SlideShare une entreprise Scribd logo
1  sur  46
Télécharger pour lire hors ligne
High Performance
                      Building Science
                          Workshop:
                      Village of Civano
                                 Presented by
                                  Presented by
                  C. Alan Nichols, P.E., CEM, GBE, LEED AP
                   C. Alan Nichols, P.E., CEM, GBE, LEED AP
                            Jason Laros, LEED AP
                             Jason Laros, LEED AP
                                 Justin Cupp
                                  Justin Cupp

                          Design Tools for the
                             21st Century
     © copyrighted 2009      High Performance Building Science Workshop on 7/31/09




CIVANO, located in Tucson, Arizona, was originally conceived as
the "Solar Village" as an outgrowth of builder and consumer
interest in solar designs with a natural, and appropriate extension
of desert living. Led by the Metropolitan Energy Commission, a
number of local builders and environmentalists obtained a
commitment from the Arizona Energy Office to fund the planning
and design of the prototype community. As research progressed,
the planners soon began to contemplate comprehensive
extensions of their original idea including energy and water
conservation, solid waste reduction, and lower air pollution.
"Solar Village" soon became a much larger concept, and the
Community of CIVANO began to take shape. It was to be more
sustainable, and it was to incorporate many of the compact, life-
enhancing and socially integrated aspects of American's small
towns.




                                                                                     1
SESSION ONE

              WATER CONSERVATION

                        By:
                    Justin Cupp
                      Owner
        Home Improvement & Maintenance, Inc.




© copyrighted 2009    High Performance Building Science Workshop on 7/31/09




                                                                              2
Conservation Of Water
     Low Water Use Landscape
     Required
     Drastically Reduce Potable
     Water Used for Irrigation

        Reclaimed Water
         • Optional at home,
            required in common
            areas
        Rain Water Cisterns
         • Common retrofit in
            Phase I
        Grey Water Systems
         • Few have attempted
            grey water systems
        On Site Retention
         • Used in Phase II at
            the home level and
            common areas

    © copyrighted 2009            High Performance Building Science Workshop on 7/31/09




Civano neighborhoods have performed well in
the area of water conservation.


Desert landscaping, reclaimed water in
neighborhood I, and several rainwater
collection systems are used to achieve this
success.




                                                                                          3
Landscape And Irrigation
                                       Requirements




                       © copyrighted 2009             High Performance Building Science Workshop on 7/31/09



5.0 LANDSCAPE AND IRRIGATION REQUIREMENTS
               5.1 LANDSCAPE REQUIREMENTS
                     5.1.1 Soil pretreatment. Due to construction site compaction, the soils in planting areas must be pretreated to
                     ensure adequate infiltration of harvested water. Soil Pretreatment techniques, locations and            schematics
                     should be provided in the Implementation Plan.
                     5.1.2 Plant selection and placement. Plants selected for use within descreet WHIAs shall have compatible water
                     needs. Plants shall be positioned to account for the level of expected inundation. They may be placed on the
                     bottoms or sides of recessed areas or the tops of adjacent soil where their roots can grow toward adjacent moist
                     soil. Other placement considerations shall include sun exposure, maintenance requirements, shape, form and
                     aesthetics
                     5.1.3 Mulch placement. Mulch shall be positioned away from the base of plant trunks to avoid excessive moisture
                     there.
               5.2 IRRIGATION REQUIREMENTS
                     5.2.1 Irrigation systems shall be fitted with irrigation controllers and shall be capable of monitoring and
                     responding to plant water needs through the use of soil moisture gauges, tensiometers, weather          stations
                     and/or evapotranspiration data. The irrigation technology chosen should be capable of preventing the irrigation
                     system from running if sufficient soil moisture is present to support the vegetation. All systems shall include rain
                     shut off devices. Instruments shall be correctly placed to ensure plants are kept healthy using a combination of
                     harvested and non-harvested water and to ensure the stated water-saving goal of the Ordinance is met.
                     5.2.2 Irrigation timers shall not be used for primary irrigation system control except in the following situations:
                     3-year plant establishment period, and facilities with container systems that are inter-                plumbed
                     with other water supplies to provide direct irrigation of landscape plants.
                     5.2.3 Irrigation plans must include calculations for estimated water use based on assumptions about plant water
                     demand and canopy size used in the Site Water Budget.
                     5.2.4 Drip irrigation systems shall meet and maintain a minimum 80% emission uniformity.




                                                                                                                                            4
Creating a Water Budget to Live
                                                   By
                                                Plant water needs
                                                Water Storage
                                                Summary
                                                Landscape
                                                Collection Area
                                                Pavement
                                                Collection Area
                                                Water Supply
                                                Estimate (Rooftop
                                                “footprint”)
                                 © copyrighted 2009                                                     High Performance Building Science Workshop on 7/31/09



                        4.2 WATER HARVESTING IMPLEMENTATION PLAN
The Water Harvesting Implementation Plan (Implementation Plan) shall consist of a separate sheet with a plan view layout of the site. The format and design of the Implementation Plan shall be consistent with the base plan, be it a Plat (DS
           2-03), Site Plan (DS 2-04), Development Plan (DS 2-05), or their successor documents, as applicable. The Implementation Plan shall include all details necessary and appropriate to convey the technical concept of the water
           harvesting system design and to facilitate proper installation and maintenance of the water harvesting system in compliance with the Ordinance and this standard.
Submittal of the Implementation Plan for water harvesting shall be made concurrently with the Development Plan and Landscape Plan. Revision of the Implementation Plan may be required in conjunction with preparation of the Grading
           Plan in order to coordinate the construction details and specifications.
                                              4.2.1 The following general information shall be provided on the Implementation Plan:
                                             A. The case number shall be located in the lower right corner of the plan.
                                             B. The means by which monthly rainfall data will be obtained and recorded
                                             C. The means by which monthly irrigation data will be obtained and recorded
                                             D. Soil pretreatment techniques, locations and schematics
                                             E. Maintenance notes
                                             F. Monitoring and Annual Reporting Requirements
                                             4.2.2 Tabulated Data
The Implementation Plan shall include a table detailing information for each identified Water Harvesting Infiltration Area (WHIA) at the site, and for the site as a whole, as described below.
                                             A. General information:                        1. WHIA identifier
                                                                                            2. Spatial size (square feet) of WHIA
                                                                                            3. Average depth (feet) of WHIA
                                                                                            4. Capacity (gallons) of WHIA
                                                                                            5. Type and general location where sensors that control the irrigation system will be placed
                                             B. Plant canopy information                    1. Plant canopy area (square feet) that is served by each WHIA, consisting of the sum of understory,                                           midstory and
           overstory plant canopies at 60 percent of the mature plant size
                                                                                            2. Plant water demand category
                                                                                            3. Total annual plant water demand (gallons)
                                             C. Information about passive and/or active water harvesting systems serving the Water Harvesting Infiltration Area:
                                                                                            1. For the Subwatershed passively serving each WHIA:
                                                                                            a. Subwatershed identifier
                                                                                            b. Spatial size (square feet) of the subwatershed
                                                                                            c. Material the subwatershed is made of
                                                                                            d. Percent of plant water demand provided by this subwatershed to the WHIA
                                                                                            2. For the containment system actively serving each WHIA:
                                                                                            a. Tank Identifier
                                                                                            b. Tank capacity (gallons)
                                                                                            c. Tank location
                                                                                            d. Percent of plant water demand provided by this tank to the WHIA
                                             D. Any additional information needed to document how 50% of irrigation demand will be met using harvested water.
                                             E. Data tabulated for the entire site:
                                                                                            1. Percent of annual landscape water demand met using harvested water
                                                                                            2. Water harvesting capacity that will offset standard retention/detention basin size.
                                             F. Additional plan information may be requested or required by the Development Services Department (DSD)
                                                Director to evaluate rainwater-harvesting proposals.
                                             4.2.3Mapped Data The Implementation Plan shall graphically show the following, drawing on tabulated data:
                                             A. For the area receiving infiltrated water, the WHIA:
                                                                                            1.Indicate the boundary of each WHIA and show its identifier
                                                                                            2. Use arrows to show water flow directions within WHIA, including flow direction at inlets and outlets
                                                                                            3. Show location where sensors that control the irrigation system will be placed
                                             B. Plant Canopy information: Indicate the boundary of the plant canopy area to be served by each WHIA
                                             C. Information about Passive and/or Active Water Harvesting Systems serving each WHIA:
                                                                                            1. Passively supplied water:
                                                                                            a. Indicate the Subwatershed Area and show its identifier
                                                                                            b. Use arrows to indicate the flow path water will take from source to WHIA
                                                                                            c. Indicate spot elevations for the bottoms of water harvesting structures, at spillways, and to define other grades as needed
                                                                                                        d. Indicate the location of all surface or subsurface infiltration structures, pipelines, spillways, French drains, scuppers, curb cuts and other
                                                                                                        infrastructure elements needed to convey, store or overflow passively supplied water, or to control erosion
                                                                                            2. Actively supplied water
                                                                                            a. Show tank and show its identifier
                                                                                            b. Label tank as delivering water by gravity flow or pump
                                                                                            c. Use arrows to indicate flow path water will take from source to WHIA
                                                                                            d. Show additional piping, pump and other infrastructure needed to store, overflow, and convey water to WHIA
                                             4.2.4 Additional Information
Additional notes shall be provided on the Implementation Plan to ensure current and subsequent site owners and operators are informed of the inspection and maintenance required in Section 6 of this development standard.




                                                                                                                                                                                                                                                            5
Soil Pretreatment
      Due to
     construction site
     compaction, the
     soils in planting
     areas must be
     pretreated to
     ensure adequate
     infiltration of
     harvested water.

© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             6
Plant Selection And Placement

                                                Plants selected for
                                                use within discreet
                                                WHIA’s shall have
                                                compatible water
                                                needs. Plants shall
                                                be positioned to
                                                account for the level
                                                of expected
                                                inundation.
        © copyrighted 2009     High Performance Building Science Workshop on 7/31/09




Water Harvesting Infiltration Areas. Pervious areas of a site where harvested water
collects and soaks into the subsurface to support landscape plants. Water Harvesting
Infiltration Areas include exposed soil shaped to hold and infiltrate water,
permeable soil subgrades overlain with impervious pavement that receive water via
perforated pipes or other conveyance techniques, structured soil overlain with
permeable paving, and other strategies that collect water and allow it to soak into
the subsurface to support landscape plants.




                                                                                       7
Irrigation Systems
 Irrigation systems shall be
 fitted with irrigation
 controllers and shall be
 capable of monitoring and
 responding to plant water
 needs through the use of
 soil moisture gauges,
 tensiometers, weather
 tensiometers,
 stations and/or
 evapotranspiration data.
 Drip irrigation systems shall
 meet and maintain a
 minimum 80% emission
 uniformity



© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             8
Large Scale Fully Integrated
                         Into Commercial Irrigation
                                 System




                © copyrighted 2009                  High Performance Building Science Workshop on 7/31/09



CORPORATE INCOME TAX CREDIT
1. The credit is for costs incurred of installing a water conservation system plumbing stub out that collects all graywater sources that end at a
plumbing stub out that is separate and distinct from the regular plumbing system. These costs are for installing or including such a system in
one or more houses or dwelling units located in Arizona and constructed by the taxpayer,
2. This credit is effective for taxable years from and after December 31, 2006. It ends before January 1, 2012. Therefore, the credit is
available for tax years 2007, 2008, 2009, 2010 and 2011.
3. To qualify for the credit, the stub out must:
a. Comply with rules adopted by the Arizona Department of Environmental Quality and that relate to the direct reuse of reclaimed water.
b. Meet applicable local building codes.
4. The credit cannot exceed $200 for each separate house or dwelling unit.
5. If the credit exceeds the tax due on the taxpayer’s tax return, it can be carried forward for five years.
6. Co-owner of a business, including corporate partners in a partnership, may each claim only the pro rata share of the credit, based on
ownership interest.
7. The corporation must make application to the Arizona Department of Revenue (ADOR) on the appropriate ADOR form and must obtain a
Credit Certification indicating that the taxpayer is entitled to take this credit and the amount of credit to which the taxpayer is entitled.
Application can only be made after actual purchase and installation of the system. . Copies of documentation for installation of the plumbing
stub outs, with date of installation and addresses shown, must be attached to the application.
8. If the taxpayer’s installation of the stub outs is contingent upon receiving the credit, the taxpayer can contact Rosemary Soto at (602) 716-
6595 to see how much room under the credit limitation is available. Although a guarantee of credit availability cannot be provided, a fairly
educated guess of credit availability can be made.
9. The Credit Certification should be attached to the taxpayer’s corporate income tax return at the time of filing as proof of eligibility.
10. The maximum amount of corporate income tax credits the ADOR can certify in a calendar year is $500,000.
11. Credits shall be granted on a first come, first served basis.
12. If an application is received that, if authorized, would require the ADOR to exceed $500,000, ADOR shall grant that applicant only the
remaining credit amount that would not exceed the $500,000 limit.
13. ADOR may verify that a water conservation system has been installed by the taxpayer.
If you have questions regarding this credit, contact Rosemary Soto at (602) 716-6595. Mail completed applications to:
Rosemary Soto, Economic Specialist
Office of Economic Research and Analysis
Arizona Department of Revenue
P.O. Box 25248
Phoenix, AZ 85002




                                                                                                                                                    9
Civano Water Use




    © copyrighted 2009   High Performance Building Science Workshop on 7/31/09




Civano I uses more water than Civano II, but
less potable water due to the active use of
reclaimed water in many of the residences.


Reclaimed water is not being sent to Phase II
residences because it is not practical given the
costs. However, small, desert landscaped yards
in Phase II are probably the driving force
behind the overall water savings realized there.




                                                                                 10
Civano Phase I vs. Phase II
                                  Civano I vs Civano II Water Use

                  12

                  10

                   8
     ccf per Mo




                   6

                   4

                   2

                   0
                       Apr- May- Jun- Jul- Aug- Sep- Oct- Nov- Dec- Jan- Feb- Mar-
                        06 06 06 06 06           06 06     06 06 07 07         07

                                  Civano II Total W ater Use   Civano I Total

© copyrighted 2009                  High Performance Building Science Workshop on 7/31/09




                                                                                            11
Civano I & II vs. City
                                           Civano I, Civano II, City

                     16
                     14
                     12
        ccf per Mo




                     10
                      8
                      6
                      4
                      2
                      0
                          Apr- May- Jun-      Jul- Aug- Sep- Oct- Nov- Dec- Jan- Feb- Mar-
                           06   06   06        06   06   06   06   06   06   07   07   07

                     City Potable Water Use      Civano I Potable        Civano II Total
                     Civano I Reclaimed          Civano I Total


    © copyrighted 2009                     High Performance Building Science Workshop on 7/31/09




Civano I uses more water than Civano II, but
less potable water due to the active use of
reclaimed water in many of the residences.


Reclaimed water is not being sent to Phase II
residences because it is not practical given the
costs. However, small, desert landscaped yards
in Phase II are probably the driving force
behind the overall water savings realized there.




                                                                                                   12
Total Water Savings
                 2006-2007                            Civano I Civano II        City


           12 Month Potable Use (ccf)
                                (ccf)                    54.8       75.6       131.1

         12 Month Reclaimed Use (ccf)
                                (ccf)                    31.4         0           0

                         Total                           86.2       75.6       131.1

    Reduction Over City Average Use, Potable            58%         42%
                                                                              Baseline
     Reduction Over City Average Use, Total             34%         42%

    © copyrighted 2009           High Performance Building Science Workshop on 7/31/09




Here are the percentages. Again, notice Civano
I uses less potable water than Civano II, but
more water overall.




                                                                                         13
COMMERCIAL RAINWATER
                              HARVESTING and
                          RESIDENTIAL GREY WATER
                                STUBOUTS –

                            TUCSON’S DEVELOPMENT
                                      STANDARD

                                Tucson’s Water
                                  Challenge


           © copyrighted 2009      High Performance Building Science Workshop on 7/31/09




    . INTRODUCTION
Harvesting rainwater is a useful strategy for providing supplemental irrigation water to
       commercial landscapes, making more efficient use of the desert’s most limited
       resource: water. The City of Tucson Mayor and Council adopted the Commercial
       Rainwater Harvesting Ordinance October 14, 2008 to increase the use of harvested
       rainwater at commercial sites in Tucson and to decrease use of potable and
       reclaimed water supplies. The ordinance takes effect June 1, 2010.
       PURPOSE
This Development Standard has been prepared to facilitate effective use of available
       rainwater resources for landscape irrigation in commercial development as a
       means of reducing dependency on potable and reclaimed water sources. It clarifies
       requirements for compliance with Ordinance No. 10597, the Commercial
       Rainwater Harvesting Ordinance (Ordinance), including the key requirement of
       meeting 50% of landscape water demand using harvested water. This standard
       provides:
Design considerations and technical requirements for passive and active water harvesting
       systems;
Requirements and guidelines for the preparation and implementation of Rainwater
       Harvesting Plans;
Requirements for landscape and irrigation at water harvesting sites
Recommended maintenance steps
Elements required for compliance with the Ordinance
Enforcement provisions
Resources to assist applicants in the selection, design and operation of water harvesting
       strategies

                                                                                            14
Commercial Rainwater
             Harvesting Ordinance
     By June of 2010
 all commercial sites
    will be required
to supplement 50% of
   landscape water
          demand
by collecting rainwater
         on site.

© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             15
City Adopts New Development
                                       Standard
                                                        INTRODUCTION. By minimizing amenity
                                                        irrigation demands, rainwater harvesting
                                                        reduces demand on the desert's most limited
                                                        resource: water.

                                                        PURPOSE. The Development Standard has
                                                        been prepared to facilitate effective use of
                                                        available rainwater resources for landscape
                                                        irrigation in commercial development as a
                                                        means of reducing dependency on potable
                                                        and reclaimed water sources. It shall clarify
                                                        requirements for compliance with Ordinance
                                                        No. 10597, the Commercial Rainwater
                                                        Harvesting Ordinance.


                   © copyrighted 2009          High Performance Building Science Workshop on 7/31/09




        1.1 INTRODUCTION
Harvesting rainwater is a useful strategy for providing supplemental irrigation water to commercial landscapes, making
    more efficient use of the desert’s most limited resource: water. The City of Tucson Mayor and Council adopted the
    Commercial Rainwater Harvesting Ordinance October 14, 2008 to increase the use of harvested rainwater at
    commercial sites in Tucson and to decrease use of potable and reclaimed water supplies. The ordinance takes
    effect June 1, 2010.
  1.2 This Development Standard has been prepared to facilitate effective use of available rainwater resources for
    landscape irrigation in commercial development as a means of reducing dependency on potable and reclaimed
    water sources. It clarifies requirements for compliance with Ordinance No. 10597, the Commercial Rainwater
    Harvesting Ordinance (Ordinance), including the key requirement of meeting 50% of landscape water demand
    using harvested water. This standard provides:
 A. Design considerations and technical requirements for passive and active water harvesting systems;
 B. Requirements and guidelines for the preparation and implementation of Rainwater Harvesting Plans;
 C. Requirements for landscape and irrigation at water harvesting sites
 D. Recommended maintenance steps
 E. Elements required for compliance with the Ordinance
 F. Enforcement provisions
 G. Resources to assist applicants in the selection, design and operation of water harvesting strategies
 APPLICABILITY
This standard applies to all commercial development plans submitted after June 1, 2010.




                                                                                                                         16
Smart Harvesting
                         Harvesting
                         rainwater depends
                         on need




                       © copyrighted 2009                High Performance Building Science Workshop on 7/31/09



DEFINITIONS
Other than as provided below, definitions used in this Standard are found in the Development Standards Glossary or Sec. 6.2.0 of the Land Use
Code (LUC).
Active Water Harvesting. The collection of stormwater runoff into containment systems for storage and later diversion to beneficial uses.
Catchment Areas. Areas of a site where water is harvested, including where rain falls directly on plant canopies and pervious Water Harvesting
Infiltration Areas, and where rain falls on impervious rooftops, sidewalks, parking lots, driveways and other surfaces from which stormwater
runoff is directed toward Water Harvesting Infiltration Areas.
Catchment Ratio. The ratio of the water harvesting catchment area to the canopy area of the plants that use water harvested from that catchment
area.
Commercial development. Any new non-residential development that is intended to be used primarily for commercial activities and is subject to
applicable City Codes.
Containment systems. Above-ground tanks, below-ground tanks, other types of above- and below-ground water-holding containers, and associated
pipes and transmission equipment that enable beneficial use of the harvested water.
Evapotranspiration (ET). The transfer of water from land surface to the atmosphere through the combination of evaporation and plant
transpiration.
Impervious Subwatersheds. Discrete nonporous subareas of a site--including rooftops, sidewalks, parking lots, driveways and other impervious
areas--that capture stormwater runoff and deliver it through gravity flow to discrete containment systems or Water Harvesting Infiltration Areas.
Passive Water Harvesting. The collection of stormwater runoff directly into Water Harvesting Infiltration Areas without the temporary storage of
water in a containment system.
Plant Canopy Area. The square feet of ground covered by plants and trees as viewed from above for a given area, consisting of the sum of
understory, midstory and overstory plant canopies at 60 percent of their mature plant size.
Rainwater. Liquid precipitation falling from the sky before it lands on a surface.
Stormwater. Rainwater that has landed on a surface becomes stormwater.
Water harvesting. The process of intercepting stormwater and putting it to beneficial use.
Water Harvesting Infiltration Areas. Pervious areas of a site where harvested water collects and soaks into the subsurface to support landscape
plants. Water Harvesting Infiltration Areas include exposed soil shaped to hold and infiltrate water, permeable soil subgrades overlain with
impervious pavement that receive water via perforated pipes or other conveyance techniques, structured soil overlain with permeable paving, and
other strategies that collect water and allow it to soak into the subsurface to support landscape plants.

Smart harvesting includes an ability to have a balance of high demand and low demand plants to create the appearance of a lush
landscape, but drought tolerant. Canopy landscaping is key to reduce the heat island effect and overall water demand.




                                                                                                                                                    17
Rainwater Harvesting
                                    Techniques




                  © copyrighted 2009     High Performance Building Science Workshop on 7/31/09



3.0 DESIGN CONSIDERATIONS AND TECHNICAL REQUIREMENTS
Two primary strategies for harvesting water are commonly used in the southwest US to support
  landscape water needs. Passive water harvesting is accomplished by infiltrating rainfall and
  stormwater runoff directly in Water Harvesting Infiltration Areas. Active water harvesting stores
  harvested water in containment systems located above or below ground so the stored water is
  available for later beneficial use. The commercial facility may determine the strategy or strategies
  most appropriate for their site.




                                                                                                         18
Two Primary Strategies
 Passive Rainwater
 Harvesting
 Active Rainwater
 Harvesting




© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             19
Passive Water Harvesting
               Passive Rainwater
               Harvesting is the
               intentional
               contouring of
               landscape to utilize
               the water shed off of
               a surface without
               the use of a
               containment system


             © copyrighted 2009                  High Performance Building Science Workshop on 7/31/09



Passive Water Harvesting. The collection of stormwater runoff directly into Water Harvesting Infiltration Areas without the
     temporary storage of water in a containment system.

3.1.1 Passive Water Harvesting Design Considerations
An array of techniques and designs are available to accomplish passive water harvesting. Whatever techniques or designs are
      used, the items listed below should be considered to create safe, efficient and effective passive water harvesting systems.
                         A. Use Water Harvesting Infiltration Areas, where feasible, to offset the size of a retention/detention
      basin that                                                           may be needed at a site. Consult Appendix C of the City
      of Tucson Water Harvesting Guidance Manual for                                                                     information
      on the allowed offset.
                         B. The area and depth of Water Harvesting Infiltration Areas should be determined according to the
      anticipated                                                          volume of harvested water that will enter these areas and
      the infiltration characteristics of the underlying soil.
                         C. The edge of Water Harvesting Infiltration Areas should be set back from building foundations or
      other structures                              to allow for positive drainage of water. Consult a soils professional where
      necessary.
                         D. Planting areas that harvest water should be recessed below the grade of adjacent hardscapes.
      Hardscape                                                            surfaces should be sloped toward adjacent recessed
      planting areas.
                         E. Pedestrian circulation should be designed to discourage cutting across recessed planting areas to
      avoid soil                                                           compaction, erosion, and damage to plants.
                         F. Maximum reveal at the edge of public sidewalks and pedestrian circulation paths should be 1 to 2
      inches to                                                            minimize the risk of injury to pedestrians. A minimum
      12-inch wide shoulder with a maximum two (2) percent                                                               cross slope
      away from a public sidewalk or pedestrian circulation path should be provided where possible.
                         G. Water Harvesting Infiltration Areas should be stabilized for dust control purposes. Techniques could
      include                                                              spreading ½-inch or larger rock, hydroseeding with
      native seed mixes, other using other stabilizing techniques                                 and materials. Fine-grained
      particles that could block water infiltration by clogging soil pores should be washed
                            from materials prior to placement. Avoid the use of fine-grade decomposed granite within or directly
      adjacent to                                  Water Harvesting Infiltration Areas due to the potential for shed silts and clays
      to block water infiltration.
                         H. Soils within Water Harvesting Infiltration Areas should be modified as needed to counteract the
      effects of                                                           mechanical compaction and/or poor soil conditions to
      ensure appropriate water infiltration.
                         I. Organic mulch is appropriate for reducing evaporation and increasing soil quality in Water Harvesting
      Infiltration                                Areas in those locations where the vegetation, water collection, erosion
      conditions, and slope characteristics                                                      are amenable to its use.




                                                                                                                                       20
Curb Cuts and Gabions




        © copyrighted 2009     High Performance Building Science Workshop on 7/31/09




              3.1.2 Passive Water Harvesting Technical Requirements
The following technical requirements apply to all passive water harvesting systems.
               A. Water Harvesting Infiltration Areas shall be designed so that
   water infiltrates into soil within twenty (24) hours.
               B. Water Harvesting Infiltration Areas shall be designed to minimize
   ponding in areas that may create a nuisance                               for
   pedestrians. Ponding is not allowed on or over public sidewalks or pedestrian
   circulation paths.
               C. Materials for erosion protection shall be specified, where
   necessary due to erosion potential. The ground
                 surface treatment of spillways and other areas that convey water
   flows shall be able to withstand scouring.
              D. Plants with similar water demands shall be placed in the same
   areas within Water Harvesting Infiltration Areas.




                                                                                       21
Berms and Swales




© copyrighted 2009     High Performance Building Science Workshop on 7/31/09




              1. Passively supplied water:
              a. Indicate the Subwatershed Area and show its identifier
              b. Use arrows to indicate the flow path water will take from
                 source to WHIA
              c. Indicate spot elevations for the bottoms of water
                 harvesting structures, at spillways, and to define other
                 grades as needed
              d. Indicate the location of all surface or subsurface
                 infiltration structures, pipelines, spillways, French drains,
                 scuppers, curb cuts and other infrastructure elements
                 needed to convey, store or overflow passively supplied
                 water, or to control erosion




                                                                                 22
Active Water Harvesting
                                                    Active water
                                                    harvesting is the use of
                                                    containment systems
                                                    located above or below
                                                    ground, such that the
                                                    stored water is
                                                    available for later,
                                                    beneficial, use.



          © copyrighted 2009          High Performance Building Science Workshop on 7/31/09




                   3.2.1 Active Water Harvesting Design Considerations
An array of techniques and designs are available to accomplish active water harvesting. Whatever
    techniques or designs are used, the items listed below should be considered to create safe,
    efficient and effective active water harvesting systems.
                   A. Tanks may be constructed of metal, plastic, masonry, reinforced concrete,
    fiberglass, or other suitable DSD-
    approved material designed to store water.
                   B. Above-ground tank construction material or coating should be opaque to
    prevent sunlight from inducing algae                                                         growth.
    Any portion of a subsurface tank that is exposed to sunlight should be opaque to prevent sunlight
    from                                 inducing algae growth.
                   C. A “first flush device” is intended to prevent the dust, grit, leaves and other
    materials that may accumulate on a                                        roof from being washed
    into a water harvesting tank. This is accomplished by deflecting the first flush of
                                         stormwater runoff from entering the tank inlet line. The
    installation of first flush devices is strongly
                      recommended but not required.
                   D. The dimensions of tanks may be determined by the applicant based on site-
    specific design needs.
                   E. Inlet piping may convey water overhead from a roof to a tank, or in a U-shaped
    configuration that conveys water                                          to a lower entry point on
    the tank. The U-shaped configuration should be designed to hold standing water, and
                                         must be pressure rated and sealed to prevent leaks.
                   F. Designs that involve water falling freely through the air before entering a tank
    may be allowed provided the                                               design minimizes the entry
    of light and mosquitoes into the tank.




                                                                                                           23
Design Schematics




                     © copyrighted 2009                 High Performance Building Science Workshop on 7/31/09



                  3.2.2 Active Water Harvesting Technical Requirements
                        The following technical requirements apply to all active water harvesting systems.
A. Materials must be installed per manufacturer’s specifications.
B. Consult the International Building Code for applicable regulations.
C. Containment system plumbing is per the International Plumbing code.
D. Tanks and covers shall be constructed of materials appropriate for use for storing water.
E. Above-ground tank construction material must be able to endure UV exposure without loss of structural
integrity, or must be UV protected with an appropriate coating. Any portion of a subsurface tank that is
exposed to sunlight must be able to endure UV exposure without loss of structural integrity, or must be UV protected with an appropriate coating.
F. Tanks shall have a base or foundation that meets manufacturer’s specifications. If no specifications are
provided by the manufacturer, the base shall be designed by an engineer.
G. Sub-surface storage tanks shall be constructed of materials designed for holding water underground. Below-
ground tanks must be designed and installed under the guidance of a civil or structural engineer and/or tanks must be installed per manufacturer’s
specifications regarding bedding, setting the tank, strapping or other anchoring device, load bearing characteristics and backfill requirements.
H. There must be a structured overflow device installed with the tank to automatically allow excess infill water to
exit the tank safely.
I. Outlets for overflow pipes shall be positioned so as not to compromise the foundations of buildings or other
structures.
J. If debris screening is used for inlets to tanks, screening must be configured in such a way that an unmaintained
screen cannot block inlet pipes to a tank. Obstructed screens can prevent water harvesting and back water up on the roof creating unsafe weight load
conditions on the roof.
K. An overflow mechanism, separate from that provided inside the tank, shall be provided to ensure that water
cannot back up on a roof. Roof overflow drains shall not be connected to tanks.
L. Tanks must have an inspection port of sufficient size to conduct any necessary visual inspection, maintenance,
cleaning, repair or other tasks as described in the manufacturer’s specifications.
M. If a manhole is provided with the intent of allowing human access into a tank, it must meet any applicable size
and safety requirements.
N. Containment systems shall be designed, maintained and operated to prevent mosquito harboring and/or
breeding.
O. Locations of containment systems shall be in accordance with applicable codes.
P. A reverse-pressure backflow-preventer assembly is required when connecting irrigation from an active water
harvesting system to a potable water irrigation system to protect the public water system and/or building water
system.
Q. Systems that include an outlet to allow authorized people to tap water from the active water harvesting system
directly shall include a keyed hose bib and be posted with a yellow placard with black text stating the water is
non-potable, as required by Section 601.2.2 of the Uniform Plumbing Code.
2. Actively supplied water
a. Show tank and show its identifier
b. Label tank as delivering water by gravity flow or pump
c. Use arrows to indicate flow path water will take from source to WHIA
d. Show additional piping, pump and other infrastructure needed to store, overflow, and convey water
to WHIA                                                                                                                                                24
Foundation Prep




            © copyrighted 2009                  High Performance Building Science Workshop on 7/31/09



F. Tanks shall have a base or foundation that meets manufacturer’s specifications. If no specifications are provided by the
     manufacturer, the base shall be designed by an engineer.

Galvanized culverts were not designed to hold water, only to let water pass through. It just so happens that they conveniently do
     hold water and at a cost effective price. Therefore, there are no specifications from the manufacturer and an engineer will
     have to be involved.

Installer’s tip: Once pipe and rebar are put in place concrete should be poured to stabilize assemblies while setting the culverts in
      place. There are two options for pouring. First, a whole slab can be poured followed by a second slab which the culverts
      would be sitting in. Or the second option would be to spot concrete each assembly, enough to be stable when setting the
      culverts upright. The second option allows for a more thorough pour, whereas the first option may not allow the two slabs to
      perfectly adhere to one another.




                                                                                                                                        25
Set In Place




© copyrighted 2009        High Performance Building Science Workshop on 7/31/09




              Before setting culvert in concrete, steps must be taken to
                 ensure system will not fail upon an initial rainstorm event:
              •      If a culvert is cut with a torch, it destroys the
                     galvanization of the steel. Therefore it is important to
                     coat the unprotected part with any product (tar, epoxy or
                     polymer paints, etc.) that adheres to metal and is durable
                     in a wet environment.
              •      The seam in the culvert will also have to be “painted.”
                     The manufacturer does not rate galvanized culverts for
                     the collection of rainwater therefore the seam on a culvert
                     cannot be guaranteed to be perfectly sealed. Use the same
                     product used to coat the unprotected steel to seal the
                     seam.
              Now for lifting the culverts into place.
              Manpower!...or a crane, whichever you choose, the culvert
                just needs to get on the foundation before the concrete
                dries.




                                                                                   26
Overflow
                                                When sizing
                                                overflow pipe
                                                consult with a
                                                mechanical
                                                engineer or refer to
                                                the I.P.C
                                                (International
                                                Plumbing Code)



        © copyrighted 2009     High Performance Building Science Workshop on 7/31/09




•There must be a structured overflow device installed with the tank to automatically
allow excess infill water to exit the tank safely.
•Outlets for overflow pipes shall be positioned so as not to compromise the
foundations of buildings or other structures.
•An overflow mechanism, separate from that provided inside the tank, shall be
provided to ensure that water cannot back up on a roof. Roof overflow drains shall
not be connected to tanks.


It’s ideal to direct overflows towards retention/detention basins or some other
passive water harvesting application.




                                                                                       27
Lid
          Covers on storage
          tanks are necessary
          to prevent animals
          and debris from
          entering and
          potentially causing
          clogging
          Prevents algae
          growth inside tank
          Discourages
          mosquito harboring &
          breeding
        © copyrighted 2009     High Performance Building Science Workshop on 7/31/09




Tanks and covers shall be constructed of materials appropriate for use for storing
water.
Tanks must have an inspection port of sufficient size to conduct any necessary
visual inspection, maintenance, cleaning, repair and other tasks as described in the
manufacturer’s specifications.
If a manhole is provided with the intent of allowing human access into a tank, it
must meet any applicable size and safety requirements.
Containment systems shall be designed, maintained and operated to prevent
mosquito harboring and/or breeding.




                                                                                       28
Connections, Wire Cage, and
                      Vine




        © copyrighted 2009     High Performance Building Science Workshop on 7/31/09




P. A reverse-pressure backflow-preventer assembly is required when connecting
irrigation from an active water harvesting system to a potable water irrigation
system to protect the public water system and/or building water system.


Q. Systems that include an outlet to allow authorized people to tap water from the
active water harvesting system directly shall include a keyed hose bib and be posted
with a yellow placard with black text stating the water is non-potable, as required by
Section 601.2.2 of the Uniform Plumbing Code.


Mechanical ball valves are now available at any Lowe’s or Home Depot. They cost
$10. Unlike traditional irrigation valves they open under no water pressure.
However, like traditional irrigation, it allows the user to program it for a regular
watering schedule.




                                                                                         29
Parking Structure For
                   Rio Nuevo




© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             30
Distribution Of
                 Rainwater To Site




© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             31
L.U.C. Code for Containment
                                                Tanks




                          © copyrighted 2009                  High Performance Building Science Workshop on 7/31/09



MEMORANDUM
DATE: February 19, 2009
TO: DSD Staff
FROM: Craig L. Gross, Zoning Administrator
SUBJECT: Water Harvesting Cisterns
The following is a clarification of existing Land Use Code regulations regarding the heights and setbacks of water harvesting cisterns.
Cisterns are storage tanks for rainfall collected from a roof or other catchment area. A water harvesting cistern is considered an accessory structure.
Land Use Code Sections 3.2.5 and 3.2.6 detail the requirements for accessory structures. The following standards are to be used for reviewing cisterns
for zoning purposes:
1. A cistern no more than five (5) feet in height and no more than ten (10) square feet in area (approximately 3.5 feet in diameter), may be placed
anywhere within a property boundary with zero (0) setbacks from property lines (LUC 3.2.5.2.F).
2. A cistern over five (5) feet but no more than six (6) feet in height and no more than ten
(10) square feet in area (approximately 3.5 feet in diameter), may be placed anywhere in
the defined side or rear yard (excluding street perimeter yards) with zero (0) setbacks
from property lines (LUC 3.2.5.2.C) if screened by a wall or fence of equivalent height.
3. A cistern over six (6) feet in height or more than ten (10) square feet in area
(approximately 3.5 feet in diameter), may be placed anywhere in the defined side or rear
yard subject to compliance with the perimeter yard width requirements applicable to the
zone. The perimeter yard width requirements may be reduced with the written consent of
the adjoining, or when separated by an alley, the adjacent property owner, or by
completing the Design Development Option (DDO) process (LUC 3.2.5.2.C).
4. A cistern that is part of and integrated into the design of the principal building may be
considered part of the principal building as determined by the Zoning Administrator on a
case by case basis.
5. Maximum height of a cistern in a residential zone is twelve (12) feet (LUC 3.2.5.3.B).
Maximum height of a cistern in a commercial zone is equal to the height limitation of the
principal building (LUC 3.2.5.4.B). All height measurements are from established design
grade at the base of the cistern and includes any foundations or bases required to support
the cistern.
6. Other applicable building codes and fire codes may apply.


                                                                                                                                                          32
Goals for Tucson
            The facility may determine
            the strategy or strategies
            most appropriate for their
            site.
            Preparation of the Water
            Budget and Rainwater
            Harvesting Implementation
            Plan, by the applicant,
            showing appropriate
            strategy(s), and illustrate
            how the use of the selected
            strategy(s) will accomplish
            the 50% off set requirement
            pursuant to the Ordinance.

         © copyrighted 2009          High Performance Building Science Workshop on 7/31/09



4.0 RAINWATER HARVESTING PLAN
A Rainwater Harvesting Plan shall be submitted with all applications for commercial developments
    at which landscaping is required. The Rainwater Harvesting Plan shall consist of two elements: a
    Site Water Budget and a Water Harvesting Implementation Plan. Preparation of the Rainwater
    Harvesting Plan elements requires coordination between project managers, site engineers and
    landscape architects from the inception of the project. The two elements of the Rainwater
    Harvesting Plan shall illustrate how water harvesting will meet 50 percent of landscape water
    demand, as required by the Ordinance. Resources describing various water-harvesting strategies
    are listed in Appendix A to assist—but not limit—applicants as they design water harvesting for
    their site.
         4.1 SITE WATER BUDGET
The Site Water Budget shall detail landscape water demand and the harvested water supply needed
    to meet 50 percent of this demand. The Site Water Budget and the Water Harvesting
    Implementation Plan shall be consistent with one another.
A water budget format is shown in Appendix B, along with the background data and assumptions
    used to develop it. This water budget format will be available to applicants as an Excel
    spreadsheet. Applicants may use this water budget format to enter site specific data and develop
    their Site Water Budget. Alternatively, applicants may develop their own Site Water Budget
    format. Whichever format is used, the submitted Site Water Budget shall incorporate and
    provide the following:
                   4.1.1 Water Demand
Applicants shall use plant water demand categories and data provided in Appendix B unless an
    alternative assumption is provided and satisfactorily justified.
                   4.1.2 Water supply
Applicants shall use the effective monthly rainfall assumptions shown in Appendix B unless an
    alternative assumption is provided and satisfactorily justified.
                   4.1.3 Output
Output of the Site Water Budget shall include calculations showing how 50 percent of landscape
    water demand will be met using harvested rainwater, and shall include assumptions and
    supporting calculations as necessary to document these outputs.




                                                                                                       33
Corporate And Individual
                                     Income Tax Credit For Water
                                        Conservation Systems
                             This credit is for costs associated with
                             installing a water conservation system in
                             the taxpayer’s residence located in
                                  taxpayer’
                             Arizona.
                             The Tax Credit is 25% or up to $1000, the
                             lesser of the two.
                             The tax credit incentive is set to expire in
                             2011
                             If the credit exceeds the tax due on the
                             taxpayer’s tax return, it can be carried
                             taxpayer’
                             forward for five years.

                          © copyrighted 2009                  High Performance Building Science Workshop on 7/31/09



INDIVIDUAL INCOME TAX CREDIT
This credit is for costs associated with installing a water conservation system in the taxpayer’s residence located in Arizona.
A water conservation system is a system or series of components or mechanisms that are designed to provide for the collection of rainwater or residential
graywater. A water conservation system includes a system that is capable of storing rainwater or residential graywater for future use and reusing the
collected water for the same residential property.
1. To qualify for the credit, a residential graywater conservation system and its installation must comply with rules that are adopted by the Arizona
Department of Environmental Quality (ADEQ) and that relate to the recovery and disposal of graywater. For detailed information please contact ADEQ:
• www.azdeq.gov/environ/water/permits/reclaimed.html
• Phone number: (602) 771-2300
Toll free: (800) 234-5677
2. This credit is effective for taxable years from and after December 31, 2006. It ends before January 1, 2012. Therefore, the credit is available for tax years
2007, 2008, 2009, 2010 and 2011.
3. The credit is equal to the lesser of 25% of the cost of the system or $1,000.
4. Only one credit in one tax year is allowed per residence.
5. Tax credits claimed over multiple tax year years by a taxpayer for the same residence cannot exceed $1, 000.
6. If the credit exceeds the tax due on the taxpayer’s tax return, it can be carried forward for five years.
7. The individual must make application to the Arizona Department of Revenue (ADOR) on the appropriate ADOR form and must obtain a Credit
Certification indicating that the taxpayer is entitled to take this credit and the amount of credit to which the taxpayer is entitled. Application can only be
made after actual purchase and installation of the system. Copies of the receipt for purchase and installation of the system, with date of installation shown,
must be attached to the application.
9. If the taxpayer’s purchase and installation of the system is contingent upon receiving the credit, the taxpayer can contact Rosemary Soto at (602) 716-
6595 to see how much room under the credit limitation is available. Although a guarantee of credit availability cannot be provided, a fairly educated guess
of credit availability can be made.
10. The Credit Certification must be attached to the taxpayer’s individual income tax return at the time of filing as proof of eligibility.
11. The maximum amount of individual income tax credits the ADOR can certify in a calendar year is $250,000.
12. Credits shall be granted on a first come, first served basis.
13. If an application is received that, if authorized, would require the ADOR to exceed $250,000, ADOR shall grant that applicant only the remaining credit
amount that would not exceed the $250,000 limit.
14. ADOR may verify that a water conservation system has been installed in the taxpayer’s residence. If you have questions regarding this credit, contact
Rosemary Soto at (602) 716-6595. Mail completed applications to:
Rosemary Soto, Economic Specialist
Office of Economic Research and Analysis
Arizona Department of Revenue
P.O. Box 25248
Phoenix, AZ 85002




                                                                                                                                                                   34
How Much Water Does A Rain
      Water Tank System Save
             Anyway?
Using 1.5 sqft per tank gallon
    and 9 inches a year:

1 - 4x10 => 8,500 gallons/yr

1 – 6x12 => 22,800 gallons/yr

11 – 6x8 => 167,400 gallons/yr

     Assuming all harvested
     rainwater can be used
     between events

 © copyrighted 2009     High Performance Building Science Workshop on 7/31/09




                                                                                35
How Much ?????
                                     Would You Believe:
                                       A 4 foot diam. by 10 foot tall
                                                diam.
                                       stores 940 gallons and costs
                                       about $2,100, or $2.25 a
                                       gallon installed.
                                       A 6 foot diam. by 12 foot tall
                                                diam.
                                       is 2,500 gallons and costs
                                       about $3,400, or $1.36 a
                                       gallon installed.
                                       Eleven 6 foot diam. by 8 foot
                                                      diam.
                                       tall tanks is about 18,000
                                       gallons at roughly $1.20 a
                                       gallon.



© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             36
The Future Of
            Rainwater Collection

 Drinking water on
 tap (Off Grid Solar)
 Water supply to
 plumbing fixtures
 in structures such
 as toilets
 Supplementing
 groundwater
 supply onsite
© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             37
Residential Gray Water
                  Code

 By 2010 all new
 residential
 construction must
 provide gray water
 stub outs.
 Actual use of the
 system is not
 required.


© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             38
Residential Gray Water System
                    General Permit
             Definition of Gray Water: Wastewater, collected
             separately from a sewage flow that originates
             from a clothes washer, bathtub, shower, and
             sink, but does not include wastewater from a
             kitchen sink, dishwasher, or toilet.

             A Type 1 General Permit allows private
             residential direct reuse of gray water less than
             400 gallons per day without notice to the
             Department if all of the following conditions are
             met: (A.A.C.R18-9-71 1)
            © copyrighted 2009     High Performance Building Science Workshop on 7/31/09




Pima County Department of Environmental Quality 130 W Congress, 3rd Floor, Tucson, AZ 85701
General Permit BMPs
Follow these best management practices to comply with Arizona's rules for gray
water use First and foremost, avoid human contact with gray water, or soil irrigated with
gray water. You may use gray water for household gardening, composting, and lawn and
landscape irrigation, but use it in a way that it does not run off your own property. Do not
surface irrigate any plants that produce food, except for citrus and nut trees. Use only flood
or drip irrigation to water lawns and landscaping. Spraying gray water is prohibited. When
determining the location for your gray water irrigation, remember that it cannot be in a wash
or drainage way. Gray water may only be used in locations where groundwater is at least
five feet below the surface. Label pipes carrying gray water under pressure to eliminate
confusion between gray water and drinking water pipes. Cover, seal and secure storage
tanks to restrict access by small rodents and to control disease carrying insects such as
mosquitoes. Gray water cannot contain hazardous chemicals such as antifreeze, mothballs
and solvents. Do not include wash water from greasy or oily rags in your gray water. Gray
water from washing diapers or other infectious garments must be discharged to a residential
sewer or other wastewater facility, unless it can be disinfected prior to its use. Surface
accumulation of gray water must be kept to a minimum.
Should a backup occur, gray water must be disposed into your normal wastewater drain
system. To avoid such a backup, consider using a filtration system to reduce plugging and
extend the system’s lifetime. If you have a septic or other on-site wastewater disposal
system, your gray water use does not change that system’s design requirements for
capacity and reserve areas.




                                                                                                 39
Typical Gray Water System
             by the UPC Appendix G




       © copyrighted 2009   High Performance Building Science Workshop on 7/31/09




www.watercasa.org




                                                                                    40
Modified Piping 2 Story Home




© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             41
Subsurface Irrigation
      Preferred But Not required




© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             42
Surface Irrigation
 Is Allowed If Standing Water Is
            Avoided
  “First and
  foremost,
  avoid human
  contact with
  gray
  water, or soil
  irrigated with
  gray water.”

© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             43
Design Considerations
                                      Gray water will clog
                                      the soil and prevent
                                      percolation
                                      Soil and
                                      infrastructure
                                      components must
                                      be adequate to
                                      withstand a high
                                      amount of solids

© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             44
Recap
 Apply all of the aforementioned techniques
 in your landscape and you also will see
 the savings!




© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             45
Contact Information:

                     Rodney Glassman
                     City of Tucson Ward 2
                     Rodney.Glassman@tucsonaz.gov

                     C. Alan Nichols, P.E., CEM, GBE, LEED AP
                     Al Nichols Engineering Inc.
                     alnichols@aol.com

                     Justin Cupp
                     Home Improvement and Maintenance, Inc.
                     rainwatercupp@yahoo.com




© copyrighted 2009   High Performance Building Science Workshop on 7/31/09




                                                                             46

Contenu connexe

Tendances

Green Connection Lid June 2009
Green Connection Lid June 2009Green Connection Lid June 2009
Green Connection Lid June 2009Michael Clark
 
Landscaping for Water Quality: Concepts and Garden Designs for Homeowners, Ad...
Landscaping for Water Quality: Concepts and Garden Designs for Homeowners, Ad...Landscaping for Water Quality: Concepts and Garden Designs for Homeowners, Ad...
Landscaping for Water Quality: Concepts and Garden Designs for Homeowners, Ad...Farica46m
 
Stormwater GreenHomeNYC August 2008
Stormwater GreenHomeNYC August 2008Stormwater GreenHomeNYC August 2008
Stormwater GreenHomeNYC August 2008GreenHomeNYC
 
OR: Portland: Multnomah Building Green Roof
OR: Portland: Multnomah Building Green RoofOR: Portland: Multnomah Building Green Roof
OR: Portland: Multnomah Building Green RoofSotirakou964
 
IN: Green Infrastructure and Low Impact Development
IN: Green Infrastructure and Low Impact DevelopmentIN: Green Infrastructure and Low Impact Development
IN: Green Infrastructure and Low Impact DevelopmentSotirakou964
 
Suds dontsleaflet
Suds dontsleafletSuds dontsleaflet
Suds dontsleafletllica
 
Canada: BC: Infiltration Rain Garden
Canada: BC: Infiltration Rain GardenCanada: BC: Infiltration Rain Garden
Canada: BC: Infiltration Rain GardenSotirakou964
 
State & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
State & Federal Regulation of Hydraulic Fracturing: A Comparative AnalysisState & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
State & Federal Regulation of Hydraulic Fracturing: A Comparative AnalysisDan Arthur
 
=Rain water harvesting =-
 =Rain water harvesting =- =Rain water harvesting =-
=Rain water harvesting =-omg
 
Hydraulic Fracturing Presentation
Hydraulic Fracturing PresentationHydraulic Fracturing Presentation
Hydraulic Fracturing Presentationbishopcj
 
Designing Bioretention with an Internal Water Storage Layer - NC Cooperative ...
Designing Bioretention with an Internal Water Storage Layer - NC Cooperative ...Designing Bioretention with an Internal Water Storage Layer - NC Cooperative ...
Designing Bioretention with an Internal Water Storage Layer - NC Cooperative ...D4Z
 
Using Rain Gardens as a Storm Water Runoff Bioretention Technique, National W...
Using Rain Gardens as a Storm Water Runoff Bioretention Technique, National W...Using Rain Gardens as a Storm Water Runoff Bioretention Technique, National W...
Using Rain Gardens as a Storm Water Runoff Bioretention Technique, National W...Sotirakou964
 
ME: Manual on Low Impact Development practices for Communities
ME: Manual on Low Impact Development practices for CommunitiesME: Manual on Low Impact Development practices for Communities
ME: Manual on Low Impact Development practices for CommunitiesSotirakou964
 
RAIN WATER HARVESTING
RAIN WATER HARVESTING RAIN WATER HARVESTING
RAIN WATER HARVESTING DEEPAK SAHU
 
Integrated urban water management experiences from ethekweni municipality s...
Integrated urban water management   experiences from ethekweni municipality s...Integrated urban water management   experiences from ethekweni municipality s...
Integrated urban water management experiences from ethekweni municipality s...Global Water Partnership
 

Tendances (20)

Green Connection Lid June 2009
Green Connection Lid June 2009Green Connection Lid June 2009
Green Connection Lid June 2009
 
Chinese delegation cewh
Chinese delegation   cewhChinese delegation   cewh
Chinese delegation cewh
 
Landscaping for Water Quality: Concepts and Garden Designs for Homeowners, Ad...
Landscaping for Water Quality: Concepts and Garden Designs for Homeowners, Ad...Landscaping for Water Quality: Concepts and Garden Designs for Homeowners, Ad...
Landscaping for Water Quality: Concepts and Garden Designs for Homeowners, Ad...
 
Stormwater GreenHomeNYC August 2008
Stormwater GreenHomeNYC August 2008Stormwater GreenHomeNYC August 2008
Stormwater GreenHomeNYC August 2008
 
Rainwater harvesting - CCRT
Rainwater harvesting - CCRTRainwater harvesting - CCRT
Rainwater harvesting - CCRT
 
OR: Portland: Multnomah Building Green Roof
OR: Portland: Multnomah Building Green RoofOR: Portland: Multnomah Building Green Roof
OR: Portland: Multnomah Building Green Roof
 
IN: Green Infrastructure and Low Impact Development
IN: Green Infrastructure and Low Impact DevelopmentIN: Green Infrastructure and Low Impact Development
IN: Green Infrastructure and Low Impact Development
 
Neil Intro Day1
Neil Intro Day1Neil Intro Day1
Neil Intro Day1
 
Suds dontsleaflet
Suds dontsleafletSuds dontsleaflet
Suds dontsleaflet
 
Canada: BC: Infiltration Rain Garden
Canada: BC: Infiltration Rain GardenCanada: BC: Infiltration Rain Garden
Canada: BC: Infiltration Rain Garden
 
NFBWA Reuse and Conservation Considerations
NFBWA Reuse and Conservation ConsiderationsNFBWA Reuse and Conservation Considerations
NFBWA Reuse and Conservation Considerations
 
State & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
State & Federal Regulation of Hydraulic Fracturing: A Comparative AnalysisState & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
State & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
 
=Rain water harvesting =-
 =Rain water harvesting =- =Rain water harvesting =-
=Rain water harvesting =-
 
Hydraulic Fracturing Presentation
Hydraulic Fracturing PresentationHydraulic Fracturing Presentation
Hydraulic Fracturing Presentation
 
Designing Bioretention with an Internal Water Storage Layer - NC Cooperative ...
Designing Bioretention with an Internal Water Storage Layer - NC Cooperative ...Designing Bioretention with an Internal Water Storage Layer - NC Cooperative ...
Designing Bioretention with an Internal Water Storage Layer - NC Cooperative ...
 
Using Rain Gardens as a Storm Water Runoff Bioretention Technique, National W...
Using Rain Gardens as a Storm Water Runoff Bioretention Technique, National W...Using Rain Gardens as a Storm Water Runoff Bioretention Technique, National W...
Using Rain Gardens as a Storm Water Runoff Bioretention Technique, National W...
 
ME: Manual on Low Impact Development practices for Communities
ME: Manual on Low Impact Development practices for CommunitiesME: Manual on Low Impact Development practices for Communities
ME: Manual on Low Impact Development practices for Communities
 
RAIN WATER HARVESTING
RAIN WATER HARVESTING RAIN WATER HARVESTING
RAIN WATER HARVESTING
 
Integrated urban water management experiences from ethekweni municipality s...
Integrated urban water management   experiences from ethekweni municipality s...Integrated urban water management   experiences from ethekweni municipality s...
Integrated urban water management experiences from ethekweni municipality s...
 
Planning for Watershed Restoration by Neil Stichert
Planning for Watershed Restoration by Neil StichertPlanning for Watershed Restoration by Neil Stichert
Planning for Watershed Restoration by Neil Stichert
 

Similaire à 21 Design Work Shop 7.30.2009

Artificial recharge guide
Artificial recharge guideArtificial recharge guide
Artificial recharge guideGeoShiv
 
Water Efficient Landscape Guidelines - Costa Mesa, California
Water Efficient Landscape Guidelines - Costa Mesa, CaliforniaWater Efficient Landscape Guidelines - Costa Mesa, California
Water Efficient Landscape Guidelines - Costa Mesa, CaliforniaKaila694m
 
Guidelines for Santee Water Efficient Landscape
Guidelines for Santee Water Efficient LandscapeGuidelines for Santee Water Efficient Landscape
Guidelines for Santee Water Efficient LandscapeFujita64g
 
Efficient Irrigation for Water Conservation Guideline - Queensland, Australia
Efficient Irrigation for Water Conservation Guideline - Queensland, AustraliaEfficient Irrigation for Water Conservation Guideline - Queensland, Australia
Efficient Irrigation for Water Conservation Guideline - Queensland, AustraliaRetiz16x
 
Guide on artificial_recharge
Guide on artificial_rechargeGuide on artificial_recharge
Guide on artificial_rechargehydrologyproject0
 
Water Wise Landscape Guidelines - Vancouver, Canada
Water Wise Landscape Guidelines - Vancouver, CanadaWater Wise Landscape Guidelines - Vancouver, Canada
Water Wise Landscape Guidelines - Vancouver, CanadaKaila694m
 
Albuquerque New Mexico Rainwater Harvesting Manual
Albuquerque New Mexico Rainwater Harvesting ManualAlbuquerque New Mexico Rainwater Harvesting Manual
Albuquerque New Mexico Rainwater Harvesting ManualK9T
 
Albuquerque, New Mexico Rainwater Harvesting Manual
Albuquerque, New Mexico Rainwater Harvesting ManualAlbuquerque, New Mexico Rainwater Harvesting Manual
Albuquerque, New Mexico Rainwater Harvesting ManualD6Z
 
CA: Bay-Friendly Rating Manual for Civic and Commerical Landscapes
CA: Bay-Friendly Rating Manual for Civic and Commerical LandscapesCA: Bay-Friendly Rating Manual for Civic and Commerical Landscapes
CA: Bay-Friendly Rating Manual for Civic and Commerical LandscapesSotirakou964
 
Sustainable Water Security at a time of Climate Change: India's 12th Five Yea...
Sustainable Water Security at a time of Climate Change: India's 12th Five Yea...Sustainable Water Security at a time of Climate Change: India's 12th Five Yea...
Sustainable Water Security at a time of Climate Change: India's 12th Five Yea...Global Water Partnership
 
Dr-M-K-Sinha_Irrigation-Efficient.pdf
Dr-M-K-Sinha_Irrigation-Efficient.pdfDr-M-K-Sinha_Irrigation-Efficient.pdf
Dr-M-K-Sinha_Irrigation-Efficient.pdfSaurabhSinha284981
 
Build it Green Landscape Points
Build it Green Landscape PointsBuild it Green Landscape Points
Build it Green Landscape Pointsmaclandscape
 
India; Water Harvesting in an Industry in Bangalore
India;  Water Harvesting in an Industry in BangaloreIndia;  Water Harvesting in an Industry in Bangalore
India; Water Harvesting in an Industry in BangaloreD5Z
 
Rainwater Harvesting: DCR Stormwater Design Specification - Virgina
Rainwater Harvesting:  DCR Stormwater Design Specification - VirginaRainwater Harvesting:  DCR Stormwater Design Specification - Virgina
Rainwater Harvesting: DCR Stormwater Design Specification - VirginaK9T
 
Evaluating Options for Water Sensitive Urban Design: A National Guide
Evaluating Options for Water Sensitive Urban Design: A National GuideEvaluating Options for Water Sensitive Urban Design: A National Guide
Evaluating Options for Water Sensitive Urban Design: A National GuideRetiz16x
 
Water Efficient Landscaping: Preventing Pollution and Using Resources Wisely
Water Efficient Landscaping: Preventing Pollution and Using Resources WiselyWater Efficient Landscaping: Preventing Pollution and Using Resources Wisely
Water Efficient Landscaping: Preventing Pollution and Using Resources WiselyEric832w
 
Rainwater harvesting walamtari june12_1
Rainwater harvesting walamtari june12_1Rainwater harvesting walamtari june12_1
Rainwater harvesting walamtari june12_1geosaibhaskar
 

Similaire à 21 Design Work Shop 7.30.2009 (20)

Artificial recharge guide
Artificial recharge guideArtificial recharge guide
Artificial recharge guide
 
Water Efficient Landscape Guidelines - Costa Mesa, California
Water Efficient Landscape Guidelines - Costa Mesa, CaliforniaWater Efficient Landscape Guidelines - Costa Mesa, California
Water Efficient Landscape Guidelines - Costa Mesa, California
 
Guidelines for Santee Water Efficient Landscape
Guidelines for Santee Water Efficient LandscapeGuidelines for Santee Water Efficient Landscape
Guidelines for Santee Water Efficient Landscape
 
Efficient Irrigation for Water Conservation Guideline - Queensland, Australia
Efficient Irrigation for Water Conservation Guideline - Queensland, AustraliaEfficient Irrigation for Water Conservation Guideline - Queensland, Australia
Efficient Irrigation for Water Conservation Guideline - Queensland, Australia
 
Guide on artificial_recharge
Guide on artificial_rechargeGuide on artificial_recharge
Guide on artificial_recharge
 
Ground water o&m_norms
Ground water o&m_normsGround water o&m_norms
Ground water o&m_norms
 
Water Wise Landscape Guidelines - Vancouver, Canada
Water Wise Landscape Guidelines - Vancouver, CanadaWater Wise Landscape Guidelines - Vancouver, Canada
Water Wise Landscape Guidelines - Vancouver, Canada
 
Albuquerque New Mexico Rainwater Harvesting Manual
Albuquerque New Mexico Rainwater Harvesting ManualAlbuquerque New Mexico Rainwater Harvesting Manual
Albuquerque New Mexico Rainwater Harvesting Manual
 
Albuquerque, New Mexico Rainwater Harvesting Manual
Albuquerque, New Mexico Rainwater Harvesting ManualAlbuquerque, New Mexico Rainwater Harvesting Manual
Albuquerque, New Mexico Rainwater Harvesting Manual
 
CA: Bay-Friendly Rating Manual for Civic and Commerical Landscapes
CA: Bay-Friendly Rating Manual for Civic and Commerical LandscapesCA: Bay-Friendly Rating Manual for Civic and Commerical Landscapes
CA: Bay-Friendly Rating Manual for Civic and Commerical Landscapes
 
UNIT.2.pptx
UNIT.2.pptxUNIT.2.pptx
UNIT.2.pptx
 
Sustainable Water Security at a time of Climate Change: India's 12th Five Yea...
Sustainable Water Security at a time of Climate Change: India's 12th Five Yea...Sustainable Water Security at a time of Climate Change: India's 12th Five Yea...
Sustainable Water Security at a time of Climate Change: India's 12th Five Yea...
 
Dr-M-K-Sinha_Irrigation-Efficient.pdf
Dr-M-K-Sinha_Irrigation-Efficient.pdfDr-M-K-Sinha_Irrigation-Efficient.pdf
Dr-M-K-Sinha_Irrigation-Efficient.pdf
 
Build it Green Landscape Points
Build it Green Landscape PointsBuild it Green Landscape Points
Build it Green Landscape Points
 
India; Water Harvesting in an Industry in Bangalore
India;  Water Harvesting in an Industry in BangaloreIndia;  Water Harvesting in an Industry in Bangalore
India; Water Harvesting in an Industry in Bangalore
 
Rainwater Harvesting: DCR Stormwater Design Specification - Virgina
Rainwater Harvesting:  DCR Stormwater Design Specification - VirginaRainwater Harvesting:  DCR Stormwater Design Specification - Virgina
Rainwater Harvesting: DCR Stormwater Design Specification - Virgina
 
gond.pptx
gond.pptxgond.pptx
gond.pptx
 
Evaluating Options for Water Sensitive Urban Design: A National Guide
Evaluating Options for Water Sensitive Urban Design: A National GuideEvaluating Options for Water Sensitive Urban Design: A National Guide
Evaluating Options for Water Sensitive Urban Design: A National Guide
 
Water Efficient Landscaping: Preventing Pollution and Using Resources Wisely
Water Efficient Landscaping: Preventing Pollution and Using Resources WiselyWater Efficient Landscaping: Preventing Pollution and Using Resources Wisely
Water Efficient Landscaping: Preventing Pollution and Using Resources Wisely
 
Rainwater harvesting walamtari june12_1
Rainwater harvesting walamtari june12_1Rainwater harvesting walamtari june12_1
Rainwater harvesting walamtari june12_1
 

Dernier

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 

Dernier (20)

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 

21 Design Work Shop 7.30.2009

  • 1. High Performance Building Science Workshop: Village of Civano Presented by Presented by C. Alan Nichols, P.E., CEM, GBE, LEED AP C. Alan Nichols, P.E., CEM, GBE, LEED AP Jason Laros, LEED AP Jason Laros, LEED AP Justin Cupp Justin Cupp Design Tools for the 21st Century © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 CIVANO, located in Tucson, Arizona, was originally conceived as the "Solar Village" as an outgrowth of builder and consumer interest in solar designs with a natural, and appropriate extension of desert living. Led by the Metropolitan Energy Commission, a number of local builders and environmentalists obtained a commitment from the Arizona Energy Office to fund the planning and design of the prototype community. As research progressed, the planners soon began to contemplate comprehensive extensions of their original idea including energy and water conservation, solid waste reduction, and lower air pollution. "Solar Village" soon became a much larger concept, and the Community of CIVANO began to take shape. It was to be more sustainable, and it was to incorporate many of the compact, life- enhancing and socially integrated aspects of American's small towns. 1
  • 2. SESSION ONE WATER CONSERVATION By: Justin Cupp Owner Home Improvement & Maintenance, Inc. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 2
  • 3. Conservation Of Water Low Water Use Landscape Required Drastically Reduce Potable Water Used for Irrigation Reclaimed Water • Optional at home, required in common areas Rain Water Cisterns • Common retrofit in Phase I Grey Water Systems • Few have attempted grey water systems On Site Retention • Used in Phase II at the home level and common areas © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Civano neighborhoods have performed well in the area of water conservation. Desert landscaping, reclaimed water in neighborhood I, and several rainwater collection systems are used to achieve this success. 3
  • 4. Landscape And Irrigation Requirements © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 5.0 LANDSCAPE AND IRRIGATION REQUIREMENTS 5.1 LANDSCAPE REQUIREMENTS 5.1.1 Soil pretreatment. Due to construction site compaction, the soils in planting areas must be pretreated to ensure adequate infiltration of harvested water. Soil Pretreatment techniques, locations and schematics should be provided in the Implementation Plan. 5.1.2 Plant selection and placement. Plants selected for use within descreet WHIAs shall have compatible water needs. Plants shall be positioned to account for the level of expected inundation. They may be placed on the bottoms or sides of recessed areas or the tops of adjacent soil where their roots can grow toward adjacent moist soil. Other placement considerations shall include sun exposure, maintenance requirements, shape, form and aesthetics 5.1.3 Mulch placement. Mulch shall be positioned away from the base of plant trunks to avoid excessive moisture there. 5.2 IRRIGATION REQUIREMENTS 5.2.1 Irrigation systems shall be fitted with irrigation controllers and shall be capable of monitoring and responding to plant water needs through the use of soil moisture gauges, tensiometers, weather stations and/or evapotranspiration data. The irrigation technology chosen should be capable of preventing the irrigation system from running if sufficient soil moisture is present to support the vegetation. All systems shall include rain shut off devices. Instruments shall be correctly placed to ensure plants are kept healthy using a combination of harvested and non-harvested water and to ensure the stated water-saving goal of the Ordinance is met. 5.2.2 Irrigation timers shall not be used for primary irrigation system control except in the following situations: 3-year plant establishment period, and facilities with container systems that are inter- plumbed with other water supplies to provide direct irrigation of landscape plants. 5.2.3 Irrigation plans must include calculations for estimated water use based on assumptions about plant water demand and canopy size used in the Site Water Budget. 5.2.4 Drip irrigation systems shall meet and maintain a minimum 80% emission uniformity. 4
  • 5. Creating a Water Budget to Live By Plant water needs Water Storage Summary Landscape Collection Area Pavement Collection Area Water Supply Estimate (Rooftop “footprint”) © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 4.2 WATER HARVESTING IMPLEMENTATION PLAN The Water Harvesting Implementation Plan (Implementation Plan) shall consist of a separate sheet with a plan view layout of the site. The format and design of the Implementation Plan shall be consistent with the base plan, be it a Plat (DS 2-03), Site Plan (DS 2-04), Development Plan (DS 2-05), or their successor documents, as applicable. The Implementation Plan shall include all details necessary and appropriate to convey the technical concept of the water harvesting system design and to facilitate proper installation and maintenance of the water harvesting system in compliance with the Ordinance and this standard. Submittal of the Implementation Plan for water harvesting shall be made concurrently with the Development Plan and Landscape Plan. Revision of the Implementation Plan may be required in conjunction with preparation of the Grading Plan in order to coordinate the construction details and specifications. 4.2.1 The following general information shall be provided on the Implementation Plan: A. The case number shall be located in the lower right corner of the plan. B. The means by which monthly rainfall data will be obtained and recorded C. The means by which monthly irrigation data will be obtained and recorded D. Soil pretreatment techniques, locations and schematics E. Maintenance notes F. Monitoring and Annual Reporting Requirements 4.2.2 Tabulated Data The Implementation Plan shall include a table detailing information for each identified Water Harvesting Infiltration Area (WHIA) at the site, and for the site as a whole, as described below. A. General information: 1. WHIA identifier 2. Spatial size (square feet) of WHIA 3. Average depth (feet) of WHIA 4. Capacity (gallons) of WHIA 5. Type and general location where sensors that control the irrigation system will be placed B. Plant canopy information 1. Plant canopy area (square feet) that is served by each WHIA, consisting of the sum of understory, midstory and overstory plant canopies at 60 percent of the mature plant size 2. Plant water demand category 3. Total annual plant water demand (gallons) C. Information about passive and/or active water harvesting systems serving the Water Harvesting Infiltration Area: 1. For the Subwatershed passively serving each WHIA: a. Subwatershed identifier b. Spatial size (square feet) of the subwatershed c. Material the subwatershed is made of d. Percent of plant water demand provided by this subwatershed to the WHIA 2. For the containment system actively serving each WHIA: a. Tank Identifier b. Tank capacity (gallons) c. Tank location d. Percent of plant water demand provided by this tank to the WHIA D. Any additional information needed to document how 50% of irrigation demand will be met using harvested water. E. Data tabulated for the entire site: 1. Percent of annual landscape water demand met using harvested water 2. Water harvesting capacity that will offset standard retention/detention basin size. F. Additional plan information may be requested or required by the Development Services Department (DSD) Director to evaluate rainwater-harvesting proposals. 4.2.3Mapped Data The Implementation Plan shall graphically show the following, drawing on tabulated data: A. For the area receiving infiltrated water, the WHIA: 1.Indicate the boundary of each WHIA and show its identifier 2. Use arrows to show water flow directions within WHIA, including flow direction at inlets and outlets 3. Show location where sensors that control the irrigation system will be placed B. Plant Canopy information: Indicate the boundary of the plant canopy area to be served by each WHIA C. Information about Passive and/or Active Water Harvesting Systems serving each WHIA: 1. Passively supplied water: a. Indicate the Subwatershed Area and show its identifier b. Use arrows to indicate the flow path water will take from source to WHIA c. Indicate spot elevations for the bottoms of water harvesting structures, at spillways, and to define other grades as needed d. Indicate the location of all surface or subsurface infiltration structures, pipelines, spillways, French drains, scuppers, curb cuts and other infrastructure elements needed to convey, store or overflow passively supplied water, or to control erosion 2. Actively supplied water a. Show tank and show its identifier b. Label tank as delivering water by gravity flow or pump c. Use arrows to indicate flow path water will take from source to WHIA d. Show additional piping, pump and other infrastructure needed to store, overflow, and convey water to WHIA 4.2.4 Additional Information Additional notes shall be provided on the Implementation Plan to ensure current and subsequent site owners and operators are informed of the inspection and maintenance required in Section 6 of this development standard. 5
  • 6. Soil Pretreatment Due to construction site compaction, the soils in planting areas must be pretreated to ensure adequate infiltration of harvested water. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 6
  • 7. Plant Selection And Placement Plants selected for use within discreet WHIA’s shall have compatible water needs. Plants shall be positioned to account for the level of expected inundation. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Water Harvesting Infiltration Areas. Pervious areas of a site where harvested water collects and soaks into the subsurface to support landscape plants. Water Harvesting Infiltration Areas include exposed soil shaped to hold and infiltrate water, permeable soil subgrades overlain with impervious pavement that receive water via perforated pipes or other conveyance techniques, structured soil overlain with permeable paving, and other strategies that collect water and allow it to soak into the subsurface to support landscape plants. 7
  • 8. Irrigation Systems Irrigation systems shall be fitted with irrigation controllers and shall be capable of monitoring and responding to plant water needs through the use of soil moisture gauges, tensiometers, weather tensiometers, stations and/or evapotranspiration data. Drip irrigation systems shall meet and maintain a minimum 80% emission uniformity © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 8
  • 9. Large Scale Fully Integrated Into Commercial Irrigation System © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 CORPORATE INCOME TAX CREDIT 1. The credit is for costs incurred of installing a water conservation system plumbing stub out that collects all graywater sources that end at a plumbing stub out that is separate and distinct from the regular plumbing system. These costs are for installing or including such a system in one or more houses or dwelling units located in Arizona and constructed by the taxpayer, 2. This credit is effective for taxable years from and after December 31, 2006. It ends before January 1, 2012. Therefore, the credit is available for tax years 2007, 2008, 2009, 2010 and 2011. 3. To qualify for the credit, the stub out must: a. Comply with rules adopted by the Arizona Department of Environmental Quality and that relate to the direct reuse of reclaimed water. b. Meet applicable local building codes. 4. The credit cannot exceed $200 for each separate house or dwelling unit. 5. If the credit exceeds the tax due on the taxpayer’s tax return, it can be carried forward for five years. 6. Co-owner of a business, including corporate partners in a partnership, may each claim only the pro rata share of the credit, based on ownership interest. 7. The corporation must make application to the Arizona Department of Revenue (ADOR) on the appropriate ADOR form and must obtain a Credit Certification indicating that the taxpayer is entitled to take this credit and the amount of credit to which the taxpayer is entitled. Application can only be made after actual purchase and installation of the system. . Copies of documentation for installation of the plumbing stub outs, with date of installation and addresses shown, must be attached to the application. 8. If the taxpayer’s installation of the stub outs is contingent upon receiving the credit, the taxpayer can contact Rosemary Soto at (602) 716- 6595 to see how much room under the credit limitation is available. Although a guarantee of credit availability cannot be provided, a fairly educated guess of credit availability can be made. 9. The Credit Certification should be attached to the taxpayer’s corporate income tax return at the time of filing as proof of eligibility. 10. The maximum amount of corporate income tax credits the ADOR can certify in a calendar year is $500,000. 11. Credits shall be granted on a first come, first served basis. 12. If an application is received that, if authorized, would require the ADOR to exceed $500,000, ADOR shall grant that applicant only the remaining credit amount that would not exceed the $500,000 limit. 13. ADOR may verify that a water conservation system has been installed by the taxpayer. If you have questions regarding this credit, contact Rosemary Soto at (602) 716-6595. Mail completed applications to: Rosemary Soto, Economic Specialist Office of Economic Research and Analysis Arizona Department of Revenue P.O. Box 25248 Phoenix, AZ 85002 9
  • 10. Civano Water Use © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Civano I uses more water than Civano II, but less potable water due to the active use of reclaimed water in many of the residences. Reclaimed water is not being sent to Phase II residences because it is not practical given the costs. However, small, desert landscaped yards in Phase II are probably the driving force behind the overall water savings realized there. 10
  • 11. Civano Phase I vs. Phase II Civano I vs Civano II Water Use 12 10 8 ccf per Mo 6 4 2 0 Apr- May- Jun- Jul- Aug- Sep- Oct- Nov- Dec- Jan- Feb- Mar- 06 06 06 06 06 06 06 06 06 07 07 07 Civano II Total W ater Use Civano I Total © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 11
  • 12. Civano I & II vs. City Civano I, Civano II, City 16 14 12 ccf per Mo 10 8 6 4 2 0 Apr- May- Jun- Jul- Aug- Sep- Oct- Nov- Dec- Jan- Feb- Mar- 06 06 06 06 06 06 06 06 06 07 07 07 City Potable Water Use Civano I Potable Civano II Total Civano I Reclaimed Civano I Total © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Civano I uses more water than Civano II, but less potable water due to the active use of reclaimed water in many of the residences. Reclaimed water is not being sent to Phase II residences because it is not practical given the costs. However, small, desert landscaped yards in Phase II are probably the driving force behind the overall water savings realized there. 12
  • 13. Total Water Savings 2006-2007 Civano I Civano II City 12 Month Potable Use (ccf) (ccf) 54.8 75.6 131.1 12 Month Reclaimed Use (ccf) (ccf) 31.4 0 0 Total 86.2 75.6 131.1 Reduction Over City Average Use, Potable 58% 42% Baseline Reduction Over City Average Use, Total 34% 42% © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Here are the percentages. Again, notice Civano I uses less potable water than Civano II, but more water overall. 13
  • 14. COMMERCIAL RAINWATER HARVESTING and RESIDENTIAL GREY WATER STUBOUTS – TUCSON’S DEVELOPMENT STANDARD Tucson’s Water Challenge © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 . INTRODUCTION Harvesting rainwater is a useful strategy for providing supplemental irrigation water to commercial landscapes, making more efficient use of the desert’s most limited resource: water. The City of Tucson Mayor and Council adopted the Commercial Rainwater Harvesting Ordinance October 14, 2008 to increase the use of harvested rainwater at commercial sites in Tucson and to decrease use of potable and reclaimed water supplies. The ordinance takes effect June 1, 2010. PURPOSE This Development Standard has been prepared to facilitate effective use of available rainwater resources for landscape irrigation in commercial development as a means of reducing dependency on potable and reclaimed water sources. It clarifies requirements for compliance with Ordinance No. 10597, the Commercial Rainwater Harvesting Ordinance (Ordinance), including the key requirement of meeting 50% of landscape water demand using harvested water. This standard provides: Design considerations and technical requirements for passive and active water harvesting systems; Requirements and guidelines for the preparation and implementation of Rainwater Harvesting Plans; Requirements for landscape and irrigation at water harvesting sites Recommended maintenance steps Elements required for compliance with the Ordinance Enforcement provisions Resources to assist applicants in the selection, design and operation of water harvesting strategies 14
  • 15. Commercial Rainwater Harvesting Ordinance By June of 2010 all commercial sites will be required to supplement 50% of landscape water demand by collecting rainwater on site. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 15
  • 16. City Adopts New Development Standard INTRODUCTION. By minimizing amenity irrigation demands, rainwater harvesting reduces demand on the desert's most limited resource: water. PURPOSE. The Development Standard has been prepared to facilitate effective use of available rainwater resources for landscape irrigation in commercial development as a means of reducing dependency on potable and reclaimed water sources. It shall clarify requirements for compliance with Ordinance No. 10597, the Commercial Rainwater Harvesting Ordinance. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 1.1 INTRODUCTION Harvesting rainwater is a useful strategy for providing supplemental irrigation water to commercial landscapes, making more efficient use of the desert’s most limited resource: water. The City of Tucson Mayor and Council adopted the Commercial Rainwater Harvesting Ordinance October 14, 2008 to increase the use of harvested rainwater at commercial sites in Tucson and to decrease use of potable and reclaimed water supplies. The ordinance takes effect June 1, 2010. 1.2 This Development Standard has been prepared to facilitate effective use of available rainwater resources for landscape irrigation in commercial development as a means of reducing dependency on potable and reclaimed water sources. It clarifies requirements for compliance with Ordinance No. 10597, the Commercial Rainwater Harvesting Ordinance (Ordinance), including the key requirement of meeting 50% of landscape water demand using harvested water. This standard provides: A. Design considerations and technical requirements for passive and active water harvesting systems; B. Requirements and guidelines for the preparation and implementation of Rainwater Harvesting Plans; C. Requirements for landscape and irrigation at water harvesting sites D. Recommended maintenance steps E. Elements required for compliance with the Ordinance F. Enforcement provisions G. Resources to assist applicants in the selection, design and operation of water harvesting strategies APPLICABILITY This standard applies to all commercial development plans submitted after June 1, 2010. 16
  • 17. Smart Harvesting Harvesting rainwater depends on need © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 DEFINITIONS Other than as provided below, definitions used in this Standard are found in the Development Standards Glossary or Sec. 6.2.0 of the Land Use Code (LUC). Active Water Harvesting. The collection of stormwater runoff into containment systems for storage and later diversion to beneficial uses. Catchment Areas. Areas of a site where water is harvested, including where rain falls directly on plant canopies and pervious Water Harvesting Infiltration Areas, and where rain falls on impervious rooftops, sidewalks, parking lots, driveways and other surfaces from which stormwater runoff is directed toward Water Harvesting Infiltration Areas. Catchment Ratio. The ratio of the water harvesting catchment area to the canopy area of the plants that use water harvested from that catchment area. Commercial development. Any new non-residential development that is intended to be used primarily for commercial activities and is subject to applicable City Codes. Containment systems. Above-ground tanks, below-ground tanks, other types of above- and below-ground water-holding containers, and associated pipes and transmission equipment that enable beneficial use of the harvested water. Evapotranspiration (ET). The transfer of water from land surface to the atmosphere through the combination of evaporation and plant transpiration. Impervious Subwatersheds. Discrete nonporous subareas of a site--including rooftops, sidewalks, parking lots, driveways and other impervious areas--that capture stormwater runoff and deliver it through gravity flow to discrete containment systems or Water Harvesting Infiltration Areas. Passive Water Harvesting. The collection of stormwater runoff directly into Water Harvesting Infiltration Areas without the temporary storage of water in a containment system. Plant Canopy Area. The square feet of ground covered by plants and trees as viewed from above for a given area, consisting of the sum of understory, midstory and overstory plant canopies at 60 percent of their mature plant size. Rainwater. Liquid precipitation falling from the sky before it lands on a surface. Stormwater. Rainwater that has landed on a surface becomes stormwater. Water harvesting. The process of intercepting stormwater and putting it to beneficial use. Water Harvesting Infiltration Areas. Pervious areas of a site where harvested water collects and soaks into the subsurface to support landscape plants. Water Harvesting Infiltration Areas include exposed soil shaped to hold and infiltrate water, permeable soil subgrades overlain with impervious pavement that receive water via perforated pipes or other conveyance techniques, structured soil overlain with permeable paving, and other strategies that collect water and allow it to soak into the subsurface to support landscape plants. Smart harvesting includes an ability to have a balance of high demand and low demand plants to create the appearance of a lush landscape, but drought tolerant. Canopy landscaping is key to reduce the heat island effect and overall water demand. 17
  • 18. Rainwater Harvesting Techniques © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 3.0 DESIGN CONSIDERATIONS AND TECHNICAL REQUIREMENTS Two primary strategies for harvesting water are commonly used in the southwest US to support landscape water needs. Passive water harvesting is accomplished by infiltrating rainfall and stormwater runoff directly in Water Harvesting Infiltration Areas. Active water harvesting stores harvested water in containment systems located above or below ground so the stored water is available for later beneficial use. The commercial facility may determine the strategy or strategies most appropriate for their site. 18
  • 19. Two Primary Strategies Passive Rainwater Harvesting Active Rainwater Harvesting © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 19
  • 20. Passive Water Harvesting Passive Rainwater Harvesting is the intentional contouring of landscape to utilize the water shed off of a surface without the use of a containment system © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Passive Water Harvesting. The collection of stormwater runoff directly into Water Harvesting Infiltration Areas without the temporary storage of water in a containment system. 3.1.1 Passive Water Harvesting Design Considerations An array of techniques and designs are available to accomplish passive water harvesting. Whatever techniques or designs are used, the items listed below should be considered to create safe, efficient and effective passive water harvesting systems. A. Use Water Harvesting Infiltration Areas, where feasible, to offset the size of a retention/detention basin that may be needed at a site. Consult Appendix C of the City of Tucson Water Harvesting Guidance Manual for information on the allowed offset. B. The area and depth of Water Harvesting Infiltration Areas should be determined according to the anticipated volume of harvested water that will enter these areas and the infiltration characteristics of the underlying soil. C. The edge of Water Harvesting Infiltration Areas should be set back from building foundations or other structures to allow for positive drainage of water. Consult a soils professional where necessary. D. Planting areas that harvest water should be recessed below the grade of adjacent hardscapes. Hardscape surfaces should be sloped toward adjacent recessed planting areas. E. Pedestrian circulation should be designed to discourage cutting across recessed planting areas to avoid soil compaction, erosion, and damage to plants. F. Maximum reveal at the edge of public sidewalks and pedestrian circulation paths should be 1 to 2 inches to minimize the risk of injury to pedestrians. A minimum 12-inch wide shoulder with a maximum two (2) percent cross slope away from a public sidewalk or pedestrian circulation path should be provided where possible. G. Water Harvesting Infiltration Areas should be stabilized for dust control purposes. Techniques could include spreading ½-inch or larger rock, hydroseeding with native seed mixes, other using other stabilizing techniques and materials. Fine-grained particles that could block water infiltration by clogging soil pores should be washed from materials prior to placement. Avoid the use of fine-grade decomposed granite within or directly adjacent to Water Harvesting Infiltration Areas due to the potential for shed silts and clays to block water infiltration. H. Soils within Water Harvesting Infiltration Areas should be modified as needed to counteract the effects of mechanical compaction and/or poor soil conditions to ensure appropriate water infiltration. I. Organic mulch is appropriate for reducing evaporation and increasing soil quality in Water Harvesting Infiltration Areas in those locations where the vegetation, water collection, erosion conditions, and slope characteristics are amenable to its use. 20
  • 21. Curb Cuts and Gabions © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 3.1.2 Passive Water Harvesting Technical Requirements The following technical requirements apply to all passive water harvesting systems. A. Water Harvesting Infiltration Areas shall be designed so that water infiltrates into soil within twenty (24) hours. B. Water Harvesting Infiltration Areas shall be designed to minimize ponding in areas that may create a nuisance for pedestrians. Ponding is not allowed on or over public sidewalks or pedestrian circulation paths. C. Materials for erosion protection shall be specified, where necessary due to erosion potential. The ground surface treatment of spillways and other areas that convey water flows shall be able to withstand scouring. D. Plants with similar water demands shall be placed in the same areas within Water Harvesting Infiltration Areas. 21
  • 22. Berms and Swales © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 1. Passively supplied water: a. Indicate the Subwatershed Area and show its identifier b. Use arrows to indicate the flow path water will take from source to WHIA c. Indicate spot elevations for the bottoms of water harvesting structures, at spillways, and to define other grades as needed d. Indicate the location of all surface or subsurface infiltration structures, pipelines, spillways, French drains, scuppers, curb cuts and other infrastructure elements needed to convey, store or overflow passively supplied water, or to control erosion 22
  • 23. Active Water Harvesting Active water harvesting is the use of containment systems located above or below ground, such that the stored water is available for later, beneficial, use. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 3.2.1 Active Water Harvesting Design Considerations An array of techniques and designs are available to accomplish active water harvesting. Whatever techniques or designs are used, the items listed below should be considered to create safe, efficient and effective active water harvesting systems. A. Tanks may be constructed of metal, plastic, masonry, reinforced concrete, fiberglass, or other suitable DSD- approved material designed to store water. B. Above-ground tank construction material or coating should be opaque to prevent sunlight from inducing algae growth. Any portion of a subsurface tank that is exposed to sunlight should be opaque to prevent sunlight from inducing algae growth. C. A “first flush device” is intended to prevent the dust, grit, leaves and other materials that may accumulate on a roof from being washed into a water harvesting tank. This is accomplished by deflecting the first flush of stormwater runoff from entering the tank inlet line. The installation of first flush devices is strongly recommended but not required. D. The dimensions of tanks may be determined by the applicant based on site- specific design needs. E. Inlet piping may convey water overhead from a roof to a tank, or in a U-shaped configuration that conveys water to a lower entry point on the tank. The U-shaped configuration should be designed to hold standing water, and must be pressure rated and sealed to prevent leaks. F. Designs that involve water falling freely through the air before entering a tank may be allowed provided the design minimizes the entry of light and mosquitoes into the tank. 23
  • 24. Design Schematics © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 3.2.2 Active Water Harvesting Technical Requirements The following technical requirements apply to all active water harvesting systems. A. Materials must be installed per manufacturer’s specifications. B. Consult the International Building Code for applicable regulations. C. Containment system plumbing is per the International Plumbing code. D. Tanks and covers shall be constructed of materials appropriate for use for storing water. E. Above-ground tank construction material must be able to endure UV exposure without loss of structural integrity, or must be UV protected with an appropriate coating. Any portion of a subsurface tank that is exposed to sunlight must be able to endure UV exposure without loss of structural integrity, or must be UV protected with an appropriate coating. F. Tanks shall have a base or foundation that meets manufacturer’s specifications. If no specifications are provided by the manufacturer, the base shall be designed by an engineer. G. Sub-surface storage tanks shall be constructed of materials designed for holding water underground. Below- ground tanks must be designed and installed under the guidance of a civil or structural engineer and/or tanks must be installed per manufacturer’s specifications regarding bedding, setting the tank, strapping or other anchoring device, load bearing characteristics and backfill requirements. H. There must be a structured overflow device installed with the tank to automatically allow excess infill water to exit the tank safely. I. Outlets for overflow pipes shall be positioned so as not to compromise the foundations of buildings or other structures. J. If debris screening is used for inlets to tanks, screening must be configured in such a way that an unmaintained screen cannot block inlet pipes to a tank. Obstructed screens can prevent water harvesting and back water up on the roof creating unsafe weight load conditions on the roof. K. An overflow mechanism, separate from that provided inside the tank, shall be provided to ensure that water cannot back up on a roof. Roof overflow drains shall not be connected to tanks. L. Tanks must have an inspection port of sufficient size to conduct any necessary visual inspection, maintenance, cleaning, repair or other tasks as described in the manufacturer’s specifications. M. If a manhole is provided with the intent of allowing human access into a tank, it must meet any applicable size and safety requirements. N. Containment systems shall be designed, maintained and operated to prevent mosquito harboring and/or breeding. O. Locations of containment systems shall be in accordance with applicable codes. P. A reverse-pressure backflow-preventer assembly is required when connecting irrigation from an active water harvesting system to a potable water irrigation system to protect the public water system and/or building water system. Q. Systems that include an outlet to allow authorized people to tap water from the active water harvesting system directly shall include a keyed hose bib and be posted with a yellow placard with black text stating the water is non-potable, as required by Section 601.2.2 of the Uniform Plumbing Code. 2. Actively supplied water a. Show tank and show its identifier b. Label tank as delivering water by gravity flow or pump c. Use arrows to indicate flow path water will take from source to WHIA d. Show additional piping, pump and other infrastructure needed to store, overflow, and convey water to WHIA 24
  • 25. Foundation Prep © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 F. Tanks shall have a base or foundation that meets manufacturer’s specifications. If no specifications are provided by the manufacturer, the base shall be designed by an engineer. Galvanized culverts were not designed to hold water, only to let water pass through. It just so happens that they conveniently do hold water and at a cost effective price. Therefore, there are no specifications from the manufacturer and an engineer will have to be involved. Installer’s tip: Once pipe and rebar are put in place concrete should be poured to stabilize assemblies while setting the culverts in place. There are two options for pouring. First, a whole slab can be poured followed by a second slab which the culverts would be sitting in. Or the second option would be to spot concrete each assembly, enough to be stable when setting the culverts upright. The second option allows for a more thorough pour, whereas the first option may not allow the two slabs to perfectly adhere to one another. 25
  • 26. Set In Place © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Before setting culvert in concrete, steps must be taken to ensure system will not fail upon an initial rainstorm event: • If a culvert is cut with a torch, it destroys the galvanization of the steel. Therefore it is important to coat the unprotected part with any product (tar, epoxy or polymer paints, etc.) that adheres to metal and is durable in a wet environment. • The seam in the culvert will also have to be “painted.” The manufacturer does not rate galvanized culverts for the collection of rainwater therefore the seam on a culvert cannot be guaranteed to be perfectly sealed. Use the same product used to coat the unprotected steel to seal the seam. Now for lifting the culverts into place. Manpower!...or a crane, whichever you choose, the culvert just needs to get on the foundation before the concrete dries. 26
  • 27. Overflow When sizing overflow pipe consult with a mechanical engineer or refer to the I.P.C (International Plumbing Code) © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 •There must be a structured overflow device installed with the tank to automatically allow excess infill water to exit the tank safely. •Outlets for overflow pipes shall be positioned so as not to compromise the foundations of buildings or other structures. •An overflow mechanism, separate from that provided inside the tank, shall be provided to ensure that water cannot back up on a roof. Roof overflow drains shall not be connected to tanks. It’s ideal to direct overflows towards retention/detention basins or some other passive water harvesting application. 27
  • 28. Lid Covers on storage tanks are necessary to prevent animals and debris from entering and potentially causing clogging Prevents algae growth inside tank Discourages mosquito harboring & breeding © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Tanks and covers shall be constructed of materials appropriate for use for storing water. Tanks must have an inspection port of sufficient size to conduct any necessary visual inspection, maintenance, cleaning, repair and other tasks as described in the manufacturer’s specifications. If a manhole is provided with the intent of allowing human access into a tank, it must meet any applicable size and safety requirements. Containment systems shall be designed, maintained and operated to prevent mosquito harboring and/or breeding. 28
  • 29. Connections, Wire Cage, and Vine © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 P. A reverse-pressure backflow-preventer assembly is required when connecting irrigation from an active water harvesting system to a potable water irrigation system to protect the public water system and/or building water system. Q. Systems that include an outlet to allow authorized people to tap water from the active water harvesting system directly shall include a keyed hose bib and be posted with a yellow placard with black text stating the water is non-potable, as required by Section 601.2.2 of the Uniform Plumbing Code. Mechanical ball valves are now available at any Lowe’s or Home Depot. They cost $10. Unlike traditional irrigation valves they open under no water pressure. However, like traditional irrigation, it allows the user to program it for a regular watering schedule. 29
  • 30. Parking Structure For Rio Nuevo © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 30
  • 31. Distribution Of Rainwater To Site © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 31
  • 32. L.U.C. Code for Containment Tanks © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 MEMORANDUM DATE: February 19, 2009 TO: DSD Staff FROM: Craig L. Gross, Zoning Administrator SUBJECT: Water Harvesting Cisterns The following is a clarification of existing Land Use Code regulations regarding the heights and setbacks of water harvesting cisterns. Cisterns are storage tanks for rainfall collected from a roof or other catchment area. A water harvesting cistern is considered an accessory structure. Land Use Code Sections 3.2.5 and 3.2.6 detail the requirements for accessory structures. The following standards are to be used for reviewing cisterns for zoning purposes: 1. A cistern no more than five (5) feet in height and no more than ten (10) square feet in area (approximately 3.5 feet in diameter), may be placed anywhere within a property boundary with zero (0) setbacks from property lines (LUC 3.2.5.2.F). 2. A cistern over five (5) feet but no more than six (6) feet in height and no more than ten (10) square feet in area (approximately 3.5 feet in diameter), may be placed anywhere in the defined side or rear yard (excluding street perimeter yards) with zero (0) setbacks from property lines (LUC 3.2.5.2.C) if screened by a wall or fence of equivalent height. 3. A cistern over six (6) feet in height or more than ten (10) square feet in area (approximately 3.5 feet in diameter), may be placed anywhere in the defined side or rear yard subject to compliance with the perimeter yard width requirements applicable to the zone. The perimeter yard width requirements may be reduced with the written consent of the adjoining, or when separated by an alley, the adjacent property owner, or by completing the Design Development Option (DDO) process (LUC 3.2.5.2.C). 4. A cistern that is part of and integrated into the design of the principal building may be considered part of the principal building as determined by the Zoning Administrator on a case by case basis. 5. Maximum height of a cistern in a residential zone is twelve (12) feet (LUC 3.2.5.3.B). Maximum height of a cistern in a commercial zone is equal to the height limitation of the principal building (LUC 3.2.5.4.B). All height measurements are from established design grade at the base of the cistern and includes any foundations or bases required to support the cistern. 6. Other applicable building codes and fire codes may apply. 32
  • 33. Goals for Tucson The facility may determine the strategy or strategies most appropriate for their site. Preparation of the Water Budget and Rainwater Harvesting Implementation Plan, by the applicant, showing appropriate strategy(s), and illustrate how the use of the selected strategy(s) will accomplish the 50% off set requirement pursuant to the Ordinance. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 4.0 RAINWATER HARVESTING PLAN A Rainwater Harvesting Plan shall be submitted with all applications for commercial developments at which landscaping is required. The Rainwater Harvesting Plan shall consist of two elements: a Site Water Budget and a Water Harvesting Implementation Plan. Preparation of the Rainwater Harvesting Plan elements requires coordination between project managers, site engineers and landscape architects from the inception of the project. The two elements of the Rainwater Harvesting Plan shall illustrate how water harvesting will meet 50 percent of landscape water demand, as required by the Ordinance. Resources describing various water-harvesting strategies are listed in Appendix A to assist—but not limit—applicants as they design water harvesting for their site. 4.1 SITE WATER BUDGET The Site Water Budget shall detail landscape water demand and the harvested water supply needed to meet 50 percent of this demand. The Site Water Budget and the Water Harvesting Implementation Plan shall be consistent with one another. A water budget format is shown in Appendix B, along with the background data and assumptions used to develop it. This water budget format will be available to applicants as an Excel spreadsheet. Applicants may use this water budget format to enter site specific data and develop their Site Water Budget. Alternatively, applicants may develop their own Site Water Budget format. Whichever format is used, the submitted Site Water Budget shall incorporate and provide the following: 4.1.1 Water Demand Applicants shall use plant water demand categories and data provided in Appendix B unless an alternative assumption is provided and satisfactorily justified. 4.1.2 Water supply Applicants shall use the effective monthly rainfall assumptions shown in Appendix B unless an alternative assumption is provided and satisfactorily justified. 4.1.3 Output Output of the Site Water Budget shall include calculations showing how 50 percent of landscape water demand will be met using harvested rainwater, and shall include assumptions and supporting calculations as necessary to document these outputs. 33
  • 34. Corporate And Individual Income Tax Credit For Water Conservation Systems This credit is for costs associated with installing a water conservation system in the taxpayer’s residence located in taxpayer’ Arizona. The Tax Credit is 25% or up to $1000, the lesser of the two. The tax credit incentive is set to expire in 2011 If the credit exceeds the tax due on the taxpayer’s tax return, it can be carried taxpayer’ forward for five years. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 INDIVIDUAL INCOME TAX CREDIT This credit is for costs associated with installing a water conservation system in the taxpayer’s residence located in Arizona. A water conservation system is a system or series of components or mechanisms that are designed to provide for the collection of rainwater or residential graywater. A water conservation system includes a system that is capable of storing rainwater or residential graywater for future use and reusing the collected water for the same residential property. 1. To qualify for the credit, a residential graywater conservation system and its installation must comply with rules that are adopted by the Arizona Department of Environmental Quality (ADEQ) and that relate to the recovery and disposal of graywater. For detailed information please contact ADEQ: • www.azdeq.gov/environ/water/permits/reclaimed.html • Phone number: (602) 771-2300 Toll free: (800) 234-5677 2. This credit is effective for taxable years from and after December 31, 2006. It ends before January 1, 2012. Therefore, the credit is available for tax years 2007, 2008, 2009, 2010 and 2011. 3. The credit is equal to the lesser of 25% of the cost of the system or $1,000. 4. Only one credit in one tax year is allowed per residence. 5. Tax credits claimed over multiple tax year years by a taxpayer for the same residence cannot exceed $1, 000. 6. If the credit exceeds the tax due on the taxpayer’s tax return, it can be carried forward for five years. 7. The individual must make application to the Arizona Department of Revenue (ADOR) on the appropriate ADOR form and must obtain a Credit Certification indicating that the taxpayer is entitled to take this credit and the amount of credit to which the taxpayer is entitled. Application can only be made after actual purchase and installation of the system. Copies of the receipt for purchase and installation of the system, with date of installation shown, must be attached to the application. 9. If the taxpayer’s purchase and installation of the system is contingent upon receiving the credit, the taxpayer can contact Rosemary Soto at (602) 716- 6595 to see how much room under the credit limitation is available. Although a guarantee of credit availability cannot be provided, a fairly educated guess of credit availability can be made. 10. The Credit Certification must be attached to the taxpayer’s individual income tax return at the time of filing as proof of eligibility. 11. The maximum amount of individual income tax credits the ADOR can certify in a calendar year is $250,000. 12. Credits shall be granted on a first come, first served basis. 13. If an application is received that, if authorized, would require the ADOR to exceed $250,000, ADOR shall grant that applicant only the remaining credit amount that would not exceed the $250,000 limit. 14. ADOR may verify that a water conservation system has been installed in the taxpayer’s residence. If you have questions regarding this credit, contact Rosemary Soto at (602) 716-6595. Mail completed applications to: Rosemary Soto, Economic Specialist Office of Economic Research and Analysis Arizona Department of Revenue P.O. Box 25248 Phoenix, AZ 85002 34
  • 35. How Much Water Does A Rain Water Tank System Save Anyway? Using 1.5 sqft per tank gallon and 9 inches a year: 1 - 4x10 => 8,500 gallons/yr 1 – 6x12 => 22,800 gallons/yr 11 – 6x8 => 167,400 gallons/yr Assuming all harvested rainwater can be used between events © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 35
  • 36. How Much ????? Would You Believe: A 4 foot diam. by 10 foot tall diam. stores 940 gallons and costs about $2,100, or $2.25 a gallon installed. A 6 foot diam. by 12 foot tall diam. is 2,500 gallons and costs about $3,400, or $1.36 a gallon installed. Eleven 6 foot diam. by 8 foot diam. tall tanks is about 18,000 gallons at roughly $1.20 a gallon. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 36
  • 37. The Future Of Rainwater Collection Drinking water on tap (Off Grid Solar) Water supply to plumbing fixtures in structures such as toilets Supplementing groundwater supply onsite © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 37
  • 38. Residential Gray Water Code By 2010 all new residential construction must provide gray water stub outs. Actual use of the system is not required. © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 38
  • 39. Residential Gray Water System General Permit Definition of Gray Water: Wastewater, collected separately from a sewage flow that originates from a clothes washer, bathtub, shower, and sink, but does not include wastewater from a kitchen sink, dishwasher, or toilet. A Type 1 General Permit allows private residential direct reuse of gray water less than 400 gallons per day without notice to the Department if all of the following conditions are met: (A.A.C.R18-9-71 1) © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 Pima County Department of Environmental Quality 130 W Congress, 3rd Floor, Tucson, AZ 85701 General Permit BMPs Follow these best management practices to comply with Arizona's rules for gray water use First and foremost, avoid human contact with gray water, or soil irrigated with gray water. You may use gray water for household gardening, composting, and lawn and landscape irrigation, but use it in a way that it does not run off your own property. Do not surface irrigate any plants that produce food, except for citrus and nut trees. Use only flood or drip irrigation to water lawns and landscaping. Spraying gray water is prohibited. When determining the location for your gray water irrigation, remember that it cannot be in a wash or drainage way. Gray water may only be used in locations where groundwater is at least five feet below the surface. Label pipes carrying gray water under pressure to eliminate confusion between gray water and drinking water pipes. Cover, seal and secure storage tanks to restrict access by small rodents and to control disease carrying insects such as mosquitoes. Gray water cannot contain hazardous chemicals such as antifreeze, mothballs and solvents. Do not include wash water from greasy or oily rags in your gray water. Gray water from washing diapers or other infectious garments must be discharged to a residential sewer or other wastewater facility, unless it can be disinfected prior to its use. Surface accumulation of gray water must be kept to a minimum. Should a backup occur, gray water must be disposed into your normal wastewater drain system. To avoid such a backup, consider using a filtration system to reduce plugging and extend the system’s lifetime. If you have a septic or other on-site wastewater disposal system, your gray water use does not change that system’s design requirements for capacity and reserve areas. 39
  • 40. Typical Gray Water System by the UPC Appendix G © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 www.watercasa.org 40
  • 41. Modified Piping 2 Story Home © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 41
  • 42. Subsurface Irrigation Preferred But Not required © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 42
  • 43. Surface Irrigation Is Allowed If Standing Water Is Avoided “First and foremost, avoid human contact with gray water, or soil irrigated with gray water.” © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 43
  • 44. Design Considerations Gray water will clog the soil and prevent percolation Soil and infrastructure components must be adequate to withstand a high amount of solids © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 44
  • 45. Recap Apply all of the aforementioned techniques in your landscape and you also will see the savings! © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 45
  • 46. Contact Information: Rodney Glassman City of Tucson Ward 2 Rodney.Glassman@tucsonaz.gov C. Alan Nichols, P.E., CEM, GBE, LEED AP Al Nichols Engineering Inc. alnichols@aol.com Justin Cupp Home Improvement and Maintenance, Inc. rainwatercupp@yahoo.com © copyrighted 2009 High Performance Building Science Workshop on 7/31/09 46