SlideShare une entreprise Scribd logo
1  sur  58
Retrieval using Document Structure
                    and Annotations

                              Paul Ogilvie

                       Language Technologies Institute
                        School of Computer Science
                         Carnegie Mellon University

                                 Committee:
                             Jamie Callan (chair)
                              Christos Faloutsos
                                Yiming Yang
            W. Bruce Croft (University of Massachusetts, Amherst)


                            June 18, 2010


Slide 1
Outline


          Introduction


          Related Work


          Extensions to the Inference Network model


          Results


          Contributions




Slide 2
Effective use of document structure and annotations is critical
          for successful retrieval in a wide range of applications.




Slide 3
Result-universal


              retrieve any element, document, or annotation
              mix result types in a single ranking




          May wish to bias results toward by type or length.




Slide 4
Structure-aware

              some fields more representative of content
              multiple representations of content


                                                title

                             title                      link

                                     link
                                 link

                                              title



          Title, in-link text form alternative representations of a web page.

Slide 5
Structure-expressive
          express structural constraints in the query language
          articles about suicide bombings with an image of
          investigators




Slide 6
Structure-expressive



             express structural constraints in the query language
             sentences with a semantic predicate whose target verb is
             “train” and whose arg1 annotation matches “suicide
             bombers”


          [ARG1 Most Afghani suicide bombers] were [TARGET trained]
          [ARGM-LOC in neighboring Pakistan.]




Slide 7
Annotation-robust



           text processing tools are not perfect
           robust to noisy document structure
           mislabeled annotations
           boundary errors

          [ARG0 George] [TARGET saw] [ARG1 the astronomer]
          [ARGM-MNR with a telescope.]




Slide 8
Outline


          Introduction


          Related Work


          Extensions to the Inference Network model


          Results


          Contributions




Slide 9
Long history
                 Vector Space        Probabilistic Model                                                  Other Approaches
                                                                   RU = Result Universal
                                                                   SE = Structure Expressive
                                                                   SA = Structure Aware
                                                                   AR = Annotation Robust
                                                                                                          SE         NCCC 1979



       1983         p-Norm                                                                                SE       SCAT-IR 1983

       1985 RU               Fox
                                                                                                          SA SE     CODER 1986

                                                           Inference Networks
       1989                                                SA    Introduction                                                1989
       1990                                                SA   Turtle & Croft                                               1990

       1992 RU SE     Burkowski
       1993 RU SA    Fuller et al.
       1994 RU SA     Wilkinson              BM25
                                                                                                          SE Proximal Nodes 1995

                                                                                   Language Models
                                                                                         Ponte & Croft                       1998
                                                                                         Hiemstra
       2000                          RU SE         XPRES
       2001                          SA       Justsystem
       2002 SA SE RU JuruXML                                                       SA      Kraaij et al                      2002
       2003                                                                        SA Ogilvie & Callan                       2003
       2004                          SA          BM25F     SE RU          Indri    SA Sigurbjornnson                         2004
       2005                          SA          BM25E                             SE RU         Tijah                       2005
       2006 AR?      JuruXML
       2007                                                AR      Bilotti et al                                             2007
       2008                                                                        SA        Kim et al                       2008

       2010                                                                                                                  2010



Slide 10
Mixture of multinomials
Ogilvie: SIGIR 03
           Rank documents by probability query is generated
                                                |q|
                                P(q|d) =               P(qi |d)
                                                i=1

           Estimate P(qi |d) using a mixture of representations
           (in-model combination)

                              P(qi |d) =              λr P(qi |θr )
                                              r∈R

           Each representation is estimated from field counts and a
           collection model
                                      tf (qi , dr )             tf (qi , Cr )
                    P(qi |θr ) = αr                 + (1 − αr )
                                          |dr |                     |Cr |

Slide 11
Inference Network model

                                                         d
                     α, βt                                                          α, βd



                             θt(d)                                             θd

                                        bomber.(title)

                      ct,i           ct,j                    suicide    cd,i        cd,j    bomber

           suicide.(title)


                               #WSUM        qd,i                 qd,j     #WSUM




                                              #AND   Id

                 #AND( #WSUM( 0.6 suicide.(title) 0.4 suicide )
                       #WSUM( 0.6 bomber.(title) 0.4 bomber ) )



Slide 12
Inference Network model

                                                            d
                        α, βt                                                          α, βd



                                θt(d)                                             θd

                                           bomber.(title)

                         ct,i           ct,j                    suicide    cd,i        cd,j    bomber

              suicide.(title)

           Query
           Nodes                  #WSUM        qd,i                 qd,j     #WSUM




                                                 #AND   Id       P(Id = true|d, α, β) = P(Id |qd,i , qd,j )

                    #AND( #WSUM( 0.6 suicide.(title) 0.4 suicide )
                          #WSUM( 0.6 bomber.(title) 0.4 bomber ) )


Slide 13
Query operator belief combination



           Operator                      Combination Function
                                            n
           #AND(b1 b2 . . . bn )            i=1bel(bi )
           #NOT(b)                       1 − bel(b)
                                                n
           #OR(b1 b2 . . . bn )          1 − i=1 (1 − bel(bi ))
                                           n            wi
           #WAND(w1 b1 . . . wn bn )       i=1 bel(bi )
           #MAX(b1 b2 . . . bn )         max(bel(b1 ), bel(b2 ), . . . , bel(bn ))
                                            n
           #WSUM(w1 b1 . . . wn bn )        i=1 wi bel(bi )

                    bel(bi ) is shorthand for P(bi = true|d, α, β)




Slide 14
Inference Network model

                                                             d
                        α, βt                                                            α, βd


           Model
           Nodes                θt(d)      θt(d) ∼ multiple Bernoulli               θd

           Concept                         bomber.(title)
           Nodes
                         ct,i           ct,j    P(ct,j |θt(d) )   suicide    cd,i        cd,j    bomber

              suicide.(title)


                                  #WSUM        qd,i                   qd,j     #WSUM




                                                 #AND        Id

                     #AND( #WSUM( 0.6 suicide.(title) 0.4 suicide )
                           #WSUM( 0.6 bomber.(title) 0.4 bomber ) )



Slide 15
Concept nodes use multiple Bernoullis
Metzler et al Model B


                                        tf (ci , dr ) + αi,r − 1
                        P(ci |θr ) =
                                       |dr | + αi,r + βi,r − 2
       Common settings

                          αi,r = µ tf (ci ,Cr ) + 1
                                       |Cr |

                                                tf (ci ,Cr )
                          βi,r = µ 1 −              |Cr |      +1

       yield multinomials smoothed using Dirichlet priors

                                       tf (ci , dr ) + µ tf (ci ,Cr )
                                                             |Cr |
                        P(ci |θr ) =
                                                |dr | + µ


Slide 16
Indri query language support for structure


           Extent retrieval: specifies result types, can be nested for
           structural constraints
           #AND[sentence]( suicide bombers trained )

           Field evaluation: creates a language model for a field type
           suicide.(title)

           Field restriction: restricts counts to a field type
           grant.person

           Prior probabilities: accesses indexed prior beliefs of
           relevance for documents
           #PRIOR(urltype)




Slide 17
Limitations of Inference Networks


           In-model combination
               Verbose queries
               Some model parameters in query, some in parameter files
           Representation construction based on containment
               Common to index extra document representations with
               document (in-link text)
           Indri query language does not support parent/child in
           extent retrieval or field evaluation
           Model not sufficiently annotation robust
           Nested extent retrieval confusing




Slide 18
Belief combination for nested extent retrieval is critical


                                     one pair of nodes per figure caption
           suicide   bombings

             c1         c2      i1          i2                 in    investigators
                                                     ...



                                a1          a2       ...       an    #AND[fgc]


                                                        beliefs are multiplied
                                I       #AND[article]




       #AND[article]( suicide bombings
           #AND[fgc]( investigators ) )




Slide 19
Belief combination for nested extent retrieval is critical

                                     one pair of nodes per figure caption
           suicide   bombings

             c1         c2      i1          i2                     in   investigators
                                                      ...



                                a1          a2        ...          an   #AND[fgc]



                                                              best belief is selected
                                                 m1         #MAX




                                I       #AND[article]




       #AND[article]( suicide bombings
           #MAX( #AND[fgc]( investigators ) ) )


Slide 20
Outline


       Introduction


       Related Work


       Extensions to the Inference Network model


       Results


       Contributions




Slide 21
Collection structure can be represented as a graph


           title
                   link
                          title
                                  link




              Typed edges, typed nodes
              Nodes anchored in text to preserve containment




Slide 22
Example annotation graph


       [ARG1 Most Afghani suicide bombers] were [TARGET trained] [ARGM-LOC
       in neighboring Pakistan.]



                                        SENTENCE


                                               TARGET


                       ARG1                                  ARGM-LOC


                                                                    LOCATION


           Most Afghani suicide bombers were trained in neighboring Pakistan.




Slide 23
Example annotation graph


       [ARG1 Most Afghani suicide bombers] were [TARGET trained] [ARGM-LOC
       in neighboring Pakistan.]



                                        SENTENCE


                                               TARGET


                       ARG1                                  ARGM-LOC


                                                                    LOCATION


           Most Afghani suicide bombers were trained in neighboring Pakistan.




Slide 23
Model representation layer
                                                           d
                       α, βt                                                          α, βd



                               θt(d)                                             θd

                                          bomber.(title)

                        rt,i           rt,j                    suicide    rd,i        rd,j    bomber

            suicide.(title)


                                 #WSUM        qd,i                 qd,j     #WSUM




                                                #AND   Id

           Needlessly complex for a conceptually simple operation
           Verbose queries prone to error, confusion



Slide 24
Model representation layer
                                                           d
                       α, βt                                                          α, βd



                               θt(d)                                             θd

                                          bomber.(title)

                        rt,i           rt,j                    suicide    rd,i        rd,j    bomber

            suicide.(title)


                                 #WSUM        qd,i                 qd,j     #WSUM




                                                #AND   Id

           Move model combination into a model representation layer
           Simplify query construction



Slide 24
Model representation layer
Mixture of multiple Bernoullis + Inference Networks

      Observed
      Nodes      t1                               dk           ...        dn−1       dn


      Representation
      Nodes            φt(dk )                  φs(dk )                  φCd (dk )


      Model
      Nodes                                      θdk


      Concept
      Nodes                      suicide   ci             cj    bomber



      Query
      Nodes                            #AND      Idk



       #AND( suicide bomber )
Slide 25
Model representation layer
Mixture of multiple Bernoullis + Inference Networks

      Observed
      Nodes       t1                                  dk           ...        dn−1       dn



                           φt(dk )                  φs(dk )                  φCd (dk )



                                                     θdk



                                     suicide   ci             cj    bomber




                                           #AND      Idk



       All collection elements exist as observation nodes
Slide 25
Model representation layer
Mixture of multiple Bernoullis + Inference Networks


                  t1                                  dk           ...        dn−1       dn


      Representation
      Nodes                φt(dk )                  φs(dk )                  φCd (dk )
      multiple Bernoulli


                                                     θdk



                                     suicide   ci             cj    bomber




                                           #AND      Idk



       Representations may be connected to many elements
Slide 25
Model representation layer
Mixture of multiple Bernoullis + Inference Networks


                  t1                                   dk              ...           dn−1             dn



                          φt(dk )                    φs(dk )                        φCd (dk )


      Model
      Nodes    mixture of multiple Bernoullis         θdk           P(ci |θdk ) =             λf P(ci |φf (dk ) )
                                                                                       f ∈F




                                    suicide     ci             cj       bomber




                                          #AND        Idk



       Model nodes combine multiple representations
Slide 25
Representation functions connect observed elements
to representation nodes


           t1                 dk           ...    dn−1       dn



                φt(dk )     φs(dk )              φCd (dk )



                             θdk


                          t(dk ) = {t1 }




Slide 26
Representation functions connect observed elements
to representation nodes


           t1                 dk           ...    dn−1       dn



                φt(dk )     φs(dk )              φCd (dk )



                             θdk


                          s(dk ) = {dk }




Slide 26
Representation functions connect observed elements
to representation nodes


           t1                         dk            ...         dn−1       dn



                φt(dk )             φs(dk )                    φCd (dk )



                                      θdk


                          Cd (dk ) = {d1 , d2 , . . . , dn }




Slide 26
Collection structure can be represented as a graph


           title
                   link
                          title
                                  link




              Typed edges, typed nodes
              Nodes anchored in text to preserve containment




Slide 27
Model representation layer
Mixture of multiple Bernoullis + Inference Networks


      Observed
      Nodes        t1                                    dk              ...           dn−1             dn


      Representation
      Nodes                 φt(dk )                    φs(dk )                        φCd (dk )
      multiple Bernoulli

      Model
      Nodes      mixture of multiple Bernoullis         θdk           P(ci |θdk ) =             λf P(ci |φf (dk ) )
                                                                                         f ∈F




                                                  ci             cj



                                                        Idk




Slide 28
People don’t get nested extent retrieval

                                     one pair of nodes per figure caption
           suicide   bombings

             c1         c2      i1          i2                     in   investigators
                                                      ...



                                a1          a2        ...          an   #AND[fgc]


                                                              they forget to combine
                                                 m1         #MAX




                                I       #AND[article]




       #AND[article]( suicide bombings
           #MAX( #AND[fgc]( investigators ) ) )


Slide 29
Scope operator for extent retrieval

       #SCOPE[RESULT:article]( #AND(
            suicide bombings
            #SCOPE[MAX:fgc]( investigators )
       ) )



           Move extent retrieval into a scope operator
           Force a choice of belief combination
           AVG, MAX, MIN
           OR = 1 −        b (1   − b)
           AND =      bb




Slide 30
Scope operator makes belief combination explicit
                                     one pair of nodes per figure caption
             suicide bombings

               c1       c2       i1         i2                 in   investigators
                                                      ...


                                a1          a2        ...      an   #AND




                                                 m1    #SCOPE[MAX:fgc]




                                q1       #AND




                                 I       #SCOPE[RESULT:article]



       #SCOPE[RESULT:article]( #AND(
              suicide bombings
              #SCOPE[MAX:fgc]( investigators )
       ) )
Slide 31
Additional support for structural constraints

                            Operator   Description
                            ./type     Children w/ type
                            .type     Parent w/ type
                            .//type    Descendants w/ type
                            .type    Ancestors w/ type

       New structural operators in paths. ‘*’ may be substituted for an
       element type to select all that match the constraint.


       #SCOPE[AVG:target]( #AND(
            trained #SCOPE[AVG:./arg1]( #AND(
                 suicide bombers
            ) )
       ) )



Slide 32
Padding annotation boundaries


           Padding boundaries with weighted term occurrences
           Some annotation boundaries may be wrong
           Could provide additional context


                                  ARG1



                 2      3                     3   2   1
                 4      4          1          4   4   4

              George saw the astronomer with a telescope.




Slide 33
New model summary



           Representation functions and representation layer
               increases structure-awareness
               allows for richer representations
               simplifies queries, parameters
           Scope operator
               increases structure-expressivity
               forces choice of belief combination
           Extensions for annotation-robustness




Slide 34
Grid search



           No customization of code, computation of gradients
           Easy to parallelize
           Grid search optimizes for any measure
           A better understanding of the parameter space
           Per query analysis
           Estimates of confidence intervals




Slide 35
Grid search


                                                              Parameter Estimates for i2004k Topics
                      0.25                             0.25                             0.25                             0.25
                      0.20                             0.20                             0.20                             0.20
                      0.15                             0.15                             0.15                             0.15
           Best MAP




                      0.10                             0.10                             0.10                             0.10
                      0.05                 25 steps 0.05                                0.05                             0.05
                                           10 steps
                      0.00                          0.00                                0.00                             0.00

                             0.0 0.2 0.4 0.6 0.8 1.0          0.0 0.2 0.4 0.6 0.8 1.0          0.0 0.2 0.4 0.6 0.8 1.0          0.0    1.0     2.0     3.0
                                   λ element                        λ document                       λ collection                     length prior β


                                                              Parameter Estimates for i2005k Topics
                      0.12                             0.12                             0.12                             0.12
                      0.10                             0.10                             0.10                             0.10
                      0.08                             0.08                             0.08                             0.08
                      0.06                             0.06                             0.06                             0.06
           Best MAP




                      0.04                             0.04                             0.04                             0.04
                      0.02                 25 steps 0.02                                0.02                             0.02
                                           10 steps
                      0.00                          0.00                                0.00                             0.00

                             0.0 0.2 0.4 0.6 0.8 1.0          0.0 0.2 0.4 0.6 0.8 1.0          0.0 0.2 0.4 0.6 0.8 1.0          0.0    1.0     2.0     3.0
                                   λ element                        λ document                       λ collection                     length prior β




Slide 36
Outline


       Introduction


       Related Work


       Extensions to the Inference Network model


       Results


       Contributions




Slide 37
Known-item finding
            Retrieve the best document for a query
            IRS 1040 instructions
            Evaluated using mean-reciprocal rank (MRR)

                                      WT10G                       .GOV
           Number documents          1,692,096                  1,247,753
           Size (GB)                     10                         18
           Document types               html                html, doc, pdf, ps
           Task types             homepage finding        homepage and named-page

                              t10ep samp.   t10ep off.       t12ki         t13mi
           Number topics          100          145            300           150

                              Known-item finding testbeds



            Wrap query terms in #AND operator
            Include a prior probability of relevance based on URL type

Slide 38
Known-item finding results

                               t10ep samp.        t10ep off.          t12ki            t13mi
                  document      0.3 (0.1, 0.6)   0.4 (0.2, 0.5)   0.2 (0.1, 0.4)    0.3 (0.1, 0.3)
                  link          0.2 (0.1, 0.5)   0.2 (0.1, 0.2)   0.2 (0.2, 0.4)    0.3 (0.1, 0.5)
                  title         0.2 (0.1, 0.7)   0.2 (0.1, 0.3)   0.2 (0.1, 0.3)    0.2 (0.1, 0.3)
                  header        0.1 (0.0, 0.4)   0.0 (0.0, 0.5)   0.3 (0.0, 0.4)    0.1 (0.0, 0.4)
                  meta          0.0 (0.0, 0.0)   0.0 (0.0, 0.2)   0.0 (0.0, 0.1)    0.0 (0.0, 0.2)
                  collection    0.2 (0.0, 0.4)   0.2 (0.1, 0.5)   0.1 (0.1, 0.3)    0.1 (0.1, 0.6)

                                         Estimated parameters
                                         t10ep samp.       t10ep off.      t12ki       t13mi
                    doc + collection        0.756            0.654         0.403       0.372
                    train                   0.905            0.829         0.704       0.671
                    test                    0.891            0.821         0.702       0.650
                    Best from TREC            -              0.774         0.7271      0.7382

                                          Performance in MRR


           1
               Mixtures of multinomials + URL type prior [Ogilvie TREC 12]
           2
               Okapi BM25F + PageRank
Slide 39
Element retrieval
           Keyword queries, retrieve any element
           Keyword + structure queries
           //article[about(., suicide bombings) and
                        about(.//fgc, investigators)]
           Evaluated using MAP [Ogilvie CIKM 06]

                                              IEEE v1.4       IEEE v1.8
             Number documents                   11,980          17,000
             Size (MB)                           531             764

                                                     i2004k    i2005k
             Keyword topics                            34        29

                                            i2003s   i2004s
             Keyword and structure topics     30       26

                 Element retrieval testbeds, CS journal articles


Slide 40
Element retrieval, keyword + structure queries


           NEXI queries to Indri queries, inference networks

           //article[about(., suicide bombings) and
                     about(.//fgc, investigators)]

           #SCOPE[AVG:article]( #AND(
                suicide bombings
                #SCOPE[AVG:.//fgc](
                    investigators
                )
           ))




Slide 41
Element retrieval
Keyword queries

                                               i2004k             i2005k
                               self         0.1 (0.1, 0.3)     0.3 (0.1, 0.4)
                               collection   0.7 (0.4, 0.7)     0.3 (0.1, 0.6)
                               document     0.2 (0.2, 0.3)     0.4 (0.2, 0.6)
                               fig           0.0 (0.0, 0.1)     0.0 (0.0, 0.2)
                               titles       0.0 (0.0, 0.0)     0.0 (0.0, 0.1)
                               length       0.9 (0.9, 1.2)     1.2 (0.9, 1.5)

                                     Estimated parameters
                                                     i2004k       i2005k
                                self + collection     0.179        0.099
                                train                 0.239        0.116
                                test                  0.234        0.112
                                Best from INEX        0.2353       0.104

                                      Performance in MAP


           3
               Mixture model + pseudo rel. feedback
Slide 42
Element retrieval
Keyword + structure queries
                                          AND     AVG    MAX      MIN    OR
                            self           0.4     0.3    0.4     0.4    0.3
                            collection     0.0     0.2    0.2     0.2    0.2
                            document       0.5     0.5    0.4     0.4    0.5
                            fig             0.0     0.0    0.0     0.0    0.0
                            titles         0.1     0.0    0.0     0.0    0.0
                            length         0.9     0.9    1.2     1.2    0.9

                                   Estimated parameters from i2003s

                                                     i2003s            i2004s
                                                 train     test   train      test
                       self + collection (AVG)   0.369    0.369   0.272     0.270
                       AND                       0.282    0.273   0.224     0.174
                       AVG                       0.403   0.401    0.294     0.290
                       MAX                       0.386    0.384   0.286     0.280
                       MIN                       0.407    0.403   0.291    0.285
                       OR                        0.403    0.400   0.290     0.284
                       Best from INEX              -      0.379     -       0.3524

                                           Performance in MAP

           4
               Mixture model + term propagation
Slide 43
Question answering experiments


           ACQUAINT collection ∼1 million news articles
           MIT 109 questions, exhaustive document judgments,
           sentence judgments
           Corpus tagged with ASSERT (semantic predicates),
           BBN Identifinder (named entities)



           Retrieve sentences containing answer to the question
           Measured by mean average-precision (MAP)
           5-fold cross validation (same folds as [Bilotti thesis])




Slide 44
Question conversion
Structured queries


                                   SENTENCE


                                                 TARGET


                     ARGM-LOC          ARG1



                     Where are suicide bombers trained?

       #SCOPE[RESULT:sentence]( #AND(
              #SCOPE[AVG:target]( #AND(
                    trained
                    #SCOPE[AVG:./arg1]( #AND(
                          suicide bombers
                    ) )
                    #ANY:./argm-loc
              ) )
       ) )


Slide 45
Question conversion
Keyword + named entity queries




                                   SENTENCE


                   LOCATION



                   Where are suicide bombers trained?

       #SCOPE[RESULT:sentence]( #AND(
              trained suicide bombers
              #ANY:location
       ) )




Slide 46
Question answering results

                              1                2                3                4                5
           element      0.1 (0.0, 0.2)   0.1 (0.1, 0.3)   0.1 (0.0, 0.1)   0.1 (0.0, 0.2)   0.1 (0.0, 0.1)
           collection   0.4 (0.2, 0.7)   0.4 (0.2, 0.7)   0.4 (0.3, 0.7)   0.4 (0.2, 0.8)   0.5 (0.4, 0.8)
           document     0.2 (0.1, 0.2)   0.2 (0.1, 0.3)   0.2 (0.1, 0.3)   0.2 (0.1, 0.3)   0.2 (0.0, 0.2)
           sentence     0.3 (0.1, 0.4)   0.3 (0.1, 0.4)   0.3 (0.1, 0.3)   0.3 (0.1, 0.5)   0.2 (0.1, 0.3)
           length       2.1 (1.2, 2.1)   2.1 (0.0, 2.4)   2.1 (0.0, 2.4)   2.1(0.0, 2.4)    2.1 (0.0, 2.4)

           Estimated parameters across folds for structured + sentence (AVG)
                                                All       Shallow    Deep      Shallow + Deep
                   keyword + named-entity      0.218       0.197     0.232          0.211
                   structured                  0.201       0.197     0.206          0.201
                   structured + padding        0.206       0.197     0.210          0.202
                   structured + sentence       0.240       0.197     0.303          0.240
                   Bilotti thesis              0.233       0.201     0.279          0.233

                                   MAP averaged across test folds


               AVG combination even stronger on this testbed

Slide 47
Question 1494

       Who wrote "East is east, west is west and never the twain shall meet"?

       #SCOPE[RESULT:sentence]( #AND(
              #SCOPE[AVG:target]( #AND(
                    wrote
                    #SCOPE[AVG:./arg1]( #AND(
                          east east west west never twain shall meet
                    ) )
              ) )
              #ANY:person
       ) )


       [ARGM-TMP One hundred years ago,] [PERSON Kipling]
       [TARGET wrote,] “Oh, East is East, and West is West, and
       never the twain shall meet.”



Slide 48
Results summary




           Extensions to Inference Network + grid search provide
           strong results
           Scope AVG combination method robust
           Good choice of representations can improve
           annotation-robustness




Slide 49
Outline


       Introduction


       Related Work


       Extensions to the Inference Network model


       Results


       Contributions




Slide 50
Contributions

           Standardized the use of mixtures of language models for
           multiple representations [Ogilvie SIGIR 03]
           Pushed the state-of-the-art in query languages, index
           structures, retrieval models
           Introduced a vocabulary for discussing retrieval models
           with support for document structure and annotations
           Demonstrated the promise of annotation-robust models
           Grid search is a viable parameter estimation method
           Broader view of structure than prior work
               Shapes our understanding of what’s important
               Validated these models for many tasks
               Explicit recognition of the role of the query language



Slide 51

Contenu connexe

En vedette

Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTExpeed Software
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsPixeldarts
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthThinkNow
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfmarketingartwork
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024Neil Kimberley
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)contently
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024Albert Qian
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsKurio // The Social Media Age(ncy)
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Search Engine Journal
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summarySpeakerHub
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next Tessa Mero
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentLily Ray
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best PracticesVit Horky
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project managementMindGenius
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...RachelPearson36
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Applitools
 

En vedette (20)

Everything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPTEverything You Need To Know About ChatGPT
Everything You Need To Know About ChatGPT
 
Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 

Retrieval using Document Structure and Annotations

  • 1. Retrieval using Document Structure and Annotations Paul Ogilvie Language Technologies Institute School of Computer Science Carnegie Mellon University Committee: Jamie Callan (chair) Christos Faloutsos Yiming Yang W. Bruce Croft (University of Massachusetts, Amherst) June 18, 2010 Slide 1
  • 2. Outline Introduction Related Work Extensions to the Inference Network model Results Contributions Slide 2
  • 3. Effective use of document structure and annotations is critical for successful retrieval in a wide range of applications. Slide 3
  • 4. Result-universal retrieve any element, document, or annotation mix result types in a single ranking May wish to bias results toward by type or length. Slide 4
  • 5. Structure-aware some fields more representative of content multiple representations of content title title link link link title Title, in-link text form alternative representations of a web page. Slide 5
  • 6. Structure-expressive express structural constraints in the query language articles about suicide bombings with an image of investigators Slide 6
  • 7. Structure-expressive express structural constraints in the query language sentences with a semantic predicate whose target verb is “train” and whose arg1 annotation matches “suicide bombers” [ARG1 Most Afghani suicide bombers] were [TARGET trained] [ARGM-LOC in neighboring Pakistan.] Slide 7
  • 8. Annotation-robust text processing tools are not perfect robust to noisy document structure mislabeled annotations boundary errors [ARG0 George] [TARGET saw] [ARG1 the astronomer] [ARGM-MNR with a telescope.] Slide 8
  • 9. Outline Introduction Related Work Extensions to the Inference Network model Results Contributions Slide 9
  • 10. Long history Vector Space Probabilistic Model Other Approaches RU = Result Universal SE = Structure Expressive SA = Structure Aware AR = Annotation Robust SE NCCC 1979 1983 p-Norm SE SCAT-IR 1983 1985 RU Fox SA SE CODER 1986 Inference Networks 1989 SA Introduction 1989 1990 SA Turtle & Croft 1990 1992 RU SE Burkowski 1993 RU SA Fuller et al. 1994 RU SA Wilkinson BM25 SE Proximal Nodes 1995 Language Models Ponte & Croft 1998 Hiemstra 2000 RU SE XPRES 2001 SA Justsystem 2002 SA SE RU JuruXML SA Kraaij et al 2002 2003 SA Ogilvie & Callan 2003 2004 SA BM25F SE RU Indri SA Sigurbjornnson 2004 2005 SA BM25E SE RU Tijah 2005 2006 AR? JuruXML 2007 AR Bilotti et al 2007 2008 SA Kim et al 2008 2010 2010 Slide 10
  • 11. Mixture of multinomials Ogilvie: SIGIR 03 Rank documents by probability query is generated |q| P(q|d) = P(qi |d) i=1 Estimate P(qi |d) using a mixture of representations (in-model combination) P(qi |d) = λr P(qi |θr ) r∈R Each representation is estimated from field counts and a collection model tf (qi , dr ) tf (qi , Cr ) P(qi |θr ) = αr + (1 − αr ) |dr | |Cr | Slide 11
  • 12. Inference Network model d α, βt α, βd θt(d) θd bomber.(title) ct,i ct,j suicide cd,i cd,j bomber suicide.(title) #WSUM qd,i qd,j #WSUM #AND Id #AND( #WSUM( 0.6 suicide.(title) 0.4 suicide ) #WSUM( 0.6 bomber.(title) 0.4 bomber ) ) Slide 12
  • 13. Inference Network model d α, βt α, βd θt(d) θd bomber.(title) ct,i ct,j suicide cd,i cd,j bomber suicide.(title) Query Nodes #WSUM qd,i qd,j #WSUM #AND Id P(Id = true|d, α, β) = P(Id |qd,i , qd,j ) #AND( #WSUM( 0.6 suicide.(title) 0.4 suicide ) #WSUM( 0.6 bomber.(title) 0.4 bomber ) ) Slide 13
  • 14. Query operator belief combination Operator Combination Function n #AND(b1 b2 . . . bn ) i=1bel(bi ) #NOT(b) 1 − bel(b) n #OR(b1 b2 . . . bn ) 1 − i=1 (1 − bel(bi )) n wi #WAND(w1 b1 . . . wn bn ) i=1 bel(bi ) #MAX(b1 b2 . . . bn ) max(bel(b1 ), bel(b2 ), . . . , bel(bn )) n #WSUM(w1 b1 . . . wn bn ) i=1 wi bel(bi ) bel(bi ) is shorthand for P(bi = true|d, α, β) Slide 14
  • 15. Inference Network model d α, βt α, βd Model Nodes θt(d) θt(d) ∼ multiple Bernoulli θd Concept bomber.(title) Nodes ct,i ct,j P(ct,j |θt(d) ) suicide cd,i cd,j bomber suicide.(title) #WSUM qd,i qd,j #WSUM #AND Id #AND( #WSUM( 0.6 suicide.(title) 0.4 suicide ) #WSUM( 0.6 bomber.(title) 0.4 bomber ) ) Slide 15
  • 16. Concept nodes use multiple Bernoullis Metzler et al Model B tf (ci , dr ) + αi,r − 1 P(ci |θr ) = |dr | + αi,r + βi,r − 2 Common settings αi,r = µ tf (ci ,Cr ) + 1 |Cr | tf (ci ,Cr ) βi,r = µ 1 − |Cr | +1 yield multinomials smoothed using Dirichlet priors tf (ci , dr ) + µ tf (ci ,Cr ) |Cr | P(ci |θr ) = |dr | + µ Slide 16
  • 17. Indri query language support for structure Extent retrieval: specifies result types, can be nested for structural constraints #AND[sentence]( suicide bombers trained ) Field evaluation: creates a language model for a field type suicide.(title) Field restriction: restricts counts to a field type grant.person Prior probabilities: accesses indexed prior beliefs of relevance for documents #PRIOR(urltype) Slide 17
  • 18. Limitations of Inference Networks In-model combination Verbose queries Some model parameters in query, some in parameter files Representation construction based on containment Common to index extra document representations with document (in-link text) Indri query language does not support parent/child in extent retrieval or field evaluation Model not sufficiently annotation robust Nested extent retrieval confusing Slide 18
  • 19. Belief combination for nested extent retrieval is critical one pair of nodes per figure caption suicide bombings c1 c2 i1 i2 in investigators ... a1 a2 ... an #AND[fgc] beliefs are multiplied I #AND[article] #AND[article]( suicide bombings #AND[fgc]( investigators ) ) Slide 19
  • 20. Belief combination for nested extent retrieval is critical one pair of nodes per figure caption suicide bombings c1 c2 i1 i2 in investigators ... a1 a2 ... an #AND[fgc] best belief is selected m1 #MAX I #AND[article] #AND[article]( suicide bombings #MAX( #AND[fgc]( investigators ) ) ) Slide 20
  • 21. Outline Introduction Related Work Extensions to the Inference Network model Results Contributions Slide 21
  • 22. Collection structure can be represented as a graph title link title link Typed edges, typed nodes Nodes anchored in text to preserve containment Slide 22
  • 23. Example annotation graph [ARG1 Most Afghani suicide bombers] were [TARGET trained] [ARGM-LOC in neighboring Pakistan.] SENTENCE TARGET ARG1 ARGM-LOC LOCATION Most Afghani suicide bombers were trained in neighboring Pakistan. Slide 23
  • 24. Example annotation graph [ARG1 Most Afghani suicide bombers] were [TARGET trained] [ARGM-LOC in neighboring Pakistan.] SENTENCE TARGET ARG1 ARGM-LOC LOCATION Most Afghani suicide bombers were trained in neighboring Pakistan. Slide 23
  • 25. Model representation layer d α, βt α, βd θt(d) θd bomber.(title) rt,i rt,j suicide rd,i rd,j bomber suicide.(title) #WSUM qd,i qd,j #WSUM #AND Id Needlessly complex for a conceptually simple operation Verbose queries prone to error, confusion Slide 24
  • 26. Model representation layer d α, βt α, βd θt(d) θd bomber.(title) rt,i rt,j suicide rd,i rd,j bomber suicide.(title) #WSUM qd,i qd,j #WSUM #AND Id Move model combination into a model representation layer Simplify query construction Slide 24
  • 27. Model representation layer Mixture of multiple Bernoullis + Inference Networks Observed Nodes t1 dk ... dn−1 dn Representation Nodes φt(dk ) φs(dk ) φCd (dk ) Model Nodes θdk Concept Nodes suicide ci cj bomber Query Nodes #AND Idk #AND( suicide bomber ) Slide 25
  • 28. Model representation layer Mixture of multiple Bernoullis + Inference Networks Observed Nodes t1 dk ... dn−1 dn φt(dk ) φs(dk ) φCd (dk ) θdk suicide ci cj bomber #AND Idk All collection elements exist as observation nodes Slide 25
  • 29. Model representation layer Mixture of multiple Bernoullis + Inference Networks t1 dk ... dn−1 dn Representation Nodes φt(dk ) φs(dk ) φCd (dk ) multiple Bernoulli θdk suicide ci cj bomber #AND Idk Representations may be connected to many elements Slide 25
  • 30. Model representation layer Mixture of multiple Bernoullis + Inference Networks t1 dk ... dn−1 dn φt(dk ) φs(dk ) φCd (dk ) Model Nodes mixture of multiple Bernoullis θdk P(ci |θdk ) = λf P(ci |φf (dk ) ) f ∈F suicide ci cj bomber #AND Idk Model nodes combine multiple representations Slide 25
  • 31. Representation functions connect observed elements to representation nodes t1 dk ... dn−1 dn φt(dk ) φs(dk ) φCd (dk ) θdk t(dk ) = {t1 } Slide 26
  • 32. Representation functions connect observed elements to representation nodes t1 dk ... dn−1 dn φt(dk ) φs(dk ) φCd (dk ) θdk s(dk ) = {dk } Slide 26
  • 33. Representation functions connect observed elements to representation nodes t1 dk ... dn−1 dn φt(dk ) φs(dk ) φCd (dk ) θdk Cd (dk ) = {d1 , d2 , . . . , dn } Slide 26
  • 34. Collection structure can be represented as a graph title link title link Typed edges, typed nodes Nodes anchored in text to preserve containment Slide 27
  • 35. Model representation layer Mixture of multiple Bernoullis + Inference Networks Observed Nodes t1 dk ... dn−1 dn Representation Nodes φt(dk ) φs(dk ) φCd (dk ) multiple Bernoulli Model Nodes mixture of multiple Bernoullis θdk P(ci |θdk ) = λf P(ci |φf (dk ) ) f ∈F ci cj Idk Slide 28
  • 36. People don’t get nested extent retrieval one pair of nodes per figure caption suicide bombings c1 c2 i1 i2 in investigators ... a1 a2 ... an #AND[fgc] they forget to combine m1 #MAX I #AND[article] #AND[article]( suicide bombings #MAX( #AND[fgc]( investigators ) ) ) Slide 29
  • 37. Scope operator for extent retrieval #SCOPE[RESULT:article]( #AND( suicide bombings #SCOPE[MAX:fgc]( investigators ) ) ) Move extent retrieval into a scope operator Force a choice of belief combination AVG, MAX, MIN OR = 1 − b (1 − b) AND = bb Slide 30
  • 38. Scope operator makes belief combination explicit one pair of nodes per figure caption suicide bombings c1 c2 i1 i2 in investigators ... a1 a2 ... an #AND m1 #SCOPE[MAX:fgc] q1 #AND I #SCOPE[RESULT:article] #SCOPE[RESULT:article]( #AND( suicide bombings #SCOPE[MAX:fgc]( investigators ) ) ) Slide 31
  • 39. Additional support for structural constraints Operator Description ./type Children w/ type .type Parent w/ type .//type Descendants w/ type .type Ancestors w/ type New structural operators in paths. ‘*’ may be substituted for an element type to select all that match the constraint. #SCOPE[AVG:target]( #AND( trained #SCOPE[AVG:./arg1]( #AND( suicide bombers ) ) ) ) Slide 32
  • 40. Padding annotation boundaries Padding boundaries with weighted term occurrences Some annotation boundaries may be wrong Could provide additional context ARG1 2 3 3 2 1 4 4 1 4 4 4 George saw the astronomer with a telescope. Slide 33
  • 41. New model summary Representation functions and representation layer increases structure-awareness allows for richer representations simplifies queries, parameters Scope operator increases structure-expressivity forces choice of belief combination Extensions for annotation-robustness Slide 34
  • 42. Grid search No customization of code, computation of gradients Easy to parallelize Grid search optimizes for any measure A better understanding of the parameter space Per query analysis Estimates of confidence intervals Slide 35
  • 43. Grid search Parameter Estimates for i2004k Topics 0.25 0.25 0.25 0.25 0.20 0.20 0.20 0.20 0.15 0.15 0.15 0.15 Best MAP 0.10 0.10 0.10 0.10 0.05 25 steps 0.05 0.05 0.05 10 steps 0.00 0.00 0.00 0.00 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 1.0 2.0 3.0 λ element λ document λ collection length prior β Parameter Estimates for i2005k Topics 0.12 0.12 0.12 0.12 0.10 0.10 0.10 0.10 0.08 0.08 0.08 0.08 0.06 0.06 0.06 0.06 Best MAP 0.04 0.04 0.04 0.04 0.02 25 steps 0.02 0.02 0.02 10 steps 0.00 0.00 0.00 0.00 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 1.0 2.0 3.0 λ element λ document λ collection length prior β Slide 36
  • 44. Outline Introduction Related Work Extensions to the Inference Network model Results Contributions Slide 37
  • 45. Known-item finding Retrieve the best document for a query IRS 1040 instructions Evaluated using mean-reciprocal rank (MRR) WT10G .GOV Number documents 1,692,096 1,247,753 Size (GB) 10 18 Document types html html, doc, pdf, ps Task types homepage finding homepage and named-page t10ep samp. t10ep off. t12ki t13mi Number topics 100 145 300 150 Known-item finding testbeds Wrap query terms in #AND operator Include a prior probability of relevance based on URL type Slide 38
  • 46. Known-item finding results t10ep samp. t10ep off. t12ki t13mi document 0.3 (0.1, 0.6) 0.4 (0.2, 0.5) 0.2 (0.1, 0.4) 0.3 (0.1, 0.3) link 0.2 (0.1, 0.5) 0.2 (0.1, 0.2) 0.2 (0.2, 0.4) 0.3 (0.1, 0.5) title 0.2 (0.1, 0.7) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) header 0.1 (0.0, 0.4) 0.0 (0.0, 0.5) 0.3 (0.0, 0.4) 0.1 (0.0, 0.4) meta 0.0 (0.0, 0.0) 0.0 (0.0, 0.2) 0.0 (0.0, 0.1) 0.0 (0.0, 0.2) collection 0.2 (0.0, 0.4) 0.2 (0.1, 0.5) 0.1 (0.1, 0.3) 0.1 (0.1, 0.6) Estimated parameters t10ep samp. t10ep off. t12ki t13mi doc + collection 0.756 0.654 0.403 0.372 train 0.905 0.829 0.704 0.671 test 0.891 0.821 0.702 0.650 Best from TREC - 0.774 0.7271 0.7382 Performance in MRR 1 Mixtures of multinomials + URL type prior [Ogilvie TREC 12] 2 Okapi BM25F + PageRank Slide 39
  • 47. Element retrieval Keyword queries, retrieve any element Keyword + structure queries //article[about(., suicide bombings) and about(.//fgc, investigators)] Evaluated using MAP [Ogilvie CIKM 06] IEEE v1.4 IEEE v1.8 Number documents 11,980 17,000 Size (MB) 531 764 i2004k i2005k Keyword topics 34 29 i2003s i2004s Keyword and structure topics 30 26 Element retrieval testbeds, CS journal articles Slide 40
  • 48. Element retrieval, keyword + structure queries NEXI queries to Indri queries, inference networks //article[about(., suicide bombings) and about(.//fgc, investigators)] #SCOPE[AVG:article]( #AND( suicide bombings #SCOPE[AVG:.//fgc]( investigators ) )) Slide 41
  • 49. Element retrieval Keyword queries i2004k i2005k self 0.1 (0.1, 0.3) 0.3 (0.1, 0.4) collection 0.7 (0.4, 0.7) 0.3 (0.1, 0.6) document 0.2 (0.2, 0.3) 0.4 (0.2, 0.6) fig 0.0 (0.0, 0.1) 0.0 (0.0, 0.2) titles 0.0 (0.0, 0.0) 0.0 (0.0, 0.1) length 0.9 (0.9, 1.2) 1.2 (0.9, 1.5) Estimated parameters i2004k i2005k self + collection 0.179 0.099 train 0.239 0.116 test 0.234 0.112 Best from INEX 0.2353 0.104 Performance in MAP 3 Mixture model + pseudo rel. feedback Slide 42
  • 50. Element retrieval Keyword + structure queries AND AVG MAX MIN OR self 0.4 0.3 0.4 0.4 0.3 collection 0.0 0.2 0.2 0.2 0.2 document 0.5 0.5 0.4 0.4 0.5 fig 0.0 0.0 0.0 0.0 0.0 titles 0.1 0.0 0.0 0.0 0.0 length 0.9 0.9 1.2 1.2 0.9 Estimated parameters from i2003s i2003s i2004s train test train test self + collection (AVG) 0.369 0.369 0.272 0.270 AND 0.282 0.273 0.224 0.174 AVG 0.403 0.401 0.294 0.290 MAX 0.386 0.384 0.286 0.280 MIN 0.407 0.403 0.291 0.285 OR 0.403 0.400 0.290 0.284 Best from INEX - 0.379 - 0.3524 Performance in MAP 4 Mixture model + term propagation Slide 43
  • 51. Question answering experiments ACQUAINT collection ∼1 million news articles MIT 109 questions, exhaustive document judgments, sentence judgments Corpus tagged with ASSERT (semantic predicates), BBN Identifinder (named entities) Retrieve sentences containing answer to the question Measured by mean average-precision (MAP) 5-fold cross validation (same folds as [Bilotti thesis]) Slide 44
  • 52. Question conversion Structured queries SENTENCE TARGET ARGM-LOC ARG1 Where are suicide bombers trained? #SCOPE[RESULT:sentence]( #AND( #SCOPE[AVG:target]( #AND( trained #SCOPE[AVG:./arg1]( #AND( suicide bombers ) ) #ANY:./argm-loc ) ) ) ) Slide 45
  • 53. Question conversion Keyword + named entity queries SENTENCE LOCATION Where are suicide bombers trained? #SCOPE[RESULT:sentence]( #AND( trained suicide bombers #ANY:location ) ) Slide 46
  • 54. Question answering results 1 2 3 4 5 element 0.1 (0.0, 0.2) 0.1 (0.1, 0.3) 0.1 (0.0, 0.1) 0.1 (0.0, 0.2) 0.1 (0.0, 0.1) collection 0.4 (0.2, 0.7) 0.4 (0.2, 0.7) 0.4 (0.3, 0.7) 0.4 (0.2, 0.8) 0.5 (0.4, 0.8) document 0.2 (0.1, 0.2) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2 (0.0, 0.2) sentence 0.3 (0.1, 0.4) 0.3 (0.1, 0.4) 0.3 (0.1, 0.3) 0.3 (0.1, 0.5) 0.2 (0.1, 0.3) length 2.1 (1.2, 2.1) 2.1 (0.0, 2.4) 2.1 (0.0, 2.4) 2.1(0.0, 2.4) 2.1 (0.0, 2.4) Estimated parameters across folds for structured + sentence (AVG) All Shallow Deep Shallow + Deep keyword + named-entity 0.218 0.197 0.232 0.211 structured 0.201 0.197 0.206 0.201 structured + padding 0.206 0.197 0.210 0.202 structured + sentence 0.240 0.197 0.303 0.240 Bilotti thesis 0.233 0.201 0.279 0.233 MAP averaged across test folds AVG combination even stronger on this testbed Slide 47
  • 55. Question 1494 Who wrote "East is east, west is west and never the twain shall meet"? #SCOPE[RESULT:sentence]( #AND( #SCOPE[AVG:target]( #AND( wrote #SCOPE[AVG:./arg1]( #AND( east east west west never twain shall meet ) ) ) ) #ANY:person ) ) [ARGM-TMP One hundred years ago,] [PERSON Kipling] [TARGET wrote,] “Oh, East is East, and West is West, and never the twain shall meet.” Slide 48
  • 56. Results summary Extensions to Inference Network + grid search provide strong results Scope AVG combination method robust Good choice of representations can improve annotation-robustness Slide 49
  • 57. Outline Introduction Related Work Extensions to the Inference Network model Results Contributions Slide 50
  • 58. Contributions Standardized the use of mixtures of language models for multiple representations [Ogilvie SIGIR 03] Pushed the state-of-the-art in query languages, index structures, retrieval models Introduced a vocabulary for discussing retrieval models with support for document structure and annotations Demonstrated the promise of annotation-robust models Grid search is a viable parameter estimation method Broader view of structure than prior work Shapes our understanding of what’s important Validated these models for many tasks Explicit recognition of the role of the query language Slide 51