Solar não é tarefa fácil, tanto mais porque não se conhecem, exatamente, quais as condições reinantes naquele momento. Nenhum dos modelos propostos explica definitivamente todas as características do Sistema Solar na atualidade. A teoria nebular é um exemplo de uma teoria evolutiva que descreve o desenvolvimento do sistema solar como uma série de passos graduais e naturais, compreensível em termos de princípios físicos bem estabelecidos. Já a teoria das catástrofes invoca eventos celestiais acidentais. Astrônomos normalmente não gostam de invocar catástrofes para explicar o universo, porém, há exemplos em que só o puro acaso pode ter determinado certos aspectos do Sistema Solar. As hipóteses propostas tentam esclarecer os seguintes fatos observados: ASTRONOMIA AULA - 3 SISTEMA SOLAR - FORMAÇÃO Figura 3 - Gás interstelar e faixas de poeira cósmica escura marcam esta região de formação de estrelas. A nuvem escura conhecida como Barnard 86 (esquerda) margeia um agrupamento de estrelas azuis jovens chamado NGC 6520 (direito). Barnard 86 pode fazer parte de uma nuvem interestelar maior que deu origem a estas estrelas. Figura 1 - Os planetas do Sistema Solares têm movimento de rotação no mesmo sentido que seu movimento de translação em torno do Sol, a exceção feita ao planeta Vênus. Esse possui movimento de rotação retrógrado. Figura 2 – A galáxia de Andrômeda, assim como a nossa própria Via Láctea, possui estrelas jovens e estrelas velhas. O fim da vida evolutiva dessas estrelas velhas resulta, entre outras coisas, em nuvens de gás e poeira interestelar que servirão de matéria-prima para a formação de novas estrelas.
  • 2. 2 Todos os fatos observados sugerem, fortemente, um alto grau de ordem dentro do nosso Sistema Solar. O sistema inteiro não é um punhado fortuito de objetos que giram ou orbitam aleatoriamente. Por conseguinte, é improvável que nosso Sistema Solar tenha sido formado casualmente, devido à acumulação lenta de "planetas" interestelares já prontos e apenas capturados pelo nosso Sol ao longo de bilhões de anos. A arquitetura global de nosso Sistema Solar é muito organizada, e a idade de seus componentes é muito uniforme para ser o resultado de eventos caóticos fortuitos. Os fatos apontam para uma formação única, há 4,6 bilhões de anos. É importante perceber o que nossa teoria do Sistema Solar não precisa explicar. Houve bastante tempo para que os planetas evoluíssem depois de sua formação, assim circunstâncias que não estão diretamente associadas ao desenvolvimento do estado inicial do Sistema Solar não foram incluídas na nossa lista. Alguns exemplos disso são, o intenso efeito estufa em Vênus, a rotação sincrônica da Lua, o aparecimento de vida na Terra, os anéis dos planetas jovianos e outros fenômenos mais. Além de suas muitas regularidades, nosso Sistema Solar também tem muitas irregularidades notáveis, algumas das quais já mencionamos. A teoria explicativa da formação do Sistema Solar deve prover razões fortes para as características planetárias observadas sendo, contudo, flexível o bastante para permitir e explicar também as divergências. 2. Teoria da nebulosa primitiva Um dos primeiros modelos explicativos da origem do Sistema Solar foi sugerido, em 1755, pelo filósofo alemão Immanuel Kant (1724-1804), e desenvolvido, em 1796, pelo matemático francês Pierre-Simon de Laplace (1749-1827), em seu livro Exposition du System du Monde. Laplace, que desenvolveu a teoria das probabilidades, calculou que como todos os planetas estão no mesmo plano, giram em torno do Sol na mesma direção, e também giram em torno de si mesmos na mesma direção (com exceção de Vênus), só poderiam ter-se formado de uma mesma grande nuvem de partículas em rotação (figura 5a). Essa hipótese sugeria que uma grande nuvem rotante de gás interestelar, a nebulosa solar, colapsou para dar origem ao Sol e aos planetas. Uma vez que a contração se iniciou, a força gravitacional da nuvem atuando em si mesma acelerou o colapso. À medida que a nuvem colapsava, a rotação da nuvem aumentava por conservação do momentum angular, e eventualmente a massa de gás rotante assumiria uma forma discoidal, com uma concentração central que deu origem ao Sol. Os planetas teriam se formado a partir do material no disco (figura 5b). 3. Teoria da condensação A hipótese moderna para a origem do Sistema Solar é baseada na hipótese nebular e é denominada teoria da condensação. As observações modernas indicam que muitas nuvens de gás interestelar estão no processo de colapsar em estrelas, e os argumentos físicos que predizem o achatamento e o aumento da taxa de rotação estão corretos. A contribuição moderna à hipótese nebular diz respeito principalmente a como os planetas se formaram a partir do gás no disco, e foi desenvolvida nos anos 40 pelo físico alemão C. Von Weizäker. Após colapsar, a nuvem começou a esfriar-se; apenas o Proto-Sol, no centro, manteve sua temperatura. O resfriamento acarretou a condensação rápida do material, o que deu origem aos planetesimais, agregados de material com tamanhos da ordem de quilômetros de diâmetro. Figura 5 - Laplace imaginou que, ao girar, a nebulosa solar deixaria para trás uma série de anéis concêntricos, que viriam a transformar-se em protoplanetas orbitando em torno de um proto-sol - bola quente de gás que evoluiria até tornar-se o Sol. A descrição do colapso e do achatamento da nebulosa solar está essencialmente correta, mas quando os astrônomos modernos usaram computadores para estudar os aspectos mais sutis do problema, alguns erros foram verificados na teoria nebular de Laplace. Os cálculos mostraram que os anéis do tipo previsto pela teoria, provavelmente não se formariam e, se isso ocorresse, eles não se condensariam para formar planetas. Na realidade, os cálculos de computador verificaram que os anéis tenderiam a dispersar-se. Figura 4 - A estrela HD 65750 na constelação de Carina é uma das muitas observadas que lançam material ao espaço. Parte desse material ejetado condensa-se em grãos de poeira interestelar, formando a nebulosa (IC 2220) que reflete a luz da estrela (foto acima).
  • 3. 3 Primeira fase De acordo com a teoria da condensação, os planetas foram formados em três estágios. Inicialmente, grãos de poeira cósmica interestelar dentro da nebulosa formaram núcleos de condensação em torno dos quais a matéria começou a se acumular. Isso acelerou o processo da formação das primeiras aglomerações pequenas de matéria. Uma vez formadas, essas aglomerações cresceram rapidamente aderindo umas às outras. Elas cresceram gradualmente, transformando-se em objetos que variaram seu tamanho de um seixo, para o de uma bola de beisebol, aumentando cada vez mais. Esse processo de acresção — o gradual crescimento dos pequenos objetos devido às colisões e fusão deles — criou objetos maiores, com algumas centenas de quilômetros. Ao término desta primeira fase, o Sistema Solar ficou composto de hidrogênio e gás de hélio e milhões de planetesimais - objetos do tamanho de luas pequenas, com campos gravitacionais fortes o bastante para afetar seus vizinhos. Segunda fase Na segunda fase do processo de crescimento, ao longo de cerca de cem milhões de anos, as forças gravitacionais entre o planetesimais os fizeram colidir e fundir, formando objetos cada vez maiores. Aos poucos, quase todo o material dos planetesimais foi lançado para algum dos grandes protoplanetas – grandes acúmulos de matéria que posteriormente evoluiriam transformando-se nos planetas que conhecemos hoje. Na figura acima, vemos uma simulação em computador do crescimento no sistema solar interno. Note como, a redução de corpos leva ao espaçamento das órbitas que são praticamente circulares. Terceira fase Quando, os protoplanetas se formam, outro processo importante tem início. Os campos gravitacionais fortes produzem muitas colisões de alta velocidade entre os planetesimais e os protoplanetas. Estas colisões conduzem à fragmentação. Assim, os objetos maiores absorvem os restos dos menores, ficando ainda mais massivos. Alguns desses fragmentos produziram o intenso bombardeamento meteórico que nós sabemos ter acontecido no início da formação dos planetas e satélites. Um número relativamente pequeno de fragmentos, com dimensões entre 10 e 100km, escaparam de ser capturados por um planeta ou um satélite e se tornaram os asteróides e cometas do nosso Sistema Solar. A formação dos planetesimais Figura 6 - O modelo atualmente adotado pela maioria dos astrônomos é uma versão mais requintada da teoria nebular. Conhecida como a teoria de condensação, combina as características boas da teoria nebular velha com informação nova sobre química interestelar, eliminando a maioria dos problemas da teoria velha. O ingrediente novo fundamental no quadro moderno é a presença da poeira cósmica interestelar na nebulosa solar. Os astrônomos reconhecem agora que o espaço entre as estrelas está permeado com grãos de pó microscópicos, decorrente da acumulação de matéria ejetada durante a sua destruição no final de sua vida evolutiva. Essas partículas foram formadas nas atmosferas menos quentes das estrelas velhas de então. O resultado é que nossa galáxia inteira está coberta de lixo com pedaços grossos e pequenos de matéria fria e rochosa que têm tamanhos em torno de 0,02mm de diâmetro. Figura 7 – Formação do Sistema Solar.
  • 4. 4 4. A formação dos protoplanetas Modelos matemáticos indicam que, depois de aproximadamente 100 milhões de anos, o Sistema Solar primitivo evoluiu em nove protoplanetas, dúzias de proto- satélites, e o proto-Sol. Simulações em computador mostram o espaçamento crescente entre os planetas, embora a razão para a regularidade vista no espaçamento planetário atual permanece obscuro. Um bilhão de anos mais foram necessários para limpar o Sistema Solar do lixo interplanetário. Foi nesse período que ocorreu o bombardeio meteorítico mais pesado, ao mesmo tempo em que o número de planetesimais diminuía. Os planetesimais a seguir cresceram por acreção de material para dar origem a objetos maiores, os núcleos planetários. Sua composição dependia da distância ao Sol: regiões mais externas tinham temperaturas mais baixas, e mesmo os materiais voláteis tinham condições de se condensar, ao passo que nas regiões mais internas e quentes, as substâncias voláteis foram perdidas. Na parte externa do Sistema Solar, onde o material condensado da nebulosa continha silicatos e gelos, esses núcleos cresceram até atingirem massas da ordem de 10 vezes a massa da Terra, ficando tão grandes a ponto de poderem atrair o gás a seu redor, e então cresceram mais ainda por acreção de grande quantidade de hidrogênio e hélio da nebulosa solar. Deram origem assim aos planetas jovianos. Na parte interna, onde apenas os silicatos estavam presentes, o núcleo planetário não pôde crescer muito, dando origem aos planetas telúricos. O papel da temperatura O Sistema Solar primitivo contraiu-se sob a influência da força gravitacional que o aqueceu e o aplainou na forma de um disco. A densidade e temperatura eram maiores próximo do proto-Sol central e muito mais baixas nas regiões periféricas. Cálculos detalhados indicam que a temperatura do gás perto do centro do istema era de vários milhares de kelvins. A uma distância de 10 UA, onde Saturno se encontra na atualidade, a temperatura era só de aproximadamente 100 K. A maior parte do gás e poeira cósmica original no Sistema Solar interno desapareceu nesta fase, mas os grãos nas partes externas provavelmente permaneceram em grande parte intactos. Figura 8 - A teoria da condensação e de formação de planetas: (a) Nuvem de gás e poeira cósmica (b) A nebulosa solar se contrai e se aplaina em um disco girando. A concentração grande no centro se tornará o Sol. As concentrações menores nas regiões exteriores virão a tornar-se planetas jovianos (gigantes gasosos). (c) A poeira cósmica se aglomera em núcleos de condensação, formando acúmulos de matéria que colidem e se fundem gerando os planetesimais com o tamanho de pequenas luas. (d) Ventos fortes do Sol, que ainda se está formando, expelem o gás da nebulosa (esse processo chama-se T- Tauri). (e) Planetesimais continuam colidindo e crescendo. (f) Passados cerca de cem milhões de anos, planetesimais formam alguns planetas grandes que viajam em órbitas aproximadamente circulares. Com o passar do tempo, o gás irradiou seu calor para fora e a temperatura diminuiu em todos os locais, menos no centro, onde o Sol estava-se formando. Em todos lugares além do proto- Sol, grãos de pó novos começavam a condensar-se (ou cristalizar-se). Quando a poeira se refez, a distribuição de grãos era muito diferente. Como mostra o diagrama ao lado, nas regiões próximas ao proto-Sol, onde hoje encontramos a órbita do planeta Mercúrio, poderiam formar-se só grãos metálicos. . Estava simplesmente muito quente para qualquer outra coisa existir. Um pouco mais distante, a aproximadamente 1UA, era possível que grânulos rochosos e de silicatos se formassem. Há aproximadamente 3UA ou 4UA, gelo poderia existir, e assim por diante. Quanto maior a distância ao proto-Sol, mais matéria conseguiria condensar-se.
  • 5. 5 5. Limpando os escombros Depois que os planetas principais se formaram, a maioria do planetesimais que restaram ou colidiu com um dos novos planetas ou foi lançado para a nuvem de Oort, só restando uma pequena fração de material sólido. Mas o que aconteceu com o gás que compunha a maior parte da nuvem original? Ao que parece, a explicação está no fato de que as estrelas jovens experimentam uma fase evolutiva altamente ativa conhecida como fase T Tauri (figura 9) durante a qual sua radiação e ventos estelares são muito intensos. Quando o Sol entrou nesta fase, logo antes das reações nucleares começarem a queimá-lo em seu centro, o gás que permanecia entre os planetas foi soprado para fora no espaço interstelar pelo vento solar e pela pressão de radiação do Sol. O que restou, após esse período, foram os protoplanetas e fragmentos de planetesimais, que continuaram a longa evolução para tornar-se o Sistema Solar que conhecemos hoje. 6. Os planetas de jovianos Nas regiões medianas e exteriores do sistema planetário primitivo, para além de aproximadamente 5UA do centro, a temperatura era bastante baixa o suficiente para que ocorresse a condensação de vários gases abundantes. Depois do hidrogênio e hélio, os materiais mais comuns na nebulosa solar (assim como no universo) eram o carbono, nitrogênio e oxigênio. As combinações mais comuns de substâncias químicas contendo esses elementos eram o vapor de água, a amônia e o metano. Estas combinações ainda são os componentes principais das atmosferas dos planetas jovianos. Sob condições frias, temperaturas de 100K ou menos, e baixa densidade, estes gases condensaram-se formando os fragmentos primordiais destinados a tornar-se núcleos dos planetas jovianos. Os planetesimais formados a essas distâncias eram predominantemente compostos de gelo. Os planetas exteriores começaram seu crescimento mais cedo e cresceram rapidamente, aumentando sua massa não só com grãos de poeira, mas também com gás, o que resultou na formação dos quatro planetas gigantescos, mundos ricos em hidrogênio. 7. Os planetas terrestres Nas regiões internas do Sistema Solar primitivo, começou a condensação de gás para sólido quando a temperatura era aproximadamente 1000K. O ambiente era muito quente para que o gelo resistisse. Muitos dos elementos abundantes e mais pesados, como o silício, ferro, magnésio, níquel e alumínio combinaram-se com o oxigênio para produzir uma variedade de materiais rochosos. Assim, os planetesimais no Sistema Solar interno eram rochosos e viriam a formar protoplanetas e, posteriormente, planetas também desses materiais mais pesados. A temperatura de superfície dos planetas internos era muito alta, e a gravidade deles muito baixa. Figura 9- (a) Ventos estelares fortes de estrelas recém nascidas foram responsáveis por varrer qualquer poeira cósmica e gás que restasse do processo de formação da estrela (b) Quando o gás e poeira foram lançados para fora do sistema planetário, deixaram para trás os protoplanetas e os planetesimais. Figura 10 - Júpiter, Saturno, Urano e Netuno são chamados de jovianos ou planetas externos, pois têm características típicas de Júpiter, tais como baixa densidade. São constituídos principalmente de hidrogênio, hélio, gelo (H2O), dióxido de carbono, metano e amônia. Figura 11 - Os planetas telúricos, Terra, Mercúrio, Vênus e Marte, assemelham-se à Terra, têm densidade maior e são constituídos de rochas (silicatos e óxidos) e metais, tais como níquel e ferro. O planeta Plutão não possui uma classificação definida.
  • 6. 6 8. A teoria das catástrofes A teoria da condensação responde pelos nove pontos "característicos" listados no início da aula 5. Como já foi dito, um aspecto importante de qualquer teoria explicativa da origem e formação do Sistema Solar é sua flexibilidade para permitir a possibilidade de divergências do esquema bem ordenado das coisas. Na teoria da condensação essa capacidade é devida a aleatoriedade inerente aos encontros que fundem os planetesimais em protoplanetas. Com a diminuição de corpos grandes e o aumento de suas massas, as colisões individuais adquiriram maior importância. Ainda podem ser vistos os efeitos destas colisões em muitas partes do Sistema Solar, por exemplo, as grandes crateras presentes em muitos dos longínquos satélites que estudamos hoje. Começou-se com nove pontos regulares para explicar a formação de nosso sistema planetário e termina-se com oito características irregulares do Sistema Solar. É impossível testar quaisquer destas afirmações diretamente, mas é razoável supor que alguns, ou até mesmo todos, dos seguintes aspectos "estranhos" do Sistema Solar podem ser explicados em termos de colisões nas fases formativas do sistema protoplanetário. Nem todos os astrônomos estão de acordo com todas essas explicações, porém, a maioria deles aceita boa parte delas. As irregularidades do nosso Sistema Solar 1. O núcleo de níquel-ferro excepcionalmente grande de Mercúrio pode ser o resultado de uma colisão entre dois protoplanetas parcialmente diferenciados. Os núcleos podem ter-se fundido, e parte do material do manto ter-se perdido. 2. Dois corpos grandes poderiam ter-se fundido para formar Vênus, sendo essa a causa de sua baixa velocidade de rotação e de seu movimento retrógrado. 3. O sistema Terra-Lua pode ter-se formado da colisão entre a proto-Terra e um objeto do tamanho do Marte. 4. Uma recente colisão com um planetesimal grande pode ter causado a curiosa assimetria norte-sul de Marte e pode ter lançado parte da atmosfera do planeta. 5. O eixo de rotação inclinado de Urano pode ter sido causado por uma colisão com um planetesimal suficientemente grande, ou pela fusão de dois planetas menores. 6. A lua de Urano, Miranda, com sua estranha superfície, pode ter sido quase destruída numa colisão com um planetesimal. 7. Interações entre o protoplanetas jovianos e um ou mais planetesimais podem ser a resposta pelas luas irregulares desses planetas e, em particular, pelo movimento retrógrado de Tritão. 8. Plutão simplesmente pode ser um representante do grande cinturão de Kuiper, e o sistema Plutão -Caronte pode ser o resultado de uma colisão entre dois planetesimais frios antes que a maioria fosse lançada através de interações com os planetas jovianos. Dois corpos grandes poderiam ter-se fundido para formar Vênus, sendo essa a causa de sua baixa velocidade de rotação O eixo de rotação inclinado de Urano pode ter sido causado por uma colisão com um planetesimal suficientemente grande, ou pela fusão de dois planetas menores. O núcleo de níquel-ferro excepcionalmente grande de Mercúrio pode ser o resultado de uma colisão entre dois protoplanetas parcialmente diferenciados.
  • 7. 7 9. Os planetas extrassolares O número de planetas em órbita de outras estrelas, ou seja, que estão fora do Sistema Solar, atinge 60 até junho de 2001, sem contar 17 descobertas ainda não confirmadas. No mesmo ano, os cientistas verificam a possibilidade da existência de planetas sem estrelas. Eles flutuariam livres no espaço interestelar, sem estar presos pela gravidade de nenhum sol. A descoberta ainda não pode ser considerada definitiva, pois é preciso checar se realmente não havia estrelas tão pequenas que não chegavam a brilhar. Das estrelas dotadas de sistema planetário, apenas duas têm mais de um planeta: a Ípsilon de Andrômeda arrasta a seu redor um sistema com três corpos. Em julho de 1999, uma equipe do Observatório do Sul Europeu localiza, em torno da estrela Iota da Constelação do Relógio, a 56 anos-luz da Terra, o primeiro corpo com uma órbita semelhante à da Terra em torno do Sol, completando uma translação a cada 320 dias. Em agosto daquele ano é encontrado o primeiro planeta a orbitar duas estrelas. Características A maioria dos planetas extrassolares tem várias vezes a massa de Júpiter, o maior planeta do Sistema Solar, e mantém órbitas próximas a sua estrela, ao contrário do que acontece com os grandes planetas que orbitam o Sol. Os astrônomos buscam novas teorias para explicar como corpos tão grandes conseguem perambular por regiões tão próximas da estrela. Eles avaliam também que nenhum dos novos planetas parece oferecer condições ao desenvolvimento da vida. Nesse aspecto, a Terra - com órbita quase circular, a uma distância segura do Sol, temperatura amena, água em fartura e atmosfera estável - ainda é exceção no Universo. Isso não significa que planetas semelhantes não existam. Eles apenas podem ser pequenos demais para ser detectados pelos instrumentos e pelas técnicas da astronomia atual. Como não emitem luz, só podem ser localizados indiretamente.Uma das técnicas para confirmar a existência desses planetas consiste em captar movimentos sutis da estrela central ao ser puxada pela força da gravidade do corpo que a circunda. Outra forma é medir variações em seu brilho, que denunciam a passagem de um corpo escuro entre ela e o observador na Terra. Mais recentemente, vem-se tentando observar diretamente a forma escura de um possível planeta ao passar à frente de sua estrela. Pelo menos um planeta, já identificado anteriormente, teria sido registrado dessa forma. A nebulosa de Órion (M42) é uma região de formação de estrelas localizada a 1500 anos-luz da Terra. Ela está junto às estrelas que compõem a espada do caçador que está representado na constelação. Detalhe de uma região de apenas 0,14 ano-luz, na nebulosa de Órion, mostra o disco de material de onde se formarão planetas. Figura 7 - Recentemente, astrônomos têm conseguido observar discos de matéria cercando estrelas em formação. Esses discos são chamados de protoplanetários, pois essas nuvens de gás e poeira cósmica poderão eventualmente transformar-se em planetas. De fato, os protoplanetários são sistemas solares em construção e com o estudo desses sistemas os astrônomos têm conseguido examinar o que deve ter sido a nossa nebulosa planetária há cinco bilhões de anos. Na foto, obtida pelo telescópio Hubble, vemos vários protoplanetários que foram encontrados na nebulosa de Órion numa região muito ativa de formação de estrelas. Em todos eles, observa-se que a estrela está bem visível no centro do disco protoplanetário, o que reforça a idéia de que nosso Sol deve ter brilhado antes que os planetas estivessem completamente formados.
  • 8. 8 Figura 8 – A figura mostra os planetas que orbitam em torno de outras estrelas. Para que possamos comparar, o arranjo dos planetas internos em nosso Sistema Solar é mostrado no alto da figura. A escala logo abaixo da figura mostra a média das distâncias entre cada planeta e sua respectiva estrela (semi-eixo maior de sua órbita). As dimensões dos planetas extrassolares mostrados, não estão em escala com relação às suas estrelas e os seus tamanhos relativos foram apenas estimados. As massas estão descritas em função da massa de Júpiter. Planetas que orbitam em torno de estrelas 47 Uma 51 Peg 55 Cancri Tau Bootis Upsilon Andromedae 70 Vir HD 114762 16 Cyg B Rho Cr B 0 1 2 (UA) Esta é, possivelmente, a primeira foto tirada de um planeta que se encontra fora do nosso Sistema Solar. A luz central, mostrada pela imagem obtida pelo telescópio Hubble, é de um jovem sistema estelar binário – duas estrelas, uma girando em torno da outra. Abaixo do sistema binário, podemos observar uma faixa brilhante com cerca de 1400UA de comprimento e ao final dela, um ponto brilhante. Esse ponto pode ser um protoplaneta jovem com massa algumas vezes maior que a de Júpiter. Anãs marrons são objetos como estrelas, mas que tem massa insuficiente para que reações nucleares comecem em seu interior. Elas são, no entanto, bastante mais massivas que os maiores planetas jovianos de nosso sistema solar. Na foto ao lado temos uma anã marrom com massa estimada de 30 a 50 vezes maior que a de Júpiter, em órbita a uma distância de 44UA em torno da estrela Gliese 229. Figura - Na foto , obtida pelo telescópio Hubble, vemos vários protoplanetários que foram encontrados na nebulosa de Órion numa região muito ativa de formação de estrelas. Num estudo de 110 estrelas na nebulosa de Órion, detectou-se a presença de protoplanetários em 56 delas. Esse fato sugere que existem sistemas planetários em torno de uma parte substancial das estrelas.
  • 9. 9 Alguns elementos químicos são muito comuns no nosso sistema planetário, mas outros são bastante raros. Hidrogênio é o mais abundante – três quartos da massa do sistema. Hélio é o segundo elemento mais abundante. Ele e o hidrogênio, juntos, são responsáveis por 98% de toda a massa do Sistema Solar, ficando os demais elementos com apenas os 2% restantes. A predominância de H e He é uma característica observada em todo universo e os elementos de que a Terra é feita – principalmente ferro e níquel – assim como os elementos necessários para o surgimento de vida – carbono, oxigênio, nitrogênio, fósforo e alguns mais – são relativamente raros. Mas qual a razão dessa presença mássica de H e He no universo? Os astrônomos acreditam que o universo surgiu há 15 bilhões de anos, a partir de uma grande explosão (o Big Bang) com grande liberação de energia. Após algum tempo, formaram-se apenas elementos leves, tais como o hidrogênio, hélio, lítio e o berílio. Já todos os elementos pesados foram posteriormente formados no interior de estrelas produto das reações nucleares ali existentes ou devido a violentas explosões que marcam o fim da vida evolucionária das estrelas massivas. Esse material lançado pelas explosões de supernovas abastece o espaço interestelar de onde surgirão novas estrelas ricas desses elementos pesados e, eventualmente, sistemas planetários, satélites, cometas e asteróides. Fronteiras do sistema solar O nosso sistema planetário não se limita ao conjunto dos nove planetas principais que, com seus 54 satélites e milhares de asteróides e cometas, giram ao redor do Sol. Ele compreende também um meio interplanetário cuja densidade é muito fraca para afetar de modo sensível os movimentos desses corpos relativamente maciços. No entanto, essa tênue matéria difusa apresenta uma enorme importância do ponto de vista prático, pois pode constituir um risco para os veículos espaciais bem como um futuro meio de locomoção no espaço. Do ponto de vista teórico, a compreensão dos fenômenos relacionados ao meio 10. A abundância relativa dos elementos resultantes dos processos cósmicos O ouro – raro no também no universo Estrelas produzem diferentes elementos pesados em determinadas situações. Por exemplo, elementos tais como carbono, ferro e oxigênio, são freqüentemente criados no interior de estrelas massivas. Alguns elementos como, por exemplo, o ouro, são criados apenas em circunstâncias especiais. Isso explica porque carbono é comparativamente mais abundante e o ouro um elemento mais raro – para cada 10 12 átomos de hidrogênio no Sistema Solar, apenas seis são de ouro. Apêndice Texto do astrônomo Ronaldo de Freitas Mourão
  • 10. 10 interplanetário é fundamental ao estudo da origem e evolução do Sistema Solar. Com o desenvolvimento das sondas espaciais, tornou-se possível conhecer as características dos dois principais componentes do meio interplanetário: as nuvens de poeira — o constituinte sólido — provenientes dos fragmentos residuais da nebulosidade que deu origem ao Sistema Solar bem como da decomposição dos cometas, meteoritos e asteróides; o vento solar, segundo componente, gasoso, ionizado, que a coroa solar expele a uma velocidade supersônica. Este meio interplanetário — percorrido em todos os sentidos por radiações eletromagnéticas de origens diversas — é, por outro lado, perturbado pelos campos magnéticos de determinados planetas, em particular pelos da Terra, de Júpiter e de Saturno. As fronteiras do Sistema Solar não se limitam, como se poderia a priori supor, à órbita do último planeta conhecido. Existem milhares de cometas gravitando em volta do Sol à enorme distância de cerca de um ano-luz, e apenas alguns se aproximam muito do Sol para se tornarem visíveis na Terra. Acredita-se atual- mente que além da órbita de Plutão — último limite sensível, que se situa a 40 U. A. (40 x 150 milhões de quilômetros), existam as nuvens de Oort — esfera- reservatório de 500 bilhões de cometas novos e congelados da qual sai, às vezes, um cometa que, ao se aproximar do Sol, se torna visível da Terra — que constituem a última fronteira do Sistema Solar. O interior da esfera é dominado pelo vento solar — radiação de alta energia emitida por ele e que se estende até encontrar o vento interestelar — radiação emitida pelas outras estrelas da galáxia à velocidade de 40 km/s. O ponto de interação destas ondas, no qual a pressão do vento solar contrabalança o fluxo interestelar, recebe o nome de heliopausa. Evidentemente, pouco se conhece desta fronteira quase indefinida entre o meio interestelar e o interplanetário. Supõe-se que a heliosfera — domínio do campo magnético do Sol — esteja situada a cerca de 100 U. A., ou seja, 15 bilhões de quilômetros do Sol. Assim, enquanto a luz leva cinco horas, à velocidade de 300.000 km/s, para ir do Sol a Plutão, precisará de 23 horas para atingir a heliosfera. Na realidade, o Sol desloca-se à velocidade de 20 km por segundo em relação às estrelas vizinhas, e leva 200 milhões de anos para dar uma volta completa ao redor do centro da Galáxia. Assim como os planetas orbitam o Sol movendo-se através do vento solar, o Sistema Solar órbita o centro galáctico movendo-se através do vento interestelar. O bordo exterior do sistema solar, ao se encontrar com o vento interestelar a 300 U. A. do Sol (300 x 150 milhões de quilômetros), produz uma onda de choque, na direção da constelação de Hércules, para onde nosso sistema planetário se desloca. No lado oposto está a heliocauda. Todas as dimensões estimadas dessas regiões são incertas. Atualmente existe uma flotilha de quatro sondas interplanetárias que estão deixando o Sistema Solar: Pioneer 10, Pioneer 11, Voyager 1 e Voyager 2. Em 13 de junho de 1983, a primeira sonda espacial construída pelo homem — Pioneer 10 — ultrapassou a órbita de Netuno — o planeta mais afastado do Sistema Solar — depois de ter ultrapassado três meses antes a de Plutão. No momento ela se dirige para as fronteiras do sistema solar e segue para o espaço exterior. Nenhuma sonda foi tão longe desde que se iniciou a pesquisa espacial com o lançamento do primeiro Sputnik em 1957. Nessa longa viagem iniciada há quase 30 anos (3 de marco de 1972), a Pioneer 10 só tem surpreendido os astrô- nomos com o seu desempenho. Apesar da sua distância — cerca de cinco bilhões de quilômetros da Terra — e do seu tempo de permanência no espaço, a Pioneer 10 vem enviando regularmente, por rádio, as mais valiosas informações sobre o meio interplanetário ao centro do controle da missão, em Mountain View, na Califórnia. Na realidade, a longa viagem destas quatro sondas foi uma vitória da tecnologia espacial. Vários obstáculos tiveram de ser ultrapassados. Para atingir Júpiter, foi necessário percorrer mais de um bilhão de quilômetros e atravessar a zona dos asteróides, ou pequenos planetas, entre Marte e Júpiter, onde a
  • 11. 11 possibilidade de colisão com algumas rochas existentes nessa região poderia, como receavam os astrônomos, pôr em risco o êxito destas missões. Os grandes momentos dessas naves foram os encontros com Júpiter, Saturno e Urano, quando sobrevoaram os planetas, conseguindo reunir as mais nítidas fotografias de alta resolução da superfície desses planetas e de seus satélites. O momento do encontro com o campo gravitacional desses planetas foi usado para aumentar, ou melhor, acelerar o movimento das naves em direção ao espaço extraplanetário. Uma das maiores surpresas foi a grande contabilidade dos geradores de isótopos radioativos, que continuam em funcionamento, emitindo sinais sobre o meio interplanetário totalmente desconhecido. Assim, foi possível verificar que a influência do campo magnético solar vai além da órbita de Júpiter, ao contrário da idéia aceita inicialmente de que a heliosfera não ultrapassava este planeta. Plutão deveria ser o último planeta a ser ultrapassado pelas sondas espaciais. Entretanto, sua órbita é uma elipse de excentricidade muito acentuada, ao contrário das órbitas quase circulares dos outros planetas. Ocorre que Plutão estará na região em que a sua órbita é circunscrita pela de Netuno. Desse modo, Netuno passa a ser o planeta mais afastado do Sol — o limite observacional co- nhecido do Sistema Solar durante os próximos 15 anos. Assim, ao cruzar a órbita de Netuno, a Pioneer saiu dos limites sensíveis do nosso sistema planetário, numa aventura jamais imaginada pelos cientistas, que não esperavam poder continuar a receber inforrnações do espaço interestelar. Estima-se que, daqui a oito milhões de anos, a Pioneer 10 deverá alcançar um ponto no espaço onde se encontra atualmente a estrela Aldebarã, cuja distância da Terra é de 64 anos-luz. Unidade astronômica (UA) 149.597.870 km Velocidade da luz no vácuo (c) 299.792.458 km/s Paralaxe solar 8.794148 arc seconds Massa do Sol 1.9891 × 10 30 kg Massa da Terra 5.9742 × 10 24 kg Massa da Lua 7.3483 × 10 22 kg Ano-luz (al) 9.4605 × 10 12 km = 0.30660 pc Parsec (pc) 30.857 × 10 12 km = 3.26161 al
  • 12. 12 1. O momento angular L de um planeta em órbita circular é determinado pelo produto: (considere = 3) a) Compare o momento angular da Terra, Júpiter e Saturno. b) Calcule o momento angular orbital de um cometa da nuvem de Oort, com massa de 1013 kg e movendo-se em uma órbita circular de raio 50.000UA do Sol. 2. Quantos planetesimais de 100 km de diâmetro e densidade de 3500 kg/m3 seriam necessários para formar o planeta Terra? (considere = 3) 3. Um cometa típico tem cerca de 1013 kg de gelo. a) Quantos cometas deveriam chocar-se contra a Terra para totalizar os 2.1021 kg b) de água que hoje estão presentes em nosso planeta? Se esse total de água foi acumulado ao longo de 0,5 bilhões de anos (5.108 anos), com que freqüência a Terra deve ter sido atingida por cometas ao longo desse tempo? 4. Um asteróide rochoso e esférico de 2 km de diâmetro cuja densidade vale 2500 kg/m3 , choca-se contra a Terra com uma velocidade de 25 km/s. a) Qual é a energia cinética do asteróide no momento do impacto? b) Compare a energia liberada na colisão com a energia liberada pela bomba nuclear que explodiu em Hiroxima no Japão em 6 de agosto de 1945. 5. Suponha que nave espacial está pousada em Europa, um dos satélites de Júpiter, que tem um diâmetro de 3138 km e massa de 4,8.1022 kg. Sabe-se que Europa tem uma órbita em torno de Júpiter de raio médio 6700,0 km. Após coletar amostras de material na superfície do satélite a nave está pronta para decolar e retornar a Terra. a) Determine qual é a velocidade de escape de Europa. b) Determine qual é a velocidade de escape de Júpiter na distância orbital do satélite. c) Qual deverá ser a velocidade da nave espacial para conseguir retornar a Terra? L = M . V . R M = massa do planeta V = velocidade orbital R = distância do planeta até o Sol 1 UA = 1,5 . 10 8 km Perímetro da circunferência: p = 2. . R Velocidade orbital: V = 2. . R Massas: Terra = 6.10 24 kg Júpiter = 1,9.10 27 kg Saturno = 5,7.10 26 kg t Volume da esfera = 4. . R 3 3 Energia liberada pela bomba nuclear lançada sobre Hiroxima = 20 kiloton 1 kiloton de TNT (dinamite) equivale a liberação de 4,2.10 12 J de energia Energia cinética: Ec = M .V 2 M = Massa V = velocidade do asteróide Volume da esfera = 4. . R 3 2 3 Velocidade de escape: ve = 2.G.M G = 6,67.10 -11 N.m 2 /kg 2 Massa de Júpiter = 1,9.10 27 kg R Exercícios Aulas 5 e 6