SlideShare una empresa de Scribd logo
1 de 28
FUNDAMENTOS DE REDES  UNIDAD 3 segmentación de redes
Estándares IEEE 802 (origen)  IEEE corresponde a las siglas de The Institute of Electrical and Electronics  Engineers, el Instituto de Ingenieros Eléctricos y Electrónicos, una asociación técnico-profesional  mundial dedicada a la estandarización, entre otras cosas. Es la mayor asociación internacional sin fines de lucro formada por profesionales de las nuevas tecnologías, como ingenieros de telecomunicaciones, ingenieros electrónicos, Ingenieros en informática .
Historia IEEE En febrero de 1980 se formó en el IEEE un comité de redes locales con la intención de estandarizar un sistema de 1 o 2 Mbps, que básicamente era Ethernet (el de la época). Le tocó el número 802. Decidieron estandarizar el nivel físico, el de enlace y superiores. Dividieron el nivel de enlace en dos subniveles: el de enlace lógico, encargado de la lógica de re-envíos, control de flujo y comprobación de errores, y el subnivel de acceso al medio, encargado de arbitrar los conflictos de acceso simultaneo a la red por parte de las estaciones. Para final de año ya se había ampliado el estándar para incluir el Token Ring (Red en anillo con paso de testigo) de IBM y un año después, y por presiones de grupos industriales, se incluyó Token Bus (Red en bus con paso de testigo), que incluía opciones de tiempo real y redundancia, y que se suponía idóneo para ambientes de fábrica.
Cada uno de estos tres "estándares" tenía un nivel físico diferente, un subnivel de acceso al medio distinto pero con algún rasgo común (espacio de direcciones y comprobación de errores), y un nivel de enlace lógico único para todos ellos. Después se fueron ampliando los campos de trabajo, se incluyeron redes de área metropolitana (alguna decena de kilómetros), personal (unos pocos metros) y regional (algún centenar de kilómetros), se incluyeron redes inalámbricas (WLAN), métodos de seguridad, etc.
Control de Acceso al medio (MAC) en IEEE 802.5  IEEE 802.5 Este estándar define una red con topología de anillo la cual usa token (paquete de datos) para transmitir información a otra. En una estación de trabajo la cual envía un mensaje lo sitúa dentro de un token y lo direcciona especificamente a un destino, la estacion destino copia el mensaje y lo envía a un token de regreso a la estación origen la cual borra el mensaje y pasa el token a la siguiente estación. Las redes de tipo token ring tienen una topología en anillo y están definidas en la especificación IEEE 802.5 para la velocidad de transmisión de 4 Mbits/s. Existen redes token ring de 16 Mbits/s, pero no están definidas en ninguna especificación de IEEE.
Los grupos locales de dispositivos en una red Token Ring se conectan a través de una unidad de interfaz llamada MAU. La MAU contiene un pequeño transformador de aislamiento para cada dispositivo conectado, el cual brinda protección similar a la de Local Talk. El estándar IEEE 802.5 para las redes Token Ring no contiene ninguna referencia específica a los requisitos de aislamiento. Por lo tanto la susceptibilidad de las redes Token Ring a las interferencias puede variar significativamente entre diferentes fabricantes. Las redes Token Ring utilizan un sofisticado sistema de prioridad que permite designarles a los usuarios un tipo de prioridad en base a su uso de la red. Los frames en redes Token Ring tienen dos campos que controlan la prioridad: el campo de prioridad y un campo reservado.
Las redes Token Ring emplean varios mecanismos para detectar y corregir las fallas en la red. Por ejemplo: se selecciona una estación en una red Token Ring para que trabaje como monitor de la red. Esta estación que puede ser cualquiera de la red, centraliza los recursos en base a tiempos y sistemas de mantenimiento para las estaciones. Una de estas funciones es resetear las constantes frames que circulan en el anillo. Cuando un dispositivo que envía falla, este frame puede continuar circulando en el anillo, esto previene a otras estaciones de transmitir en ese momento. El monitor detecta dichos frames y los elimina del anillo generando uno nuevo.
 
Interfaz de datos distribuida por fibras FDDI   Definición de FDDI. Las redes FDDI (Fiber Distributed Data Interface - Interfaz de Datos Distribuida por Fibra ) surgieron a mediados de los años ochenta para dar soporte a las estaciones de trabajo de alta velocidad, que habían llevado las capacidades de las tecnologías Ethernet y Token Ring existentes hasta el límite de sus posibilidades. Están implementadas mediante una física de estrella (lo más normal) y lógica de anillo doble de token, uno transmitiendo en el sentido de las agujas del reloj (anillo principal ) y el otro en dirección contraria (anillo de respaldo o back up), que ofrece una velocidad de 100 Mbps sobre distancias de hasta 200 metros, soportando hasta 1000 estaciones conectadas. Su uso más normal es como una tecnología de backbone para conectar entre sí redes LAN de cobre o computadores de alta velocidad.
 
Ethernet e IEEE 802.3  Ethernet/IEEE 802.3 Está diseñado de manera que no se puede transmitir más de una información a la vez. El objetivo es que no se pierda ninguna información, y se controla con un sistema conocido como CSMA/CD(Carrier Sense Multiple Access with Collision Detection, Detección de Portadora con Acceso Múltiple y Detección de Colisiones), cuyo principio de funcionamiento consiste en que una estación, para transmitir, debe detectar la presencia de una señal portadora y, si existe, comienza a transmitir.
 
Ethernet e IEEE 802.3 Similitudes   Ethernet Es la tecnología de red de área local más extendida en la actualidad. Fue diseñado originalmente por Digital, Intel y Xerox por lo cual, la especificación original se conoce como Ethernet DIX. Posteriormente en 1983, fue formalizada por el IEEE como el estándar Ethernet 802.3. La velocidad de transmisión de datos en Ethernet es de 10Mbits/s en las configuraciones habituales pudiendo llegar a ser de 100Mbits/s en las especificaciones Fast Ethernet. Al principio, sólo se usaba cable coaxial con una topología en BUS, sin embargo esto ha cambiado y ahora se utilizan nuevas tecnologías como el cable de par trenzado (10 Base-T), fibra óptica (10 Base-FL) y las conexiones a 100 Mbits/s (100 Base-X o Fast Ethernet). La especificación actual se llama IEEE 802.3u.
Ethernet usa el método de transmisión CMSA/CD  CSMA/CD (Ethernet) CSMA/CD, siglas que corresponden a Carrier Sense Multiple Access with Collision Detection (inglés: "Acceso Múltiple con Escucha de Portadora y Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. Anteriormente a esta técnica se usaron las de Aloha puro y Aloha ranurado, pero ambas presentaban muy bajas prestaciones. Por ello apareció primeramente la técnica CSMA que fue posteriormente refinada a la técnica CSMA/CD. En el método de acceso CSMA/CD, los dispositivos de networking que tienen datos para transmitir funcionan en el modo "escuchar antes de transmitir". Esto significa que cuando un nodo desea enviar datos, primero debe determinar si los medios de networking están ocupados.
 
CSMA/CD y las Colisiones   Funcionamiento de CSMA/CD El primer paso a la hora de transmitir será, obviamente, saber si el medio está libre. Y ¿cómo podemos saberlo? Pues nos quedamos calladitos y escuchamos lo que dicen los demás. Si hay portadora en el medio, es que está ocupado y, por tanto, seguimos escuchando; en caso contrario, el medio está libre y podemos transmitir. A continuación, esperamos un tiempo mínimo necesario para poder diferenciar bien una trama de otra y comenzamos a transmitir. Si durante la transmisión de una trama se detecta una colisión, entonces las estaciones que colisionan abortan el envío de la trama y envían una señal de reinicio. Después de una colisión, las estaciones esperan un tiempo aleatorio (Tiempo de Backoff) para volver a transmitir una trama.
 
Segmentación  Segmentación de la red Hay dos motivos fundamentales para dividir una LAN en segmentos. El primer motivo es aislar el tráfico entre fragmentos, y obtener un ancho de banda mayor por usuario. Si la LAN no se divide en segmentos, las LAN cuyo tamaño sea mayor que un grupo de trabajo pequeño se congestionarían rápidamente con tráfico y saturación y virtualmente no ofrecerían ningún ancho de banda. La adición de dispositivos como, por ejemplo, puentes, switches y routers dividen la LAN en partes mas pequeñas, mas eficaces y fáciles de administrar.
 
Segmentación mediante Switches  Segmentación mediante switches Una LAN que usa una topología Ethernet crea una red que funciona como si sólo tuviera dos nodos el nodo emisor y el nodo receptor. Estos dos nodos comparten un ancho de banda de 100 Mbps, lo que significa que prácticamente todo el ancho de banda está disponible para la transmisión de datos. Una LAN Ethernet permite que la topología LAN funcione más rápida y eficientemente que una LAN Ethernet estándar, ya que usa el ancho de banda de modo muy eficiente. En esta implementación Ethernet, el ancho de banda disponible puede alcanzar casi un 100%.  Es importante observar que aunque 100% del ancho de banda puede estar disponible, las redes Ethernet tienen un mejor rendimiento cuando se mantiene por debajo del 30-40% de la capacidad total. El uso de ancho de banda que supere el límite recomendado tiene como resultado un aumento en la cantidad de colisiones (saturación de información). El propósito de la conmutación de LAN es aliviar las insuficiencias de ancho de banda y los cuellos de botella de la red como, por ejemplo, los que se producen entre un grupo de PC y un servidor de archivos remoto.
Un switch LAN es un puente multipuerto de alta velocidad que tiene un puerto para cada nodo, o segmento, de la LAN. El switch divide la LAN en microsegmentos, creando de tal modo segmentos mas aliviados de tráfico. Cada nodo está directamente conectado a uno de sus puertos, o a un segmento que está conectado a uno de los puertos del switch. Esto crea una conexión de 100 Mbps entre cada nodo y cada segmento del switch. Un ordenador conectado directamente a un switch Ethernet está en su propio dominio de colisión y tiene acceso a los 100 Mbps completos. Cuando una trama entra a un switch, se lee para obtener la dirección origen o destino. Luego, el switch determina cuál es la acción de transmisión que se llevará a cabo basándose en lo que sabe a partir de la información que ha leído en la trama. Si la dirección destino se encuentra ubicada en otro segmento, la trama se conmuta a su destino
 
Ethernet Conmutada  Ethernet conmutada Es la tecnología LAN (Local Area Network) más implantada en empresas, universidades, etc.  Los hosts se conectan mediante enlaces punto a punto a un conmutador de tramas Ethernet, formándose típicamente estructuras en árbol.  Utiliza enlaces de par trenzado (distancias cortas) o fibra óptica (distancias largas).  Las tasas de transmisión típicas son 100 Mbps y 1 Gbps entre cada par de nodos.  No existen colisiones. El conmutador las resuelve.
 
Segmentación mediante Routers  Segmentación mediante routers Los routers son más avanzados que los puentes. Un puente es pasivo (transparente) en la capa de red y funciona en la capa de enlace de datos. Un router funciona en la capa de red y basa todas sus decisiones de envío en la dirección de protocolo de Capa 3. El router logra esto examinando la dirección destino del paquete de datos y buscando las instrucciones de envío en la tabla de enrutamiento (ya lo veremos mas adelante). Los routers producen el nivel más alto de segmentación debido a su capacidad para determinar exactamente dónde se debe enviar el paquete de datos.  Como los routers ejecutan más funciones que los puentes, operan con un mayor nivel de latencia. Los routers deben examinar los paquetes para determinar la mejor ruta para enviarlos a sus destinos. Inevitablemente, este proceso lleva tiempo e introduce latencia (retardo).
 
Conclusión: La primera versión fue un intento de estandarizar ethernet aunque la cabecera que se definió de forma distinta, posteriormente ha habido ampliaciones sucesivas al estándar que cubrieron las ampliaciones de velocidad (Fast Ethernet, Gigabit Ethernet y el de 10 Gigabits), redes virtuales, hubs, conmutadores y distintos tipos de medios, tanto de fibra óptica como de cables de cobre (tanto par trenzado como coaxial). Los estándares de este grupo no reflejan necesariamente lo que se usa en la práctica, a diferencia de otros grupos suele estar cerca de la realidad. Mediante la lectura de los temas que hemos presentado en esta investigación, nos damos cuenta de los diferentes estándares de transmisión de datos a través de una red, su velocidad, ventajas y desventajas, así mismo  nos damos cuenta que por medio de la segmentación de redes podemos hacer mas eficientes las transmisiones y transferencia de datos y se pueden evitar al máximo la colisión durante la transmisión de datos lo cual nos lleva a eficientar mucho más nuestras redes y se es posible distribuir el ancho de banda entre todos los equipos conectados a la red.
CRISTINA ZURITA MENDEZ  UNAED SEDE: VILLA MANUEL

Más contenido relacionado

La actualidad más candente

Unidad ii arquitectura redes locales - i
Unidad ii  arquitectura redes locales - iUnidad ii  arquitectura redes locales - i
Unidad ii arquitectura redes locales - iUCLA
 
Capa de enlace de datos
Capa de enlace de datosCapa de enlace de datos
Capa de enlace de datosMartha Solis
 
Web Cast I S A Server 2004 3 Noviembre
Web Cast  I S A  Server 2004 3  NoviembreWeb Cast  I S A  Server 2004 3  Noviembre
Web Cast I S A Server 2004 3 NoviembreGecneralfredo
 
Fundamentos de redes
Fundamentos de redesFundamentos de redes
Fundamentos de redesguest3b96c6
 
Fundamentos de redes
Fundamentos de redesFundamentos de redes
Fundamentos de redesguest4bd5cc2d
 
Características estándares 802 unidad 2
Características estándares 802 unidad 2Características estándares 802 unidad 2
Características estándares 802 unidad 2christianRodolfoMora
 
Redes 3er.parcial[1]
Redes 3er.parcial[1]Redes 3er.parcial[1]
Redes 3er.parcial[1]maricela soto
 
Fundanentos de redes iop
Fundanentos de redes iopFundanentos de redes iop
Fundanentos de redes iopguest98ed9d
 
Tema 2 Arquitectura De Redes
Tema 2 Arquitectura De RedesTema 2 Arquitectura De Redes
Tema 2 Arquitectura De Redesriveroloja
 
Redes Ethernet / IEEE 802.3
Redes Ethernet / IEEE 802.3Redes Ethernet / IEEE 802.3
Redes Ethernet / IEEE 802.3roberticorios
 
Token de Matematicas discretas
Token de Matematicas discretasToken de Matematicas discretas
Token de Matematicas discretasmolochete
 

La actualidad más candente (18)

Unidad ii arquitectura redes locales - i
Unidad ii  arquitectura redes locales - iUnidad ii  arquitectura redes locales - i
Unidad ii arquitectura redes locales - i
 
Lans inalambricas
Lans inalambricasLans inalambricas
Lans inalambricas
 
Estándares 802.11
Estándares 802.11Estándares 802.11
Estándares 802.11
 
Capa de enlace de datos
Capa de enlace de datosCapa de enlace de datos
Capa de enlace de datos
 
Web Cast I S A Server 2004 3 Noviembre
Web Cast  I S A  Server 2004 3  NoviembreWeb Cast  I S A  Server 2004 3  Noviembre
Web Cast I S A Server 2004 3 Noviembre
 
Fundamentos de redes
Fundamentos de redesFundamentos de redes
Fundamentos de redes
 
Equipo 6
Equipo 6Equipo 6
Equipo 6
 
Fundamentos de redes
Fundamentos de redesFundamentos de redes
Fundamentos de redes
 
Fundamentos de redes ismael
Fundamentos de redes ismaelFundamentos de redes ismael
Fundamentos de redes ismael
 
R E D E S
R E D E SR E D E S
R E D E S
 
Modelo OSI, Capa de Enlace de Datos
Modelo OSI, Capa de Enlace de DatosModelo OSI, Capa de Enlace de Datos
Modelo OSI, Capa de Enlace de Datos
 
Características estándares 802 unidad 2
Características estándares 802 unidad 2Características estándares 802 unidad 2
Características estándares 802 unidad 2
 
Proyecto 802
Proyecto 802Proyecto 802
Proyecto 802
 
Redes 3er.parcial[1]
Redes 3er.parcial[1]Redes 3er.parcial[1]
Redes 3er.parcial[1]
 
Fundanentos de redes iop
Fundanentos de redes iopFundanentos de redes iop
Fundanentos de redes iop
 
Tema 2 Arquitectura De Redes
Tema 2 Arquitectura De RedesTema 2 Arquitectura De Redes
Tema 2 Arquitectura De Redes
 
Redes Ethernet / IEEE 802.3
Redes Ethernet / IEEE 802.3Redes Ethernet / IEEE 802.3
Redes Ethernet / IEEE 802.3
 
Token de Matematicas discretas
Token de Matematicas discretasToken de Matematicas discretas
Token de Matematicas discretas
 

Similar a C:\Fakepath\Fundamentos De Redes

Parcial 3
Parcial 3Parcial 3
Parcial 3UNAED
 
Redes 3
Redes 3Redes 3
Redes 3UNAED
 
Redes 3 parcial
Redes 3 parcialRedes 3 parcial
Redes 3 parcialUNAED
 
R3d3s t3rc3r parcial
R3d3s t3rc3r parcialR3d3s t3rc3r parcial
R3d3s t3rc3r parcialUNAED
 
Redes 3
Redes 3Redes 3
Redes 3UNAED
 
Enlace de datos.
Enlace  de datos.Enlace  de datos.
Enlace de datos.guest5396be
 
Trabajo de redes actividad final
Trabajo de redes actividad finalTrabajo de redes actividad final
Trabajo de redes actividad finalUNAED
 
Actividad 3 de redes
Actividad 3 de redesActividad 3 de redes
Actividad 3 de redesMelanie
 
estandares ieee 802
estandares ieee 802estandares ieee 802
estandares ieee 802edgarslm
 
Estandares ieee 802
Estandares ieee 802Estandares ieee 802
Estandares ieee 802edgarslm
 
Estandares ieee 802
Estandares ieee 802Estandares ieee 802
Estandares ieee 802edgarslm
 
tercer parcial de fundamentos de redes
tercer parcial de fundamentos de redestercer parcial de fundamentos de redes
tercer parcial de fundamentos de redesUNAED
 
Tercer parcial fundamentos de redes
Tercer parcial fundamentos de redesTercer parcial fundamentos de redes
Tercer parcial fundamentos de redessamuelpadilla
 
Terser parsial fundamento de redes
Terser parsial fundamento de redesTerser parsial fundamento de redes
Terser parsial fundamento de redessamuelpadilla
 
Terser parsial fundamento de redes
Terser parsial fundamento de redesTerser parsial fundamento de redes
Terser parsial fundamento de redessamuelpadilla
 
Terser parsial fundamento de redes
Terser parsial fundamento de redesTerser parsial fundamento de redes
Terser parsial fundamento de redessamuelpadilla
 
Terser parsial fundamento de redes
Terser parsial fundamento de redesTerser parsial fundamento de redes
Terser parsial fundamento de redessamuelpadilla
 

Similar a C:\Fakepath\Fundamentos De Redes (20)

Parcial 3
Parcial 3Parcial 3
Parcial 3
 
Redes 3
Redes 3Redes 3
Redes 3
 
Redes 3 parcial
Redes 3 parcialRedes 3 parcial
Redes 3 parcial
 
R3d3s t3rc3r parcial
R3d3s t3rc3r parcialR3d3s t3rc3r parcial
R3d3s t3rc3r parcial
 
Redes 3
Redes 3Redes 3
Redes 3
 
Enlace de datos.
Enlace  de datos.Enlace  de datos.
Enlace de datos.
 
D:\Examen Redes
D:\Examen RedesD:\Examen Redes
D:\Examen Redes
 
Trabajo de redes actividad final
Trabajo de redes actividad finalTrabajo de redes actividad final
Trabajo de redes actividad final
 
TRABAJO FINAL REDES
TRABAJO FINAL REDESTRABAJO FINAL REDES
TRABAJO FINAL REDES
 
Actividad 3 de redes
Actividad 3 de redesActividad 3 de redes
Actividad 3 de redes
 
Redes
RedesRedes
Redes
 
estandares ieee 802
estandares ieee 802estandares ieee 802
estandares ieee 802
 
Estandares ieee 802
Estandares ieee 802Estandares ieee 802
Estandares ieee 802
 
Estandares ieee 802
Estandares ieee 802Estandares ieee 802
Estandares ieee 802
 
tercer parcial de fundamentos de redes
tercer parcial de fundamentos de redestercer parcial de fundamentos de redes
tercer parcial de fundamentos de redes
 
Tercer parcial fundamentos de redes
Tercer parcial fundamentos de redesTercer parcial fundamentos de redes
Tercer parcial fundamentos de redes
 
Terser parsial fundamento de redes
Terser parsial fundamento de redesTerser parsial fundamento de redes
Terser parsial fundamento de redes
 
Terser parsial fundamento de redes
Terser parsial fundamento de redesTerser parsial fundamento de redes
Terser parsial fundamento de redes
 
Terser parsial fundamento de redes
Terser parsial fundamento de redesTerser parsial fundamento de redes
Terser parsial fundamento de redes
 
Terser parsial fundamento de redes
Terser parsial fundamento de redesTerser parsial fundamento de redes
Terser parsial fundamento de redes
 

Más de zuritam

La vialidad sostenible
La vialidad sostenibleLa vialidad sostenible
La vialidad sosteniblezuritam
 
Diseño, síntesis y evaluación biológica de nuevos
Diseño, síntesis y evaluación biológica de nuevosDiseño, síntesis y evaluación biológica de nuevos
Diseño, síntesis y evaluación biológica de nuevoszuritam
 
Influencia de la televisión en el rendimiento escolar
Influencia de la televisión en el rendimiento escolarInfluencia de la televisión en el rendimiento escolar
Influencia de la televisión en el rendimiento escolarzuritam
 
Análisis del diagrama de radiación de agrupaciones lineales
Análisis del diagrama de radiación de agrupaciones linealesAnálisis del diagrama de radiación de agrupaciones lineales
Análisis del diagrama de radiación de agrupaciones linealeszuritam
 
Aprovechamiento de bagazo de caña en la producción
Aprovechamiento de bagazo de caña en la producciónAprovechamiento de bagazo de caña en la producción
Aprovechamiento de bagazo de caña en la producciónzuritam
 
jornaleros tamaulipecos
jornaleros tamaulipecos jornaleros tamaulipecos
jornaleros tamaulipecos zuritam
 
iniciativa méxico 2011, c.z.m.
 iniciativa méxico 2011, c.z.m. iniciativa méxico 2011, c.z.m.
iniciativa méxico 2011, c.z.m.zuritam
 
TECNOLOGÍA MÓVIL
TECNOLOGÍA MÓVIL TECNOLOGÍA MÓVIL
TECNOLOGÍA MÓVIL zuritam
 
C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redeszuritam
 
C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3zuritam
 
C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3zuritam
 
C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]zuritam
 
C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]zuritam
 
C:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crissC:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crisszuritam
 
C:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crissC:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crisszuritam
 
C:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita MendezC:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita Mendezzuritam
 
C:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita MendezC:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita Mendezzuritam
 
E:\Tarea Del Blog
E:\Tarea Del BlogE:\Tarea Del Blog
E:\Tarea Del Blogzuritam
 
C:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web CrissC:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web Crisszuritam
 
C:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web CrissC:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web Crisszuritam
 

Más de zuritam (20)

La vialidad sostenible
La vialidad sostenibleLa vialidad sostenible
La vialidad sostenible
 
Diseño, síntesis y evaluación biológica de nuevos
Diseño, síntesis y evaluación biológica de nuevosDiseño, síntesis y evaluación biológica de nuevos
Diseño, síntesis y evaluación biológica de nuevos
 
Influencia de la televisión en el rendimiento escolar
Influencia de la televisión en el rendimiento escolarInfluencia de la televisión en el rendimiento escolar
Influencia de la televisión en el rendimiento escolar
 
Análisis del diagrama de radiación de agrupaciones lineales
Análisis del diagrama de radiación de agrupaciones linealesAnálisis del diagrama de radiación de agrupaciones lineales
Análisis del diagrama de radiación de agrupaciones lineales
 
Aprovechamiento de bagazo de caña en la producción
Aprovechamiento de bagazo de caña en la producciónAprovechamiento de bagazo de caña en la producción
Aprovechamiento de bagazo de caña en la producción
 
jornaleros tamaulipecos
jornaleros tamaulipecos jornaleros tamaulipecos
jornaleros tamaulipecos
 
iniciativa méxico 2011, c.z.m.
 iniciativa méxico 2011, c.z.m. iniciativa méxico 2011, c.z.m.
iniciativa méxico 2011, c.z.m.
 
TECNOLOGÍA MÓVIL
TECNOLOGÍA MÓVIL TECNOLOGÍA MÓVIL
TECNOLOGÍA MÓVIL
 
C:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De RedesC:\Fakepath\Fundamentos De Redes
C:\Fakepath\Fundamentos De Redes
 
C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3
 
C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3C:\Fakepath\Capitulo 3
C:\Fakepath\Capitulo 3
 
C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]
 
C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]C:\Fakepath\Mapas De Aplicaciones[1]
C:\Fakepath\Mapas De Aplicaciones[1]
 
C:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crissC:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1criss
 
C:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1crissC:\Fakepath\PresentacióN1criss
C:\Fakepath\PresentacióN1criss
 
C:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita MendezC:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita Mendez
 
C:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita MendezC:\Fakepath\Cristina Zurita Mendez
C:\Fakepath\Cristina Zurita Mendez
 
E:\Tarea Del Blog
E:\Tarea Del BlogE:\Tarea Del Blog
E:\Tarea Del Blog
 
C:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web CrissC:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web Criss
 
C:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web CrissC:\Fakepath\Planeta Web Criss
C:\Fakepath\Planeta Web Criss
 

C:\Fakepath\Fundamentos De Redes

  • 1. FUNDAMENTOS DE REDES UNIDAD 3 segmentación de redes
  • 2. Estándares IEEE 802 (origen) IEEE corresponde a las siglas de The Institute of Electrical and Electronics Engineers, el Instituto de Ingenieros Eléctricos y Electrónicos, una asociación técnico-profesional mundial dedicada a la estandarización, entre otras cosas. Es la mayor asociación internacional sin fines de lucro formada por profesionales de las nuevas tecnologías, como ingenieros de telecomunicaciones, ingenieros electrónicos, Ingenieros en informática .
  • 3. Historia IEEE En febrero de 1980 se formó en el IEEE un comité de redes locales con la intención de estandarizar un sistema de 1 o 2 Mbps, que básicamente era Ethernet (el de la época). Le tocó el número 802. Decidieron estandarizar el nivel físico, el de enlace y superiores. Dividieron el nivel de enlace en dos subniveles: el de enlace lógico, encargado de la lógica de re-envíos, control de flujo y comprobación de errores, y el subnivel de acceso al medio, encargado de arbitrar los conflictos de acceso simultaneo a la red por parte de las estaciones. Para final de año ya se había ampliado el estándar para incluir el Token Ring (Red en anillo con paso de testigo) de IBM y un año después, y por presiones de grupos industriales, se incluyó Token Bus (Red en bus con paso de testigo), que incluía opciones de tiempo real y redundancia, y que se suponía idóneo para ambientes de fábrica.
  • 4. Cada uno de estos tres "estándares" tenía un nivel físico diferente, un subnivel de acceso al medio distinto pero con algún rasgo común (espacio de direcciones y comprobación de errores), y un nivel de enlace lógico único para todos ellos. Después se fueron ampliando los campos de trabajo, se incluyeron redes de área metropolitana (alguna decena de kilómetros), personal (unos pocos metros) y regional (algún centenar de kilómetros), se incluyeron redes inalámbricas (WLAN), métodos de seguridad, etc.
  • 5. Control de Acceso al medio (MAC) en IEEE 802.5 IEEE 802.5 Este estándar define una red con topología de anillo la cual usa token (paquete de datos) para transmitir información a otra. En una estación de trabajo la cual envía un mensaje lo sitúa dentro de un token y lo direcciona especificamente a un destino, la estacion destino copia el mensaje y lo envía a un token de regreso a la estación origen la cual borra el mensaje y pasa el token a la siguiente estación. Las redes de tipo token ring tienen una topología en anillo y están definidas en la especificación IEEE 802.5 para la velocidad de transmisión de 4 Mbits/s. Existen redes token ring de 16 Mbits/s, pero no están definidas en ninguna especificación de IEEE.
  • 6. Los grupos locales de dispositivos en una red Token Ring se conectan a través de una unidad de interfaz llamada MAU. La MAU contiene un pequeño transformador de aislamiento para cada dispositivo conectado, el cual brinda protección similar a la de Local Talk. El estándar IEEE 802.5 para las redes Token Ring no contiene ninguna referencia específica a los requisitos de aislamiento. Por lo tanto la susceptibilidad de las redes Token Ring a las interferencias puede variar significativamente entre diferentes fabricantes. Las redes Token Ring utilizan un sofisticado sistema de prioridad que permite designarles a los usuarios un tipo de prioridad en base a su uso de la red. Los frames en redes Token Ring tienen dos campos que controlan la prioridad: el campo de prioridad y un campo reservado.
  • 7. Las redes Token Ring emplean varios mecanismos para detectar y corregir las fallas en la red. Por ejemplo: se selecciona una estación en una red Token Ring para que trabaje como monitor de la red. Esta estación que puede ser cualquiera de la red, centraliza los recursos en base a tiempos y sistemas de mantenimiento para las estaciones. Una de estas funciones es resetear las constantes frames que circulan en el anillo. Cuando un dispositivo que envía falla, este frame puede continuar circulando en el anillo, esto previene a otras estaciones de transmitir en ese momento. El monitor detecta dichos frames y los elimina del anillo generando uno nuevo.
  • 8.  
  • 9. Interfaz de datos distribuida por fibras FDDI Definición de FDDI. Las redes FDDI (Fiber Distributed Data Interface - Interfaz de Datos Distribuida por Fibra ) surgieron a mediados de los años ochenta para dar soporte a las estaciones de trabajo de alta velocidad, que habían llevado las capacidades de las tecnologías Ethernet y Token Ring existentes hasta el límite de sus posibilidades. Están implementadas mediante una física de estrella (lo más normal) y lógica de anillo doble de token, uno transmitiendo en el sentido de las agujas del reloj (anillo principal ) y el otro en dirección contraria (anillo de respaldo o back up), que ofrece una velocidad de 100 Mbps sobre distancias de hasta 200 metros, soportando hasta 1000 estaciones conectadas. Su uso más normal es como una tecnología de backbone para conectar entre sí redes LAN de cobre o computadores de alta velocidad.
  • 10.  
  • 11. Ethernet e IEEE 802.3 Ethernet/IEEE 802.3 Está diseñado de manera que no se puede transmitir más de una información a la vez. El objetivo es que no se pierda ninguna información, y se controla con un sistema conocido como CSMA/CD(Carrier Sense Multiple Access with Collision Detection, Detección de Portadora con Acceso Múltiple y Detección de Colisiones), cuyo principio de funcionamiento consiste en que una estación, para transmitir, debe detectar la presencia de una señal portadora y, si existe, comienza a transmitir.
  • 12.  
  • 13. Ethernet e IEEE 802.3 Similitudes Ethernet Es la tecnología de red de área local más extendida en la actualidad. Fue diseñado originalmente por Digital, Intel y Xerox por lo cual, la especificación original se conoce como Ethernet DIX. Posteriormente en 1983, fue formalizada por el IEEE como el estándar Ethernet 802.3. La velocidad de transmisión de datos en Ethernet es de 10Mbits/s en las configuraciones habituales pudiendo llegar a ser de 100Mbits/s en las especificaciones Fast Ethernet. Al principio, sólo se usaba cable coaxial con una topología en BUS, sin embargo esto ha cambiado y ahora se utilizan nuevas tecnologías como el cable de par trenzado (10 Base-T), fibra óptica (10 Base-FL) y las conexiones a 100 Mbits/s (100 Base-X o Fast Ethernet). La especificación actual se llama IEEE 802.3u.
  • 14. Ethernet usa el método de transmisión CMSA/CD CSMA/CD (Ethernet) CSMA/CD, siglas que corresponden a Carrier Sense Multiple Access with Collision Detection (inglés: "Acceso Múltiple con Escucha de Portadora y Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. Anteriormente a esta técnica se usaron las de Aloha puro y Aloha ranurado, pero ambas presentaban muy bajas prestaciones. Por ello apareció primeramente la técnica CSMA que fue posteriormente refinada a la técnica CSMA/CD. En el método de acceso CSMA/CD, los dispositivos de networking que tienen datos para transmitir funcionan en el modo "escuchar antes de transmitir". Esto significa que cuando un nodo desea enviar datos, primero debe determinar si los medios de networking están ocupados.
  • 15.  
  • 16. CSMA/CD y las Colisiones Funcionamiento de CSMA/CD El primer paso a la hora de transmitir será, obviamente, saber si el medio está libre. Y ¿cómo podemos saberlo? Pues nos quedamos calladitos y escuchamos lo que dicen los demás. Si hay portadora en el medio, es que está ocupado y, por tanto, seguimos escuchando; en caso contrario, el medio está libre y podemos transmitir. A continuación, esperamos un tiempo mínimo necesario para poder diferenciar bien una trama de otra y comenzamos a transmitir. Si durante la transmisión de una trama se detecta una colisión, entonces las estaciones que colisionan abortan el envío de la trama y envían una señal de reinicio. Después de una colisión, las estaciones esperan un tiempo aleatorio (Tiempo de Backoff) para volver a transmitir una trama.
  • 17.  
  • 18. Segmentación Segmentación de la red Hay dos motivos fundamentales para dividir una LAN en segmentos. El primer motivo es aislar el tráfico entre fragmentos, y obtener un ancho de banda mayor por usuario. Si la LAN no se divide en segmentos, las LAN cuyo tamaño sea mayor que un grupo de trabajo pequeño se congestionarían rápidamente con tráfico y saturación y virtualmente no ofrecerían ningún ancho de banda. La adición de dispositivos como, por ejemplo, puentes, switches y routers dividen la LAN en partes mas pequeñas, mas eficaces y fáciles de administrar.
  • 19.  
  • 20. Segmentación mediante Switches Segmentación mediante switches Una LAN que usa una topología Ethernet crea una red que funciona como si sólo tuviera dos nodos el nodo emisor y el nodo receptor. Estos dos nodos comparten un ancho de banda de 100 Mbps, lo que significa que prácticamente todo el ancho de banda está disponible para la transmisión de datos. Una LAN Ethernet permite que la topología LAN funcione más rápida y eficientemente que una LAN Ethernet estándar, ya que usa el ancho de banda de modo muy eficiente. En esta implementación Ethernet, el ancho de banda disponible puede alcanzar casi un 100%. Es importante observar que aunque 100% del ancho de banda puede estar disponible, las redes Ethernet tienen un mejor rendimiento cuando se mantiene por debajo del 30-40% de la capacidad total. El uso de ancho de banda que supere el límite recomendado tiene como resultado un aumento en la cantidad de colisiones (saturación de información). El propósito de la conmutación de LAN es aliviar las insuficiencias de ancho de banda y los cuellos de botella de la red como, por ejemplo, los que se producen entre un grupo de PC y un servidor de archivos remoto.
  • 21. Un switch LAN es un puente multipuerto de alta velocidad que tiene un puerto para cada nodo, o segmento, de la LAN. El switch divide la LAN en microsegmentos, creando de tal modo segmentos mas aliviados de tráfico. Cada nodo está directamente conectado a uno de sus puertos, o a un segmento que está conectado a uno de los puertos del switch. Esto crea una conexión de 100 Mbps entre cada nodo y cada segmento del switch. Un ordenador conectado directamente a un switch Ethernet está en su propio dominio de colisión y tiene acceso a los 100 Mbps completos. Cuando una trama entra a un switch, se lee para obtener la dirección origen o destino. Luego, el switch determina cuál es la acción de transmisión que se llevará a cabo basándose en lo que sabe a partir de la información que ha leído en la trama. Si la dirección destino se encuentra ubicada en otro segmento, la trama se conmuta a su destino
  • 22.  
  • 23. Ethernet Conmutada Ethernet conmutada Es la tecnología LAN (Local Area Network) más implantada en empresas, universidades, etc. Los hosts se conectan mediante enlaces punto a punto a un conmutador de tramas Ethernet, formándose típicamente estructuras en árbol. Utiliza enlaces de par trenzado (distancias cortas) o fibra óptica (distancias largas). Las tasas de transmisión típicas son 100 Mbps y 1 Gbps entre cada par de nodos. No existen colisiones. El conmutador las resuelve.
  • 24.  
  • 25. Segmentación mediante Routers Segmentación mediante routers Los routers son más avanzados que los puentes. Un puente es pasivo (transparente) en la capa de red y funciona en la capa de enlace de datos. Un router funciona en la capa de red y basa todas sus decisiones de envío en la dirección de protocolo de Capa 3. El router logra esto examinando la dirección destino del paquete de datos y buscando las instrucciones de envío en la tabla de enrutamiento (ya lo veremos mas adelante). Los routers producen el nivel más alto de segmentación debido a su capacidad para determinar exactamente dónde se debe enviar el paquete de datos. Como los routers ejecutan más funciones que los puentes, operan con un mayor nivel de latencia. Los routers deben examinar los paquetes para determinar la mejor ruta para enviarlos a sus destinos. Inevitablemente, este proceso lleva tiempo e introduce latencia (retardo).
  • 26.  
  • 27. Conclusión: La primera versión fue un intento de estandarizar ethernet aunque la cabecera que se definió de forma distinta, posteriormente ha habido ampliaciones sucesivas al estándar que cubrieron las ampliaciones de velocidad (Fast Ethernet, Gigabit Ethernet y el de 10 Gigabits), redes virtuales, hubs, conmutadores y distintos tipos de medios, tanto de fibra óptica como de cables de cobre (tanto par trenzado como coaxial). Los estándares de este grupo no reflejan necesariamente lo que se usa en la práctica, a diferencia de otros grupos suele estar cerca de la realidad. Mediante la lectura de los temas que hemos presentado en esta investigación, nos damos cuenta de los diferentes estándares de transmisión de datos a través de una red, su velocidad, ventajas y desventajas, así mismo nos damos cuenta que por medio de la segmentación de redes podemos hacer mas eficientes las transmisiones y transferencia de datos y se pueden evitar al máximo la colisión durante la transmisión de datos lo cual nos lleva a eficientar mucho más nuestras redes y se es posible distribuir el ancho de banda entre todos los equipos conectados a la red.
  • 28. CRISTINA ZURITA MENDEZ UNAED SEDE: VILLA MANUEL