SlideShare une entreprise Scribd logo
1  sur  24
Télécharger pour lire hors ligne
EST PANEL
             SASER

ENGLISH FOR SCIENCE AND TECHNOLOGY

     THEME: COMMUNICATION &
           TECHNOLOGY
Nanotechnology
Definition
Nanotechnology, shortened to "nanotech", is the study of the control of matter on
an atomic and molecular scale. Generally nanotechnology deals with structures of the size
100 nanometers or smaller, and involves developing materials or devices within that size.
Introduction
Nanotechnology is very diverse, ranging from extensions of conventional device physics, to completely
new approaches based upon molecular self-assembly, to developing new materials with dimensions on
the nanoscale, even to speculation on whether we can directly control matter on the atomic scale.
Nanotechnology has the potential to create many new materials and devices with wide-
ranging applications, such as in medicine,electronics, and energy production. On the other hand,
nanotechnology raises many of the same issues as with any introduction of new technology, including
concerns about the toxicity and environmental impact of nanomaterials,[1] and their potential effects on
global economics. These concerns have led to a debate among advocacy groups and governments on
whether special regulation of nanotechnology is warranted.
Implications

Most applications are limited to the use of "first generation" passive nanomaterials which includes titanium
dioxide in sunscreen, cosmetics and some food products; Carbon allotropes used to produce gecko tape;
silver in food packaging, clothing, disinfectants and household appliances; zinc oxide in sunscreens and
cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide as a fuel
catalyst.The Truth Behind the Nanotechnology Buzz. This published study (with a foreword by Mikhail
Roco, Senior Advisor for Nanotechnology at the National Science Foundation) concludes that much of
what is sold as “nanotechnology” is in fact a recasting of straightforward materials science, which is
leading to a “nanotech industry built solely on selling nanotubes, nanowires, and the like” which will “end
up with a few suppliers selling low margin products in huge volumes."

Further applications which require actual manipulation or arrangement of nanoscale components await
further research. Though technologies branded with the term 'nano' are sometimes little related to and fall
far short of the most ambitious and transformative technological goals of the sort in molecular
manufacturing proposals, the term still connotes such ideas. According to Berube, there may be a danger
that a "nano bubble" will form, or is forming already, from the use of the term by scientists and
entrepreneurs to garner funding, regardless of interest in the transformative possibilities of more
ambitious and far-sighted work. Nano-membranes have been produced that are portable and easily-
cleaned systems that purify, detoxify and desalinate water meaning that third-world countries could get
clean water, solving many water related health issues.

Health and environmental concerns

Some of the recently developed nanoparticle products may have unintended consequences. Researchers
have discovered that silver nanoparticles used in socks only to reduce foot odor are being released in the
wash with possible negative consequences.[32] Silver nanoparticles, which are bacteriostatic, may then
destroy beneficial bacteria which are important for breaking down organic matter in waste treatment
                 [33]
plants or farms.

A study at the University of Rochester found that when rats breathed in nanoparticles, the particles settled
in the brain and lungs, which led to significant increases in biomarkers for inflammation and stress
           [34]
response.
A major study published more recently in Nature Nanotechnology suggests some forms of carbon
nanotubes – a poster child for the “nanotechnology revolution” – could be as harmful as asbestos if
inhaled in sufficient quantities. Anthony Seaton of the Institute of Occupational Medicine in Edinburgh,
Scotland, who contributed to the article on carbon nanotubes said "We know that some of them probably
have the potential to cause mesothelioma. So those sorts of materials need to be handled very
carefully." [35]. In the absence of specific nano-regulation forthcoming from governments, Paull and Lyons
(2008) have called for an exclusion of engineered nanoparticles from organic food.[36] A newspaper article
reports that workers in a paint factory developed serious lung disease and nanoparticles were found in
their lungs.
Applications

Medicine : Main article:

NanomedicineThe biological and medical research communities have exploited the unique properties of
nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating
cancer). Terms such as biomedical nanotechnology, bionanotechnology, and nanomedicineare used to
describe this hybrid field. Functionalities can be added to nanomaterials by interfacing them with
biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules
and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research
and applications. Thus far, the integration of nanomaterials with biology has led to the development of
diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery
vehicles.

[edit]Diagnostics
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology.Magnetic nanoparticles,
bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold
nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a
sample. Multicolor optical coding for biological assays has been achieved by embedding different-
sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids
converts strings of nucleotides directly into electronic signatures.
[edit]Drug delivery
The overall drug consumption and side-effects can be lowered significantly by depositing the active agent
in the morbid region only and in no higher dose than needed. This highly selective approach reduces
costs and human suffering. An example can be found in dendrimers and nanoporous materials. They
could hold small drug molecules transporting them to the desired location. Another vision is based on
small electromechanical systems; NEMS are being investigated for the active release of drugs. Some
potentially important applications include cancer treatment with iron nanoparticles or gold shells. A
targeted or personalized medicine reduces the drug consumption and treatment expenses resulting in an
overall societal benefit by reducing the costs to the public health system. Nanotechnology is also opening
up new opportunities in implantable delivery systems, which are often preferable to the use of injectable
drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly,
but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy
can diminish as the drug concentration falls below the targeted range.
[edit]Tissue engineering
Nanotechnology can help to reproduce or to repair damaged tissue. “Tissue engineering” makes use of
artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors.
Tissue engineering might replace today’s conventional treatments like organ transplants or artificial
implants. Advanced forms of tissue engineering may lead to life extension.
[edit]Chemistry and environment

Chemical catalysis and filtration techniques are two prominent examples where nanotechnology already
plays a role. The synthesis provides novel materials with tailored features and chemical properties: for
example, nanoparticles with a distinct chemical surrounding (ligands), or specific optical properties. In this
sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel
“nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and
time preserving strategies. In a sense, all chemical synthesis can be understood in terms of
nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for
nanotechnology providing tailor-made molecules, polymers, etcetera, as well as clusters
and nanoparticles.
[edit]Catalysis
Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume
ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters
and photocatalytic devices. Catalysis is also important for the production of chemicals.
[edit]Filtration

Main article: Nanofiltration

A strong influence of nanochemistry on waste-water treatment, air purification and energy storage
devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques.
One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the
liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration
with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes.
Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale,
the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm.
One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis.
Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from
waste water by making use of magnetic separation techniques. Using nanoscale particles increases the
efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional
precipitation and filtration methods.
Some water-treatment devices incorporating nanotechnology are already on the market, with more in
development. Low-cost nanostructured separation membranes methods have been shown to be effective
in producing potable water in a recent study.[5]
[edit]Energy

Main article: Energy applications of nanotechnology

The most advanced nanotechnology projects related to energy are: storage, conversion, manufacturing
improvements by reducing materials and process rates, energy saving (by better thermal insulation for
example), and enhanced renewable energy sources.
[edit]Reduction of energy consumption
A reduction of energy consumption can be reached by better insulation systems, by the use of more
efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation
sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light.
Nanotechnological approaches like light-emitting diodes (LEDs) or quantum caged atoms (QCAs) could
lead to a strong reduction of energy consumption for illumination.
[edit]Increasing the efficiency of energy production
Today's best solar cells have layers of several different semiconductors stacked together to absorb light
at different energies but they still only manage to use 40 percent of the Sun's energy. Commercially
available solar cells have much lower efficiencies (15-20%). Nanotechnology could help increase the
efficiency of light conversion by using nanostructures with a continuum of bandgaps.
The degree of efficiency of the internal combustion engine is about 30-40% at the moment.
Nanotechnology could improve combustion by designing specific catalysts with maximized surface area.
In 2005, scientists at the University of Toronto developed a spray-on nanoparticle substance that, when
applied to a surface, instantly transforms it into a solar collector.[1]
[edit]The use of more environmentally friendly energy systems
An example for an environmentally friendly form of energy is the use of fuel cells powered by hydrogen,
which is ideally produced by renewable energies. Probably the most prominent nanostructured material in
fuel cells is the catalyst consisting of carbon supported noble metal particles with diameters of 1-5 nm.
Suitable materials for hydrogen storage contain a large number of small nanosized pores. Therefore
many nanostructured materials like nanotubes, zeolites or alanates are under investigation.
Nanotechnology can contribute to the further reduction of combustion engine pollutants by nanoporous
filters, which can clean the exhaust mechanically, by catalytic converters based on nanoscale noble metal
particles or by catalytic coatings on cylinder walls and catalytic nanoparticles as additive for fuels.
[edit]Recycling of batteries
Main article: Nanobatteries

Because of the relatively low energy density of batteries the operating time is limited and a replacement
or recharging is needed. The huge number of spent batteries and accumulators represent a disposal
problem. The use of batteries with higher energy content or the use of rechargeable batteries
or supercapacitors with higher rate of recharging using nanomaterials could be helpful for the battery
disposal problem.
[edit]Information and communication

Current high-technology production processes are based on traditional top down strategies, where
nanotechnology has already been introduced silently. The critical length scale of integrated circuits is
already at the nanoscale (50 nm and below) regarding the gate length of transistors
inCPUs or DRAM devices.
[edit]Memory Storage
Electronic memory designs in the past have largely relied on the formation of transistors. However,
research into crossbar switch based electronics have offered an alternative using reconfigurable
interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two
leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory
called Nano-RAM andHewlett-Packard which has proposed the use of memristor material as a future
replacement of Flash memory.
[edit]Aerospace
Lighter and stronger materials will be of immense use to aircraft manufacturers, leading to increased
performance. Spacecraft will also benefit, where weight is a major factor. Nanotechnology would help to
reduce the size of equipment and thereby decrease fuel-consumption required to get it airborne.
Hang gliders halve their weight while increasing their strength and toughness through the use of nanotech
materials. Nanotech is lowering the mass of supercapacitors that will increasingly be used to give power
to assistive electrical motors for launching hang gliders off flatland to thermal-chasing altitudes.
[edit]Construction
Nanotechnology has the potential to make construction faster, cheaper, safer, and more varied.
Automation of nanotechnology construction can allow for the creation of structures from advanced homes
to massive skyscrapers much more quickly and at much lower cost.
[edit]Refineries
Using nanotech applications, refineries producing materials such as steel and aluminium will be able to
remove any impurities in the materials they create.
[edit]Vehicle manufacturers
Much like aerospace, lighter and stronger materials will be useful for creating vehicles that are both faster
and safer. Combustion engines will also benefit from parts that are more hard-wearing and more heat-
resistant.
[edit]Consumer goods

Nanotechnology is already impacting the field of consumer goods, providing products with novel functions
ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent;
in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are
different nanoparticle improved products. Especially in the field of cosmetics, such novel products have a
promising potential.
[edit]Foods
Complex set of engineering and scientific challenges in the food and bioprocessing industry for
manufacturing high quality and safe food through efficient and sustainable means can be solved through
nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active,
and smart food packaging systems; nanoencapsulation of bioactive food compounds are few examples of
                                                              [7]
emerging applications of nanotechnology for the food industry . Nanotechnology can be applied in the
production, processing, safety and packaging of food. A nanocomposite coating process could improve
food packaging by placing anti-microbial agents directly on the surface of the coated
film.Nanocomposites could increase or decrease gas permeability of different fillers as is needed for
different products. They can also improve the mechanical and heat-resistance properties and lower the
oxygen transmission rate.
[edit]Nano-foods
New consumer products Emerging Nanotechnologies (PEN), based on an inventory it has drawn up of
609 known or claimed nano-products.
On PEN's list are three foods -- a brand of canola cooking oil called Canola Active Oil, a tea called
Nanotea and a chocolate diet shake called Nanoceuticals Slim Shake Chocolate.
According to company information posted on PEN's Web site, the canola oil, by Shemen Industries of
Israel, contains an additive called "nanodrops" designed to carry vitamins, minerals and phytochemicals
through the digestive system.
The shake, according to U.S. manufacturer RBC Life Sciences Inc., uses cocoa infused "NanoClusters"
to enhance the taste and health benefits of cocoa without the need for extra sugar.[8]
[edit]Household
The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean”
surfaces on ceramics or glasses. Nanoceramic particles have improved the smoothness and heat
resistance of common household equipment such as the flat iron.
[edit]Optics
The first sunglasses using protective and anti-reflective ultrathin polymer coatings are on the market. For
optics, nanotechnology also offers scratch resistant surface coatings based on nanocomposites. Nano-
optics could allow for an increase in precision of pupil repair and other types of laser eye surgery.
[edit]Textiles
The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free.
Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures.
Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface
protection from electrostatic charges for the wearer. Many other applications have been developed by
research institutions such as the Textiles Nanotechnology Laboratory at Cornell University
[edit]Cosmetics
One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its
poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium dioxide offer
several advantages. Titanium oxide nanoparticles have a comparable UV protection property as the bulk
material, but lose the cosmetically undesirable whitening as the particle size is decreased.
[edit]Agriculture
Applications of nanotechnology have the potential to change the entire agriculture sector and food
industry chain from production to conservation, processing, packaging, transportation, and even waste
treatment. Strategic applications of Nano Science can do wonders in the agriculture scenario.
NanoScience concepts and Nanotechnology applications have the potential to redesign the production
cycle, restructure the processing and conservation processes and redefine the food habits of the people.
Major Challenges related to agriculture like Low productivity in cultivable areas, Large uncultivable
areas,Shrinkage of cultivable lands, Wastage of inputs like water, fertilisers, pesticides, Wastage of
products and of course Food security for growing numbers can be addressed through various
applications of nanotechnology. More details at http://www.sainsce.com/agriculture.aspx [9]




`````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````

The next few paragraphs provide a brief introduction to the core concepts of molecular nanotechnology,
followed by links to further reading.

Manufactured products are made from atoms. The properties of those products depend on how those
atoms are arranged. If we rearrange the atoms in coal we can make diamond. If we rearrange the atoms
in sand (and add a few other trace elements) we can make computer chips. If we rearrange the atoms in
dirt, water and air we can make potatoes.

Todays manufacturing methods are very crude at the molecular level. Casting, grinding, milling
and even lithography move atoms in great thundering statistical herds. It's like trying to make
things out of LEGO blocks with boxing gloves on your hands. Yes, you can push the LEGO
blocks into great heaps and pile them up, but you can't really snap them together the way you'd
like.

In the future, nanotechnology will let us take off the boxing gloves. We'll be able to snap
together the fundamental building blocks of nature easily, inexpensively and in most of the ways
permitted by the laws of physics. This will be essential if we are to continue the revolution in
computer hardware beyond about the next decade, and will also let us fabricate an entire new
generation of products that are cleaner, stronger, lighter, and more precise.
It's worth pointing out that the word "nanotechnology" has become very popular and is used to
describe many types of research where the characteristic dimensions are less than about 1,000
nanometers. For example, continued improvements in lithography have resulted in line widths
that are less than one micron: this work is often called "nanotechnology." Sub-micron
lithography is clearly very valuable (ask anyone who uses a computer!) but it is equally clear that
conventional lithography will not let us build semiconductor devices in which individual dopant
atoms are located at specific lattice sites. Many of the exponentially improving trends in
computer hardware capability have remained steady for the last 50 years. There is fairly
widespread belief that these trends are likely to continue for at least another several years, but
then conventional lithography starts to reach its limits.

If we are to continue these trends we will have to develop a new manufacturing technology
which will let us inexpensively build computer systems with mole quantities of logic elements
that are molecular in both size and precision and are interconnected in complex and highly
idiosyncratic patterns. Nanotechnology will let us do this.

When it's unclear from the context whether we're using the specific definition of
"nanotechnology" (given here) or the broader and more inclusive definition (often used in the
literature), we'll use the terms "molecular nanotechnology" or "molecular manufacturing."
Whatever we call it, it should let us

      Get essentially every atom in the right place.
      Make almost any structure consistent with the laws of physics that we can specify in molecular
       detail.
      Have manufacturing costs not greatly exceeding the cost of the required raw materials and
       energy.

       There are two more concepts commonly associated with nanotechnology:Positional assembly.
       Massive parallelism.

       Clearly, we would be happy with any method that simultaneously achieved the first three
       objectives. However, this seems difficult without using some form of positional assembly (to get
       the right molecular parts in the right places) and some form of massive parallelism (to keep the
       costs down).

       The need for positional assembly implies an interest in molecular robotics, e.g., robotic devices
       that are molecular both in their size and precision. These molecular scale positional devices are
       likely to resemble very small versions of their everyday macroscopic counterparts. Positional
       assembly is frequently used in normal macroscopic manufacturing today, and provides
       tremendous advantages. Imagine trying to build a bicycle with both hands tied behind your
       back! The idea of manipulating and positioning individual atoms and molecules is still new and
       takes some getting used to. However, as Feynman said in a classic talk in 1959: "The principles
       of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by
       atom." We need to apply at the molecular scale the concept that has demonstrated its
effectiveness at the macroscopic scale: making parts go where we want by putting them where
       we want!

One robotic arm assembling molecular parts is going to take a long time to assemble anything
large — so we need lots of robotic arms: this is what we mean by massive parallelism. While
earlier proposals achieved massive parallelism through self replication, today's "best guess" is
that future molecular manufacturing systems will use some form of convergent assembly. In this
process vast numbers of small parts are assembled by vast numbers of small robotic arms into
larger parts, those larger parts are assembled by larger robotic arms into still larger parts, and so
forth. If the size of the parts doubles at each iteration, we can go from one nanometer parts (a
few atoms in size) to one meter parts (almost as big as a person) in only 30 steps

Nanotechnology- its functions, benefits and dangers

                                          Nanotechnology

Def:



Functions




Benefits




Dangers




Rh@saser
Electromagnetic Spectrum
Measuring the electromagnetic spectrum
You actually know more about it than you may think! The electromagnetic (EM) spectrum is just
a name that scientists give a bunch of types of radiation when they want to talk about them as a
group. Radiation is energy that travels and spreads out as it goes-- visible light that comes from a
lamp in your house and radio waves that come from a radio station are two types of
electromagnetic radiation. Other examples of EM radiation are microwaves, infrared and
ultraviolet light, X-rays and gamma-rays. Hotter, more energetic objects and events create higher
energy radiation than cool objects. Only extremely hot objects or particles moving at very high
velocities can create high-energy radiation like X-rays and gamma-rays.
Here are the different types of radiation in the EM spectrum, in order from lowest energy to
highest:



                                           Radio: Yes, this is the same kind of energy that radio
                                           stations emit into the air for your boom box to capture
                                           and turn into your favorite Mozart, Madonna, or Justin
                                           Timberlake tunes. But radio waves are also emitted by
                                           other things ... such as stars and gases in space. You
                                           may not be able to dance to what these objects emit,
                                           but you can use it to learn what they are made of.



                                           Microwaves: They will cook your popcorn in just a
                                           few minutes! Microwaves in space are used by
                                           astronomers to learn about the structure of nearby
                                           galaxies, and our own Milky Way!
                                           Infrared: Our skin emits infrared light, which is why
                                           we can be seen in the dark by someone using night
                                           vision goggles. In space, IR light maps the dust
                                           between stars.

                                           Visible: Yes, this is the part that our eyes see. Visible
                                           radiation is emitted by everything from fireflies to light
                                           bulbs to stars ... also by fast-moving particles hitting
                                           other particles.

                                           Ultraviolet: We know that the Sun is a source of
                                           ultraviolet (or UV) radiation, because it is the UV rays
                                           that cause our skin to burn! Stars and other "hot"
objects in space emit UV radiation.
                                          X-rays: Your doctor uses them to look at your bones
                                          and your dentist to look at your teeth. Hot gases in the
                                          Universe also emit X-rays .

                                          Gamma-rays: Radioactive materials (some natural and
                                          others made by man in things like nuclear power
                                          plants) can emit gamma-rays. Big particle accelerators
                                          that scientists use to help them understand what matter
                                          is made of can sometimes generate gamma-rays. But
                                          the biggest gamma-ray generator of all is the Universe!
                                          It makes gamma radiation in all kinds of ways.


A Radio Wave is not a Gamma-Ray, a Microwave is not an
X-ray ... or is it?
We may think that radio waves are completely different physical objects or events than gamma-
rays. They are produced in very different ways, and we detect them in different ways. But are
they really different things? The answer is 'no'. Radio waves, visible light, X-rays, and all the
other parts of the electromagnetic spectrum are fundamentally the same thing. They are all
electromagnetic radiation.




                          Radio waves, visible light, X-rays, and all the
                         other parts of the electromagnetic spectrum are
                         fundamentally the same thing, electromagnetic
                                             radiation.


Electromagnetic radiation can be described in terms of a stream of photons, which are massless
particles each traveling in a wave-like pattern and moving at the speed of light. Each photon
contains a certain amount (or bundle) of energy, and all electromagnetic radiation consists of
these photons. The only difference between the various types of electromagnetic radiation is the
amount of energy found in the photons. Radio waves have photons with low energies,
microwaves have a little more energy than radio waves, infrared has still more, then visible,
ultraviolet, X-rays, and ... the most energetic of all ... gamma-rays.
Actually, the electromagnetic spectrum can be expressed in terms of energy, wavelength, or
frequency. Each way of thinking about the EM spectrum is related to the others in a precise
mathematical way. So why do we have three ways of describing things, each with a different set
of physical units? After all, frequency is measured in cycles per second (which is called a Hertz),
wavelength is measured in meters, and energy is measured in electron volts.




                        The electromagnetic spectrum can be expressed in
                           terms of energy, wavelength, or frequency.


The answer is that scientists don't like to use big numbers when they don't have to. It is much
easier to say or write "two kilometers or 2 km" than "two thousand meters or 2,000 m". So
generally, scientists use whatever units are easiest for whatever they are working with. In radio
astronomy, astronomers tend to use wavelengths or frequencies. This is because most of the
radio part of the EM spectrum falls in the range from about 1 cm to 1 km (30 gigahertz (GHz) to
100 kilohertz (kHz)). The radio is a very broad part of the EM spectrum. Infrared astronomers
also use wavelength to describe their part of the EM spectrum. They tend to use microns (or
millionths of meters) for wavelengths, so that they can say their part of the EM spectrum falls in
the range 1 to 100 microns. Optical astronomers use wavelengths as well. Scientists use both
angstroms (0.00000001 cm, or 10 -8 cm in scientific notation) and nanometers (0.0000001, or 10-
7
  , cm). In the newer "SI" version of the metric system, we think of visible light in units of
nanometers or 0.000000001 meters (10-9 m). In this system, the violet, blue, green, yellow,
orange, and red light we know so well has wavelengths between 400 and 700 nanometers. This
range is only a small part of the entire EM spectrum, so you can tell that the light we see is just a
little fraction of all the EM radiation around us! By the time you get to the ultraviolet, X-ray, and
gamma-ray regions of the EM spectrum, lengths have become too tiny to think about any more.
So scientists usually refer to these photons by their energies, which are measured in electron
volts. Ultraviolet radiation falls in the range from a few electron volts (eV) to about 100 eV. X-
ray photons have energies in the range 100 eV to 100,000 eV (or 100 keV). Gamma-rays then
are all the photons with energies greater than 100 keV.

Question :
Complete the table on the different types of electromagnetic waves and their uses.
GRAPHIC ORGANIZER
    A)
       Helicopters have both advantages and disadvantages compared to fixed-wing aircraft. The
       helicopter’s ability to manoeuvre in and out of hard-to-reach areas and to hover efficiently for long
       periods of time makes it valuable for operating in places where airplanes cannot land. Helicopters
       can perform important military tasks such as ferrying troops directly into combat areas or quickly
       transporting wounded soldiers to hospitals. However, helicopters use more fuel than airplanes and
       cannot fly as fast. This is because the helicopter rotor must produce both lift, which raises the craft
       into the sky, and thrust, which enables it to move about. In an airplane, the wings create lift and the
       engine produces thrust. Despite its poor cruising performance, the helicopter is the obvious choice
       for tasks where vertical flight is necessary.



                                                Helicopters


               Advantages
                                                                                 7……………………………….

Ability to manoeuvre in and out of
1………………………………………………………………..
                                                                          Uses 8…………………………………………..
.

Ability to hover 2…………………………………….                                         Cannot fly 9………………………………………
for long periods of time                                                  ………………………………………………………..



Ability to 3. ………………………………………….
                                                                          Poor 10. …………………………………………
………………………………where airplanes
cannot land.


Ability to perform military tasks.

                                                        4……………………………………………………………………………………….......

                                                        5……………………………………………………………………………………………..
Ability to do 6. ………………………………….

…………………………………………………………
MCQ;

Before mechanical refrigeration systems were introduced, people cooled their food with ice and snow,
either found locally or brought down from the mountains. The first cellars were holes dug into the
ground and lined with wood or straw and packed with snow and ice: this was the only means of
refrigeration for most of history.
    Refrigeration is the process of removing heat from an enclosed space, or from a substance, to lower
its temperature. A refrigerator uses the evaporation of a liquid to absorb heat. The liquid, or refrigerant,
used in a refrigerator evaporates at an extremely low temperature, creating freezing temperatures
inside the refrigerator.


        1. The invention of refrigeration works along the idea of
           A. the need to keep food fresh
           B. The natural resources of ice and snow
           C. The evaporation of a liquid that absorbs heat
           D. Keeping high temperatures in an enclosed area

        2. Based on the text, which of the following statements is true?
           A. The first refrigeration system was created in a cellar.
           B. The freezing liquid inside the refrigerator will be released.
           C. The refrigeration system releases heat when the inside is too hot.
           D. The materials used for the refrigeration system are only ice and snow.

 Rational cloze:

Microwave ovens are popular because they cook food 1. ……………... They are also extremely
2…………………..in their use of electricity because a microwave oven heats only the food. A microwave
oven uses microwaves to heat 3. ………………. food. Microwaves are radio waves. The commonly used
radio wave frequency is 4…………………………….. 2,500 megahertz (2.5 gigahertz). Radio waves in this
frequency 5…………… have an interesting property: they are absorbed by water, fats and sugars. Once
absorbed, they are 6………………. directly into atomic motion – heat. Microwaves in this frequency range
are not 7……………………… by most plastics, glass or ceramic. Metal 8………………………microwaves, which is
why metal pans do not work well in a microwave oven.


        1.   A.   well         B. fully               C.   easily               D. quickly
        2.   A.   good         B. efficient           C.   adequate             D. systematic
        3.   A.   at           B. on                  C.     up                 D. of
        4.   A.   roughly       B. generally          C.   naturally            D. supposedly
        5.   A.   group         B. level              C.   value                D. range
        6.   A.   changed      B. converted           C.    transformed         D. interchanged
        7.   A.   accepted     B absorbed             C.    compatible           D. transformed
        8.   A.   produces      B generates           C.    reflects             D. absorbed
Answers;

       Graphic organizer:

       1.    hard-to-reach areas
       2.    efficiently
       3.    operate in places
       4.    Ferrying troops/soldiers directly into combat areas
       5.    Transporting wounded soldiers to hospitals
       6.    vertical flight
       7.    Disadvantages
       8.    more fuel
       9.    as fast as airplanes
       10.   cruising performance

       MCQ,

       1.     C 2. A
             Cloze text
             1. D       2. B        3. C         4. A        5. D       6. B      7. B      8. C

Importance of ICT

             2. 1. * e-learning
             3.      * distance-learning
             4.      * lectures using teleconferencing services by lecturers from overseas
             5. 2. *using ICT, doctors from different countries can exchange opinions on the diagnosis
                 and treatment
             6.        of diseases.
             7. 3. * monitors human activities on natural resource extractions to ensure the
                 sustainability of the
             8.        natural resources
             9.      * helps battle against pollution through early detection of oil spillage
             10.     * detects climate changes and imminent disasters
             11. 4. * satellites can show how crops are growing
             12.     *plant diseases can be detected in photographs taken from space
             13.     *farmers can access the web to learn how to protect their crops an dimprove crop
                 yields
             14.     *fishermen can check the weather forecast and the condition of the sea from the
                 Internet, they no
             15.      longer have to fish in rough waters
             16.     *satellites also direct fishermen to the best fishing grounds
             17. 5. * record, store and distribute world stock market prices and trading
             18.     * transaction via banks can be done on-line
The Importance Of ICT

Advances in ICT have brought many benefits to mankind. Give examples of benefits brought by advances
in ICT.

         Benefits                                          Examples


1. More opportunities for
education




2.Better health




3.Protecting and managing
our environment




4.More efficient use of
resources




5.Budsiness and banking
system
1. QUESTION: Satellites play a very important role in this era of science and technology. Hundreds
of artificial satellites have been sent to orbit to do what they are designed to do.Study the
information given below:

    Earth Resources Satellites- pictures of earth’s surface- information
    Meteorology Satellites- predict weather-save lives
     Military satellites- defense-search and rescue mission
    Navigation satellites- navigators stay on course
    Communications satellites – connect places
    Relay telephone calls
    Relay messages
    Send and receive television signals.

Write a report based on the information above. Your report must include the following;
*function of satellites
*benefits of satellites
any other relevant information.
______________________________________________________________________________

                                     Artificial Satellites
As we move into the new era of globalization, the world starts changing and now gadgets              A
of modernization begin to escalate in production numbers and usage. Many of these                    A
technologies are however connected to each other in order to work at optimum level.                  A
One of the Earth’s most powerful and needed instrument of technology are the orbiting
and floating objects in space called satellites.                                                     A
    One of the satellites that we use daily is the Earth Resources Satellites. This type of
satellites is placed in the outer space and is used to take pictures of the earth’s surface. It
is very useful when concerning agriculture as it provides information regarding the                  E1 P1
earth’s geology which is crucial in finding suitable places for farming. Besides that, it is         E1E1
also used to study rocks and minerals available on earth. This, in turn helps in increasing          E1
economic growth of a country through the discovery of natural resources and farmland.                E1E1

   Another useful and widely used satellites are the Meteorology satellites or the
Weather Monitoring satellites. As the name goes, this type of satellites predicts the                E2
weather and many of them are placed in space to fulfill the task. They help the weather
forecasters in their weather prediction, and whether a thunderstorm or a typhoon is                  E2 E2
approaching. This helps to save lives by informing in advance of incoming weather                    P2E2
hazards like floods and tsunamis that might besiege the place.                                       E2

    Military satellites assist in the country’s defense system. They can detect an incoming
foreign objects or entry of intruders via air, land or sea. This is vital in protecting the          E3E3
country from potential enemies and at the same time, making preparations against                     E3
sudden enemy attacks. This helps in keeping the country safe and ensuring no entrance                E3
of intruders that might harm the country. Military satellites also help in search and                E3
rescue mission. Twenty four of these satellites are needed to form the Global Positioning            P3E3
System (GPS) that indicates the location of a particular missing troop or person, hence              E3
assisting in the search and rescue mission.
Navigation satellites on the other hand, ensure the navigators stay on course. Ships         P4
and aeroplanes are given navigation from these satellites to help them reach their             E4
destination. Navigation satellites are also used nowadays by the navigation system in
cars where it helps to seek alternative roads in times of need like during emergencies or      E4 E4
traffic jams. In addition, these satellites also help in informing incoming dangers or         E4
turbulence in the sea or sky and at the same time giving directions to alternative routes.     E4

  Communication satellites connect places as they relay messages and telephone calls.          P5P7P6
With the help of these satellites, communications can occur from varying places, near or       E5
far. One could be in Japan and make a phone call back to Malaysia or even as far as the        E5 E6
North Pole. With the help of communication satellites telephones now are wireless and          E6
mobile. Satellites provide wide coverage, even to the remote areas. One can make a             E6E5
phone call when deep inside a jungle or anywhere in the world. Communication satellites        E6
have improved their vitality and usage as years passed and nowadays we could even              E5
send video images through cell phones and with the mechanism of 3G we could                    E7
communicate in various ways. Messages relayed via telephone also are delivered much            E7
faster compared to sending via snail mail. This is very convenient in emergency cases          E7
such as when death happens in a family. These satellites also help to send and receive         E7
television signals. It is via these satellites that we are able to watch live telecast of      P8
football matches and all other live events on television right in your living room. This       E8
definitely saves time and money as you do not have to go to the place where the event          E8
or competition is held.                                                                        E8

  Satellites may be categorized according to their orbits. The higher the orbit of a           A
satellite, the longer the period taken for one orbit. The Low Earth orbits are placed at an    AA
altitude of 400 kilometres. On the other hand, the Geostationary satellites have high          AA
orbits and are positioned at a height of 36 000 kilometres above the Earth’s equator and       A
take exactly one day to complete an orbit.                                                     A

   The existence of satellites has benefited us a lot. Besides ensuring our safety they also
keep us in track of everything around us and improve the system of communication.              A
Malaysia too has launched three satellites of its own and they are MEASAT 1 and                A
MEASAT 2 in 1996 and MEASAT 3 was launched in 2006. Even though launching of                   A
satellites demands large capital their existence is much needed as they play vital role in     A
many aspects.

Reported by,

DR RAMLI BIN HUSIN
QUESTION :                  Methods Of Waste Disposal

                          Landfills ( L )        Incineration ( I )   Reduction Campaign
                                                                               (R)
 Description       *Bury waste in a hole      * burning of waste      * campaign- reduce,
                                                                      reuse,
                                                                       Recycle
                   P1* restore mining         * clean                 * reduce waste,
 Advantages        grounds, quarries          * quick solution        resources
                   P2* good management and                            * education- ways to
                    control - successful                                reduce waste

 Disadvantages     :* poor management         * expensive             * a long term plan
                    * contaminate water       * waste of resources    * not all materials
                   resources                                          can be reused or
                                                                      recycled
Write a report and include the following:

       a waste management method of your choice
       comparison of the three methods
       reasons for choosing the method
       any other relevant information.
Landfills                                                Incinerators


SYSAV incineration plant in Malmö, Sweden capable of handling 25 metric tons (28 short tons)
per hour household waste. To the left of the main stack, a new identical oven line is under
construction (March 2007).

Incineration is a waste treatment technology that involves the combustion of organic materials
and/or substances.[1] Incineration and other high temperature waste treatment systems are
described as "thermal treatment". Incineration of waste materials converts the waste into
incinerator bottom ash, flue gases, particulates, and heat, which can in turn be used to generate
electric power. The flue gases are cleaned of pollutants before they are dispersed in the
atmosphere.

Incineration with energy recovery is one of several waste-to-energy (WtE) technologies such as
gasification, Plasma arc gasification, pyrolysis and anaerobic digestion. Incineration may also be
implemented without energy and materials recovery.

In several countries there are still expert and local community concerns about the environmental
impact of incinerators (see The argument against incineration).

In some countries, incinerators built just a few decades ago often did not include a materials
separation to remove hazardous, bulky or recyclable materials before combustion. These
facilities tended to risk the health of the plant workers and the local environment due to
inadequate levels of gas cleaning and combustion process control. Most of these facilities did not
generate electricity.

Incinerators reduce the mass of the original waste by 80-85 % and the volume (already
compressed somewhat in garbage trucks) by 95-96 %, depending upon composition and degree
of recovery of materials such as metals from the ash for recycling.[2] This means that while
incineration does not completely replace landfilling, it reduces the necessary volume for disposal
significantly. Garbage trucks often reduce the volume of waste in a built-in compressor before
delivery to the incinerator. Alternatively, at landfills, the volume of the uncompressed garbage
can be reduced by approximately 70%[citation needed] with the use of a stationary steel compressor,
albeit with a significant energy cost. In many countries simpler waste compaction is a common
practice for compaction at landfills.

Incineration has particularly strong benefits for the treatment of certain waste types in niche
areas such as clinical wastes and certain hazardous wastes where pathogens and toxins can be
destroyed by high temperatures. Examples include chemical multi-product plants with diverse
toxic or very toxic wastewater streams, which cannot be routed to a conventional wastewater
treatment plant.

Waste combustion is particularly popular in countries such as Japan where land is a scarce
resource. Denmark and Sweden have been leaders in using the energy generated from
incineration for more than a century, in localised combined heat and power facilities supporting
district heating schemes.[3] In 2005, waste incineration produced 4.8 % of the electricity
consumption and 13.7 % of the total domestic heat consumption in Denmark.[4] A number of
other European Countries rely heavily on incineration for handling municipal waste, in particular
Luxembourg, The Netherlands, Germany and France. [2]




ALL LANDFILL LINERS AND LEACHATE COLLECTION SYSTEMS WILL
FAIL ...

"First, even the best liner and leachate collection system will ultimately fail due to natural
deterioration, and recent improvements in MSWLF containment technologies suggest that
releases may be delayed by many decades at some landfills. For this reason, the Agency is
concerned that while corrective action may have already been triggered at many facilities, 30
years may be insufficient to detect releases at other landfills." Source: US EPA Federal
Register, Aug 30, 1988, Vol.53, No.168, (scanned document). Check-out Peter Montegue's
Rachel's for list of other comments in Federal Register by EPA.


SUMMARY

The U.S. has 3,091 active landfills and over 10,000 old municipal landfills, according to the Environmental
Protection Agency. However, in the "good old days," every town (and many businesses and factories) had
its own dump. According to the 1997 U.S. Census, there are 39,044 general purpose local governments
in the United States - 3,043 county governments and 36,001 subcounty general purpose governments
(towns & townships). One suspects that there are many more old and abandoned commercial, private,
and municipal dumps than the 10,000 estimated by the EPA.

Municipal landfills and their leachate (water) and air emissions are hazardous. Municipal landfills can
accept hazardous waste under federal law. An unlimited number of 'conditionally exempt small
generators' of hazardous waste have access to municipal landfills. (See 40 CFR 261.5).

All landfills will eventually fail and leak leachate into ground and surface water. Plastics are not inert.
State-of-the-art plastic (HDPE) landfill liners (1/10 inch or 100 mils thick) and plastic pipes allow
chemicals and gases to pass through their membranes, become brittle, swell, and breakdown.

"...82% of surveyed landfill cells had leaks while 41% had a leak area of more than 1 square feet,"
according to Leak Location Services, Inc. (LLSI) website (March 15, 2000).

According to Dr. Fred Lee, "detection in new landfills can be difficult since the only way to know this is
detection in the monitoring wells. The likelihood of a monitoring well at a single or double lined landfill
detecting an initial leak is very small." Monitoring wells should be located in areas most likely to detect
contamination (i.e., testing the ground water after it has passed under the landfill.) See: Subchapter I:
Solid Waste. Lined landfills leak in very narrow plumes, whereas old, unlined landfills will produce wide
plumes of leachate.

Old and new landfills are typically located next to large bodies of water (i.e., rivers, lakes, bays, etc),
making leakage detection and remediation (clean-up) extremely difficult. This is due to the incursion of
surface water in both instances. Federal and state governments have allowed landfill operators to locate
landfills next to water bodies under the misguided principle: Detection by monitoring wells can also be
very difficult at lined landfills. Lined landfills leak in very narrow plumes, whereas old, unlined landfills will
produce wide plumes of leachate.

Ground water flows downstream, or toward nearby lakes and rivers. In some cases, monitoring wells
have been located around landfills in areas least likely to detect leakage (i.e., upstream of the
groundwater flow). This is in violation of federal law. See Code of Federal Regulations (CFR): Chapter I -
Environmental Protection Agency, Subchapter I: Solid Waste / PART 258 (Updated 1997) - Criteria for
Municipal Solid Waste Landfills (Adobe PDF). If a landfill is located next to a water body, then the
monitoring wells should be located between the landfill and the water; or (if there is no space left), in the
water. See: EPA's Ground Water Monitoring

All landfills could require remediation, but particularly landfills built in the last 60 years will require a
thorough clean-up due to the disposal of highly toxic chemicals manufactured and sold since the 1940's.
See:Remediation and Brownsfields
SAMPLE ANSWER


To   : The Director, Seremban City Council.
From : Chief Engineer, Seremban City Council.

Subject : Method Of Waste Disposal

    Based on the detailed findings of the three methods, I have chosen Reduction Campaign as
the potential method of waste disposal. Reduction campaign is chosen mainly because of its
advantages such as reducing wastage of resources. Depletion of natural resources will give rise to
various environmental problems that can threaten our life. Hence, reduction campaigns which Choice
encourage people to reuse, reduce and recycle must be taken seriously as this can reduce the
negative effects to the environment.

    On the other hand, landfills where waste is buried in holes have the advantage of restoring
mining grounds and quarries. In addition, with good management and control, this method can
prove to be a success. Restoring mining grounds and quarries will ensure no wastage of land and
balance of nature is not upset. Good management of waste includes dumping of waste according
to the types of waste as well as proper management of leakage and methane gas which is the by-
product of decomposition of waste. The construction of a landfill requires a well-planned
approach and the primary concern is the location of the site. If the construction is not up to the
predefined specifications added with poor management, landfills may lead to pollution of the
local environment such as contamination of the water resources. Thus, it is vital that landfills are
high above the groundwater table so as to avoid the leakage and contamination problem. Poor
management of landfills may also give rise to accumulation of vectors in the area which can cause
the spread of diseases. Therefore these adverse effects of landfill operations make it less desirable
as a method of waste disposal.

   Another method of waste disposal is incineration. This method involves burning of waste at
high temperature. This type of waste treatment is also described as thermal treatment. Even
though this waste treatment method proves to be clean, the cost of its construction is too
expensive making it too costly to set up. Building and operating incinerators involve a lot of
money and require long recovery of investment capital. No doubt that it is a quick solution to
waste treatment as it takes only a few hours compared to the other methods, but it is a complete
wastage of resources as everything will be burnt where in actual fact, some can still be reused or
recycled such as glass or plastic bottles.

  As the world’s population increases, there is more demand for basic needs and consequently
more waste will be produced. This high amount of waste, if not properly managed, will upset the
balance of nature and cause environmental problems like pollution and depletion of natural
resources. Hence, reduction campaign should be carried out extensively as it is the responsibility
of every individual to help manage the environment better. In the year 2000, the Ministry of
Housing together with various local councils allocated RM 5 million to increase the awareness and
importance of recycling. About 2360 bins were distributed and placed at strategic places to collect
the recyclable items. This has proven to be a success until today.

   Another effective way to reduce waste is through education which teaches the youngsters the
right way to reduce waste. Schools for example can organize recycling campaigns where students
are required to collect waste materials such as paper, aluminium cans, glass and plastics and send
them to recycling centres to produce new aluminium cans, new glass bottles and plastic materials.
They should also be encouraged to reuse old things such as old plastic bottles that can be turned
into flower vases. Proper education should introduce school children to the many ways of reusing
synthetic polymers which not biodegradable. These polymers if disposed anywhere or in open
landfills without being processed, will remain in the environment for a long time and at the same
time polluting the environment. Likewise, used tyres can be tied together and lowered into the
sea bed to function as artificial reefs. These artificial reefs can act as a breeding ground for fish

   It is no doubt that not all materials can be reused or recycled and reduction campaigns need a
long term plan to reach all levels of society especially in educating the public on the 3Rs as they
are so used to throwing all unwanted items, but in my opinion this is still the best method as
reduction campaigns help to conserve and preserve our natural environment. Of course certain
wastes like food remnants and garden wastes cannot be recycled but this type of waste actually is
of minimum amount. And some very harmful waste like cyanide can lead to death. This type
cannot be recycled and need to be treated carefully at a special waste treatment plant such as
‘Pusat Kualiti Alam’ in Nilai, Negeri Sembilan.

   Thus, the obvious alternative to landfills and incineration method is reduction campaign. To
reduce waste, we can use it to produce compost which is humus produced from the
decomposition of organic substances such as domestic and garden wastes. The purpose of
producing compost is to reduce the amount of garbage and to return useful minerals back into the
soil. In recent years, some countries such as India and Netherlands have used animal dung to
produced energy.

  Hence, based on the reasons stated, I strongly propose reduction campaign as the method of
waste disposal.

By;
IR ELYAS B RAMLI,
Chief Engineer,
Seremban City Council.




RH@SASER 2/2010

Contenu connexe

Tendances

Nanotechnology
NanotechnologyNanotechnology
NanotechnologyA1289k
 
Nanotechnology and it's application
Nanotechnology and it's applicationNanotechnology and it's application
Nanotechnology and it's applicationMosuud jilani lipon
 
nanophysics
nanophysicsnanophysics
nanophysics2461998
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnologyjiniraju
 
Applications of nanotechnology
Applications of nanotechnology Applications of nanotechnology
Applications of nanotechnology Sarmad Adnan
 
Nanoscience presentation
Nanoscience presentationNanoscience presentation
Nanoscience presentationHassan Marzook
 
Kurhekar Introduction to Nanotechnology-vit-08-08-2011
Kurhekar Introduction to Nanotechnology-vit-08-08-2011Kurhekar Introduction to Nanotechnology-vit-08-08-2011
Kurhekar Introduction to Nanotechnology-vit-08-08-2011DhairYash Kotwani
 
Nanotechnology: Basic introduction to the nanotechnology.
Nanotechnology: Basic introduction to the nanotechnology.Nanotechnology: Basic introduction to the nanotechnology.
Nanotechnology: Basic introduction to the nanotechnology.Sathya Sujani
 
Introduction to nano technology
Introduction to nano technologyIntroduction to nano technology
Introduction to nano technologymahalakshmimalini
 
Introduction to Nanotechnology K.A. Dimuthu Dharshana
Introduction to Nanotechnology K.A. Dimuthu DharshanaIntroduction to Nanotechnology K.A. Dimuthu Dharshana
Introduction to Nanotechnology K.A. Dimuthu DharshanaDimuthu Darshana
 
Applications of nanobiotechnology by kk sahu
Applications of nanobiotechnology by kk sahuApplications of nanobiotechnology by kk sahu
Applications of nanobiotechnology by kk sahuKAUSHAL SAHU
 
nano science and nano technology
nano science and nano technologynano science and nano technology
nano science and nano technologyAnmol Bagga
 
محاضره نانو -دكتور عمر نور
محاضره نانو -دكتور عمر نور محاضره نانو -دكتور عمر نور
محاضره نانو -دكتور عمر نور AymanHassan15
 

Tendances (20)

Nanotechnology presentation
Nanotechnology presentation Nanotechnology presentation
Nanotechnology presentation
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Basics of nanotechnology
Basics of nanotechnologyBasics of nanotechnology
Basics of nanotechnology
 
Nanotechnology and it's application
Nanotechnology and it's applicationNanotechnology and it's application
Nanotechnology and it's application
 
nanophysics
nanophysicsnanophysics
nanophysics
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Nanotechnology in microbiology
Nanotechnology in microbiologyNanotechnology in microbiology
Nanotechnology in microbiology
 
Applications of nanotechnology
Applications of nanotechnology Applications of nanotechnology
Applications of nanotechnology
 
Nanoscience presentation
Nanoscience presentationNanoscience presentation
Nanoscience presentation
 
Revolution of Nanotechnology Theory and Application & Dr. Ahmed Abdel-Fatt...
Revolution  of Nanotechnology Theory and Application &  Dr. Ahmed Abdel-Fatt...Revolution  of Nanotechnology Theory and Application &  Dr. Ahmed Abdel-Fatt...
Revolution of Nanotechnology Theory and Application & Dr. Ahmed Abdel-Fatt...
 
Kurhekar Introduction to Nanotechnology-vit-08-08-2011
Kurhekar Introduction to Nanotechnology-vit-08-08-2011Kurhekar Introduction to Nanotechnology-vit-08-08-2011
Kurhekar Introduction to Nanotechnology-vit-08-08-2011
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Nanotechnology: Basic introduction to the nanotechnology.
Nanotechnology: Basic introduction to the nanotechnology.Nanotechnology: Basic introduction to the nanotechnology.
Nanotechnology: Basic introduction to the nanotechnology.
 
Introduction to nano technology
Introduction to nano technologyIntroduction to nano technology
Introduction to nano technology
 
Introduction to Nanotechnology K.A. Dimuthu Dharshana
Introduction to Nanotechnology K.A. Dimuthu DharshanaIntroduction to Nanotechnology K.A. Dimuthu Dharshana
Introduction to Nanotechnology K.A. Dimuthu Dharshana
 
Nanotechnology.
Nanotechnology.Nanotechnology.
Nanotechnology.
 
Nano technology
Nano technologyNano technology
Nano technology
 
Applications of nanobiotechnology by kk sahu
Applications of nanobiotechnology by kk sahuApplications of nanobiotechnology by kk sahu
Applications of nanobiotechnology by kk sahu
 
nano science and nano technology
nano science and nano technologynano science and nano technology
nano science and nano technology
 
محاضره نانو -دكتور عمر نور
محاضره نانو -دكتور عمر نور محاضره نانو -دكتور عمر نور
محاضره نانو -دكتور عمر نور
 

En vedette

Nano technology in empowering military app ppt
Nano technology in empowering military app pptNano technology in empowering military app ppt
Nano technology in empowering military app pptsoundharya sri
 
Nanotechnology for Future Electronics
Nanotechnology for Future ElectronicsNanotechnology for Future Electronics
Nanotechnology for Future ElectronicsPiyusha Hivale
 
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...CPqD
 
Nanotechnology finalyear
Nanotechnology finalyearNanotechnology finalyear
Nanotechnology finalyearAmandeep Singh
 
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...Oka Kurniawan
 
Smart Materials For Military Applications
Smart Materials For Military ApplicationsSmart Materials For Military Applications
Smart Materials For Military ApplicationsAnupam_Tiwari
 
Nano information technology web application, software and website design an...
Nano information technology   web application, software and website design an...Nano information technology   web application, software and website design an...
Nano information technology web application, software and website design an...Nano Information Technology (Nanosoft)
 
Nanotechnology in Defence applications
Nanotechnology in Defence applicationsNanotechnology in Defence applications
Nanotechnology in Defence applicationsZaahir Salam
 
Primary and secondary storage devices
Primary and secondary storage devicesPrimary and secondary storage devices
Primary and secondary storage devicesPichano Kikon
 
Nanotechnology in building construction materials
Nanotechnology in building construction materialsNanotechnology in building construction materials
Nanotechnology in building construction materialsGLAU, Mathura, UP, India
 
APPLICATIONS OF NANOTECHNOLOGY IN ELECTRONICS.
APPLICATIONS OF NANOTECHNOLOGY IN ELECTRONICS.APPLICATIONS OF NANOTECHNOLOGY IN ELECTRONICS.
APPLICATIONS OF NANOTECHNOLOGY IN ELECTRONICS.VIKAS KUMAR
 
Nanotech presentation
Nanotech presentationNanotech presentation
Nanotech presentationjayly03
 
SMART Materials
SMART MaterialsSMART Materials
SMART MaterialsBiswajit_A
 
Nano Technology
Nano TechnologyNano Technology
Nano TechnologyZeusAce
 
Smart materials.. smart ppt
Smart materials.. smart pptSmart materials.. smart ppt
Smart materials.. smart pptdeepika46
 

En vedette (20)

Nano technology in empowering military app ppt
Nano technology in empowering military app pptNano technology in empowering military app ppt
Nano technology in empowering military app ppt
 
Nanotechnology for Future Electronics
Nanotechnology for Future ElectronicsNanotechnology for Future Electronics
Nanotechnology for Future Electronics
 
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
Fiber lasers and optoelectronic devices based on few layers of graphene - Luc...
 
DBanerjee SLIDES 2015e
DBanerjee SLIDES  2015eDBanerjee SLIDES  2015e
DBanerjee SLIDES 2015e
 
Nanotechnology finalyear
Nanotechnology finalyearNanotechnology finalyear
Nanotechnology finalyear
 
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
Non-equilibrium Green's Function Calculation of Optical Absorption in Nano Op...
 
Smart Materials For Military Applications
Smart Materials For Military ApplicationsSmart Materials For Military Applications
Smart Materials For Military Applications
 
Nano information technology web application, software and website design an...
Nano information technology   web application, software and website design an...Nano information technology   web application, software and website design an...
Nano information technology web application, software and website design an...
 
Nano-electronics
Nano-electronicsNano-electronics
Nano-electronics
 
Nanotechnology in Defence applications
Nanotechnology in Defence applicationsNanotechnology in Defence applications
Nanotechnology in Defence applications
 
Smart materials
Smart materialsSmart materials
Smart materials
 
Primary and secondary storage devices
Primary and secondary storage devicesPrimary and secondary storage devices
Primary and secondary storage devices
 
Nanotechnology in building construction materials
Nanotechnology in building construction materialsNanotechnology in building construction materials
Nanotechnology in building construction materials
 
APPLICATIONS OF NANOTECHNOLOGY IN ELECTRONICS.
APPLICATIONS OF NANOTECHNOLOGY IN ELECTRONICS.APPLICATIONS OF NANOTECHNOLOGY IN ELECTRONICS.
APPLICATIONS OF NANOTECHNOLOGY IN ELECTRONICS.
 
Nano ppt
Nano pptNano ppt
Nano ppt
 
Nanotech presentation
Nanotech presentationNanotech presentation
Nanotech presentation
 
SMART Materials
SMART MaterialsSMART Materials
SMART Materials
 
Nano technology
Nano technologyNano technology
Nano technology
 
Nano Technology
Nano TechnologyNano Technology
Nano Technology
 
Smart materials.. smart ppt
Smart materials.. smart pptSmart materials.. smart ppt
Smart materials.. smart ppt
 

Similaire à Module3 COMMUNICATION & TECHNOLOGY

Safety of nanotechnology
Safety of nanotechnologySafety of nanotechnology
Safety of nanotechnologyTeja Swaroop
 
Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...
Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...
Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...A Biodiction : A Unit of Dr. Divya Sharma
 
Commercialize Nanotech
Commercialize NanotechCommercialize Nanotech
Commercialize Nanotechsss64
 
2006 asse teleweb presentation
2006 asse teleweb presentation2006 asse teleweb presentation
2006 asse teleweb presentationAhmad Rashwan
 
Kazi emad on nenotech
Kazi emad on nenotechKazi emad on nenotech
Kazi emad on nenotechKazi Emad
 
Green Nanotechnology
Green NanotechnologyGreen Nanotechnology
Green NanotechnologyNasreen Ahmad
 
Nanotechnology In Nysr
Nanotechnology In NysrNanotechnology In Nysr
Nanotechnology In NysrDennis Conard
 
Nanotechnology & its application (By- Saquib Khan)
Nanotechnology & its application (By- Saquib Khan)Nanotechnology & its application (By- Saquib Khan)
Nanotechnology & its application (By- Saquib Khan)SAQUIB KHAN
 
Kimia ( Tajuk : nanoteknologi )_Tugasan Kumpulan Sem 1_UTHM
Kimia ( Tajuk : nanoteknologi )_Tugasan Kumpulan Sem 1_UTHMKimia ( Tajuk : nanoteknologi )_Tugasan Kumpulan Sem 1_UTHM
Kimia ( Tajuk : nanoteknologi )_Tugasan Kumpulan Sem 1_UTHMRosdi Ramli
 
Nano electronics in medical field!
Nano electronics in medical field! Nano electronics in medical field!
Nano electronics in medical field! TanishkSahjra
 
Nanotechnology: Unleashing the Marvels of the Minuscule | Enterprise Wired
Nanotechnology: Unleashing the Marvels of the Minuscule | Enterprise WiredNanotechnology: Unleashing the Marvels of the Minuscule | Enterprise Wired
Nanotechnology: Unleashing the Marvels of the Minuscule | Enterprise WiredEnterprise Wired
 

Similaire à Module3 COMMUNICATION & TECHNOLOGY (20)

Poonam and sakshi
Poonam and sakshiPoonam and sakshi
Poonam and sakshi
 
Safety of nanotechnology
Safety of nanotechnologySafety of nanotechnology
Safety of nanotechnology
 
Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...
Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...
Nanobiotechnology - Introduction, Concept, Scope, Vision, Applications and Pr...
 
Commercialize Nanotech
Commercialize NanotechCommercialize Nanotech
Commercialize Nanotech
 
Nanoparticles Essay
Nanoparticles EssayNanoparticles Essay
Nanoparticles Essay
 
2006 asse teleweb presentation
2006 asse teleweb presentation2006 asse teleweb presentation
2006 asse teleweb presentation
 
Kazi emad on nenotech
Kazi emad on nenotechKazi emad on nenotech
Kazi emad on nenotech
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Green Nanotechnology
Green NanotechnologyGreen Nanotechnology
Green Nanotechnology
 
Presentation3
Presentation3Presentation3
Presentation3
 
VISHAL KUMAR edited
VISHAL  KUMAR editedVISHAL  KUMAR edited
VISHAL KUMAR edited
 
Ethics Of Nanotechnology Essay
Ethics Of Nanotechnology EssayEthics Of Nanotechnology Essay
Ethics Of Nanotechnology Essay
 
Nanotechnology In Nysr
Nanotechnology In NysrNanotechnology In Nysr
Nanotechnology In Nysr
 
Nanotechnology & its application (By- Saquib Khan)
Nanotechnology & its application (By- Saquib Khan)Nanotechnology & its application (By- Saquib Khan)
Nanotechnology & its application (By- Saquib Khan)
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Kimia ( Tajuk : nanoteknologi )_Tugasan Kumpulan Sem 1_UTHM
Kimia ( Tajuk : nanoteknologi )_Tugasan Kumpulan Sem 1_UTHMKimia ( Tajuk : nanoteknologi )_Tugasan Kumpulan Sem 1_UTHM
Kimia ( Tajuk : nanoteknologi )_Tugasan Kumpulan Sem 1_UTHM
 
Nano electronics in medical field!
Nano electronics in medical field! Nano electronics in medical field!
Nano electronics in medical field!
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Nanotechnology: Unleashing the Marvels of the Minuscule | Enterprise Wired
Nanotechnology: Unleashing the Marvels of the Minuscule | Enterprise WiredNanotechnology: Unleashing the Marvels of the Minuscule | Enterprise Wired
Nanotechnology: Unleashing the Marvels of the Minuscule | Enterprise Wired
 
APPLICATION OF NANOTECHNOLOGY
APPLICATION OF NANOTECHNOLOGYAPPLICATION OF NANOTECHNOLOGY
APPLICATION OF NANOTECHNOLOGY
 

Plus de SMS

Elaborations for NaCI
Elaborations for NaCIElaborations for NaCI
Elaborations for NaCISMS
 
Satellites
SatellitesSatellites
SatellitesSMS
 
The internet 2
The internet 2The internet 2
The internet 2SMS
 
Est revision 2010 lonjakan saujana
Est revision 2010 lonjakan saujanaEst revision 2010 lonjakan saujana
Est revision 2010 lonjakan saujanaSMS
 
Scheme of work est 2011
Scheme of work est 2011Scheme of work est 2011
Scheme of work est 2011SMS
 
Educational Trip To Forest Research Institute
Educational Trip To Forest Research InstituteEducational Trip To Forest Research Institute
Educational Trip To Forest Research InstituteSMS
 
Module 2 Universe
Module 2  UniverseModule 2  Universe
Module 2 UniverseSMS
 
Module 1 Nature & Environment
Module 1 Nature & EnvironmentModule 1 Nature & Environment
Module 1 Nature & EnvironmentSMS
 
SCHEME OF WORK 2010
SCHEME OF WORK 2010SCHEME OF WORK 2010
SCHEME OF WORK 2010SMS
 

Plus de SMS (9)

Elaborations for NaCI
Elaborations for NaCIElaborations for NaCI
Elaborations for NaCI
 
Satellites
SatellitesSatellites
Satellites
 
The internet 2
The internet 2The internet 2
The internet 2
 
Est revision 2010 lonjakan saujana
Est revision 2010 lonjakan saujanaEst revision 2010 lonjakan saujana
Est revision 2010 lonjakan saujana
 
Scheme of work est 2011
Scheme of work est 2011Scheme of work est 2011
Scheme of work est 2011
 
Educational Trip To Forest Research Institute
Educational Trip To Forest Research InstituteEducational Trip To Forest Research Institute
Educational Trip To Forest Research Institute
 
Module 2 Universe
Module 2  UniverseModule 2  Universe
Module 2 Universe
 
Module 1 Nature & Environment
Module 1 Nature & EnvironmentModule 1 Nature & Environment
Module 1 Nature & Environment
 
SCHEME OF WORK 2010
SCHEME OF WORK 2010SCHEME OF WORK 2010
SCHEME OF WORK 2010
 

Dernier

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 

Dernier (20)

GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 

Module3 COMMUNICATION & TECHNOLOGY

  • 1. EST PANEL SASER ENGLISH FOR SCIENCE AND TECHNOLOGY THEME: COMMUNICATION & TECHNOLOGY
  • 2. Nanotechnology Definition Nanotechnology, shortened to "nanotech", is the study of the control of matter on an atomic and molecular scale. Generally nanotechnology deals with structures of the size 100 nanometers or smaller, and involves developing materials or devices within that size. Introduction Nanotechnology is very diverse, ranging from extensions of conventional device physics, to completely new approaches based upon molecular self-assembly, to developing new materials with dimensions on the nanoscale, even to speculation on whether we can directly control matter on the atomic scale. Nanotechnology has the potential to create many new materials and devices with wide- ranging applications, such as in medicine,electronics, and energy production. On the other hand, nanotechnology raises many of the same issues as with any introduction of new technology, including concerns about the toxicity and environmental impact of nanomaterials,[1] and their potential effects on global economics. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted. Implications Most applications are limited to the use of "first generation" passive nanomaterials which includes titanium dioxide in sunscreen, cosmetics and some food products; Carbon allotropes used to produce gecko tape; silver in food packaging, clothing, disinfectants and household appliances; zinc oxide in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide as a fuel catalyst.The Truth Behind the Nanotechnology Buzz. This published study (with a foreword by Mikhail Roco, Senior Advisor for Nanotechnology at the National Science Foundation) concludes that much of what is sold as “nanotechnology” is in fact a recasting of straightforward materials science, which is leading to a “nanotech industry built solely on selling nanotubes, nanowires, and the like” which will “end up with a few suppliers selling low margin products in huge volumes." Further applications which require actual manipulation or arrangement of nanoscale components await further research. Though technologies branded with the term 'nano' are sometimes little related to and fall far short of the most ambitious and transformative technological goals of the sort in molecular manufacturing proposals, the term still connotes such ideas. According to Berube, there may be a danger that a "nano bubble" will form, or is forming already, from the use of the term by scientists and entrepreneurs to garner funding, regardless of interest in the transformative possibilities of more ambitious and far-sighted work. Nano-membranes have been produced that are portable and easily- cleaned systems that purify, detoxify and desalinate water meaning that third-world countries could get clean water, solving many water related health issues. Health and environmental concerns Some of the recently developed nanoparticle products may have unintended consequences. Researchers have discovered that silver nanoparticles used in socks only to reduce foot odor are being released in the wash with possible negative consequences.[32] Silver nanoparticles, which are bacteriostatic, may then destroy beneficial bacteria which are important for breaking down organic matter in waste treatment [33] plants or farms. A study at the University of Rochester found that when rats breathed in nanoparticles, the particles settled in the brain and lungs, which led to significant increases in biomarkers for inflammation and stress [34] response.
  • 3. A major study published more recently in Nature Nanotechnology suggests some forms of carbon nanotubes – a poster child for the “nanotechnology revolution” – could be as harmful as asbestos if inhaled in sufficient quantities. Anthony Seaton of the Institute of Occupational Medicine in Edinburgh, Scotland, who contributed to the article on carbon nanotubes said "We know that some of them probably have the potential to cause mesothelioma. So those sorts of materials need to be handled very carefully." [35]. In the absence of specific nano-regulation forthcoming from governments, Paull and Lyons (2008) have called for an exclusion of engineered nanoparticles from organic food.[36] A newspaper article reports that workers in a paint factory developed serious lung disease and nanoparticles were found in their lungs. Applications Medicine : Main article: NanomedicineThe biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, bionanotechnology, and nanomedicineare used to describe this hybrid field. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles. [edit]Diagnostics Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology.Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different- sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures. [edit]Drug delivery The overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. They could hold small drug molecules transporting them to the desired location. Another vision is based on small electromechanical systems; NEMS are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells. A targeted or personalized medicine reduces the drug consumption and treatment expenses resulting in an overall societal benefit by reducing the costs to the public health system. Nanotechnology is also opening up new opportunities in implantable delivery systems, which are often preferable to the use of injectable drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls below the targeted range. [edit]Tissue engineering Nanotechnology can help to reproduce or to repair damaged tissue. “Tissue engineering” makes use of artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering might replace today’s conventional treatments like organ transplants or artificial implants. Advanced forms of tissue engineering may lead to life extension.
  • 4. [edit]Chemistry and environment Chemical catalysis and filtration techniques are two prominent examples where nanotechnology already plays a role. The synthesis provides novel materials with tailored features and chemical properties: for example, nanoparticles with a distinct chemical surrounding (ligands), or specific optical properties. In this sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel “nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and time preserving strategies. In a sense, all chemical synthesis can be understood in terms of nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for nanotechnology providing tailor-made molecules, polymers, etcetera, as well as clusters and nanoparticles. [edit]Catalysis Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals. [edit]Filtration Main article: Nanofiltration A strong influence of nanochemistry on waste-water treatment, air purification and energy storage devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes. Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale, the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm. One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis. Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods. Some water-treatment devices incorporating nanotechnology are already on the market, with more in development. Low-cost nanostructured separation membranes methods have been shown to be effective in producing potable water in a recent study.[5] [edit]Energy Main article: Energy applications of nanotechnology The most advanced nanotechnology projects related to energy are: storage, conversion, manufacturing improvements by reducing materials and process rates, energy saving (by better thermal insulation for example), and enhanced renewable energy sources. [edit]Reduction of energy consumption A reduction of energy consumption can be reached by better insulation systems, by the use of more efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light. Nanotechnological approaches like light-emitting diodes (LEDs) or quantum caged atoms (QCAs) could lead to a strong reduction of energy consumption for illumination. [edit]Increasing the efficiency of energy production Today's best solar cells have layers of several different semiconductors stacked together to absorb light at different energies but they still only manage to use 40 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (15-20%). Nanotechnology could help increase the efficiency of light conversion by using nanostructures with a continuum of bandgaps.
  • 5. The degree of efficiency of the internal combustion engine is about 30-40% at the moment. Nanotechnology could improve combustion by designing specific catalysts with maximized surface area. In 2005, scientists at the University of Toronto developed a spray-on nanoparticle substance that, when applied to a surface, instantly transforms it into a solar collector.[1] [edit]The use of more environmentally friendly energy systems An example for an environmentally friendly form of energy is the use of fuel cells powered by hydrogen, which is ideally produced by renewable energies. Probably the most prominent nanostructured material in fuel cells is the catalyst consisting of carbon supported noble metal particles with diameters of 1-5 nm. Suitable materials for hydrogen storage contain a large number of small nanosized pores. Therefore many nanostructured materials like nanotubes, zeolites or alanates are under investigation. Nanotechnology can contribute to the further reduction of combustion engine pollutants by nanoporous filters, which can clean the exhaust mechanically, by catalytic converters based on nanoscale noble metal particles or by catalytic coatings on cylinder walls and catalytic nanoparticles as additive for fuels. [edit]Recycling of batteries Main article: Nanobatteries Because of the relatively low energy density of batteries the operating time is limited and a replacement or recharging is needed. The huge number of spent batteries and accumulators represent a disposal problem. The use of batteries with higher energy content or the use of rechargeable batteries or supercapacitors with higher rate of recharging using nanomaterials could be helpful for the battery disposal problem. [edit]Information and communication Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors inCPUs or DRAM devices. [edit]Memory Storage Electronic memory designs in the past have largely relied on the formation of transistors. However, research into crossbar switch based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM andHewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory. [edit]Aerospace Lighter and stronger materials will be of immense use to aircraft manufacturers, leading to increased performance. Spacecraft will also benefit, where weight is a major factor. Nanotechnology would help to reduce the size of equipment and thereby decrease fuel-consumption required to get it airborne. Hang gliders halve their weight while increasing their strength and toughness through the use of nanotech materials. Nanotech is lowering the mass of supercapacitors that will increasingly be used to give power to assistive electrical motors for launching hang gliders off flatland to thermal-chasing altitudes. [edit]Construction Nanotechnology has the potential to make construction faster, cheaper, safer, and more varied. Automation of nanotechnology construction can allow for the creation of structures from advanced homes to massive skyscrapers much more quickly and at much lower cost. [edit]Refineries Using nanotech applications, refineries producing materials such as steel and aluminium will be able to remove any impurities in the materials they create. [edit]Vehicle manufacturers
  • 6. Much like aerospace, lighter and stronger materials will be useful for creating vehicles that are both faster and safer. Combustion engines will also benefit from parts that are more hard-wearing and more heat- resistant. [edit]Consumer goods Nanotechnology is already impacting the field of consumer goods, providing products with novel functions ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent; in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are different nanoparticle improved products. Especially in the field of cosmetics, such novel products have a promising potential. [edit]Foods Complex set of engineering and scientific challenges in the food and bioprocessing industry for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; nanoencapsulation of bioactive food compounds are few examples of [7] emerging applications of nanotechnology for the food industry . Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film.Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. [edit]Nano-foods New consumer products Emerging Nanotechnologies (PEN), based on an inventory it has drawn up of 609 known or claimed nano-products. On PEN's list are three foods -- a brand of canola cooking oil called Canola Active Oil, a tea called Nanotea and a chocolate diet shake called Nanoceuticals Slim Shake Chocolate. According to company information posted on PEN's Web site, the canola oil, by Shemen Industries of Israel, contains an additive called "nanodrops" designed to carry vitamins, minerals and phytochemicals through the digestive system. The shake, according to U.S. manufacturer RBC Life Sciences Inc., uses cocoa infused "NanoClusters" to enhance the taste and health benefits of cocoa without the need for extra sugar.[8] [edit]Household The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean” surfaces on ceramics or glasses. Nanoceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron. [edit]Optics The first sunglasses using protective and anti-reflective ultrathin polymer coatings are on the market. For optics, nanotechnology also offers scratch resistant surface coatings based on nanocomposites. Nano- optics could allow for an increase in precision of pupil repair and other types of laser eye surgery. [edit]Textiles The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free. Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures. Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface protection from electrostatic charges for the wearer. Many other applications have been developed by research institutions such as the Textiles Nanotechnology Laboratory at Cornell University [edit]Cosmetics One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium dioxide offer
  • 7. several advantages. Titanium oxide nanoparticles have a comparable UV protection property as the bulk material, but lose the cosmetically undesirable whitening as the particle size is decreased. [edit]Agriculture Applications of nanotechnology have the potential to change the entire agriculture sector and food industry chain from production to conservation, processing, packaging, transportation, and even waste treatment. Strategic applications of Nano Science can do wonders in the agriculture scenario. NanoScience concepts and Nanotechnology applications have the potential to redesign the production cycle, restructure the processing and conservation processes and redefine the food habits of the people. Major Challenges related to agriculture like Low productivity in cultivable areas, Large uncultivable areas,Shrinkage of cultivable lands, Wastage of inputs like water, fertilisers, pesticides, Wastage of products and of course Food security for growing numbers can be addressed through various applications of nanotechnology. More details at http://www.sainsce.com/agriculture.aspx [9] ````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````` The next few paragraphs provide a brief introduction to the core concepts of molecular nanotechnology, followed by links to further reading. Manufactured products are made from atoms. The properties of those products depend on how those atoms are arranged. If we rearrange the atoms in coal we can make diamond. If we rearrange the atoms in sand (and add a few other trace elements) we can make computer chips. If we rearrange the atoms in dirt, water and air we can make potatoes. Todays manufacturing methods are very crude at the molecular level. Casting, grinding, milling and even lithography move atoms in great thundering statistical herds. It's like trying to make things out of LEGO blocks with boxing gloves on your hands. Yes, you can push the LEGO blocks into great heaps and pile them up, but you can't really snap them together the way you'd like. In the future, nanotechnology will let us take off the boxing gloves. We'll be able to snap together the fundamental building blocks of nature easily, inexpensively and in most of the ways permitted by the laws of physics. This will be essential if we are to continue the revolution in computer hardware beyond about the next decade, and will also let us fabricate an entire new generation of products that are cleaner, stronger, lighter, and more precise.
  • 8. It's worth pointing out that the word "nanotechnology" has become very popular and is used to describe many types of research where the characteristic dimensions are less than about 1,000 nanometers. For example, continued improvements in lithography have resulted in line widths that are less than one micron: this work is often called "nanotechnology." Sub-micron lithography is clearly very valuable (ask anyone who uses a computer!) but it is equally clear that conventional lithography will not let us build semiconductor devices in which individual dopant atoms are located at specific lattice sites. Many of the exponentially improving trends in computer hardware capability have remained steady for the last 50 years. There is fairly widespread belief that these trends are likely to continue for at least another several years, but then conventional lithography starts to reach its limits. If we are to continue these trends we will have to develop a new manufacturing technology which will let us inexpensively build computer systems with mole quantities of logic elements that are molecular in both size and precision and are interconnected in complex and highly idiosyncratic patterns. Nanotechnology will let us do this. When it's unclear from the context whether we're using the specific definition of "nanotechnology" (given here) or the broader and more inclusive definition (often used in the literature), we'll use the terms "molecular nanotechnology" or "molecular manufacturing." Whatever we call it, it should let us  Get essentially every atom in the right place.  Make almost any structure consistent with the laws of physics that we can specify in molecular detail.  Have manufacturing costs not greatly exceeding the cost of the required raw materials and energy. There are two more concepts commonly associated with nanotechnology:Positional assembly. Massive parallelism. Clearly, we would be happy with any method that simultaneously achieved the first three objectives. However, this seems difficult without using some form of positional assembly (to get the right molecular parts in the right places) and some form of massive parallelism (to keep the costs down). The need for positional assembly implies an interest in molecular robotics, e.g., robotic devices that are molecular both in their size and precision. These molecular scale positional devices are likely to resemble very small versions of their everyday macroscopic counterparts. Positional assembly is frequently used in normal macroscopic manufacturing today, and provides tremendous advantages. Imagine trying to build a bicycle with both hands tied behind your back! The idea of manipulating and positioning individual atoms and molecules is still new and takes some getting used to. However, as Feynman said in a classic talk in 1959: "The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom." We need to apply at the molecular scale the concept that has demonstrated its
  • 9. effectiveness at the macroscopic scale: making parts go where we want by putting them where we want! One robotic arm assembling molecular parts is going to take a long time to assemble anything large — so we need lots of robotic arms: this is what we mean by massive parallelism. While earlier proposals achieved massive parallelism through self replication, today's "best guess" is that future molecular manufacturing systems will use some form of convergent assembly. In this process vast numbers of small parts are assembled by vast numbers of small robotic arms into larger parts, those larger parts are assembled by larger robotic arms into still larger parts, and so forth. If the size of the parts doubles at each iteration, we can go from one nanometer parts (a few atoms in size) to one meter parts (almost as big as a person) in only 30 steps Nanotechnology- its functions, benefits and dangers Nanotechnology Def: Functions Benefits Dangers Rh@saser
  • 10. Electromagnetic Spectrum Measuring the electromagnetic spectrum You actually know more about it than you may think! The electromagnetic (EM) spectrum is just a name that scientists give a bunch of types of radiation when they want to talk about them as a group. Radiation is energy that travels and spreads out as it goes-- visible light that comes from a lamp in your house and radio waves that come from a radio station are two types of electromagnetic radiation. Other examples of EM radiation are microwaves, infrared and ultraviolet light, X-rays and gamma-rays. Hotter, more energetic objects and events create higher energy radiation than cool objects. Only extremely hot objects or particles moving at very high velocities can create high-energy radiation like X-rays and gamma-rays. Here are the different types of radiation in the EM spectrum, in order from lowest energy to highest: Radio: Yes, this is the same kind of energy that radio stations emit into the air for your boom box to capture and turn into your favorite Mozart, Madonna, or Justin Timberlake tunes. But radio waves are also emitted by other things ... such as stars and gases in space. You may not be able to dance to what these objects emit, but you can use it to learn what they are made of. Microwaves: They will cook your popcorn in just a few minutes! Microwaves in space are used by astronomers to learn about the structure of nearby galaxies, and our own Milky Way! Infrared: Our skin emits infrared light, which is why we can be seen in the dark by someone using night vision goggles. In space, IR light maps the dust between stars. Visible: Yes, this is the part that our eyes see. Visible radiation is emitted by everything from fireflies to light bulbs to stars ... also by fast-moving particles hitting other particles. Ultraviolet: We know that the Sun is a source of ultraviolet (or UV) radiation, because it is the UV rays that cause our skin to burn! Stars and other "hot"
  • 11. objects in space emit UV radiation. X-rays: Your doctor uses them to look at your bones and your dentist to look at your teeth. Hot gases in the Universe also emit X-rays . Gamma-rays: Radioactive materials (some natural and others made by man in things like nuclear power plants) can emit gamma-rays. Big particle accelerators that scientists use to help them understand what matter is made of can sometimes generate gamma-rays. But the biggest gamma-ray generator of all is the Universe! It makes gamma radiation in all kinds of ways. A Radio Wave is not a Gamma-Ray, a Microwave is not an X-ray ... or is it? We may think that radio waves are completely different physical objects or events than gamma- rays. They are produced in very different ways, and we detect them in different ways. But are they really different things? The answer is 'no'. Radio waves, visible light, X-rays, and all the other parts of the electromagnetic spectrum are fundamentally the same thing. They are all electromagnetic radiation. Radio waves, visible light, X-rays, and all the other parts of the electromagnetic spectrum are fundamentally the same thing, electromagnetic radiation. Electromagnetic radiation can be described in terms of a stream of photons, which are massless particles each traveling in a wave-like pattern and moving at the speed of light. Each photon contains a certain amount (or bundle) of energy, and all electromagnetic radiation consists of these photons. The only difference between the various types of electromagnetic radiation is the amount of energy found in the photons. Radio waves have photons with low energies, microwaves have a little more energy than radio waves, infrared has still more, then visible, ultraviolet, X-rays, and ... the most energetic of all ... gamma-rays.
  • 12. Actually, the electromagnetic spectrum can be expressed in terms of energy, wavelength, or frequency. Each way of thinking about the EM spectrum is related to the others in a precise mathematical way. So why do we have three ways of describing things, each with a different set of physical units? After all, frequency is measured in cycles per second (which is called a Hertz), wavelength is measured in meters, and energy is measured in electron volts. The electromagnetic spectrum can be expressed in terms of energy, wavelength, or frequency. The answer is that scientists don't like to use big numbers when they don't have to. It is much easier to say or write "two kilometers or 2 km" than "two thousand meters or 2,000 m". So generally, scientists use whatever units are easiest for whatever they are working with. In radio astronomy, astronomers tend to use wavelengths or frequencies. This is because most of the radio part of the EM spectrum falls in the range from about 1 cm to 1 km (30 gigahertz (GHz) to 100 kilohertz (kHz)). The radio is a very broad part of the EM spectrum. Infrared astronomers also use wavelength to describe their part of the EM spectrum. They tend to use microns (or millionths of meters) for wavelengths, so that they can say their part of the EM spectrum falls in the range 1 to 100 microns. Optical astronomers use wavelengths as well. Scientists use both angstroms (0.00000001 cm, or 10 -8 cm in scientific notation) and nanometers (0.0000001, or 10- 7 , cm). In the newer "SI" version of the metric system, we think of visible light in units of nanometers or 0.000000001 meters (10-9 m). In this system, the violet, blue, green, yellow, orange, and red light we know so well has wavelengths between 400 and 700 nanometers. This range is only a small part of the entire EM spectrum, so you can tell that the light we see is just a little fraction of all the EM radiation around us! By the time you get to the ultraviolet, X-ray, and gamma-ray regions of the EM spectrum, lengths have become too tiny to think about any more. So scientists usually refer to these photons by their energies, which are measured in electron volts. Ultraviolet radiation falls in the range from a few electron volts (eV) to about 100 eV. X- ray photons have energies in the range 100 eV to 100,000 eV (or 100 keV). Gamma-rays then are all the photons with energies greater than 100 keV. Question : Complete the table on the different types of electromagnetic waves and their uses.
  • 13. GRAPHIC ORGANIZER A) Helicopters have both advantages and disadvantages compared to fixed-wing aircraft. The helicopter’s ability to manoeuvre in and out of hard-to-reach areas and to hover efficiently for long periods of time makes it valuable for operating in places where airplanes cannot land. Helicopters can perform important military tasks such as ferrying troops directly into combat areas or quickly transporting wounded soldiers to hospitals. However, helicopters use more fuel than airplanes and cannot fly as fast. This is because the helicopter rotor must produce both lift, which raises the craft into the sky, and thrust, which enables it to move about. In an airplane, the wings create lift and the engine produces thrust. Despite its poor cruising performance, the helicopter is the obvious choice for tasks where vertical flight is necessary. Helicopters Advantages 7………………………………. Ability to manoeuvre in and out of 1……………………………………………………………….. Uses 8………………………………………….. . Ability to hover 2……………………………………. Cannot fly 9……………………………………… for long periods of time ……………………………………………………….. Ability to 3. …………………………………………. Poor 10. ………………………………………… ………………………………where airplanes cannot land. Ability to perform military tasks. 4………………………………………………………………………………………....... 5…………………………………………………………………………………………….. Ability to do 6. …………………………………. …………………………………………………………
  • 14. MCQ; Before mechanical refrigeration systems were introduced, people cooled their food with ice and snow, either found locally or brought down from the mountains. The first cellars were holes dug into the ground and lined with wood or straw and packed with snow and ice: this was the only means of refrigeration for most of history. Refrigeration is the process of removing heat from an enclosed space, or from a substance, to lower its temperature. A refrigerator uses the evaporation of a liquid to absorb heat. The liquid, or refrigerant, used in a refrigerator evaporates at an extremely low temperature, creating freezing temperatures inside the refrigerator. 1. The invention of refrigeration works along the idea of A. the need to keep food fresh B. The natural resources of ice and snow C. The evaporation of a liquid that absorbs heat D. Keeping high temperatures in an enclosed area 2. Based on the text, which of the following statements is true? A. The first refrigeration system was created in a cellar. B. The freezing liquid inside the refrigerator will be released. C. The refrigeration system releases heat when the inside is too hot. D. The materials used for the refrigeration system are only ice and snow. Rational cloze: Microwave ovens are popular because they cook food 1. ……………... They are also extremely 2…………………..in their use of electricity because a microwave oven heats only the food. A microwave oven uses microwaves to heat 3. ………………. food. Microwaves are radio waves. The commonly used radio wave frequency is 4…………………………….. 2,500 megahertz (2.5 gigahertz). Radio waves in this frequency 5…………… have an interesting property: they are absorbed by water, fats and sugars. Once absorbed, they are 6………………. directly into atomic motion – heat. Microwaves in this frequency range are not 7……………………… by most plastics, glass or ceramic. Metal 8………………………microwaves, which is why metal pans do not work well in a microwave oven. 1. A. well B. fully C. easily D. quickly 2. A. good B. efficient C. adequate D. systematic 3. A. at B. on C. up D. of 4. A. roughly B. generally C. naturally D. supposedly 5. A. group B. level C. value D. range 6. A. changed B. converted C. transformed D. interchanged 7. A. accepted B absorbed C. compatible D. transformed 8. A. produces B generates C. reflects D. absorbed
  • 15. Answers; Graphic organizer: 1. hard-to-reach areas 2. efficiently 3. operate in places 4. Ferrying troops/soldiers directly into combat areas 5. Transporting wounded soldiers to hospitals 6. vertical flight 7. Disadvantages 8. more fuel 9. as fast as airplanes 10. cruising performance MCQ, 1. C 2. A Cloze text 1. D 2. B 3. C 4. A 5. D 6. B 7. B 8. C Importance of ICT 2. 1. * e-learning 3. * distance-learning 4. * lectures using teleconferencing services by lecturers from overseas 5. 2. *using ICT, doctors from different countries can exchange opinions on the diagnosis and treatment 6. of diseases. 7. 3. * monitors human activities on natural resource extractions to ensure the sustainability of the 8. natural resources 9. * helps battle against pollution through early detection of oil spillage 10. * detects climate changes and imminent disasters 11. 4. * satellites can show how crops are growing 12. *plant diseases can be detected in photographs taken from space 13. *farmers can access the web to learn how to protect their crops an dimprove crop yields 14. *fishermen can check the weather forecast and the condition of the sea from the Internet, they no 15. longer have to fish in rough waters 16. *satellites also direct fishermen to the best fishing grounds 17. 5. * record, store and distribute world stock market prices and trading 18. * transaction via banks can be done on-line
  • 16. The Importance Of ICT Advances in ICT have brought many benefits to mankind. Give examples of benefits brought by advances in ICT. Benefits Examples 1. More opportunities for education 2.Better health 3.Protecting and managing our environment 4.More efficient use of resources 5.Budsiness and banking system
  • 17. 1. QUESTION: Satellites play a very important role in this era of science and technology. Hundreds of artificial satellites have been sent to orbit to do what they are designed to do.Study the information given below:  Earth Resources Satellites- pictures of earth’s surface- information  Meteorology Satellites- predict weather-save lives  Military satellites- defense-search and rescue mission  Navigation satellites- navigators stay on course  Communications satellites – connect places  Relay telephone calls  Relay messages  Send and receive television signals. Write a report based on the information above. Your report must include the following; *function of satellites *benefits of satellites any other relevant information. ______________________________________________________________________________ Artificial Satellites As we move into the new era of globalization, the world starts changing and now gadgets A of modernization begin to escalate in production numbers and usage. Many of these A technologies are however connected to each other in order to work at optimum level. A One of the Earth’s most powerful and needed instrument of technology are the orbiting and floating objects in space called satellites. A One of the satellites that we use daily is the Earth Resources Satellites. This type of satellites is placed in the outer space and is used to take pictures of the earth’s surface. It is very useful when concerning agriculture as it provides information regarding the E1 P1 earth’s geology which is crucial in finding suitable places for farming. Besides that, it is E1E1 also used to study rocks and minerals available on earth. This, in turn helps in increasing E1 economic growth of a country through the discovery of natural resources and farmland. E1E1 Another useful and widely used satellites are the Meteorology satellites or the Weather Monitoring satellites. As the name goes, this type of satellites predicts the E2 weather and many of them are placed in space to fulfill the task. They help the weather forecasters in their weather prediction, and whether a thunderstorm or a typhoon is E2 E2 approaching. This helps to save lives by informing in advance of incoming weather P2E2 hazards like floods and tsunamis that might besiege the place. E2 Military satellites assist in the country’s defense system. They can detect an incoming foreign objects or entry of intruders via air, land or sea. This is vital in protecting the E3E3 country from potential enemies and at the same time, making preparations against E3 sudden enemy attacks. This helps in keeping the country safe and ensuring no entrance E3 of intruders that might harm the country. Military satellites also help in search and E3 rescue mission. Twenty four of these satellites are needed to form the Global Positioning P3E3 System (GPS) that indicates the location of a particular missing troop or person, hence E3 assisting in the search and rescue mission.
  • 18. Navigation satellites on the other hand, ensure the navigators stay on course. Ships P4 and aeroplanes are given navigation from these satellites to help them reach their E4 destination. Navigation satellites are also used nowadays by the navigation system in cars where it helps to seek alternative roads in times of need like during emergencies or E4 E4 traffic jams. In addition, these satellites also help in informing incoming dangers or E4 turbulence in the sea or sky and at the same time giving directions to alternative routes. E4 Communication satellites connect places as they relay messages and telephone calls. P5P7P6 With the help of these satellites, communications can occur from varying places, near or E5 far. One could be in Japan and make a phone call back to Malaysia or even as far as the E5 E6 North Pole. With the help of communication satellites telephones now are wireless and E6 mobile. Satellites provide wide coverage, even to the remote areas. One can make a E6E5 phone call when deep inside a jungle or anywhere in the world. Communication satellites E6 have improved their vitality and usage as years passed and nowadays we could even E5 send video images through cell phones and with the mechanism of 3G we could E7 communicate in various ways. Messages relayed via telephone also are delivered much E7 faster compared to sending via snail mail. This is very convenient in emergency cases E7 such as when death happens in a family. These satellites also help to send and receive E7 television signals. It is via these satellites that we are able to watch live telecast of P8 football matches and all other live events on television right in your living room. This E8 definitely saves time and money as you do not have to go to the place where the event E8 or competition is held. E8 Satellites may be categorized according to their orbits. The higher the orbit of a A satellite, the longer the period taken for one orbit. The Low Earth orbits are placed at an AA altitude of 400 kilometres. On the other hand, the Geostationary satellites have high AA orbits and are positioned at a height of 36 000 kilometres above the Earth’s equator and A take exactly one day to complete an orbit. A The existence of satellites has benefited us a lot. Besides ensuring our safety they also keep us in track of everything around us and improve the system of communication. A Malaysia too has launched three satellites of its own and they are MEASAT 1 and A MEASAT 2 in 1996 and MEASAT 3 was launched in 2006. Even though launching of A satellites demands large capital their existence is much needed as they play vital role in A many aspects. Reported by, DR RAMLI BIN HUSIN
  • 19. QUESTION : Methods Of Waste Disposal Landfills ( L ) Incineration ( I ) Reduction Campaign (R) Description *Bury waste in a hole * burning of waste * campaign- reduce, reuse, Recycle P1* restore mining * clean * reduce waste, Advantages grounds, quarries * quick solution resources P2* good management and * education- ways to control - successful reduce waste Disadvantages :* poor management * expensive * a long term plan * contaminate water * waste of resources * not all materials resources can be reused or recycled Write a report and include the following:  a waste management method of your choice  comparison of the three methods  reasons for choosing the method  any other relevant information.
  • 20. Landfills Incinerators SYSAV incineration plant in Malmö, Sweden capable of handling 25 metric tons (28 short tons) per hour household waste. To the left of the main stack, a new identical oven line is under construction (March 2007). Incineration is a waste treatment technology that involves the combustion of organic materials and/or substances.[1] Incineration and other high temperature waste treatment systems are described as "thermal treatment". Incineration of waste materials converts the waste into incinerator bottom ash, flue gases, particulates, and heat, which can in turn be used to generate electric power. The flue gases are cleaned of pollutants before they are dispersed in the atmosphere. Incineration with energy recovery is one of several waste-to-energy (WtE) technologies such as gasification, Plasma arc gasification, pyrolysis and anaerobic digestion. Incineration may also be implemented without energy and materials recovery. In several countries there are still expert and local community concerns about the environmental impact of incinerators (see The argument against incineration). In some countries, incinerators built just a few decades ago often did not include a materials separation to remove hazardous, bulky or recyclable materials before combustion. These facilities tended to risk the health of the plant workers and the local environment due to inadequate levels of gas cleaning and combustion process control. Most of these facilities did not generate electricity. Incinerators reduce the mass of the original waste by 80-85 % and the volume (already compressed somewhat in garbage trucks) by 95-96 %, depending upon composition and degree of recovery of materials such as metals from the ash for recycling.[2] This means that while incineration does not completely replace landfilling, it reduces the necessary volume for disposal significantly. Garbage trucks often reduce the volume of waste in a built-in compressor before delivery to the incinerator. Alternatively, at landfills, the volume of the uncompressed garbage can be reduced by approximately 70%[citation needed] with the use of a stationary steel compressor, albeit with a significant energy cost. In many countries simpler waste compaction is a common practice for compaction at landfills. Incineration has particularly strong benefits for the treatment of certain waste types in niche areas such as clinical wastes and certain hazardous wastes where pathogens and toxins can be destroyed by high temperatures. Examples include chemical multi-product plants with diverse toxic or very toxic wastewater streams, which cannot be routed to a conventional wastewater treatment plant. Waste combustion is particularly popular in countries such as Japan where land is a scarce resource. Denmark and Sweden have been leaders in using the energy generated from incineration for more than a century, in localised combined heat and power facilities supporting district heating schemes.[3] In 2005, waste incineration produced 4.8 % of the electricity
  • 21. consumption and 13.7 % of the total domestic heat consumption in Denmark.[4] A number of other European Countries rely heavily on incineration for handling municipal waste, in particular Luxembourg, The Netherlands, Germany and France. [2] ALL LANDFILL LINERS AND LEACHATE COLLECTION SYSTEMS WILL FAIL ... "First, even the best liner and leachate collection system will ultimately fail due to natural deterioration, and recent improvements in MSWLF containment technologies suggest that releases may be delayed by many decades at some landfills. For this reason, the Agency is concerned that while corrective action may have already been triggered at many facilities, 30 years may be insufficient to detect releases at other landfills." Source: US EPA Federal Register, Aug 30, 1988, Vol.53, No.168, (scanned document). Check-out Peter Montegue's Rachel's for list of other comments in Federal Register by EPA. SUMMARY The U.S. has 3,091 active landfills and over 10,000 old municipal landfills, according to the Environmental Protection Agency. However, in the "good old days," every town (and many businesses and factories) had its own dump. According to the 1997 U.S. Census, there are 39,044 general purpose local governments in the United States - 3,043 county governments and 36,001 subcounty general purpose governments (towns & townships). One suspects that there are many more old and abandoned commercial, private, and municipal dumps than the 10,000 estimated by the EPA. Municipal landfills and their leachate (water) and air emissions are hazardous. Municipal landfills can accept hazardous waste under federal law. An unlimited number of 'conditionally exempt small generators' of hazardous waste have access to municipal landfills. (See 40 CFR 261.5). All landfills will eventually fail and leak leachate into ground and surface water. Plastics are not inert. State-of-the-art plastic (HDPE) landfill liners (1/10 inch or 100 mils thick) and plastic pipes allow chemicals and gases to pass through their membranes, become brittle, swell, and breakdown. "...82% of surveyed landfill cells had leaks while 41% had a leak area of more than 1 square feet," according to Leak Location Services, Inc. (LLSI) website (March 15, 2000). According to Dr. Fred Lee, "detection in new landfills can be difficult since the only way to know this is detection in the monitoring wells. The likelihood of a monitoring well at a single or double lined landfill detecting an initial leak is very small." Monitoring wells should be located in areas most likely to detect contamination (i.e., testing the ground water after it has passed under the landfill.) See: Subchapter I:
  • 22. Solid Waste. Lined landfills leak in very narrow plumes, whereas old, unlined landfills will produce wide plumes of leachate. Old and new landfills are typically located next to large bodies of water (i.e., rivers, lakes, bays, etc), making leakage detection and remediation (clean-up) extremely difficult. This is due to the incursion of surface water in both instances. Federal and state governments have allowed landfill operators to locate landfills next to water bodies under the misguided principle: Detection by monitoring wells can also be very difficult at lined landfills. Lined landfills leak in very narrow plumes, whereas old, unlined landfills will produce wide plumes of leachate. Ground water flows downstream, or toward nearby lakes and rivers. In some cases, monitoring wells have been located around landfills in areas least likely to detect leakage (i.e., upstream of the groundwater flow). This is in violation of federal law. See Code of Federal Regulations (CFR): Chapter I - Environmental Protection Agency, Subchapter I: Solid Waste / PART 258 (Updated 1997) - Criteria for Municipal Solid Waste Landfills (Adobe PDF). If a landfill is located next to a water body, then the monitoring wells should be located between the landfill and the water; or (if there is no space left), in the water. See: EPA's Ground Water Monitoring All landfills could require remediation, but particularly landfills built in the last 60 years will require a thorough clean-up due to the disposal of highly toxic chemicals manufactured and sold since the 1940's. See:Remediation and Brownsfields
  • 23. SAMPLE ANSWER To : The Director, Seremban City Council. From : Chief Engineer, Seremban City Council. Subject : Method Of Waste Disposal Based on the detailed findings of the three methods, I have chosen Reduction Campaign as the potential method of waste disposal. Reduction campaign is chosen mainly because of its advantages such as reducing wastage of resources. Depletion of natural resources will give rise to various environmental problems that can threaten our life. Hence, reduction campaigns which Choice encourage people to reuse, reduce and recycle must be taken seriously as this can reduce the negative effects to the environment. On the other hand, landfills where waste is buried in holes have the advantage of restoring mining grounds and quarries. In addition, with good management and control, this method can prove to be a success. Restoring mining grounds and quarries will ensure no wastage of land and balance of nature is not upset. Good management of waste includes dumping of waste according to the types of waste as well as proper management of leakage and methane gas which is the by- product of decomposition of waste. The construction of a landfill requires a well-planned approach and the primary concern is the location of the site. If the construction is not up to the predefined specifications added with poor management, landfills may lead to pollution of the local environment such as contamination of the water resources. Thus, it is vital that landfills are high above the groundwater table so as to avoid the leakage and contamination problem. Poor management of landfills may also give rise to accumulation of vectors in the area which can cause the spread of diseases. Therefore these adverse effects of landfill operations make it less desirable as a method of waste disposal. Another method of waste disposal is incineration. This method involves burning of waste at high temperature. This type of waste treatment is also described as thermal treatment. Even though this waste treatment method proves to be clean, the cost of its construction is too expensive making it too costly to set up. Building and operating incinerators involve a lot of money and require long recovery of investment capital. No doubt that it is a quick solution to waste treatment as it takes only a few hours compared to the other methods, but it is a complete wastage of resources as everything will be burnt where in actual fact, some can still be reused or recycled such as glass or plastic bottles. As the world’s population increases, there is more demand for basic needs and consequently more waste will be produced. This high amount of waste, if not properly managed, will upset the balance of nature and cause environmental problems like pollution and depletion of natural resources. Hence, reduction campaign should be carried out extensively as it is the responsibility of every individual to help manage the environment better. In the year 2000, the Ministry of Housing together with various local councils allocated RM 5 million to increase the awareness and
  • 24. importance of recycling. About 2360 bins were distributed and placed at strategic places to collect the recyclable items. This has proven to be a success until today. Another effective way to reduce waste is through education which teaches the youngsters the right way to reduce waste. Schools for example can organize recycling campaigns where students are required to collect waste materials such as paper, aluminium cans, glass and plastics and send them to recycling centres to produce new aluminium cans, new glass bottles and plastic materials. They should also be encouraged to reuse old things such as old plastic bottles that can be turned into flower vases. Proper education should introduce school children to the many ways of reusing synthetic polymers which not biodegradable. These polymers if disposed anywhere or in open landfills without being processed, will remain in the environment for a long time and at the same time polluting the environment. Likewise, used tyres can be tied together and lowered into the sea bed to function as artificial reefs. These artificial reefs can act as a breeding ground for fish It is no doubt that not all materials can be reused or recycled and reduction campaigns need a long term plan to reach all levels of society especially in educating the public on the 3Rs as they are so used to throwing all unwanted items, but in my opinion this is still the best method as reduction campaigns help to conserve and preserve our natural environment. Of course certain wastes like food remnants and garden wastes cannot be recycled but this type of waste actually is of minimum amount. And some very harmful waste like cyanide can lead to death. This type cannot be recycled and need to be treated carefully at a special waste treatment plant such as ‘Pusat Kualiti Alam’ in Nilai, Negeri Sembilan. Thus, the obvious alternative to landfills and incineration method is reduction campaign. To reduce waste, we can use it to produce compost which is humus produced from the decomposition of organic substances such as domestic and garden wastes. The purpose of producing compost is to reduce the amount of garbage and to return useful minerals back into the soil. In recent years, some countries such as India and Netherlands have used animal dung to produced energy. Hence, based on the reasons stated, I strongly propose reduction campaign as the method of waste disposal. By; IR ELYAS B RAMLI, Chief Engineer, Seremban City Council. RH@SASER 2/2010