SlideShare une entreprise Scribd logo
1  sur  22
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 1
Course: B.Tech- II
Subject: Engineering Mathematics II
Unit-3
RAI UNIVERSITY, AHMEDABAD
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 2
Unit-III: MULTIPLE INTEGRAL
Sr. No. Name of the Topic Page No.
1 Double integrals 2
2 Evaluation of Double Integral 2
3 To Calculate the integral over a given region 6
4 Change of order of integration 9
5 Change of variable 11
6 Area in Cartesian co-ordinates 13
7 Volume of solids by double integral 15
8 Volume of solids by rotation of an area
(Double Integral)
16
9 Triple Integration (Volume) 18
10 ReferenceBook 21
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 3
MULTIPLE INTEGRALS
1.1 DOUBLE INTEGRALS:
We Know that
∫ 𝑓( 𝑥) 𝑑𝑥 = lim𝑛→∞
𝛿𝑥→0
[ 𝑓( 𝑥1) 𝛿𝑥1 + 𝑓( 𝑥2) 𝛿𝑥2 + 𝑓( 𝑥3) 𝛿𝑥3 + ⋯+
𝑏
𝑎
𝑓( 𝑥 𝑛) 𝛿𝑥 𝑛]
Let us consider a function 𝑓(𝑥, 𝑦) of two variables 𝑥 and 𝑦 defines in
the finite region A of 𝑥𝑦- plane. Divide the region 𝐴 into elementary areas.
𝛿𝐴1, 𝛿𝐴2, 𝛿𝐴3,… 𝛿𝐴 𝑛
Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 =𝐴
lim𝑛→∞
𝛿𝐴→0
[ 𝑓( 𝑥1, 𝑦1) 𝛿𝐴1 + 𝑓( 𝑥2, 𝑦2) 𝛿𝐴2 + ⋯+
𝑓( 𝑥 𝑛, 𝑦𝑛) 𝛿𝐴 𝑛]
2.1 Evaluation of Double Integral:
Double integral over region A may be evaluated by
two successiveintegrations.
If A is described as 𝑓1(𝑥) ≤ 𝑦 ≤ 𝑓2(𝑥) [ 𝑦1 ≤ y ≤ 𝑦2]
And 𝑎 ≤ 𝑥 ≤ 𝑏,
Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑦2
𝑦1
𝑑𝑥 𝑑𝑦
𝑏
𝑎𝐴
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 4
2.1.1 FIRST METHOD:
∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [∫ 𝑓( 𝑥, 𝑦) 𝑑𝑦
𝑦2
𝑦1
] 𝑑𝑥
𝑥2
𝑥1𝐴
𝑓(𝑥, 𝑦) is first integrated with respectto y treating 𝑥 as constant between the
limits 𝑦1 and 𝑦2 and then the result is integrated with respectto 𝑥 between
the limits 𝑥1 and 𝑥2.
In the region we take an elementary area 𝛿𝑥𝛿𝑦. Then integration w.r.t to 𝑦
(𝑥 keeping constant) converts small rectangle 𝛿𝑥𝛿𝑦 into a strip 𝑃𝑄(𝑦 𝛿𝑥).
While the integration of the result w.r.t 𝑥 correspondsto the sliding to the
strip, from 𝐴𝐷 to 𝐵𝐶 covering the whole region 𝐴𝐵𝐶𝐷.
2.1.2 SECOND METHOD:
∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [ ∫ 𝑓( 𝑥, 𝑦) 𝑑𝑥
𝑥2
𝑥1
] 𝑑𝑦
𝑦2
𝑦1𝐴
Here 𝑓(𝑥, 𝑦) is first integrated w.r.t 𝑥 keeping 𝑦 constant between the limits
𝑥1 and 𝑥2 and then the resulting expression is integrated with respectto 𝑦
between the limits 𝑦1 and 𝑦2 and vice versa.
NOTE:Forconstant limits, it does not matter whether we first integrate
w.r.t 𝑥 and then w.r.t 𝑦 or vice versa.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 5
2.2 Examples:
Example 1: Find ∫ ∫ 𝑒 𝑦 𝑥⁄
𝑑𝑦 𝑑𝑥
𝑥2
0
1
0
Solution: Here, we have
∫ [∫ 𝑒 𝑦 𝑥⁄
𝑑𝑦
𝑥2
0
] 𝑑𝑥 = ∫ [
𝑒 𝑦 𝑥⁄
1 𝑥⁄
]
0
𝑥2
𝑑𝑥
1
0
1
0
= ∫
( 𝑒 𝑥−1)
1 𝑥⁄
𝑑𝑥
1
0
= ∫ 𝑥 𝑒 𝑥
𝑑𝑥 − ∫ 𝑥 𝑑𝑥
1
0
1
0
= [ 𝑥 𝑒 𝑥
− 𝑒 𝑥]0
1
− [
𝑥2
2
]
0
1
= 𝑒1
− 𝑒1
+ 1 −
1
2
=
1
2
∴ ∫ ∫ 𝒆 𝒚 𝒙⁄
𝒅𝒚 𝒅𝒙
𝒙 𝟐
𝟎
𝟏
𝟎
=
𝟏
𝟐
________ Answer
Example 2: Evaluate ∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
Solution: Here, we have
∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
= ∫ 𝑑𝑦 ∫ 𝑒−𝑥2(1+𝑦2)
∞
0
𝑥 𝑑𝑥
∞
0
= ∫ 𝑑𝑦 [
𝑒−𝑥2(1+𝑦2)
−2(1+𝑦2)
]
0
∞
∞
0
= ∫ [0 +
1
2(1+𝑦2)
] 𝑑𝑦
∞
0
=
1
2
[tan−1
𝑦]0
∞
=
1
2
[tan−1
∞ − tan−1
0]
=
1
2
(
𝜋
2
)
=
𝜋
4
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 6
∴ ∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
=
𝜋
4
________ Answer
Example 3: Sketch the area of integration and evaluate ∫ ∫ 2𝑥2
𝑦2
𝑑𝑥 𝑑𝑦
√2−𝑦
−√2−𝑦
2
1
.
Solution: Here we have
∫ ∫ 2𝑥2
𝑦2
𝑑𝑥 𝑑𝑦
√2−𝑦
−√2−𝑦
2
1
= 2∫ 𝑦2
𝑑𝑦
2
1
∫ 𝑥2
𝑑𝑥
√2−𝑦
−√2−𝑦
= 4 ∫ 𝑦2
𝑑𝑦
2
1
∫ 𝑥2
𝑑𝑥
√2−𝑦
0
[
∵ ∫ 𝑓( 𝑥) 𝑑𝑥 = 2∫ 𝑓( 𝑥) 𝑑𝑥
𝑎
0
𝑎
−𝑎
𝑤ℎ𝑒𝑟𝑒 𝑥2
𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
]
= 4∫ 𝑦2
𝑑𝑦 [
𝑥3
3
]
0
√2−𝑦2
1
=
4
3
∫ 𝑦2
𝑑𝑦 (2− 𝑦)
3
2
2
1
=
4
3
∫ (2 − 𝑦)2
𝑡3 2⁄
(−𝑑𝑡)
0
1
[
𝑝𝑢𝑡 2 − 𝑦 = 𝑡
∴ 𝑑𝑦 = −𝑑𝑡
]
=
4
3
[(2 − 𝑡)2
(
2𝑡
5
2
5
) − (−2)(2− 𝑡)
2
5
.
2
7
𝑡
7
2 + (2)
2
5
.
2
7
.
2
9
𝑡
9
2]
0
1
=
4
3
[
2
5
+ 2 (
2
5
.
2
7
) + (2)(
2
5
.
2
7
.
2
9
)]
=
4
3
[
2
5
+
8
35
+
16
315
]
=
4
15
[2 +
8
7
+
16
63
]
=
4
15
[
126+72+16
63
]
=
4
15
(
214
63
)
=
856
945
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 7
∴ ∫ ∫ 𝟐𝒙 𝟐
𝒚 𝟐
𝒅𝒙 𝒅𝒚
√ 𝟐−𝒚
−√ 𝟐−𝒚
𝟐
𝟏
=
𝟖𝟓𝟔
𝟗𝟒𝟓
________ Answer
3.1 To Calculate the integral over a given region:
Sometimes the limits of integration are not given but the area of the
integration is given.
If the area of integration is given then we proceed
as follows:
Take a small area 𝑑𝑥 𝑑𝑦. The integration w.r.t 𝑥
between the limits 𝑥1, 𝑥2 keeping 𝑦 fixed
indicates that integration is done, along 𝑃𝑄. Then
the integration of result w.r.t to 𝑦 correspondsto sliding the strips 𝑃𝑄 from
𝐵𝐶 to 𝐴𝐷 covering the whole region 𝐴𝐵𝐶𝐷.
We can also integrate first w.r.t ‘𝑦’ then w.r.t 𝑥, which ever is convenient.
Example 4: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦 over the region in the positive quadrant
for which 𝑥 + 𝑦 ≤ 1.
Solution: 𝑥 + 𝑦 = 1 represents a line AB in the
figure.
𝑥 + 𝑦 < 1 represents a plane 𝑂𝐴𝐵.
The region for integration is 𝑂𝐴𝐵 as shaded in
the figure.
By drawing 𝑃𝑄 parallel to y-axis, 𝑝 lies on the line 𝐴𝐵
𝑖. 𝑒. , (𝑥 + 𝑦 = 1) & Q lies on x-axis. The limit for 𝑦 is 1 − 𝑥 and 0.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 8
Required integral =
∫ 𝑑𝑥 ∫ 𝑦 𝑑𝑦
1−𝑥
0
= ∫ 𝑥 𝑑𝑥 [
𝑦2
2
]
0
1−𝑥1
0
1
0
=
1
2
∫ ( 𝑥 𝑑𝑥) (1− 𝑥)21
0
=
1
2
∫ ( 𝑥 − 2𝑥2
+ 𝑥3) 𝑑𝑥
1
0
=
1
2
[
𝑥2
2
−
2𝑥3
3
+
𝑥4
4
]
0
1
=
1
2
[
1
2
−
2
3
+
1
4
]
=
1
24
________ Answer
Example 5: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦,𝑅
where 𝑅 the quadrant of the circle is
𝑥2
+ 𝑦2
= 𝑎2
where 𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 ≥ 0.
Solution: Let the region of integration be the first quadrant of the
circle 𝑂𝐴𝐵.
Let 𝐼 = ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦𝑅
(𝑥2
+ 𝑦2
= 𝑎2
, 𝑦 = √ 𝑎2 − 𝑥2)
First we integrate w.r.t 𝑦 and then w.r.t 𝑥.
The limits for 𝑦 are 0 and √ 𝑎2 − 𝑥2 and for x, 0 to a.
𝐼 = ∫ 𝑥 𝑑𝑥 ∫ 𝑦 𝑑𝑦
√𝑎2−𝑥2
0
𝑎
0
= ∫ 𝑥 𝑑𝑥 [
𝑦2
2
]
0
√𝑎2−𝑥2
𝑎
0
=
1
2
∫ 𝑥 ( 𝑎2
− 𝑥2) 𝑑𝑥
𝑎
0
=
1
2
[
𝑎2 𝑥2
2
−
𝑥4
4
]
0
𝑎
=
𝑎4
8
________ Answer
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 9
Example 6: Evaluate ∬ 𝑥2
𝑑𝑥 𝑑𝑦𝐴
, where A is the region in the first quadrant
bounded by the hyperbola 𝑥𝑦 = 16 and the lines 𝑦 = 𝑥, 𝑦 = 0 𝑎𝑛𝑑 𝑥 = 8.
Solution: The line 𝑂𝑃, 𝑦 = 𝑥 and the curve 𝑃𝑆, 𝑥𝑦 = 16 intersect at 𝑝(4,4).
The line 𝑆𝑁, 𝑥 = 8 intersects the hyperbola at 𝑆(8,2). And 𝑦 = 0 is x-axis.
The area A is shown shaded.
Divide the area into two parts by PM perpendicular to OX.
For the area 𝑂𝑀𝑃, 𝑦 varies from 0 to 𝑥, and then 𝑥 varies from 0 to 4.
For the area 𝑃𝑀𝑁𝑆, 𝑦 varies from 0 to
16
𝑥
and then 𝑥 varies from 4 to 8.
∴ ∬ 𝑥2
𝐴
𝑑𝑥 𝑑𝑦 = ∫ ∫ 𝑥2
𝑑𝑥 𝑑𝑦 + ∫ ∫ 𝑥2
𝑑𝑥 𝑑𝑦
16
𝑥
0
8
4
𝑥
0
4
0
= ∫ 𝑥2
𝑑𝑥
4
0
∫ 𝑑𝑦
𝑥
0
+ ∫ 𝑥2
𝑑𝑥 ∫ 𝑑𝑦
16
𝑥
0
8
4
= ∫ 𝑥2 [ 𝑦]0
𝑥
𝑑𝑥 + ∫ 𝑥2[ 𝑦]
0
16
𝑥
𝑑𝑥
8
4
4
0
= ∫ 𝑥3
𝑑𝑥 + ∫ 16 𝑥 𝑑𝑥
8
4
4
0
= [
𝑥4
4
]
0
4
+ 16[
𝑥2
2
]
4
8
= 64 + 8 (82
− 42
)
= 64 + 384
= 448 ________ Answer
3.2 EXERCISE:
1) Find ∫ ∫ 𝑥 𝑦 𝑒−𝑥2
𝑑𝑥 𝑑𝑦.
𝑦
0
1
0
2) Evaluate the integral ∫ ∫ 𝑒 𝑥+𝑦
𝑑𝑥 𝑑𝑦
log 𝑦
0
log8
1
.
3) Evaluate ∫ ∫
𝑥 𝑑𝑥 𝑑𝑦
𝑥2+𝑦2
𝑥
𝑥
𝑎
𝑎
0
.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 10
4) Evaluate ∫ ∫
𝑑𝑥 𝑑𝑦
√(1−𝑥2)(1−𝑦2)
1
0
1
0
.
5) Evaluate ∬ √ 𝑥𝑦 − 𝑦2 𝑑𝑦 𝑑𝑥𝑆
, where S is a triangle with vertices (0,
0), (10, 1), and (1, 1).
6) Evaluate ∬( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦 over the area of the triangle whose
vertices are (0, 1), (1, 0), (1, 2).
7) Evaluate ∬ 𝑦 𝑑𝑥 𝑑𝑦 over the area bounded by 𝑥 = 0, 𝑦 = 𝑥2
,
𝑥 + 𝑦 = 2 in the first quadrant.
8) Evaluate ∬ 𝑥𝑦 𝑑𝑥𝑑𝑦 over the region R given by 𝑥2
+ 𝑦2
− 2𝑥 =
0, 𝑦2
= 2𝑥, 𝑦 = 𝑥.
4.1 CHANGE OF ORDER OF INTEGRATION:
On changing the order of integration, the limits of the integration change. To
find the new limits, draw the rough sketch of the region of integration.
Some of the problems connected with double integrals, which seem to be
complicated can be made easy to handle by a change in the order of
integration.
4.2 Examples:
Example 1: Evaluate ∫ ∫
𝑒 −𝑦
𝑦
𝑑𝑥 𝑑𝑦
∞
𝑥
∞
0
.
Solution: We have, ∫ ∫
𝑒−𝑦
𝑦
𝑑𝑥 𝑑𝑦
∞
𝑥
∞
0
Here the elementary strip 𝑃𝑄 extends from 𝑦 = 𝑥 to 𝑦 = ∞ and this vertical
strip slides from
𝑥 = 0 𝑡𝑜 𝑥 = ∞. The shaded portion of the figure is, therefore, the region of
integration.
On changing the order of integration, we first integrate w.r.t 𝑥 along a
horizontal strip 𝑅𝑆 which extends from 𝑥 = 0 to 𝑥 = 𝑦. To cover the given
region, we then integrate w.r.t ′𝑦′ from
𝑦 = 0 𝑡𝑜 𝑦 = ∞.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 11
Thus
∫ 𝑑𝑥
∞
0
∫
𝑒−𝑦
𝑦
∞
𝑥
𝑑𝑦 = ∫
𝑒−𝑦
𝑦
𝑑𝑦 ∫ 𝑑𝑥
𝑦
0
∞
0
= ∫
𝑒−𝑦
𝑦
𝑑𝑦 [ 𝑥]0
𝑦∞
0
= ∫ 𝑦
∞
0
𝑒−𝑦
𝑦
𝑑𝑦
= ∫ 𝑒−𝑦
𝑑𝑦
∞
0
= [
𝑒−𝑦
−1
]
0
∞
= −[
1
𝑒 𝑦
]
0
∞
= −[
1
∞
− 1]
= 1 ________ Answer
Example 2: Change the order of integration in 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦
2−𝑥
𝑥2
1
0
and hence
evaluate the same.
Solution: We have 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦
2−𝑥
𝑥2
1
0
The region of integration is shown by shaded portion in the figure bounded by
parabola 𝑦 = 𝑥2
, 𝑦 = 2 − 𝑥, 𝑥 = 0 (𝑦 − 𝑎𝑥𝑖𝑠).
The point of intersection of the parabola 𝑦 = 𝑥2
and the line 𝑦 = 2 − 𝑥 is 𝐵(1,1).
In the figure below (left) we draw a strip parallel to y-axis and the strip y, varies
from 𝑥2
to 2 − 𝑥 and 𝑥 varies from 0 to 1.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 12
On changing the order of integration we have taken a strip parallel to x-axis in the
area 𝑂𝐵𝐶 and second strip in the area 𝐶𝐵𝐴. The limits of 𝑥 in the area 𝑂𝐵𝐶 are 0
and √ 𝑦 and the limits of 𝑥 in the area 𝐶𝐵𝐴 are 0 and 2 − 𝑦.
So, the given integral is
= ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 + ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥
2−𝑦
0
2
1
√ 𝑦
0
1
0
= ∫ 𝑦 𝑑𝑦[
𝑥2
2
]
0
√ 𝑦
+ ∫ 𝑦 𝑑𝑦[
𝑥2
2
]
0
2−𝑦2
1
1
0
=
1
2
∫ 𝑦2
𝑑𝑦 +
1
2
∫ 𝑦(2 − 𝑦)2
𝑑𝑦
2
1
1
0
=
1
2
[
𝑦3
3
]
0
1
+
1
2
∫ (4𝑦 − 4𝑦2
+ 𝑦3
)
2
1
=
1
6
+
1
2
[
96−128+48−24+16−3
12
]
=
1
6
+
5
24
=
9
24
=
3
8
________ Answer
4.3 EXERCISE:
1) Change the order of the integration ∫ ∫ 𝑒−𝑥𝑦
𝑦 𝑑𝑦 𝑑𝑥
𝑥
0
∞
0
.
2) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦
𝑒 𝑥
1
2
0
by changing the order of integration.
3) Change the order of integration and evaluate ∫ ∫
𝑥2 𝑑𝑥 𝑑𝑦
√𝑥4−4𝑦2
2
√2𝑦
2
0
.
5.1 CHANGE OF VARIABLE:
Sometimes the problems of double integration can be solved easily by
change of independent variables. Let the double integral be
as ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦𝑅
. It is to be changed by the new variables 𝑢, 𝑣.
The relation of 𝑥, 𝑦 with 𝑢, 𝑣 are given as 𝑥 = ∅( 𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣). Then
the double integration is converted into.
1. ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦𝑅
= ∬ 𝑓{ 𝜙( 𝑢, 𝑣), 𝜓(𝑢, 𝑣)}𝑅′ | 𝐽| 𝑑𝑢 𝑑𝑣,
[𝑑𝑥 𝑑𝑦 =
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
𝑑𝑢 𝑑𝑣]
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 13
∬ 𝒇( 𝒙,𝒚) 𝒅𝒙 𝒅𝒚 = ∬ 𝒇{ 𝒙( 𝒖, 𝒗), 𝒚(𝒖, 𝒗)} |
𝝏 (𝒙,𝒚)
𝝏 (𝒖,𝒗)
|𝑫𝑹
𝒅𝒖 𝒅𝒗
5.2 Example 1: Using 𝑥 + 𝑦 = 𝑢, 𝑥 − 𝑦 = 𝑣, evaluate the double integral over
the square R
∬ ( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦𝑅
Integration being taken over the area bounded by the lines 𝑥 + 𝑦 = 2, 𝑥 +
𝑦 = 0, 𝑥 − 𝑦 = 2, 𝑥 − 𝑦 = 0.
Solution: 𝑥 + 𝑦 = 𝑢 ________(1)
𝑥 − 𝑦 = 𝑣 ________(2)
On solving (1) and (2), we get
𝑥 =
1
2
( 𝑢 + 𝑣), 𝑦 =
1
2
( 𝑢 − 𝑣)
𝐽 =
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
= |
𝜕𝑥
𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑢
𝜕𝑦
𝜕𝑣
| = |
1
2
1
2
1
2
−
1
2
| = −
1
4
−
1
4
= −
1
2
∬ ( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦 = ∫ ∫ [
1
4
(𝑢 + 𝑣)2
+
1
4
(𝑢 −
2
0
2
0𝑅
𝑣)2
] |
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
| 𝑑𝑢 𝑑𝑣
= ∫ ∫
1
2
( 𝑢2
+ 𝑣2)|−
1
2
| 𝑑𝑢 𝑑𝑣
2
0
2
0
= −
1
4
∫ 𝑑𝑣∫ ( 𝑢2
+ 𝑣2) 𝑑𝑢
2
0
2
0
= −
1
4
∫ 𝑑𝑣 [
𝑢3
3
+ 𝑢𝑣2
]
0
22
0
= −
1
4
∫ 𝑑𝑣(
8
3
+ 2𝑣2
)
2
0
= −
1
4
∫ (
8
3
+ 2𝑣2
)
2
0
𝑑𝑣
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 14
= −
1
4
[
8
3
𝑣 +
2
3
𝑣3
]
0
2
= −
1
4
[
8
3
(2) +
2
3
(2)3
]
= −
1
4
(
16
3
+
16
3
)
= −
1
4
(
32
3
)
= −
8
3
________ Answer
5.3 EXERCISE:
1) Using the transformation 𝑥 + 𝑦 = 𝑢, 𝑦 = 𝑢𝑣 show that
∫ ∫ 𝑒 𝑦 (𝑥+𝑦)⁄
𝑑𝑦 𝑑𝑥 =
1
2
(𝑒 − 1)
1−𝑥
0
1
0
2) Evaluate ∬ (𝑥 + 𝑦)2
𝑑𝑥 𝑑𝑦𝑅
, where R is the parallelogram in the xy-plane
with vertices (1,0), (3,1), (2,2), (0,1), using the transformation 𝑢 = 𝑥 + 𝑦
and 𝑣 = 𝑥 − 2𝑦.
6.1 AREA IN CARTESIAN CO-ORDINATES:
Area = ∫ ∫ 𝒅𝒙 𝒅𝒚
𝒚 𝟐
𝒚 𝟏
𝒃
𝒂
6.2 Example 1: Find the area bounded by the lines
𝒚 = 𝒙 + 𝟐
𝒚 = −𝒙 + 𝟐
𝒙 = 𝟓
Solution: The region of integration is bounded by the lines
𝑦 = 𝑥 + 2 _________(1)
𝑦 = −𝑥 + 2 _________(2)
𝑥 = 5 _________(3)
On solving (1) and (2), we get the point 𝐴(0,2)
On solving (2) and (3), we get the point 𝐶(5,−3)
On solving (1) and (3), we get the point 𝐸(5,7)
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 15
We draw a strip parallel to 𝑦-axis.
On this strip the limits of 𝑦 are 𝑦 = −𝑥 + 2 and 𝑦 = 𝑥 + 2, and the limit of
𝑥 are 𝑥 = 0 and 𝑥 = 5.
Required area = Shaded portion of the figure
= ∬ 𝑑𝑥 𝑑𝑦
= ∫ 𝑑𝑥 ∫ 𝑑𝑦
𝑥+2
–𝑥+2
5
0
= ∫ 𝑑𝑥 [ 𝑦]−𝑥+2
𝑥+25
0
= ∫ 𝑑𝑥 [ 𝑥 + 2 − (−𝑥 + 2)]
5
0
= ∫ [2𝑥] 𝑑𝑥
5
0
= [
2𝑥2
2
]
0
5
= [ 𝑥2]0
5
= [25− 0]
= 25 Sq. units ________ Answer
Example 2: Find the area betweenthe parabolas 𝒚 𝟐
= 𝟒𝒂𝒙 and 𝒙 𝟐
= 𝟒𝒂𝒚.
Solution: We have, 𝑦2
= 4𝑎𝑥 ________ (1)
𝑥2
= 4𝑎𝑦 ________ (2)
On solving the equations (1) and (2) we get the point of intersection (4a, 4a).
Divide the area into horizontal strips of width 𝛿𝑦, 𝑥 varies from
𝑃,
𝑦2
4𝑎
𝑡𝑜 𝑄,√4𝑎𝑦 and then 𝑦 varies from 𝑂 ( 𝑦 = 0) 𝑡𝑜 𝐴 (𝑦 = 4𝑎).
∴ The required area = ∫ 𝑑𝑦 ∫ 𝑑𝑥
√4𝑎𝑦
𝑦2 4𝑎⁄
4𝑎
0
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 16
= ∫ 𝑑𝑦 [ 𝑥]
𝑦2
4𝑎
√4𝑎𝑦4𝑎
0
= ∫ 𝑑𝑦 [√4𝑎𝑦 −
𝑦2
4𝑎
]
4𝑎
0
= [√4𝑎
𝑦3 2⁄
3
2
−
𝑦3
12𝑎
]
0
4𝑎
=
4√𝑎
3
(4𝑎)3 2⁄
−
(4𝑎)3
12𝑎
=
16
3
𝑎2
________ Answer
7.1 VOLUME OF SOLIDS BY DOUBLE INTEGRAL:
Let a surface 𝑆′
be 𝑧 = 𝑓(𝑥, 𝑦)
The projection of 𝑠′ on 𝑥 − 𝑦 plane be 𝑆.
Take infinite number of elementary rectangles 𝛿𝑥 𝛿𝑦. Erect vertical rod on
the 𝛿𝑥 𝛿𝑦 of height 𝑧.
Volume of each vertical rod = Area of the base × height
= 𝛿𝑥 𝛿𝑦 . 𝑧
Volume of the solid cylinder on S = lim
𝛿𝑥→0
𝛿𝑦→0
∑ ∑ 𝑧 𝑑𝑥 𝑑𝑦
= ∬ 𝑧 𝑑𝑥 𝑑𝑦
= ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
Here the integration is carried out over the area S.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 17
Example 1: Find the volume bounded by the 𝒙𝒚-plane, the paraboloid
𝟐𝒛 = 𝒙 𝟐
+ 𝒚 𝟐
and the cylinder 𝒙 𝟐
+ 𝒚 𝟐
= 𝟒.
Solution: Here, we have
2𝑧 = 𝑥2
+ 𝑦2
⇒ 2𝑧 = 𝑟2
⇒ 𝑧 =
𝑟2
2
(Paraboloid) ______(1)
𝑥2
+ 𝑦2
= 4 ⇒ 𝑟 = 2, 𝑧 = 0, (circle) ______(2)
Volume of one vertical rod = 𝑧. 𝑟 𝑑𝑟 𝑑𝜃
Volume of the solid = ∬ 𝑧 𝑟 𝑑𝑟 𝑑𝜃
= 2 ∫ 𝑑𝜃 ∫
𝑟2
2
𝑟 𝑑𝑟
2
0
𝜋
0
=
2
2
∫ 𝑑𝜃 ∫ 𝑟3
𝑑𝑟
2
0
𝜋
0
= ∫ 𝑑𝜃 (
𝑟4
4
)
0
2𝜋
0
= ∫ 𝑑𝜃 (
16
4
)
𝜋
0
= 4∫ 𝑑𝜃
𝜋
0
= 4[ 𝜃]0
𝜋
= 4𝜋 ________ Answer
8.1 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE
INTEGRAL):
When the area enclosed by a curve 𝑦 = 𝑓(𝑥) is revolved about an axis, a
solid is generated; we have to find out the volume of solid generated.
Volume of the solid generated about x-axis = ∫ ∫ 2𝜋 𝑃𝑄 𝑑𝑥 𝑑𝑦
𝑦2(𝑥)
𝑦1(𝑥)
𝑏
𝑎
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 18
Example 1: Find the volume of the torus generatedby revolving the circle
𝒙 𝟐
+ 𝒚 𝟐
= 𝟒 about the line 𝒙 = 𝟑.
Solution: 𝑥2
+ 𝑦2
= 4
𝑉 = ∬(2𝜋 𝑃𝑄) 𝑑𝑥 𝑑𝑦
= 2𝜋 ∬(3 − 𝑥) 𝑑𝑥 𝑑𝑦
= 2𝜋 ∫ 𝑑𝑥 (3𝑦 − 𝑥𝑦)
−√4−𝑥2
+√4−𝑥22
−2
(3 − 𝑥) 𝑑𝑦
= 2𝜋 ∫ 𝑑𝑥 [3√4 − 𝑥2 − 𝑥√4 − 𝑥2 + 3√4 − 𝑥2 − 𝑥√4 − 𝑥2]
+2
−2
= 4𝜋∫ [3√4 − 𝑥2 − 𝑥√4 − 𝑥2]
+2
−2
𝑑𝑥
= 4𝜋[3
𝑥
2
√4 − 𝑥2 + 3 ×
4
2
sin−1 𝑥
2
+
1
3
(4 − 𝑥2)3 2⁄
]
−2
+2
= 4𝜋 [6 ×
𝜋
2
+ 6 ×
𝜋
2
]
= 24𝜋2
________ Ans.
8.2 EXERCISE:
1) Find the area of the ellipse
𝑥2
𝑎2
+
𝑦2
𝑏2
= 1
2) Find by double integration the area of the smaller region bounded by
𝑥2
+ 𝑦2
= 𝑎2
and𝑥 + 𝑦 = 𝑎.
3) Find the volume bounded by 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, the cylinder 𝑥2
+ 𝑦2
= 1
and the plane 𝑥 + 𝑦 + 𝑧 = 3.
4) Evaluate the volume of the solid generated by revolving the area of
the parabola 𝑦2
= 4𝑎𝑥 bounded by the latus rectum about the tangent
at the vertex.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 19
9.1 TRIPLE INTEGRATION (VOLUME) :
Let a function 𝑓(𝑥, 𝑦, 𝑧) be a continuous at every point of a finite region 𝑆 of
three dimensional spaces. Consider 𝑛 sub-spaces 𝛿𝑠1, 𝛿𝑠2, 𝛿𝑠3,… . 𝛿𝑠 𝑛 of the
spaceS.
If (𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) be a point in the rth subspace.
The limit of the sum ∑ 𝑓(𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟)
𝑛
𝑟=1 𝛿𝑠𝑟, 𝑎𝑠 𝑛 → ∞, 𝛿𝑠𝑟 → 0 is
known as the triple integral of 𝑓(𝑥, 𝑦, 𝑧) over the spaceS.
Symbolically, it is denoted by
∭𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑆
𝑆
It can be calculated as ∫ ∫ ∫ 𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑧2
𝑧1
𝑦2
𝑦1
𝑥2
𝑥1
. First we integrate with
respect to 𝑧 treating 𝑥, 𝑦 as constant between the limits 𝑧1 𝑎𝑛𝑑 𝑧2 . The
resulting expression (function of 𝑥, 𝑦) is integrated with respect to 𝑦 keeping
𝑥 as constant between the limits 𝑦1 𝑎𝑛𝑑 𝑦2. At the end we integrate the
resulting expression (function of 𝑥 only) within the limits 𝑥1 𝑎𝑛𝑑 𝑥2.
First we integrate from inner most integral w.r.t z, and then we integrate
w.r.t 𝑦, and finally the outer most w.r.t 𝑥.
But the above order of integration is immaterial provided the limits change
accordingly.
Example 1: Evaluate ∭ ( 𝑥 − 2𝑦 +𝑅
𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅:
0 ≤ 𝑥 ≤ 1
0 ≤ 𝑦 ≤ 𝑥2
0 ≤ 𝑧 ≤ 𝑥 + 𝑦
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 20
Solution: ∭ ( 𝑥 − 2𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 ∫ (𝑥 − 2𝑦 + 𝑧)𝑑𝑧
𝑥+𝑦
0
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 (𝑥𝑧 − 2𝑦𝑧 +
𝑧2
2
)
0
𝑥+𝑦𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥 ( 𝑥 + 𝑦) − 2𝑦( 𝑥 + 𝑦) +
(𝑥+𝑦)2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2
+ 𝑥𝑦 − 2𝑥𝑦 − 2𝑦2
+
(𝑥+𝑦)2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2
− 𝑥𝑦 − 2𝑦2
+
𝑥2
2
+ 𝑥𝑦 +
𝑦2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [
3𝑥2
2
−
3𝑦2
2
]
𝑥2
0
1
0
=
3
2
∫ 𝑑𝑥
1
0
∫ ( 𝑥2
− 𝑦2) 𝑑𝑦
𝑥2
0
=
3
2
∫ 𝑑𝑥
1
0
(𝑥2
𝑦 −
𝑦3
3
)
0
𝑥2
=
3
2
∫ 𝑑𝑥
1
0
(𝑥4
−
𝑥6
3
)
=
3
2
(
𝑥5
5
−
𝑥7
21
)
0
1
=
3
2
(
1
5
−
1
21
)
=
8
35
________Answer
Example 2: Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧
𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑥+𝑦
0
𝑥
0
𝑙𝑜𝑔 2
0
Solution: 𝐼 = ∫ ∫ 𝑒 𝑥+𝑦 [ 𝑒 𝑧]0
𝑥+𝑦
𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
= ∫ ∫ 𝑒 𝑥+𝑦
(𝑒 𝑥+𝑦
− 1)𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
= ∫ ∫ [𝑒2(𝑥+𝑦)
− 𝑒 𝑥+𝑦
] 𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 21
= ∫ [𝑒2𝑥
.
𝑒2𝑥
2
− 𝑒 𝑥
. 𝑒 𝑦
]
0
𝑥
𝑑𝑥
𝑙𝑜𝑔 2
0
= ∫ [
𝑒4𝑥
2
− 𝑒2𝑥
−
𝑒2𝑥
2
+ 𝑒 𝑥
]
0
𝑥
𝑑𝑥
𝑙𝑜𝑔 2
0
= [
𝑒4𝑥
8
−
𝑒2𝑥
2
−
𝑒2𝑥
4
+ 𝑒 𝑥
]
0
log2
= [
𝑒4 𝑙𝑜𝑔2
8
−
𝑒2 log2
2
−
𝑒2 log2
4
+ 𝑒log 2
] − (
1
8
−
1
2
−
1
4
+ 1)
= [
𝑒 𝑙𝑜𝑔16
8
−
𝑒log4
2
−
𝑒log4
4
+ 𝑒log 2
] − (
1
8
−
1
2
−
1
4
+ 1)
= (
16
8
−
4
2
−
4
4
+ 2) − (
1
8
−
1
2
−
1
4
+ 1)
=
5
8
________ Answer
9.2 EXERCISE:
1) Evaluate
∭ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1, 1 ≤ 𝑦 ≤ 2, 2 ≤ 𝑧 ≤ 3.𝑅
2) Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧𝑥+log 𝑦
0
𝑑𝑧 𝑑𝑦 𝑑𝑥
𝑥
0
log 2
0
.
3) Evaluate∭ ( 𝑥2
+ 𝑦2
+ 𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅
where
𝑅:
𝑥 = 0, 𝑦 = 0, 𝑧 = 0
𝑥 + 𝑦 + 𝑧 = 𝑎, (𝑎 > 0)
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 22
10.1REFERENCE BOOK:
1) Introduction to EngineeringMathematics
By H. K. DASS. & Dr. RAMA VERMA
2) www.bookspar.com/wp-content/uploads/vtu/notes/1st-2nd-
sem/m2-21/Unit-5-Multiple-Integrals.pdf
3) http://www.mathstat.concordia.ca/faculty/cdavid/EMAT212/sol
integrals.pdf
4) http://studentsblog100.blogspot.in/2013/02/anna-university-
engineering-mathematics.html

Contenu connexe

Tendances

Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errorsmaheej
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method Bhavik Vashi
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleMuhammadUsmanIkram2
 
Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...vaibhav tailor
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsSoma Shabbir
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differencesDr. Nirav Vyas
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation Meet Patel
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve Mukuldev Khunte
 
vector application
vector applicationvector application
vector applicationrajat shukla
 
Partial differential equation &amp; its application.
Partial differential equation &amp; its application.Partial differential equation &amp; its application.
Partial differential equation &amp; its application.isratzerin6
 
Btech_II_ engineering mathematics_unit1
Btech_II_ engineering mathematics_unit1Btech_II_ engineering mathematics_unit1
Btech_II_ engineering mathematics_unit1Rai University
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rulezahid6
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matricesEasyStudy3
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applicationsDeepRaval7
 

Tendances (20)

Beta gamma functions
Beta gamma functionsBeta gamma functions
Beta gamma functions
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errors
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with Example
 
Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Interpolation with Finite differences
Interpolation with Finite differencesInterpolation with Finite differences
Interpolation with Finite differences
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve presentation on Euler and Modified Euler method ,and Fitting of curve
presentation on Euler and Modified Euler method ,and Fitting of curve
 
vector application
vector applicationvector application
vector application
 
Partial differential equation &amp; its application.
Partial differential equation &amp; its application.Partial differential equation &amp; its application.
Partial differential equation &amp; its application.
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
Btech_II_ engineering mathematics_unit1
Btech_II_ engineering mathematics_unit1Btech_II_ engineering mathematics_unit1
Btech_II_ engineering mathematics_unit1
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rule
 
Numerical method
Numerical methodNumerical method
Numerical method
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
 

Similaire à Btech_II_ engineering mathematics_unit3

Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-IIIKundan Kumar
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptxHappy Ladher
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
Double Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxDouble Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxjyotidighole2
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxmassm99m
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manualnmahi96
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Rai University
 

Similaire à Btech_II_ engineering mathematics_unit3 (20)

Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
A05330107
A05330107A05330107
A05330107
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
lec38.ppt
lec38.pptlec38.ppt
lec38.ppt
 
4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx4. Integral Calculus for gcse and other exams.pptx
4. Integral Calculus for gcse and other exams.pptx
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Double Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxDouble Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptx
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
Exposicion semana13
Exposicion semana13Exposicion semana13
Exposicion semana13
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
SMT1105-1.pdf
SMT1105-1.pdfSMT1105-1.pdf
SMT1105-1.pdf
 
doc
docdoc
doc
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 

Plus de Rai University

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University Rai University
 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,Rai University
 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02Rai University
 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditureRai University
 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public financeRai University
 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introductionRai University
 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflationRai University
 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economicsRai University
 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructureRai University
 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competitionRai University
 

Plus de Rai University (20)

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University
 
Mm unit 4point2
Mm unit 4point2Mm unit 4point2
Mm unit 4point2
 
Mm unit 4point1
Mm unit 4point1Mm unit 4point1
Mm unit 4point1
 
Mm unit 4point3
Mm unit 4point3Mm unit 4point3
Mm unit 4point3
 
Mm unit 3point2
Mm unit 3point2Mm unit 3point2
Mm unit 3point2
 
Mm unit 3point1
Mm unit 3point1Mm unit 3point1
Mm unit 3point1
 
Mm unit 2point2
Mm unit 2point2Mm unit 2point2
Mm unit 2point2
 
Mm unit 2 point 1
Mm unit 2 point 1Mm unit 2 point 1
Mm unit 2 point 1
 
Mm unit 1point3
Mm unit 1point3Mm unit 1point3
Mm unit 1point3
 
Mm unit 1point2
Mm unit 1point2Mm unit 1point2
Mm unit 1point2
 
Mm unit 1point1
Mm unit 1point1Mm unit 1point1
Mm unit 1point1
 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditure
 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public finance
 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introduction
 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflation
 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economics
 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructure
 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competition
 

Dernier

9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Dernier (20)

9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

Btech_II_ engineering mathematics_unit3

  • 1. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 1 Course: B.Tech- II Subject: Engineering Mathematics II Unit-3 RAI UNIVERSITY, AHMEDABAD
  • 2. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 2 Unit-III: MULTIPLE INTEGRAL Sr. No. Name of the Topic Page No. 1 Double integrals 2 2 Evaluation of Double Integral 2 3 To Calculate the integral over a given region 6 4 Change of order of integration 9 5 Change of variable 11 6 Area in Cartesian co-ordinates 13 7 Volume of solids by double integral 15 8 Volume of solids by rotation of an area (Double Integral) 16 9 Triple Integration (Volume) 18 10 ReferenceBook 21
  • 3. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 3 MULTIPLE INTEGRALS 1.1 DOUBLE INTEGRALS: We Know that ∫ 𝑓( 𝑥) 𝑑𝑥 = lim𝑛→∞ 𝛿𝑥→0 [ 𝑓( 𝑥1) 𝛿𝑥1 + 𝑓( 𝑥2) 𝛿𝑥2 + 𝑓( 𝑥3) 𝛿𝑥3 + ⋯+ 𝑏 𝑎 𝑓( 𝑥 𝑛) 𝛿𝑥 𝑛] Let us consider a function 𝑓(𝑥, 𝑦) of two variables 𝑥 and 𝑦 defines in the finite region A of 𝑥𝑦- plane. Divide the region 𝐴 into elementary areas. 𝛿𝐴1, 𝛿𝐴2, 𝛿𝐴3,… 𝛿𝐴 𝑛 Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 =𝐴 lim𝑛→∞ 𝛿𝐴→0 [ 𝑓( 𝑥1, 𝑦1) 𝛿𝐴1 + 𝑓( 𝑥2, 𝑦2) 𝛿𝐴2 + ⋯+ 𝑓( 𝑥 𝑛, 𝑦𝑛) 𝛿𝐴 𝑛] 2.1 Evaluation of Double Integral: Double integral over region A may be evaluated by two successiveintegrations. If A is described as 𝑓1(𝑥) ≤ 𝑦 ≤ 𝑓2(𝑥) [ 𝑦1 ≤ y ≤ 𝑦2] And 𝑎 ≤ 𝑥 ≤ 𝑏, Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 = ∫ ∫ 𝑓(𝑥, 𝑦) 𝑦2 𝑦1 𝑑𝑥 𝑑𝑦 𝑏 𝑎𝐴
  • 4. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 4 2.1.1 FIRST METHOD: ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [∫ 𝑓( 𝑥, 𝑦) 𝑑𝑦 𝑦2 𝑦1 ] 𝑑𝑥 𝑥2 𝑥1𝐴 𝑓(𝑥, 𝑦) is first integrated with respectto y treating 𝑥 as constant between the limits 𝑦1 and 𝑦2 and then the result is integrated with respectto 𝑥 between the limits 𝑥1 and 𝑥2. In the region we take an elementary area 𝛿𝑥𝛿𝑦. Then integration w.r.t to 𝑦 (𝑥 keeping constant) converts small rectangle 𝛿𝑥𝛿𝑦 into a strip 𝑃𝑄(𝑦 𝛿𝑥). While the integration of the result w.r.t 𝑥 correspondsto the sliding to the strip, from 𝐴𝐷 to 𝐵𝐶 covering the whole region 𝐴𝐵𝐶𝐷. 2.1.2 SECOND METHOD: ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [ ∫ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑥2 𝑥1 ] 𝑑𝑦 𝑦2 𝑦1𝐴 Here 𝑓(𝑥, 𝑦) is first integrated w.r.t 𝑥 keeping 𝑦 constant between the limits 𝑥1 and 𝑥2 and then the resulting expression is integrated with respectto 𝑦 between the limits 𝑦1 and 𝑦2 and vice versa. NOTE:Forconstant limits, it does not matter whether we first integrate w.r.t 𝑥 and then w.r.t 𝑦 or vice versa.
  • 5. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 5 2.2 Examples: Example 1: Find ∫ ∫ 𝑒 𝑦 𝑥⁄ 𝑑𝑦 𝑑𝑥 𝑥2 0 1 0 Solution: Here, we have ∫ [∫ 𝑒 𝑦 𝑥⁄ 𝑑𝑦 𝑥2 0 ] 𝑑𝑥 = ∫ [ 𝑒 𝑦 𝑥⁄ 1 𝑥⁄ ] 0 𝑥2 𝑑𝑥 1 0 1 0 = ∫ ( 𝑒 𝑥−1) 1 𝑥⁄ 𝑑𝑥 1 0 = ∫ 𝑥 𝑒 𝑥 𝑑𝑥 − ∫ 𝑥 𝑑𝑥 1 0 1 0 = [ 𝑥 𝑒 𝑥 − 𝑒 𝑥]0 1 − [ 𝑥2 2 ] 0 1 = 𝑒1 − 𝑒1 + 1 − 1 2 = 1 2 ∴ ∫ ∫ 𝒆 𝒚 𝒙⁄ 𝒅𝒚 𝒅𝒙 𝒙 𝟐 𝟎 𝟏 𝟎 = 𝟏 𝟐 ________ Answer Example 2: Evaluate ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 Solution: Here, we have ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 = ∫ 𝑑𝑦 ∫ 𝑒−𝑥2(1+𝑦2) ∞ 0 𝑥 𝑑𝑥 ∞ 0 = ∫ 𝑑𝑦 [ 𝑒−𝑥2(1+𝑦2) −2(1+𝑦2) ] 0 ∞ ∞ 0 = ∫ [0 + 1 2(1+𝑦2) ] 𝑑𝑦 ∞ 0 = 1 2 [tan−1 𝑦]0 ∞ = 1 2 [tan−1 ∞ − tan−1 0] = 1 2 ( 𝜋 2 ) = 𝜋 4
  • 6. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 6 ∴ ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 = 𝜋 4 ________ Answer Example 3: Sketch the area of integration and evaluate ∫ ∫ 2𝑥2 𝑦2 𝑑𝑥 𝑑𝑦 √2−𝑦 −√2−𝑦 2 1 . Solution: Here we have ∫ ∫ 2𝑥2 𝑦2 𝑑𝑥 𝑑𝑦 √2−𝑦 −√2−𝑦 2 1 = 2∫ 𝑦2 𝑑𝑦 2 1 ∫ 𝑥2 𝑑𝑥 √2−𝑦 −√2−𝑦 = 4 ∫ 𝑦2 𝑑𝑦 2 1 ∫ 𝑥2 𝑑𝑥 √2−𝑦 0 [ ∵ ∫ 𝑓( 𝑥) 𝑑𝑥 = 2∫ 𝑓( 𝑥) 𝑑𝑥 𝑎 0 𝑎 −𝑎 𝑤ℎ𝑒𝑟𝑒 𝑥2 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ] = 4∫ 𝑦2 𝑑𝑦 [ 𝑥3 3 ] 0 √2−𝑦2 1 = 4 3 ∫ 𝑦2 𝑑𝑦 (2− 𝑦) 3 2 2 1 = 4 3 ∫ (2 − 𝑦)2 𝑡3 2⁄ (−𝑑𝑡) 0 1 [ 𝑝𝑢𝑡 2 − 𝑦 = 𝑡 ∴ 𝑑𝑦 = −𝑑𝑡 ] = 4 3 [(2 − 𝑡)2 ( 2𝑡 5 2 5 ) − (−2)(2− 𝑡) 2 5 . 2 7 𝑡 7 2 + (2) 2 5 . 2 7 . 2 9 𝑡 9 2] 0 1 = 4 3 [ 2 5 + 2 ( 2 5 . 2 7 ) + (2)( 2 5 . 2 7 . 2 9 )] = 4 3 [ 2 5 + 8 35 + 16 315 ] = 4 15 [2 + 8 7 + 16 63 ] = 4 15 [ 126+72+16 63 ] = 4 15 ( 214 63 ) = 856 945
  • 7. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 7 ∴ ∫ ∫ 𝟐𝒙 𝟐 𝒚 𝟐 𝒅𝒙 𝒅𝒚 √ 𝟐−𝒚 −√ 𝟐−𝒚 𝟐 𝟏 = 𝟖𝟓𝟔 𝟗𝟒𝟓 ________ Answer 3.1 To Calculate the integral over a given region: Sometimes the limits of integration are not given but the area of the integration is given. If the area of integration is given then we proceed as follows: Take a small area 𝑑𝑥 𝑑𝑦. The integration w.r.t 𝑥 between the limits 𝑥1, 𝑥2 keeping 𝑦 fixed indicates that integration is done, along 𝑃𝑄. Then the integration of result w.r.t to 𝑦 correspondsto sliding the strips 𝑃𝑄 from 𝐵𝐶 to 𝐴𝐷 covering the whole region 𝐴𝐵𝐶𝐷. We can also integrate first w.r.t ‘𝑦’ then w.r.t 𝑥, which ever is convenient. Example 4: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦 over the region in the positive quadrant for which 𝑥 + 𝑦 ≤ 1. Solution: 𝑥 + 𝑦 = 1 represents a line AB in the figure. 𝑥 + 𝑦 < 1 represents a plane 𝑂𝐴𝐵. The region for integration is 𝑂𝐴𝐵 as shaded in the figure. By drawing 𝑃𝑄 parallel to y-axis, 𝑝 lies on the line 𝐴𝐵 𝑖. 𝑒. , (𝑥 + 𝑦 = 1) & Q lies on x-axis. The limit for 𝑦 is 1 − 𝑥 and 0.
  • 8. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 8 Required integral = ∫ 𝑑𝑥 ∫ 𝑦 𝑑𝑦 1−𝑥 0 = ∫ 𝑥 𝑑𝑥 [ 𝑦2 2 ] 0 1−𝑥1 0 1 0 = 1 2 ∫ ( 𝑥 𝑑𝑥) (1− 𝑥)21 0 = 1 2 ∫ ( 𝑥 − 2𝑥2 + 𝑥3) 𝑑𝑥 1 0 = 1 2 [ 𝑥2 2 − 2𝑥3 3 + 𝑥4 4 ] 0 1 = 1 2 [ 1 2 − 2 3 + 1 4 ] = 1 24 ________ Answer Example 5: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦,𝑅 where 𝑅 the quadrant of the circle is 𝑥2 + 𝑦2 = 𝑎2 where 𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 ≥ 0. Solution: Let the region of integration be the first quadrant of the circle 𝑂𝐴𝐵. Let 𝐼 = ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦𝑅 (𝑥2 + 𝑦2 = 𝑎2 , 𝑦 = √ 𝑎2 − 𝑥2) First we integrate w.r.t 𝑦 and then w.r.t 𝑥. The limits for 𝑦 are 0 and √ 𝑎2 − 𝑥2 and for x, 0 to a. 𝐼 = ∫ 𝑥 𝑑𝑥 ∫ 𝑦 𝑑𝑦 √𝑎2−𝑥2 0 𝑎 0 = ∫ 𝑥 𝑑𝑥 [ 𝑦2 2 ] 0 √𝑎2−𝑥2 𝑎 0 = 1 2 ∫ 𝑥 ( 𝑎2 − 𝑥2) 𝑑𝑥 𝑎 0 = 1 2 [ 𝑎2 𝑥2 2 − 𝑥4 4 ] 0 𝑎 = 𝑎4 8 ________ Answer
  • 9. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 9 Example 6: Evaluate ∬ 𝑥2 𝑑𝑥 𝑑𝑦𝐴 , where A is the region in the first quadrant bounded by the hyperbola 𝑥𝑦 = 16 and the lines 𝑦 = 𝑥, 𝑦 = 0 𝑎𝑛𝑑 𝑥 = 8. Solution: The line 𝑂𝑃, 𝑦 = 𝑥 and the curve 𝑃𝑆, 𝑥𝑦 = 16 intersect at 𝑝(4,4). The line 𝑆𝑁, 𝑥 = 8 intersects the hyperbola at 𝑆(8,2). And 𝑦 = 0 is x-axis. The area A is shown shaded. Divide the area into two parts by PM perpendicular to OX. For the area 𝑂𝑀𝑃, 𝑦 varies from 0 to 𝑥, and then 𝑥 varies from 0 to 4. For the area 𝑃𝑀𝑁𝑆, 𝑦 varies from 0 to 16 𝑥 and then 𝑥 varies from 4 to 8. ∴ ∬ 𝑥2 𝐴 𝑑𝑥 𝑑𝑦 = ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 + ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 16 𝑥 0 8 4 𝑥 0 4 0 = ∫ 𝑥2 𝑑𝑥 4 0 ∫ 𝑑𝑦 𝑥 0 + ∫ 𝑥2 𝑑𝑥 ∫ 𝑑𝑦 16 𝑥 0 8 4 = ∫ 𝑥2 [ 𝑦]0 𝑥 𝑑𝑥 + ∫ 𝑥2[ 𝑦] 0 16 𝑥 𝑑𝑥 8 4 4 0 = ∫ 𝑥3 𝑑𝑥 + ∫ 16 𝑥 𝑑𝑥 8 4 4 0 = [ 𝑥4 4 ] 0 4 + 16[ 𝑥2 2 ] 4 8 = 64 + 8 (82 − 42 ) = 64 + 384 = 448 ________ Answer 3.2 EXERCISE: 1) Find ∫ ∫ 𝑥 𝑦 𝑒−𝑥2 𝑑𝑥 𝑑𝑦. 𝑦 0 1 0 2) Evaluate the integral ∫ ∫ 𝑒 𝑥+𝑦 𝑑𝑥 𝑑𝑦 log 𝑦 0 log8 1 . 3) Evaluate ∫ ∫ 𝑥 𝑑𝑥 𝑑𝑦 𝑥2+𝑦2 𝑥 𝑥 𝑎 𝑎 0 .
  • 10. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 10 4) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦 √(1−𝑥2)(1−𝑦2) 1 0 1 0 . 5) Evaluate ∬ √ 𝑥𝑦 − 𝑦2 𝑑𝑦 𝑑𝑥𝑆 , where S is a triangle with vertices (0, 0), (10, 1), and (1, 1). 6) Evaluate ∬( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦 over the area of the triangle whose vertices are (0, 1), (1, 0), (1, 2). 7) Evaluate ∬ 𝑦 𝑑𝑥 𝑑𝑦 over the area bounded by 𝑥 = 0, 𝑦 = 𝑥2 , 𝑥 + 𝑦 = 2 in the first quadrant. 8) Evaluate ∬ 𝑥𝑦 𝑑𝑥𝑑𝑦 over the region R given by 𝑥2 + 𝑦2 − 2𝑥 = 0, 𝑦2 = 2𝑥, 𝑦 = 𝑥. 4.1 CHANGE OF ORDER OF INTEGRATION: On changing the order of integration, the limits of the integration change. To find the new limits, draw the rough sketch of the region of integration. Some of the problems connected with double integrals, which seem to be complicated can be made easy to handle by a change in the order of integration. 4.2 Examples: Example 1: Evaluate ∫ ∫ 𝑒 −𝑦 𝑦 𝑑𝑥 𝑑𝑦 ∞ 𝑥 ∞ 0 . Solution: We have, ∫ ∫ 𝑒−𝑦 𝑦 𝑑𝑥 𝑑𝑦 ∞ 𝑥 ∞ 0 Here the elementary strip 𝑃𝑄 extends from 𝑦 = 𝑥 to 𝑦 = ∞ and this vertical strip slides from 𝑥 = 0 𝑡𝑜 𝑥 = ∞. The shaded portion of the figure is, therefore, the region of integration. On changing the order of integration, we first integrate w.r.t 𝑥 along a horizontal strip 𝑅𝑆 which extends from 𝑥 = 0 to 𝑥 = 𝑦. To cover the given region, we then integrate w.r.t ′𝑦′ from 𝑦 = 0 𝑡𝑜 𝑦 = ∞.
  • 11. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 11 Thus ∫ 𝑑𝑥 ∞ 0 ∫ 𝑒−𝑦 𝑦 ∞ 𝑥 𝑑𝑦 = ∫ 𝑒−𝑦 𝑦 𝑑𝑦 ∫ 𝑑𝑥 𝑦 0 ∞ 0 = ∫ 𝑒−𝑦 𝑦 𝑑𝑦 [ 𝑥]0 𝑦∞ 0 = ∫ 𝑦 ∞ 0 𝑒−𝑦 𝑦 𝑑𝑦 = ∫ 𝑒−𝑦 𝑑𝑦 ∞ 0 = [ 𝑒−𝑦 −1 ] 0 ∞ = −[ 1 𝑒 𝑦 ] 0 ∞ = −[ 1 ∞ − 1] = 1 ________ Answer Example 2: Change the order of integration in 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 2−𝑥 𝑥2 1 0 and hence evaluate the same. Solution: We have 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 2−𝑥 𝑥2 1 0 The region of integration is shown by shaded portion in the figure bounded by parabola 𝑦 = 𝑥2 , 𝑦 = 2 − 𝑥, 𝑥 = 0 (𝑦 − 𝑎𝑥𝑖𝑠). The point of intersection of the parabola 𝑦 = 𝑥2 and the line 𝑦 = 2 − 𝑥 is 𝐵(1,1). In the figure below (left) we draw a strip parallel to y-axis and the strip y, varies from 𝑥2 to 2 − 𝑥 and 𝑥 varies from 0 to 1.
  • 12. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 12 On changing the order of integration we have taken a strip parallel to x-axis in the area 𝑂𝐵𝐶 and second strip in the area 𝐶𝐵𝐴. The limits of 𝑥 in the area 𝑂𝐵𝐶 are 0 and √ 𝑦 and the limits of 𝑥 in the area 𝐶𝐵𝐴 are 0 and 2 − 𝑦. So, the given integral is = ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 + ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 2−𝑦 0 2 1 √ 𝑦 0 1 0 = ∫ 𝑦 𝑑𝑦[ 𝑥2 2 ] 0 √ 𝑦 + ∫ 𝑦 𝑑𝑦[ 𝑥2 2 ] 0 2−𝑦2 1 1 0 = 1 2 ∫ 𝑦2 𝑑𝑦 + 1 2 ∫ 𝑦(2 − 𝑦)2 𝑑𝑦 2 1 1 0 = 1 2 [ 𝑦3 3 ] 0 1 + 1 2 ∫ (4𝑦 − 4𝑦2 + 𝑦3 ) 2 1 = 1 6 + 1 2 [ 96−128+48−24+16−3 12 ] = 1 6 + 5 24 = 9 24 = 3 8 ________ Answer 4.3 EXERCISE: 1) Change the order of the integration ∫ ∫ 𝑒−𝑥𝑦 𝑦 𝑑𝑦 𝑑𝑥 𝑥 0 ∞ 0 . 2) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦 𝑒 𝑥 1 2 0 by changing the order of integration. 3) Change the order of integration and evaluate ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 √𝑥4−4𝑦2 2 √2𝑦 2 0 . 5.1 CHANGE OF VARIABLE: Sometimes the problems of double integration can be solved easily by change of independent variables. Let the double integral be as ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦𝑅 . It is to be changed by the new variables 𝑢, 𝑣. The relation of 𝑥, 𝑦 with 𝑢, 𝑣 are given as 𝑥 = ∅( 𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣). Then the double integration is converted into. 1. ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦𝑅 = ∬ 𝑓{ 𝜙( 𝑢, 𝑣), 𝜓(𝑢, 𝑣)}𝑅′ | 𝐽| 𝑑𝑢 𝑑𝑣, [𝑑𝑥 𝑑𝑦 = 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) 𝑑𝑢 𝑑𝑣]
  • 13. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 13 ∬ 𝒇( 𝒙,𝒚) 𝒅𝒙 𝒅𝒚 = ∬ 𝒇{ 𝒙( 𝒖, 𝒗), 𝒚(𝒖, 𝒗)} | 𝝏 (𝒙,𝒚) 𝝏 (𝒖,𝒗) |𝑫𝑹 𝒅𝒖 𝒅𝒗 5.2 Example 1: Using 𝑥 + 𝑦 = 𝑢, 𝑥 − 𝑦 = 𝑣, evaluate the double integral over the square R ∬ ( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦𝑅 Integration being taken over the area bounded by the lines 𝑥 + 𝑦 = 2, 𝑥 + 𝑦 = 0, 𝑥 − 𝑦 = 2, 𝑥 − 𝑦 = 0. Solution: 𝑥 + 𝑦 = 𝑢 ________(1) 𝑥 − 𝑦 = 𝑣 ________(2) On solving (1) and (2), we get 𝑥 = 1 2 ( 𝑢 + 𝑣), 𝑦 = 1 2 ( 𝑢 − 𝑣) 𝐽 = 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) = | 𝜕𝑥 𝜕𝑢 𝜕𝑥 𝜕𝑣 𝜕𝑦 𝜕𝑢 𝜕𝑦 𝜕𝑣 | = | 1 2 1 2 1 2 − 1 2 | = − 1 4 − 1 4 = − 1 2 ∬ ( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦 = ∫ ∫ [ 1 4 (𝑢 + 𝑣)2 + 1 4 (𝑢 − 2 0 2 0𝑅 𝑣)2 ] | 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) | 𝑑𝑢 𝑑𝑣 = ∫ ∫ 1 2 ( 𝑢2 + 𝑣2)|− 1 2 | 𝑑𝑢 𝑑𝑣 2 0 2 0 = − 1 4 ∫ 𝑑𝑣∫ ( 𝑢2 + 𝑣2) 𝑑𝑢 2 0 2 0 = − 1 4 ∫ 𝑑𝑣 [ 𝑢3 3 + 𝑢𝑣2 ] 0 22 0 = − 1 4 ∫ 𝑑𝑣( 8 3 + 2𝑣2 ) 2 0 = − 1 4 ∫ ( 8 3 + 2𝑣2 ) 2 0 𝑑𝑣
  • 14. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 14 = − 1 4 [ 8 3 𝑣 + 2 3 𝑣3 ] 0 2 = − 1 4 [ 8 3 (2) + 2 3 (2)3 ] = − 1 4 ( 16 3 + 16 3 ) = − 1 4 ( 32 3 ) = − 8 3 ________ Answer 5.3 EXERCISE: 1) Using the transformation 𝑥 + 𝑦 = 𝑢, 𝑦 = 𝑢𝑣 show that ∫ ∫ 𝑒 𝑦 (𝑥+𝑦)⁄ 𝑑𝑦 𝑑𝑥 = 1 2 (𝑒 − 1) 1−𝑥 0 1 0 2) Evaluate ∬ (𝑥 + 𝑦)2 𝑑𝑥 𝑑𝑦𝑅 , where R is the parallelogram in the xy-plane with vertices (1,0), (3,1), (2,2), (0,1), using the transformation 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥 − 2𝑦. 6.1 AREA IN CARTESIAN CO-ORDINATES: Area = ∫ ∫ 𝒅𝒙 𝒅𝒚 𝒚 𝟐 𝒚 𝟏 𝒃 𝒂 6.2 Example 1: Find the area bounded by the lines 𝒚 = 𝒙 + 𝟐 𝒚 = −𝒙 + 𝟐 𝒙 = 𝟓 Solution: The region of integration is bounded by the lines 𝑦 = 𝑥 + 2 _________(1) 𝑦 = −𝑥 + 2 _________(2) 𝑥 = 5 _________(3) On solving (1) and (2), we get the point 𝐴(0,2) On solving (2) and (3), we get the point 𝐶(5,−3) On solving (1) and (3), we get the point 𝐸(5,7)
  • 15. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 15 We draw a strip parallel to 𝑦-axis. On this strip the limits of 𝑦 are 𝑦 = −𝑥 + 2 and 𝑦 = 𝑥 + 2, and the limit of 𝑥 are 𝑥 = 0 and 𝑥 = 5. Required area = Shaded portion of the figure = ∬ 𝑑𝑥 𝑑𝑦 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 𝑥+2 –𝑥+2 5 0 = ∫ 𝑑𝑥 [ 𝑦]−𝑥+2 𝑥+25 0 = ∫ 𝑑𝑥 [ 𝑥 + 2 − (−𝑥 + 2)] 5 0 = ∫ [2𝑥] 𝑑𝑥 5 0 = [ 2𝑥2 2 ] 0 5 = [ 𝑥2]0 5 = [25− 0] = 25 Sq. units ________ Answer Example 2: Find the area betweenthe parabolas 𝒚 𝟐 = 𝟒𝒂𝒙 and 𝒙 𝟐 = 𝟒𝒂𝒚. Solution: We have, 𝑦2 = 4𝑎𝑥 ________ (1) 𝑥2 = 4𝑎𝑦 ________ (2) On solving the equations (1) and (2) we get the point of intersection (4a, 4a). Divide the area into horizontal strips of width 𝛿𝑦, 𝑥 varies from 𝑃, 𝑦2 4𝑎 𝑡𝑜 𝑄,√4𝑎𝑦 and then 𝑦 varies from 𝑂 ( 𝑦 = 0) 𝑡𝑜 𝐴 (𝑦 = 4𝑎). ∴ The required area = ∫ 𝑑𝑦 ∫ 𝑑𝑥 √4𝑎𝑦 𝑦2 4𝑎⁄ 4𝑎 0
  • 16. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 16 = ∫ 𝑑𝑦 [ 𝑥] 𝑦2 4𝑎 √4𝑎𝑦4𝑎 0 = ∫ 𝑑𝑦 [√4𝑎𝑦 − 𝑦2 4𝑎 ] 4𝑎 0 = [√4𝑎 𝑦3 2⁄ 3 2 − 𝑦3 12𝑎 ] 0 4𝑎 = 4√𝑎 3 (4𝑎)3 2⁄ − (4𝑎)3 12𝑎 = 16 3 𝑎2 ________ Answer 7.1 VOLUME OF SOLIDS BY DOUBLE INTEGRAL: Let a surface 𝑆′ be 𝑧 = 𝑓(𝑥, 𝑦) The projection of 𝑠′ on 𝑥 − 𝑦 plane be 𝑆. Take infinite number of elementary rectangles 𝛿𝑥 𝛿𝑦. Erect vertical rod on the 𝛿𝑥 𝛿𝑦 of height 𝑧. Volume of each vertical rod = Area of the base × height = 𝛿𝑥 𝛿𝑦 . 𝑧 Volume of the solid cylinder on S = lim 𝛿𝑥→0 𝛿𝑦→0 ∑ ∑ 𝑧 𝑑𝑥 𝑑𝑦 = ∬ 𝑧 𝑑𝑥 𝑑𝑦 = ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 Here the integration is carried out over the area S.
  • 17. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 17 Example 1: Find the volume bounded by the 𝒙𝒚-plane, the paraboloid 𝟐𝒛 = 𝒙 𝟐 + 𝒚 𝟐 and the cylinder 𝒙 𝟐 + 𝒚 𝟐 = 𝟒. Solution: Here, we have 2𝑧 = 𝑥2 + 𝑦2 ⇒ 2𝑧 = 𝑟2 ⇒ 𝑧 = 𝑟2 2 (Paraboloid) ______(1) 𝑥2 + 𝑦2 = 4 ⇒ 𝑟 = 2, 𝑧 = 0, (circle) ______(2) Volume of one vertical rod = 𝑧. 𝑟 𝑑𝑟 𝑑𝜃 Volume of the solid = ∬ 𝑧 𝑟 𝑑𝑟 𝑑𝜃 = 2 ∫ 𝑑𝜃 ∫ 𝑟2 2 𝑟 𝑑𝑟 2 0 𝜋 0 = 2 2 ∫ 𝑑𝜃 ∫ 𝑟3 𝑑𝑟 2 0 𝜋 0 = ∫ 𝑑𝜃 ( 𝑟4 4 ) 0 2𝜋 0 = ∫ 𝑑𝜃 ( 16 4 ) 𝜋 0 = 4∫ 𝑑𝜃 𝜋 0 = 4[ 𝜃]0 𝜋 = 4𝜋 ________ Answer 8.1 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE INTEGRAL): When the area enclosed by a curve 𝑦 = 𝑓(𝑥) is revolved about an axis, a solid is generated; we have to find out the volume of solid generated. Volume of the solid generated about x-axis = ∫ ∫ 2𝜋 𝑃𝑄 𝑑𝑥 𝑑𝑦 𝑦2(𝑥) 𝑦1(𝑥) 𝑏 𝑎
  • 18. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 18 Example 1: Find the volume of the torus generatedby revolving the circle 𝒙 𝟐 + 𝒚 𝟐 = 𝟒 about the line 𝒙 = 𝟑. Solution: 𝑥2 + 𝑦2 = 4 𝑉 = ∬(2𝜋 𝑃𝑄) 𝑑𝑥 𝑑𝑦 = 2𝜋 ∬(3 − 𝑥) 𝑑𝑥 𝑑𝑦 = 2𝜋 ∫ 𝑑𝑥 (3𝑦 − 𝑥𝑦) −√4−𝑥2 +√4−𝑥22 −2 (3 − 𝑥) 𝑑𝑦 = 2𝜋 ∫ 𝑑𝑥 [3√4 − 𝑥2 − 𝑥√4 − 𝑥2 + 3√4 − 𝑥2 − 𝑥√4 − 𝑥2] +2 −2 = 4𝜋∫ [3√4 − 𝑥2 − 𝑥√4 − 𝑥2] +2 −2 𝑑𝑥 = 4𝜋[3 𝑥 2 √4 − 𝑥2 + 3 × 4 2 sin−1 𝑥 2 + 1 3 (4 − 𝑥2)3 2⁄ ] −2 +2 = 4𝜋 [6 × 𝜋 2 + 6 × 𝜋 2 ] = 24𝜋2 ________ Ans. 8.2 EXERCISE: 1) Find the area of the ellipse 𝑥2 𝑎2 + 𝑦2 𝑏2 = 1 2) Find by double integration the area of the smaller region bounded by 𝑥2 + 𝑦2 = 𝑎2 and𝑥 + 𝑦 = 𝑎. 3) Find the volume bounded by 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, the cylinder 𝑥2 + 𝑦2 = 1 and the plane 𝑥 + 𝑦 + 𝑧 = 3. 4) Evaluate the volume of the solid generated by revolving the area of the parabola 𝑦2 = 4𝑎𝑥 bounded by the latus rectum about the tangent at the vertex.
  • 19. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 19 9.1 TRIPLE INTEGRATION (VOLUME) : Let a function 𝑓(𝑥, 𝑦, 𝑧) be a continuous at every point of a finite region 𝑆 of three dimensional spaces. Consider 𝑛 sub-spaces 𝛿𝑠1, 𝛿𝑠2, 𝛿𝑠3,… . 𝛿𝑠 𝑛 of the spaceS. If (𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) be a point in the rth subspace. The limit of the sum ∑ 𝑓(𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) 𝑛 𝑟=1 𝛿𝑠𝑟, 𝑎𝑠 𝑛 → ∞, 𝛿𝑠𝑟 → 0 is known as the triple integral of 𝑓(𝑥, 𝑦, 𝑧) over the spaceS. Symbolically, it is denoted by ∭𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑆 𝑆 It can be calculated as ∫ ∫ ∫ 𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑧2 𝑧1 𝑦2 𝑦1 𝑥2 𝑥1 . First we integrate with respect to 𝑧 treating 𝑥, 𝑦 as constant between the limits 𝑧1 𝑎𝑛𝑑 𝑧2 . The resulting expression (function of 𝑥, 𝑦) is integrated with respect to 𝑦 keeping 𝑥 as constant between the limits 𝑦1 𝑎𝑛𝑑 𝑦2. At the end we integrate the resulting expression (function of 𝑥 only) within the limits 𝑥1 𝑎𝑛𝑑 𝑥2. First we integrate from inner most integral w.r.t z, and then we integrate w.r.t 𝑦, and finally the outer most w.r.t 𝑥. But the above order of integration is immaterial provided the limits change accordingly. Example 1: Evaluate ∭ ( 𝑥 − 2𝑦 +𝑅 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1 0 ≤ 𝑦 ≤ 𝑥2 0 ≤ 𝑧 ≤ 𝑥 + 𝑦
  • 20. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 20 Solution: ∭ ( 𝑥 − 2𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 ∫ (𝑥 − 2𝑦 + 𝑧)𝑑𝑧 𝑥+𝑦 0 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 (𝑥𝑧 − 2𝑦𝑧 + 𝑧2 2 ) 0 𝑥+𝑦𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥 ( 𝑥 + 𝑦) − 2𝑦( 𝑥 + 𝑦) + (𝑥+𝑦)2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2 + 𝑥𝑦 − 2𝑥𝑦 − 2𝑦2 + (𝑥+𝑦)2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2 − 𝑥𝑦 − 2𝑦2 + 𝑥2 2 + 𝑥𝑦 + 𝑦2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [ 3𝑥2 2 − 3𝑦2 2 ] 𝑥2 0 1 0 = 3 2 ∫ 𝑑𝑥 1 0 ∫ ( 𝑥2 − 𝑦2) 𝑑𝑦 𝑥2 0 = 3 2 ∫ 𝑑𝑥 1 0 (𝑥2 𝑦 − 𝑦3 3 ) 0 𝑥2 = 3 2 ∫ 𝑑𝑥 1 0 (𝑥4 − 𝑥6 3 ) = 3 2 ( 𝑥5 5 − 𝑥7 21 ) 0 1 = 3 2 ( 1 5 − 1 21 ) = 8 35 ________Answer Example 2: Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑥+𝑦 0 𝑥 0 𝑙𝑜𝑔 2 0 Solution: 𝐼 = ∫ ∫ 𝑒 𝑥+𝑦 [ 𝑒 𝑧]0 𝑥+𝑦 𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0 = ∫ ∫ 𝑒 𝑥+𝑦 (𝑒 𝑥+𝑦 − 1)𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0 = ∫ ∫ [𝑒2(𝑥+𝑦) − 𝑒 𝑥+𝑦 ] 𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0
  • 21. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 21 = ∫ [𝑒2𝑥 . 𝑒2𝑥 2 − 𝑒 𝑥 . 𝑒 𝑦 ] 0 𝑥 𝑑𝑥 𝑙𝑜𝑔 2 0 = ∫ [ 𝑒4𝑥 2 − 𝑒2𝑥 − 𝑒2𝑥 2 + 𝑒 𝑥 ] 0 𝑥 𝑑𝑥 𝑙𝑜𝑔 2 0 = [ 𝑒4𝑥 8 − 𝑒2𝑥 2 − 𝑒2𝑥 4 + 𝑒 𝑥 ] 0 log2 = [ 𝑒4 𝑙𝑜𝑔2 8 − 𝑒2 log2 2 − 𝑒2 log2 4 + 𝑒log 2 ] − ( 1 8 − 1 2 − 1 4 + 1) = [ 𝑒 𝑙𝑜𝑔16 8 − 𝑒log4 2 − 𝑒log4 4 + 𝑒log 2 ] − ( 1 8 − 1 2 − 1 4 + 1) = ( 16 8 − 4 2 − 4 4 + 2) − ( 1 8 − 1 2 − 1 4 + 1) = 5 8 ________ Answer 9.2 EXERCISE: 1) Evaluate ∭ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1, 1 ≤ 𝑦 ≤ 2, 2 ≤ 𝑧 ≤ 3.𝑅 2) Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧𝑥+log 𝑦 0 𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑥 0 log 2 0 . 3) Evaluate∭ ( 𝑥2 + 𝑦2 + 𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅 where 𝑅: 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 𝑥 + 𝑦 + 𝑧 = 𝑎, (𝑎 > 0)
  • 22. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 22 10.1REFERENCE BOOK: 1) Introduction to EngineeringMathematics By H. K. DASS. & Dr. RAMA VERMA 2) www.bookspar.com/wp-content/uploads/vtu/notes/1st-2nd- sem/m2-21/Unit-5-Multiple-Integrals.pdf 3) http://www.mathstat.concordia.ca/faculty/cdavid/EMAT212/sol integrals.pdf 4) http://studentsblog100.blogspot.in/2013/02/anna-university- engineering-mathematics.html