SlideShare une entreprise Scribd logo
1  sur  20
Télécharger pour lire hors ligne
SULIT                                      2                    OMK 2007 BONGSU


                            SKEMA PENYELESAIAN
                                BAHAGIAN A
                                 (12 Markah)

SOALAN A1

 BM     Seorang lelaki memandu pada kelajuan 90 km/j. Apabila menyedari dia
        telah terlewat, dia meningkatkan kelajuannya kepada 110 km/j dan
        melengkapkan perjalanannya sejauh 395 km dalam masa 4 jam. Berapa
        lamakah dia memandu pada kelajuan 90 km/j?

 BI     A man was driving at 90km/h. Realizing that he was late, he increased his
        speed to 110km/h and completed his journey of 395 km in 4 hrs. For how
        long did he drive at 90 km/h?

PENYELESAIAN SOALAN A1


Let the time he drives at 90 km/hr = t and the time he drives at 110 km/h = 4 – t
So,
  90t + 110(4 – t) = 395
  20t = 45
     t = 2.25 jam atau 2 jam 15 minit atau 135 minit

                                                               t = 2.25 jam atau
                                                      Jawapan: 2 jam 15 minit atau
                                                               135 minit


SOALAN A2

 BM     Misalkan ABCD satu segiempat selari dengan E satu titik di atas garis AB
        dengan keadaan 3BE = 2DC. Garis CE dan garis BD bersilang di titik Q.
        Jika luas ∆DQC ialah 36, cari luas ∆BQE.


 BI     Let ABCD be a parallelogram where E is a point on AB such that 3BE =
        2DC. The lines CE and BD intersect at the point Q. If the area of ∆DQC is
        36, find the area of ∆BQE.

PENYELESAIAN SOALAN A2

                           A          E           B

                                            Q


                    D                     C
SULIT                                               3          OMK 2007 BONGSU




∆DQC and ∆BQE are similar
                                        Q

                            B         h     E
                                      h’
                  D                             C

BE 2 h 2
  = ⇒ =
DC 3 h' 3
               1
Area of ∆DQC =   DC × h = 36 ⇒ DC × h = 72
               2
              1           1 2      2     2   2
Area of ∆BQE = BE × h = × DC × h' = DC × h' = × 72 = 16
              2           2 3      3     9   9
OR
Since ∆DQC and ∆BQE are similar, and since 3BE = 2DC,
All corresponding sides the same ratio
                                                    2
BE QE BQ h 2  ∆BQE ⎛ 2 ⎞ 4
  =  =  = = ∴     =⎜ ⎟ =
DE QC DQ h' 3 ∆DQC ⎝ 3 ⎠ 9
Thus area of ∆BQE =          4
                             9
                                 area ∆DQC = 16

                                                        Jawapan: 16



SOALAN A3

 BM       Selesaikan 200520062007 2 − 200520062006 × 200520062008 .

 BI       Solve 200520062007 2 − 200520062006 × 200520062008 .


PENYELESAIAN SOALAN A3

Jika t = 200520062007 maka
200520062007 2 − 200520062006 × 200520062008 =
t 2 − (t − 1)(t + 1) = t 2 − ( t 2 − 1 ) = 1


                                                        Jawapan: 1
SULIT                                             4                        OMK 2007 BONGSU



SOALAN A4

 BM                                                                  1        1
          Misalkan 0 < x < 1 . Jika A= x ,            B= x 2 , C=      dan D= 2 susunkan
                                                                     x       x
          daripada nilai yang terkecil kepada yang terbesar.
 BI                                             1          1
          Let 0 < x < 1 . If A= x , B= x 2 , C= and D= 2 arrange them from the
                                                x          x
          smallest to the largest value.

PENYELESAIAN SOALAN A4

0 < x < 1 ⇒ x2 < x
             1
0 < x <1⇒ >1
             x
           1 1
x2 < x ⇒ 2 >
           x    x
                  1 1
∴ 0 < x2 < x < 1 < < 2
                   x x
Therefore the arrangements are: BACD

                                                              Jawapan: BACD




SOALAN A5

 BM                                                   1        1
          Cari integer x , y dan z yang memenuhi xy +    = yz + dengan x ≠ z .
                                                       z       x
 BI                                                1       1
          Find integers x , y and z satisfying xy + = yz + where x ≠ z .
                                                   z       x


PENYELESAIAN SOALAN A5



        1            1                     1 1 z−x
xy +       = yz + ⇒ ( x − z ) y = − =                        ⇒ xyz = −1.
        z            x                     x z        xz
Since x , y , z are integers and x ≠ z , the only possibilities are
( x , y , z ) = ( 1,1, − 1 ) or ( x , y , z ) = ( −1,1,1 ) .
                                                                       ( x , y , z ) = ( 1,1, − 1 )
                                                              Jawapan: atau
                                                                       ( x , y , z ) = ( −1,1,1 )
SULIT                                    5                   OMK 2007 BONGSU



SOALAN A6

BM      20 orang menggali sebuah kolam ikan selama 12 hari jika mereka bekerja
        selama 6 jam sehari. Berapakah bilangan hari yang diperlukan untuk
        menggali kolam yang sama jika 4 orang bekerja selama 5 jam sehari?

BI      20 persons dig a fish pond in 12 days if they work 6 hours per day. How
        many days is required to dig the same pond if 4 persons work for 5 hours
        per day?

PENYELESAIAN SOALAN A6


20 × 6 × 12 is for one work done
Let x be the number of days required by 4 persons working for 5 hours per day
           20 × 6 ×12
So, x =               = 72 days
              4×5

                                                    Jawapan: 72 hari
SULIT                                      6                  OMK 2007 BONGSU


                                   BAHAGIAN B
                                    (18 Markah)

SOALAN B1

 BM     Dengan menggunakan angka 1, 2, 3, 6, 7, 9, 0 sahaja, tentukan angka mana
        yang boleh dipadankan dengan huruf di bawah supaya hasil tambahnya
        adalah betul.

             P A K
           + M A K
           P I U T

 BI     Using only the numbers 1, 2, 3, 6, 7, 9, 0, find which number goes with
        each letter in the addition problem below to make it correct.


             P A K
           + M A K
           P I U T

PENYELESAIAN SOALAN B1

Hasiltambah tiga digit ≤ 2000 jadi P=1, M=9 I=0.
U dan T tidak boleh 4
K tidak boleh 7 atau 2.
Mak ayang tiggal ialah 3, 6 .
Kalau K=3 maka T=6, dan A=2
Jika K=6 maka A=3, dan T=2


Note: Kaedah cuba jaya tak diterima.

ATAU

K + K = 2K = T ⇒ T must be an even number
T = mod 2, 6, 0, but T ≠ mod 0 because then K = T
∴ T = mod 2, 6 ⇒ K = 1, 3, 6      1
Likewise, 2A = U
If T < 10, then U is even
If T > 10, then U is odd     1
In both cases, A = 1, 3, 6
Also P + M = I = 10(P) + I < 20
So P< 2, that is, P = 1    1
Test for all possibilities:
K, A ≠ 1, because P = 1
If K = 3, T =6, then A = 3 or 6 which is not possible
∴ K = 6, T = 12 mod 10 = 2
   A =3, U = 3 + 3 + 1 = 7 because T > 10
SULIT                                           7                         OMK 2007 BONGSU


    Since P = 1, M= 9 and I = 10 mod 10 = 0

∴                 PAK                 1 3 6
             +    MAK              + 9 3 6
                                                              2
                  PIUT              1 0 7 2


Note: Kaedah cuba jaya tak diterima.



SOALAN B2

 BM      Cari jumlah sudut-sudut a+b+c+d+e+f+g+h dalam rajah berikut.



                               a                          b
                                          300


                       c                                          d

                   e
                                                                  f
                       g                                              h



 BI      Find the sum of angles a+b+c+d+e+f+g+h in the following diagram.


                                      a                       b
                                                    300


                               c                                          d

                           e
                                                                          f
                               g                                              h
SULIT                                        8                    OMK 2007 BONGSU


PENYELESAIAN SOALAN B2


                            a                         b
                                        300

                                         E
                        c           A         B           d
                                C
                    e                             D
                                                          f
                        g                                     h


  It is clear that A+B+E = π
                   C+D+E = π
                   B+a+c = π
                  A+b+d = π                       2
                  C+e+g = π
                  D+f+h = π

 Hence {a+b+c+d+e+f+g+h} + {A+B+C+D} = 4 π
               {a+b+c+d+e+f+g+h} + 2 π -2E = 4 π .                 4
Since E = 30 o , thus {a+b+c+d+e+f+g+h} = 420 o
SULIT                                      9                     OMK 2007 BONGSU


SOALAN B3

                 ⎛       1 ⎞
         Diberi 8⎜ y 2 +    ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 cari semua nilai y 2 + 1 .
                                  ⎜       ⎟
 BM
                 ⎜                ⎜     y⎟
                 ⎝       y2 ⎟
                            ⎠     ⎝       ⎠                                  y2

                ⎛       1 ⎞
         Given 8⎜ y 2 +    ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 find all the values of y 2 + 1 .
                                 ⎜       ⎟
 BI             ⎜                ⎜     y⎟
                ⎝       y2 ⎟
                           ⎠     ⎝       ⎠                                        y2


PENYELESAIAN SOALAN B3



 ⎛        1 ⎞
8⎜ y 2 +    ⎟ − 56⎛ y + 1 ⎞ + 112 = 0
                  ⎜       ⎟
 ⎜         2⎟     ⎜     y⎟
 ⎝       y ⎠      ⎝       ⎠
             1                     1       3
Let u = y + ⇒ u 2 − 2 = y 2 +         .
             y                    y2
8( u 2 − 2 ) − 56u + 112 = 0
8u 2 − 56u + 96 = 0
u 2 − 7u + 12 = 0
( u − 3 )( u − 4 ) = 0  1
u = 3, 4
        1
y2 +        = 16 − 2 atau 9 − 2
       y2                                   2
             = 14           7
SULIT                                      2                       OMK 2007 MUDA


                            SKEMA PENYELESAIAN
                                BAHAGIAN A
                                 (12 Markah)

SOALAN A1

 BM     Diberi x + y = 2 dan 2 xy − z 2 = 1 . Dapatkan penyelesaian integer untuk
        persamaan-persamaan ini.

 BI     Given x + y = 2 and 2 xy − z 2 = 1 . Find the integer solutions of the
        equations.

PENYELESAIAN SOALAN A1

x+y = 2 and 2 xy − z 2 = 1 leads to 2 ( x − 1) 2 + z 2 = 1 , hence integer solutions
are (1,1,1),(1,1,-1)

                                                    Jawapan: (1,1,1),(1,1,-1)


SOALAN A2

 BM     Dalam suatu kejohanan sukan yang berlangsung selama 4 hari, terdapat n
        pingat untuk dimenangi. Pada hari pertama, 1/5 daripada n pingat
        dimenangi. Pada hari kedua, 2/5 daripada baki pingat pada hari pertama
        dimenangi. Pada hari ketiga, 3/5 daripada baki pingat pada hari kedua
        dimenangi. Pada hari keempat, 24 pingat dimenangi. Berapakah jumlah
        pingat kesemuanya?

 BI     In a sport’s tournament lasting for 4 days, there are n medals to be won.
        On the first day, 1/5 of the n medals are won. On the second day, 2/5 of the
        remainder from the first day are won. On the third day, 3/5 of the
        remainder from the second day are won. On the final day, 24 medals are
        won. What was the total number of medals?

PENYELESAIAN SOALAN A2

Let Ti be the number of medals won on the i th day, i = 1,2,3,4.
Then
     1
T1 = n ,
     5
      2           8n
T2 = ( n − T1 ) =    ,
      5           25
T3 = (n − (T 1+T2 )) =
      3                36n
                           .
      5                125

T4 = 24.
SULIT                                      3                       OMK 2007 MUDA


T1 + T2 + T3 + T4 = n
101n
     + 24 = n
125
24n
     = 24
125
∴ n = 125


                                                    Jawapan: n=125


SOALAN A3

 BM     Misalkan 2xyz7 suatu nombor lima angka sedemikian hingga hasil darab
        angka-angka tersebut ialah sifar dan hasil tambah angka-angka tersebut
        pula boleh dibahagikan dengan 9. Cari bilangan nombor-nombor tersebut.

 BI     Let 2xyz7 be a five-digit number such that the product of the digits is zero
        and the sum of the digits is divisible by 9. Find how many such numbers.


PENYELESAIAN SOALAN A3

One of the digits must be zero. The sum of the other two digits must be divisible by 9.
Possible pairs are : (0,0),(0,9),(9,9),(1,8),(2,7),(3,6),(4,5).
The total number of such numbers with the given pair :
(0,0) 1, (0,9) 3, (9,9) 3, (1,8) 6, (2,7) 6, (3,6) 6, (4,5) 6.
There are 31 such numbers


                                                    Jawapan: 31

SOALAN A4

 BM     Misal ABCD sebagai suatu segiempat tepat. Garis DP memotong pepenjuru
        AC pada Q dan membahagikannya pada nisbah 1:4. Jika luas segitiga APQ
        satu unit persegi, tentukan luas segiempat tersebut.

 BI     Let ABCD be a rectangle. The line DP intersects the diagonal AC at Q and
        divides it in the ratio of 1:4. If the area of triangle APQ is one unit square,
        determine the area of the rectangle.
SULIT                                      4                       OMK 2007 MUDA


PENYELESAIAN SOALAN A4

                  A               P                               B

                          Q




                  D                                                 C
Biar tinggi segitiga APQ ialah x, dan tinggi segitiga AQP ialah y. Segitiga APQ dan
segitiga CDQ adalah sebentuk, maka
AP: DC = AQ:QC = x:y = 1: 4. Luas segiempat DC (x+y) = 4AP (x + 4x) = 20 AP.x
= 40 (Luas segitiga APQ) = 40

                                                    Jawapan: 40

SOALAN A5

 BM     Cari integer terkecil yang memenuhi syarat apabila dibahagi dengan 2
        meninggalkan baki 1, apabila dibahagi dengan 3 meninggalkan baki 2,
        apabila dibahagi dengan 4 meninggalkan baki 3 dan apabila dibahagi
        dengan 5 meninggalkan baki 4.

 BI     Find the smallest integer such that if divided by 2 leaves a remainder of 1, if
        divided by 3 leaves a remainder of 2, if divided by 4 leaves a remainder of
        3, and if divided by 5 leaves a remainder of 4.

PENYELESAIAN SOALAN A5

Let N be the integer. Then
N = 2q1 + 1
 = 3q2 + 2
 = 4q3 + 3
 = 5q4 + 4
Observe that
N + 1 = 2q1 + 2 = 3q2 + 3 = 4q3 + 4 = 5q4 + 5
      = 2(q1 + 1) = 3(q2 + 1) = 4(q3 + 1) = 5(q4 + 1)

∴ 2|N + 1, 3|N+1, 4|N + 1 dan 5|N+1

⇒ N + 1 = LCM (2, 3, 4, 5) = 60

∴ N = 59

                                                    Jawapan: 59
SULIT                                      5                       OMK 2007 MUDA


SOALAN A6

 BM     Andaikan f suatu fungsi ditakrif pada integer sedemikian
               f(2n) = -2f(n), f(2n+1)= f(n) -1, dan f(0) = 2.
        Cari nilai f(2007).

 BI     Let f be a function defined on integers such that
               f(2n) = - 2f(n), f(2n+1) = f(n)-1, and f(0) = 2.
        Find the value of f(2007).


PENYELESAIAN SOALAN A6
f(2007) = f(1003) -1 = f(501 )-2 = f(250 ) -3 = -2f(125)-3
= -2f(62)-1 = 4f(31) - 2 =4 f(15) - 6 = 4f(7) - 10 =4 f(3)-14
= 4f(1) -18 = -14


                                                    Jawapan: -14
SULIT                                       6                          OMK 2007 MUDA


                                       BAHAGIAN B
                                        (18 Markah)
SOALAN B1

                 ⎛       1 ⎞
         Diberi 8⎜ y 2 +    ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 cari semua nilai y 2 + 1 .
                                  ⎜       ⎟
 BM              ⎜                ⎜     y⎟
                 ⎝       y2 ⎟
                            ⎠     ⎝       ⎠                                  y2

                ⎛       1 ⎞
         Given 8⎜ y 2 +    ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 find all the values of y 2 + 1 .
                                 ⎜       ⎟
 BI             ⎜                ⎜     y⎟
                ⎝       y2 ⎟
                           ⎠     ⎝       ⎠                                        y2

PENYELESAIAN SOALAN B1

 ⎛       1 ⎞
8⎜ y 2 +    ⎟ − 56⎛ y + 1 ⎞ + 112 = 0
                  ⎜       ⎟
 ⎜                ⎜     y⎟
 ⎝       y2 ⎟
            ⎠     ⎝       ⎠
             1                     1        3
Let u = y + ⇒ u 2 − 2 = y 2 +         .
             y                    y2
8( u 2 − 2 ) − 56u + 112 = 0
8u 2 − 56u + 96 = 0
u 2 − 7u + 12 = 0
( u − 3 )( u − 4 ) = 0  1
u = 3, 4
        1
y2 +        = 16 − 2 atau 9 − 2
       y2                                   2
             = 14           7



SOALAN B2

 BM      Satu sisi sebuah segitiga berukuran 4 cm. Dua sisi yang lain berukuran
         dalam nisbah 1:3. Cari luas yang terbesar untuk segitiga ini.

 BI      One side of a triangle is 4cm. The other two sides are in the ratio 1:3. What
         is the largest area of the triangle?


PENYELESAIAN SOALAN B2

With Heron’s formula the area of the triangle with sides a, b , c is

A=     s ( s − a )( s − b )( s − c )   2
SULIT                                                  7                            OMK 2007 MUDA


Where s = a + b + c
                    2

Let a = 4, b = x, then c = 3x so s = 2 + 2x, hence                                            2
A = ( 2 + 2 x )( 2 x − 2 )( 2 + x )( 2 − x ) = 2 ( x 2 − 1 )( 4 − x 2 )



A is maximum when x 2 = 5 , largest area = 3.                       2
                                  2


SOALAN B3

 BM       Biar f , g dua fungsi yang tertakrif atas [0 , 2c] dengan c > 0 . Tunjukkan
          bahawa wujud x , y ∈ [0, 2c] supaya
                                               xy − f ( x ) + g ( y ) ≥ c 2 .

 BI       Let f , g be two functions defined on [0 , 2c] where c > 0 . Show that there
          exists x , y ∈ [0, 2c] such that
                                               xy − f ( x ) + g ( y ) ≥ c2 .



PENYELESAIAN SOALAN B3


Let h( x , y ) = xy − f ( x ) + g( y ) . Suppose that         h( x , y ) < c 2 for all 0 ≤ x , y ≤ 2c .

Then                                                                                                2
                  h( x1 , y1 ) + h( x2 , y 2 ) + h( x3 , y3 ) + h( x4 , y 4 ) < 4c 2

for all 0 ≤ xi , yi ≤ 2c ( i = 1, 2, 3, 4 ).

However, by the triangle inequality, we have
                       h( 0 ,0 ) + h( 0 ,2c ) + h( 2c ,0 ) + h( 2c ,2c )
                                                                                             2
                  ≥ h( 0 ,0 ) − h( 0 ,2c ) − h( 2c ,0 ) + h( 2c ,2c )
                        = 4c 2
                                   1
which is a contradiction.

Hence there exists x , y ∈ [ 0 ,2c ] such that
                                                                                1
                                        xy − f ( x ) + g ( y ) ≥ c 2 .

Note: Jika jawapan shj tanpa jalan kerja beri 2 markah shj.
SULIT                                                2             OMK 2007 SULONG


                                   SKEMA PENYELESAIAN
                                       BAHAGIAN A
                                        (12 Markah)
SOALAN A1

 BM Misalkan a = 6 ,..., a = 6 a n −1 . Cari baki apabila a
              1           n                                100 dibahagi dengan 11.

 BI     Let a1 = 6 ,…, a n = 6 a n −1 . Find the remainder when a100 is divided by 11.

PENYELESAIAN SOALAN A1

Fermat’s Little Theorem states that if p is prime and p is not divisible by a, then
a p −1 ≡ 1 mod p . Since 11 is prime and not divisible by 6, then 610 ≡ 1 mod 11 and
6 n ≡ 6 mod 10 for all positive n ie 6 n = 6 + 10 t for some t. Thus
                                 ( )
    a100 ≡ 6 a99 ≡ 6 6 +10 t ≡ 6 6 610
                                         t
                                             ≡ 6 mod 11
Hence the remainder is 6.


                                                          Jawapan: 5

SOALAN A2

 BM                                                                  1
          Misalkan −1 < y < 0 < x < 1 . Jika A = x 2 y ,     B =         , C = y 2 x dan
                                                                    x2 y
                 1
          D=         , susunkan daripada nilai yang terkecil kepada yang terbesar.
                xy 2

 BI                                                    1                    1
          Let −1 < y < 0 < x < 1 . If A= x 2 y , B=    2
                                                          , C= y 2 x and D= 2 ,
                                                      x y                  xy
          arrange them from the smallest to the greatest value

PENYELESAIAN SOALAN A2

−1 < y < 0 < x < 1 ⇒ − 1 < x 2 y < 0
                                              1
                     −1 < x 2 y < 0 ⇒             < −1
                                             x2 y
−1 < y < 0 < x < 1 ⇒ 0 < xy 2 < 1
                                                1
                          0 < xy 2 < 1 ⇒            >1
                                               xy 2
   1                                1
∴  2
      < −1 < x 2 y < 0 < xy 2 < 1 < 2
  x y                              xy
Therefore the arrangement are: BACD

                                                          Jawapan: BACD
SULIT                                                     3                             OMK 2007 SULONG


SOALAN A3

 BM        Satu sisi sebuah segitiga berukuran 4 cm. Dua sisi yang lain berukuran
           dalam nisbah 1:3. Cari luas yang terbesar untuk segitiga ini.

 BI        One side of a triangle is 4 cm. The other two sides are in the ratio 1:3.
           Find the largest area of the triangle.

PENYELESAIAN SOALAN A3

With Heron’s formula the area of the triangle with sides a, b , c is
A = s ( s − a )( s − b )( s − c )
Where s = a + b + c
                      2
Let a = 4, b = x, then c = 3x so s = 2 + 2x, hence
A = ( 2 + 2 x )( 2 x − 2 )( 2 + x )( 2 − x ) = 2 ( x 2 − 1 )( 4 − x 2 )
A is maximum when x 2 = 5 , largest area = 3.
                                      2



                                                                         Jawapan: 3

SOALAN A4

 BM        Permudahkan log24·log46 log68 ... log2n(2n+2).

 BI        Simplify log24·log46 log68 ... log2n (2n+2)

PENYELESAIAN SOALAN A4

                                                                   log 2 6 log 2 8           log 2 2n       log 2 (2n + 2)
log 2 4 ⋅ log 4 6 ⋅ log 6 8 ⋅ ... ⋅ log 2 n (2n + 2) = log 2 4 ⋅          ⋅        ⋅ ... ⋅                ⋅
                                                                   log 2 4 log 2 6         log 2 (2n − 2)     log 2 2n

= log 2 ( 2n + 2 ) atau          log 2 2( n + 1 ) atau 1+ log 2 (n + 1)


                                                                                  log 2 ( 2n + 2 ) atau
                                                                         Jawapan: log 2 2( n + 1 ) atau
                                                                                  1+ log 2 (n + 1)
SULIT                                            4                OMK 2007 SULONG


SOALAN A5

 BM     Tuliskan 580 sebagai hasil tambah dua nombor kuasa dua.

 BI     Write 580 as a sum of two squares.

PENYELESAIAN SOALAN A5

By prime power the composition, we have
        580 = 2 2 .5.29
           = 2 2 .( 2 2 + 1 ).( 5 2 + 2 2 )
           = 2 2 (( 2.5 + 1.2 ) 2 + ( 2.2 − 1.5 )2 )
           = 2 2 ( 12 2 + 12 )
           = 24 2 + 2 2



                                                       Jawapan:   24 2 + 2 2

SOALAN A6

 BM     Misalkan f suatu fungsi tertakrif pada set integer bukan negatif yang
        memenuhi
                          f(2n+1) = f(n), f(2n) = 1 – f(n).
        Cari f(2007).

 BI     Let f be a function defined on non-negative integers satisfying the following
        conditions
                          f(2n+1) = f(n), f(2n) = 1 – f(n).
        Find f(2007).

PENYELESAIAN SOALAN A6

f(0) = ½; f(1) = f(0) = ½; and f(2) = 1 – f(1) = ½;
By induction f(n) = ½; for any n
 ∴f(2007) = ½




                                                       Jawapan:   1
                                                                  2
SULIT                                                  5                            OMK 2007 SULONG


                                           BAHAGIAN B
                                            (18 Markah)

SOALAN B1

 BM       Biar f , g dua fungsi yang tertakrif atas [0 , 2c] dengan c > 0 . Tunjukkan
          bahawa wujud x , y ∈ [0, 2c] supaya
                                               xy − f ( x ) + g ( y ) ≥ c 2 .

 BI       Let f , g be two functions defined on [0 , 2c] where c > 0 . Show that there
          exists x , y ∈ [0, 2c] such that
                                               xy − f ( x ) + g ( y ) ≥ c2 .

PENYELESAIAN SOALAN B1

Let h( x , y ) = xy − f ( x ) + g( y ) . Suppose that         h( x , y ) < c 2 for all 0 ≤ x , y ≤ 2c .

Then                                                                                                2
                  h( x1 , y1 ) + h( x2 , y 2 ) + h( x3 , y3 ) + h( x4 , y 4 ) < 4c 2

for all 0 ≤ xi , yi ≤ 2c ( i = 1, 2, 3, 4 ).

However, by the triangle inequality, we have
                       h( 0 ,0 ) + h( 0 ,2c ) + h( 2c ,0 ) + h( 2c ,2c )
                                                                                             2
                  ≥ h( 0 ,0 ) − h( 0 ,2c ) − h( 2c ,0 ) + h( 2c ,2c )
                      = 4c 2
                                   1
which is a contradiction.

Hence there exists x , y ∈ [ 0 ,2c ] such that
                                                                                1
                                        xy − f ( x ) + g ( y ) ≥ c 2 .

Note: Jika jawapan shj tanpa jalan kerja beri 2 markah shj.
SULIT                                         6                    OMK 2007 SULONG


SOALAN B2

 BM      Dua bulatan masing-masing berjejari 1 dan 2 bersentuhan sesama sendiri
         secara luaran. Suatu bulatan lain dilukis bersentuhan dengan dua bulatan
         ini dengan pusat-pusat bulatan membentuk suatu segitiga bersudut tepat.
         Cari jejari bulatan ketiga.

 BI      Two circles of radius 1 and 2 respectively are tangential to one another
         externally. Another circle is drawn tangential to both circles such that their
         centres form a right angle triangle. Find the radius of the third circle.

PENYELESAIAN SOALAN B2

Bulatan ketiga boleh bersentuh secara luaran atau kedua-dua bulatan yang diberi
terterap dalam bulatan ketiga.




                                                                      1




Two possiblities:
If drawn externally:
let the radius of third circle be r we have the sides of triangle r+1, r+2, and 3   1

we will have two possibilities of right angle,
Then first possiblitiy
 ( r + 2 ) 2 = 3 2 + ( r + 1) 2
Solving for r we get r = 3         2

Next possibility , ( r + 2 ) 2 + ( r + 1 ) 2 = 3 2
SULIT                                             7                    OMK 2007 SULONG


Solve for r we get                 17       − 3           2
                        r =
                                        2

If drawn enclosing the two circles, sides of triangle are
 r-1, r-2 and 3            1
Two possiblities ( r − 1 ) 2 = 3 2 + ( r − 2 ) 2 and ( r − 2 ) 2 + ( r − 1 ) 2 = 3 2       2
We get r = 6 and
                   17       + 3
          r =                               2
                        2




SOALAN B3

 BM       Tentukan nilai maksimum bagi m 2 + n 2 untuk m , n ∈ { ,2 ,3,… ,2007} dan
                                                                1
          ( n 2 − mn − m 2 ) 2 = 1

 BI       Determine the maximum value of m 2 + n 2 where m , n ∈ { ,2 ,3,… ,2007}
                                                                  1
          and ( n 2 − mn − m 2 ) 2 = 1

PENYELESAIAN SOALAN B3

Let the pair be ( m , n ) satisfying both conditions.              2

If m = 1, then ( 1,1 ) and ( 2,1 ) are the only possibilities. Suppose that (n1 , n 2 ) is one
                                                            2
of the possible solutions with n2 > 1 . As n1( n1 −n 2 ) = n2 ± 1 > 0 then we must have
n1 > n 2 .
Now let n3 = n1 − n2 . Then

      (2            2       )2 (
                              2           2       )2
 1 = n1 − n1n 2 − n 2 = n2 − n2 n3 − n3 making (n 2 , n3 ) as one of possible
solutions too with n3 > 1 . In the same way we conclude n2 > n3 . The same goes to
(n3 , n4 ) such that n4   = n2 − n3 . Hence n1 > n2 > n3 > … and must terminate ie
when nk = 1 for some k. Since (nk −1 ,1) is one of the possibilities, thus we must have
nk −1 . It looks like the sequence goes 1,2,3,5,8, …, 987, 1597 (<2007), a truncated
Fibonacci sequence.
                                3

It is clear that the largest possible pair is (1597, 987)      1

Contenu connexe

Tendances

Latihan kata tanya
Latihan kata tanyaLatihan kata tanya
Latihan kata tanyaEwe Beesuan
 
PEPERIKSAAN AKHIR TAHUN SEJARAH TAHUN 4 (SUB)
PEPERIKSAAN AKHIR TAHUN SEJARAH TAHUN 4 (SUB)PEPERIKSAAN AKHIR TAHUN SEJARAH TAHUN 4 (SUB)
PEPERIKSAAN AKHIR TAHUN SEJARAH TAHUN 4 (SUB)zerat88
 
How to write informal letters or emails
How to write informal letters or emailsHow to write informal letters or emails
How to write informal letters or emailsHanini Hamsan
 
Bright Minds Teknik Menjawab SPM Fizik 2016
Bright Minds Teknik Menjawab SPM Fizik 2016Bright Minds Teknik Menjawab SPM Fizik 2016
Bright Minds Teknik Menjawab SPM Fizik 2016Bright Minds
 
Soalan percubaan bahasa melayu pt3
Soalan percubaan bahasa melayu   pt3Soalan percubaan bahasa melayu   pt3
Soalan percubaan bahasa melayu pt3Aynora Nur
 
Soalan bulanan 2 pt3
Soalan bulanan 2 pt3Soalan bulanan 2 pt3
Soalan bulanan 2 pt3Balkis Naneng
 
Tg1 Ujian 1_Mac 2017 Bahasa Melayu
Tg1 Ujian 1_Mac 2017  Bahasa MelayuTg1 Ujian 1_Mac 2017  Bahasa Melayu
Tg1 Ujian 1_Mac 2017 Bahasa Melayu慈心 Chan
 
Math y1 dlp paper 1
Math y1 dlp paper 1Math y1 dlp paper 1
Math y1 dlp paper 1Wany Hardy
 
Pentaksiran Bahasa Inggeris Tingkatan 2
Pentaksiran Bahasa Inggeris Tingkatan 2Pentaksiran Bahasa Inggeris Tingkatan 2
Pentaksiran Bahasa Inggeris Tingkatan 2Miz Malinz
 
MATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLES
MATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLESMATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLES
MATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLESMISS ESTHER
 
Latihan tatabahasa thn 5
Latihan tatabahasa thn 5Latihan tatabahasa thn 5
Latihan tatabahasa thn 5nur aliaa
 
2012 panduan kecemerlangan sains upsr 2012(1)
2012 panduan kecemerlangan sains upsr 2012(1)2012 panduan kecemerlangan sains upsr 2012(1)
2012 panduan kecemerlangan sains upsr 2012(1)Mohamad Din
 

Tendances (20)

Latihan kata tanya
Latihan kata tanyaLatihan kata tanya
Latihan kata tanya
 
Ujian sains penggal 1 tahun 2
Ujian sains penggal 1 tahun 2Ujian sains penggal 1 tahun 2
Ujian sains penggal 1 tahun 2
 
PEPERIKSAAN AKHIR TAHUN SEJARAH TAHUN 4 (SUB)
PEPERIKSAAN AKHIR TAHUN SEJARAH TAHUN 4 (SUB)PEPERIKSAAN AKHIR TAHUN SEJARAH TAHUN 4 (SUB)
PEPERIKSAAN AKHIR TAHUN SEJARAH TAHUN 4 (SUB)
 
How to write informal letters or emails
How to write informal letters or emailsHow to write informal letters or emails
How to write informal letters or emails
 
Teknik menjawab soalan kertas 3
Teknik menjawab soalan kertas 3Teknik menjawab soalan kertas 3
Teknik menjawab soalan kertas 3
 
Nota spm grammar
Nota spm  grammarNota spm  grammar
Nota spm grammar
 
Bright Minds Teknik Menjawab SPM Fizik 2016
Bright Minds Teknik Menjawab SPM Fizik 2016Bright Minds Teknik Menjawab SPM Fizik 2016
Bright Minds Teknik Menjawab SPM Fizik 2016
 
Soalan percubaan bahasa melayu pt3
Soalan percubaan bahasa melayu   pt3Soalan percubaan bahasa melayu   pt3
Soalan percubaan bahasa melayu pt3
 
Soalan bulanan 2 pt3
Soalan bulanan 2 pt3Soalan bulanan 2 pt3
Soalan bulanan 2 pt3
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
Tg1 Ujian 1_Mac 2017 Bahasa Melayu
Tg1 Ujian 1_Mac 2017  Bahasa MelayuTg1 Ujian 1_Mac 2017  Bahasa Melayu
Tg1 Ujian 1_Mac 2017 Bahasa Melayu
 
Math y1 dlp paper 1
Math y1 dlp paper 1Math y1 dlp paper 1
Math y1 dlp paper 1
 
Pentaksiran Bahasa Inggeris Tingkatan 2
Pentaksiran Bahasa Inggeris Tingkatan 2Pentaksiran Bahasa Inggeris Tingkatan 2
Pentaksiran Bahasa Inggeris Tingkatan 2
 
MATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLES
MATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLESMATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLES
MATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLES
 
Modul 3 matriks
Modul 3 matriksModul 3 matriks
Modul 3 matriks
 
Latihan tatabahasa thn 5
Latihan tatabahasa thn 5Latihan tatabahasa thn 5
Latihan tatabahasa thn 5
 
Skema Paper 2.pdf
Skema Paper 2.pdfSkema Paper 2.pdf
Skema Paper 2.pdf
 
Fizik kertas 2 (2011)
Fizik kertas 2 (2011)Fizik kertas 2 (2011)
Fizik kertas 2 (2011)
 
Modul 4 graf fungsi
Modul 4 graf fungsi Modul 4 graf fungsi
Modul 4 graf fungsi
 
2012 panduan kecemerlangan sains upsr 2012(1)
2012 panduan kecemerlangan sains upsr 2012(1)2012 panduan kecemerlangan sains upsr 2012(1)
2012 panduan kecemerlangan sains upsr 2012(1)
 

En vedette

Bab1 KBAT nombor berarah
Bab1 KBAT nombor berarah Bab1 KBAT nombor berarah
Bab1 KBAT nombor berarah hapiszah
 
Soalan peperiksaan pertengahan tahun matematik tingkatan 1
Soalan peperiksaan pertengahan tahun matematik tingkatan 1Soalan peperiksaan pertengahan tahun matematik tingkatan 1
Soalan peperiksaan pertengahan tahun matematik tingkatan 1Sabri Ibrahim
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikamiranteogbonna
 
Beams Latest 24 Mac 2010 Edited Version
Beams Latest 24 Mac 2010   Edited VersionBeams Latest 24 Mac 2010   Edited Version
Beams Latest 24 Mac 2010 Edited VersionSaripah Ahmad Mozac
 
Perfect Score Addmath SPM 2013
Perfect Score Addmath SPM 2013Perfect Score Addmath SPM 2013
Perfect Score Addmath SPM 2013Cikgu Marzuqi
 
Kemahiran berfikir aras tinggi dalam pentaksiran matematik
Kemahiran berfikir aras tinggi dalam pentaksiran matematikKemahiran berfikir aras tinggi dalam pentaksiran matematik
Kemahiran berfikir aras tinggi dalam pentaksiran matematikCik Niz
 
Contoh soalan dan jawapan Algebra
Contoh soalan dan jawapan AlgebraContoh soalan dan jawapan Algebra
Contoh soalan dan jawapan Algebrafarisiman0821
 
Laporan lawatan Sambil Belajar
Laporan lawatan Sambil BelajarLaporan lawatan Sambil Belajar
Laporan lawatan Sambil BelajarMat Yus
 
31028454 soalan-peperiksaan-matematik-tingkatan-1-kertas-2[1] real
31028454 soalan-peperiksaan-matematik-tingkatan-1-kertas-2[1] real31028454 soalan-peperiksaan-matematik-tingkatan-1-kertas-2[1] real
31028454 soalan-peperiksaan-matematik-tingkatan-1-kertas-2[1] realMarhaizan Sulaiman
 
100 soalan Matematik Ting1
100 soalan Matematik Ting1100 soalan Matematik Ting1
100 soalan Matematik Ting1Roiamah Basri
 
The Science of Memorable Presentations
The Science of Memorable PresentationsThe Science of Memorable Presentations
The Science of Memorable PresentationsEthos3
 

En vedette (14)

Kertas kerja kursus olimpiad
Kertas kerja kursus olimpiadKertas kerja kursus olimpiad
Kertas kerja kursus olimpiad
 
Timms pisa
Timms pisaTimms pisa
Timms pisa
 
Bab1 KBAT nombor berarah
Bab1 KBAT nombor berarah Bab1 KBAT nombor berarah
Bab1 KBAT nombor berarah
 
OMK 2016
OMK 2016OMK 2016
OMK 2016
 
Soalan peperiksaan pertengahan tahun matematik tingkatan 1
Soalan peperiksaan pertengahan tahun matematik tingkatan 1Soalan peperiksaan pertengahan tahun matematik tingkatan 1
Soalan peperiksaan pertengahan tahun matematik tingkatan 1
 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanika
 
Beams Latest 24 Mac 2010 Edited Version
Beams Latest 24 Mac 2010   Edited VersionBeams Latest 24 Mac 2010   Edited Version
Beams Latest 24 Mac 2010 Edited Version
 
Perfect Score Addmath SPM 2013
Perfect Score Addmath SPM 2013Perfect Score Addmath SPM 2013
Perfect Score Addmath SPM 2013
 
Kemahiran berfikir aras tinggi dalam pentaksiran matematik
Kemahiran berfikir aras tinggi dalam pentaksiran matematikKemahiran berfikir aras tinggi dalam pentaksiran matematik
Kemahiran berfikir aras tinggi dalam pentaksiran matematik
 
Contoh soalan dan jawapan Algebra
Contoh soalan dan jawapan AlgebraContoh soalan dan jawapan Algebra
Contoh soalan dan jawapan Algebra
 
Laporan lawatan Sambil Belajar
Laporan lawatan Sambil BelajarLaporan lawatan Sambil Belajar
Laporan lawatan Sambil Belajar
 
31028454 soalan-peperiksaan-matematik-tingkatan-1-kertas-2[1] real
31028454 soalan-peperiksaan-matematik-tingkatan-1-kertas-2[1] real31028454 soalan-peperiksaan-matematik-tingkatan-1-kertas-2[1] real
31028454 soalan-peperiksaan-matematik-tingkatan-1-kertas-2[1] real
 
100 soalan Matematik Ting1
100 soalan Matematik Ting1100 soalan Matematik Ting1
100 soalan Matematik Ting1
 
The Science of Memorable Presentations
The Science of Memorable PresentationsThe Science of Memorable Presentations
The Science of Memorable Presentations
 

Similaire à Soalan Jawapan Omk 2007

Mc Ex[1].5 Unit 5 Quadratic Equations
Mc Ex[1].5  Unit 5 Quadratic EquationsMc Ex[1].5  Unit 5 Quadratic Equations
Mc Ex[1].5 Unit 5 Quadratic Equationsguest9f21a4
 
Problems and solutions, inmo 2011
Problems and solutions, inmo 2011Problems and solutions, inmo 2011
Problems and solutions, inmo 2011askiitians
 
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
MIT Math Syllabus 10-3 Lesson 7: Quadratic equationsMIT Math Syllabus 10-3 Lesson 7: Quadratic equations
MIT Math Syllabus 10-3 Lesson 7: Quadratic equationsLawrence De Vera
 
Problems and solutions inmo-2012
Problems and solutions  inmo-2012Problems and solutions  inmo-2012
Problems and solutions inmo-2012askiitians
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1APEX INSTITUTE
 
Peperiksaan pertengahan tahun t4 2012 (2)
Peperiksaan pertengahan tahun t4 2012 (2)Peperiksaan pertengahan tahun t4 2012 (2)
Peperiksaan pertengahan tahun t4 2012 (2)normalamahadi
 
imc-2018-s.pdf
imc-2018-s.pdfimc-2018-s.pdf
imc-2018-s.pdfbhartanto5
 
Solving Quadratic-Equation.pptx
Solving Quadratic-Equation.pptxSolving Quadratic-Equation.pptx
Solving Quadratic-Equation.pptxSusan Palacio
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationVer Louie Gautani
 
Bca1030 basic mathematics
Bca1030  basic mathematicsBca1030  basic mathematics
Bca1030 basic mathematicssmumbahelp
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi indu psthakur
 

Similaire à Soalan Jawapan Omk 2007 (20)

Mc Ex[1].5 Unit 5 Quadratic Equations
Mc Ex[1].5  Unit 5 Quadratic EquationsMc Ex[1].5  Unit 5 Quadratic Equations
Mc Ex[1].5 Unit 5 Quadratic Equations
 
Algebra
AlgebraAlgebra
Algebra
 
FUNÇÃO EXPONENCIAL E LOGARÍTMICA
FUNÇÃO EXPONENCIAL E LOGARÍTMICAFUNÇÃO EXPONENCIAL E LOGARÍTMICA
FUNÇÃO EXPONENCIAL E LOGARÍTMICA
 
Problems and solutions, inmo 2011
Problems and solutions, inmo 2011Problems and solutions, inmo 2011
Problems and solutions, inmo 2011
 
Quadratic equation
Quadratic equation Quadratic equation
Quadratic equation
 
Assign1 21314-sol
Assign1 21314-solAssign1 21314-sol
Assign1 21314-sol
 
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
MIT Math Syllabus 10-3 Lesson 7: Quadratic equationsMIT Math Syllabus 10-3 Lesson 7: Quadratic equations
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
 
Problems and solutions inmo-2012
Problems and solutions  inmo-2012Problems and solutions  inmo-2012
Problems and solutions inmo-2012
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
 
Maths04
Maths04Maths04
Maths04
 
Peperiksaan pertengahan tahun t4 2012 (2)
Peperiksaan pertengahan tahun t4 2012 (2)Peperiksaan pertengahan tahun t4 2012 (2)
Peperiksaan pertengahan tahun t4 2012 (2)
 
Đề Thi HK2 Toán 8 - THCS Nguyễn Hữu Thọ
Đề Thi HK2 Toán 8 - THCS Nguyễn Hữu ThọĐề Thi HK2 Toán 8 - THCS Nguyễn Hữu Thọ
Đề Thi HK2 Toán 8 - THCS Nguyễn Hữu Thọ
 
imc-2018-s.pdf
imc-2018-s.pdfimc-2018-s.pdf
imc-2018-s.pdf
 
Algebra
Algebra Algebra
Algebra
 
Solving Quadratic-Equation.pptx
Solving Quadratic-Equation.pptxSolving Quadratic-Equation.pptx
Solving Quadratic-Equation.pptx
 
Advance algebra
Advance algebraAdvance algebra
Advance algebra
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic Equation
 
Bca1030 basic mathematics
Bca1030  basic mathematicsBca1030  basic mathematics
Bca1030 basic mathematics
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
Chithra
ChithraChithra
Chithra
 

Plus de Saripah Ahmad Mozac (20)

Dignostik 1
Dignostik 1Dignostik 1
Dignostik 1
 
Modul inspirasi ya peim
Modul inspirasi ya peimModul inspirasi ya peim
Modul inspirasi ya peim
 
2011 add math_p12
2011 add math_p122011 add math_p12
2011 add math_p12
 
Buku kajian tindakan kpm
Buku kajian tindakan kpmBuku kajian tindakan kpm
Buku kajian tindakan kpm
 
Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222Spm add math 2009 paper 1extra222
Spm add math 2009 paper 1extra222
 
Kebarangkalian ppt
Kebarangkalian pptKebarangkalian ppt
Kebarangkalian ppt
 
Chepter 1 function 2013
Chepter 1   function 2013Chepter 1   function 2013
Chepter 1 function 2013
 
Pembestarian MOZAC
Pembestarian MOZACPembestarian MOZAC
Pembestarian MOZAC
 
Pencapaian Bidang Sains & Matematik
Pencapaian Bidang Sains & MatematikPencapaian Bidang Sains & Matematik
Pencapaian Bidang Sains & Matematik
 
Taklimat PKP MOZAC
Taklimat PKP MOZAC Taklimat PKP MOZAC
Taklimat PKP MOZAC
 
Pencapaian Bidang Sains & Math
Pencapaian Bidang Sains & MathPencapaian Bidang Sains & Math
Pencapaian Bidang Sains & Math
 
Bidang Vokasional
Bidang VokasionalBidang Vokasional
Bidang Vokasional
 
Bidang Kemanusiaan
Bidang KemanusiaanBidang Kemanusiaan
Bidang Kemanusiaan
 
Taklimat Bidang Teknik & Vokasional
Taklimat Bidang Teknik & VokasionalTaklimat Bidang Teknik & Vokasional
Taklimat Bidang Teknik & Vokasional
 
Taklimat Jejak Prestasi oleh Tuan Pengetua
Taklimat Jejak Prestasi oleh Tuan PengetuaTaklimat Jejak Prestasi oleh Tuan Pengetua
Taklimat Jejak Prestasi oleh Tuan Pengetua
 
Perhimpunan 18 jun 2012 MOZAC
Perhimpunan 18 jun 2012 MOZACPerhimpunan 18 jun 2012 MOZAC
Perhimpunan 18 jun 2012 MOZAC
 
Taklimat mozac 9.1.2012 saripah
Taklimat mozac 9.1.2012   saripahTaklimat mozac 9.1.2012   saripah
Taklimat mozac 9.1.2012 saripah
 
Perhimpunan Mozac Pertama 2012
Perhimpunan Mozac Pertama 2012Perhimpunan Mozac Pertama 2012
Perhimpunan Mozac Pertama 2012
 
Kk guru cemerlang jitra
Kk guru cemerlang jitraKk guru cemerlang jitra
Kk guru cemerlang jitra
 
Mgc
MgcMgc
Mgc
 

Soalan Jawapan Omk 2007

  • 1. SULIT 2 OMK 2007 BONGSU SKEMA PENYELESAIAN BAHAGIAN A (12 Markah) SOALAN A1 BM Seorang lelaki memandu pada kelajuan 90 km/j. Apabila menyedari dia telah terlewat, dia meningkatkan kelajuannya kepada 110 km/j dan melengkapkan perjalanannya sejauh 395 km dalam masa 4 jam. Berapa lamakah dia memandu pada kelajuan 90 km/j? BI A man was driving at 90km/h. Realizing that he was late, he increased his speed to 110km/h and completed his journey of 395 km in 4 hrs. For how long did he drive at 90 km/h? PENYELESAIAN SOALAN A1 Let the time he drives at 90 km/hr = t and the time he drives at 110 km/h = 4 – t So, 90t + 110(4 – t) = 395 20t = 45 t = 2.25 jam atau 2 jam 15 minit atau 135 minit t = 2.25 jam atau Jawapan: 2 jam 15 minit atau 135 minit SOALAN A2 BM Misalkan ABCD satu segiempat selari dengan E satu titik di atas garis AB dengan keadaan 3BE = 2DC. Garis CE dan garis BD bersilang di titik Q. Jika luas ∆DQC ialah 36, cari luas ∆BQE. BI Let ABCD be a parallelogram where E is a point on AB such that 3BE = 2DC. The lines CE and BD intersect at the point Q. If the area of ∆DQC is 36, find the area of ∆BQE. PENYELESAIAN SOALAN A2 A E B Q D C
  • 2. SULIT 3 OMK 2007 BONGSU ∆DQC and ∆BQE are similar Q B h E h’ D C BE 2 h 2 = ⇒ = DC 3 h' 3 1 Area of ∆DQC = DC × h = 36 ⇒ DC × h = 72 2 1 1 2 2 2 2 Area of ∆BQE = BE × h = × DC × h' = DC × h' = × 72 = 16 2 2 3 3 9 9 OR Since ∆DQC and ∆BQE are similar, and since 3BE = 2DC, All corresponding sides the same ratio 2 BE QE BQ h 2 ∆BQE ⎛ 2 ⎞ 4 = = = = ∴ =⎜ ⎟ = DE QC DQ h' 3 ∆DQC ⎝ 3 ⎠ 9 Thus area of ∆BQE = 4 9 area ∆DQC = 16 Jawapan: 16 SOALAN A3 BM Selesaikan 200520062007 2 − 200520062006 × 200520062008 . BI Solve 200520062007 2 − 200520062006 × 200520062008 . PENYELESAIAN SOALAN A3 Jika t = 200520062007 maka 200520062007 2 − 200520062006 × 200520062008 = t 2 − (t − 1)(t + 1) = t 2 − ( t 2 − 1 ) = 1 Jawapan: 1
  • 3. SULIT 4 OMK 2007 BONGSU SOALAN A4 BM 1 1 Misalkan 0 < x < 1 . Jika A= x , B= x 2 , C= dan D= 2 susunkan x x daripada nilai yang terkecil kepada yang terbesar. BI 1 1 Let 0 < x < 1 . If A= x , B= x 2 , C= and D= 2 arrange them from the x x smallest to the largest value. PENYELESAIAN SOALAN A4 0 < x < 1 ⇒ x2 < x 1 0 < x <1⇒ >1 x 1 1 x2 < x ⇒ 2 > x x 1 1 ∴ 0 < x2 < x < 1 < < 2 x x Therefore the arrangements are: BACD Jawapan: BACD SOALAN A5 BM 1 1 Cari integer x , y dan z yang memenuhi xy + = yz + dengan x ≠ z . z x BI 1 1 Find integers x , y and z satisfying xy + = yz + where x ≠ z . z x PENYELESAIAN SOALAN A5 1 1 1 1 z−x xy + = yz + ⇒ ( x − z ) y = − = ⇒ xyz = −1. z x x z xz Since x , y , z are integers and x ≠ z , the only possibilities are ( x , y , z ) = ( 1,1, − 1 ) or ( x , y , z ) = ( −1,1,1 ) . ( x , y , z ) = ( 1,1, − 1 ) Jawapan: atau ( x , y , z ) = ( −1,1,1 )
  • 4. SULIT 5 OMK 2007 BONGSU SOALAN A6 BM 20 orang menggali sebuah kolam ikan selama 12 hari jika mereka bekerja selama 6 jam sehari. Berapakah bilangan hari yang diperlukan untuk menggali kolam yang sama jika 4 orang bekerja selama 5 jam sehari? BI 20 persons dig a fish pond in 12 days if they work 6 hours per day. How many days is required to dig the same pond if 4 persons work for 5 hours per day? PENYELESAIAN SOALAN A6 20 × 6 × 12 is for one work done Let x be the number of days required by 4 persons working for 5 hours per day 20 × 6 ×12 So, x = = 72 days 4×5 Jawapan: 72 hari
  • 5. SULIT 6 OMK 2007 BONGSU BAHAGIAN B (18 Markah) SOALAN B1 BM Dengan menggunakan angka 1, 2, 3, 6, 7, 9, 0 sahaja, tentukan angka mana yang boleh dipadankan dengan huruf di bawah supaya hasil tambahnya adalah betul. P A K + M A K P I U T BI Using only the numbers 1, 2, 3, 6, 7, 9, 0, find which number goes with each letter in the addition problem below to make it correct. P A K + M A K P I U T PENYELESAIAN SOALAN B1 Hasiltambah tiga digit ≤ 2000 jadi P=1, M=9 I=0. U dan T tidak boleh 4 K tidak boleh 7 atau 2. Mak ayang tiggal ialah 3, 6 . Kalau K=3 maka T=6, dan A=2 Jika K=6 maka A=3, dan T=2 Note: Kaedah cuba jaya tak diterima. ATAU K + K = 2K = T ⇒ T must be an even number T = mod 2, 6, 0, but T ≠ mod 0 because then K = T ∴ T = mod 2, 6 ⇒ K = 1, 3, 6 1 Likewise, 2A = U If T < 10, then U is even If T > 10, then U is odd 1 In both cases, A = 1, 3, 6 Also P + M = I = 10(P) + I < 20 So P< 2, that is, P = 1 1 Test for all possibilities: K, A ≠ 1, because P = 1 If K = 3, T =6, then A = 3 or 6 which is not possible ∴ K = 6, T = 12 mod 10 = 2 A =3, U = 3 + 3 + 1 = 7 because T > 10
  • 6. SULIT 7 OMK 2007 BONGSU Since P = 1, M= 9 and I = 10 mod 10 = 0 ∴ PAK 1 3 6 + MAK + 9 3 6 2 PIUT 1 0 7 2 Note: Kaedah cuba jaya tak diterima. SOALAN B2 BM Cari jumlah sudut-sudut a+b+c+d+e+f+g+h dalam rajah berikut. a b 300 c d e f g h BI Find the sum of angles a+b+c+d+e+f+g+h in the following diagram. a b 300 c d e f g h
  • 7. SULIT 8 OMK 2007 BONGSU PENYELESAIAN SOALAN B2 a b 300 E c A B d C e D f g h It is clear that A+B+E = π C+D+E = π B+a+c = π A+b+d = π 2 C+e+g = π D+f+h = π Hence {a+b+c+d+e+f+g+h} + {A+B+C+D} = 4 π {a+b+c+d+e+f+g+h} + 2 π -2E = 4 π . 4 Since E = 30 o , thus {a+b+c+d+e+f+g+h} = 420 o
  • 8. SULIT 9 OMK 2007 BONGSU SOALAN B3 ⎛ 1 ⎞ Diberi 8⎜ y 2 + ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 cari semua nilai y 2 + 1 . ⎜ ⎟ BM ⎜ ⎜ y⎟ ⎝ y2 ⎟ ⎠ ⎝ ⎠ y2 ⎛ 1 ⎞ Given 8⎜ y 2 + ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 find all the values of y 2 + 1 . ⎜ ⎟ BI ⎜ ⎜ y⎟ ⎝ y2 ⎟ ⎠ ⎝ ⎠ y2 PENYELESAIAN SOALAN B3 ⎛ 1 ⎞ 8⎜ y 2 + ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 ⎜ ⎟ ⎜ 2⎟ ⎜ y⎟ ⎝ y ⎠ ⎝ ⎠ 1 1 3 Let u = y + ⇒ u 2 − 2 = y 2 + . y y2 8( u 2 − 2 ) − 56u + 112 = 0 8u 2 − 56u + 96 = 0 u 2 − 7u + 12 = 0 ( u − 3 )( u − 4 ) = 0 1 u = 3, 4 1 y2 + = 16 − 2 atau 9 − 2 y2 2 = 14 7
  • 9. SULIT 2 OMK 2007 MUDA SKEMA PENYELESAIAN BAHAGIAN A (12 Markah) SOALAN A1 BM Diberi x + y = 2 dan 2 xy − z 2 = 1 . Dapatkan penyelesaian integer untuk persamaan-persamaan ini. BI Given x + y = 2 and 2 xy − z 2 = 1 . Find the integer solutions of the equations. PENYELESAIAN SOALAN A1 x+y = 2 and 2 xy − z 2 = 1 leads to 2 ( x − 1) 2 + z 2 = 1 , hence integer solutions are (1,1,1),(1,1,-1) Jawapan: (1,1,1),(1,1,-1) SOALAN A2 BM Dalam suatu kejohanan sukan yang berlangsung selama 4 hari, terdapat n pingat untuk dimenangi. Pada hari pertama, 1/5 daripada n pingat dimenangi. Pada hari kedua, 2/5 daripada baki pingat pada hari pertama dimenangi. Pada hari ketiga, 3/5 daripada baki pingat pada hari kedua dimenangi. Pada hari keempat, 24 pingat dimenangi. Berapakah jumlah pingat kesemuanya? BI In a sport’s tournament lasting for 4 days, there are n medals to be won. On the first day, 1/5 of the n medals are won. On the second day, 2/5 of the remainder from the first day are won. On the third day, 3/5 of the remainder from the second day are won. On the final day, 24 medals are won. What was the total number of medals? PENYELESAIAN SOALAN A2 Let Ti be the number of medals won on the i th day, i = 1,2,3,4. Then 1 T1 = n , 5 2 8n T2 = ( n − T1 ) = , 5 25 T3 = (n − (T 1+T2 )) = 3 36n . 5 125 T4 = 24.
  • 10. SULIT 3 OMK 2007 MUDA T1 + T2 + T3 + T4 = n 101n + 24 = n 125 24n = 24 125 ∴ n = 125 Jawapan: n=125 SOALAN A3 BM Misalkan 2xyz7 suatu nombor lima angka sedemikian hingga hasil darab angka-angka tersebut ialah sifar dan hasil tambah angka-angka tersebut pula boleh dibahagikan dengan 9. Cari bilangan nombor-nombor tersebut. BI Let 2xyz7 be a five-digit number such that the product of the digits is zero and the sum of the digits is divisible by 9. Find how many such numbers. PENYELESAIAN SOALAN A3 One of the digits must be zero. The sum of the other two digits must be divisible by 9. Possible pairs are : (0,0),(0,9),(9,9),(1,8),(2,7),(3,6),(4,5). The total number of such numbers with the given pair : (0,0) 1, (0,9) 3, (9,9) 3, (1,8) 6, (2,7) 6, (3,6) 6, (4,5) 6. There are 31 such numbers Jawapan: 31 SOALAN A4 BM Misal ABCD sebagai suatu segiempat tepat. Garis DP memotong pepenjuru AC pada Q dan membahagikannya pada nisbah 1:4. Jika luas segitiga APQ satu unit persegi, tentukan luas segiempat tersebut. BI Let ABCD be a rectangle. The line DP intersects the diagonal AC at Q and divides it in the ratio of 1:4. If the area of triangle APQ is one unit square, determine the area of the rectangle.
  • 11. SULIT 4 OMK 2007 MUDA PENYELESAIAN SOALAN A4 A P B Q D C Biar tinggi segitiga APQ ialah x, dan tinggi segitiga AQP ialah y. Segitiga APQ dan segitiga CDQ adalah sebentuk, maka AP: DC = AQ:QC = x:y = 1: 4. Luas segiempat DC (x+y) = 4AP (x + 4x) = 20 AP.x = 40 (Luas segitiga APQ) = 40 Jawapan: 40 SOALAN A5 BM Cari integer terkecil yang memenuhi syarat apabila dibahagi dengan 2 meninggalkan baki 1, apabila dibahagi dengan 3 meninggalkan baki 2, apabila dibahagi dengan 4 meninggalkan baki 3 dan apabila dibahagi dengan 5 meninggalkan baki 4. BI Find the smallest integer such that if divided by 2 leaves a remainder of 1, if divided by 3 leaves a remainder of 2, if divided by 4 leaves a remainder of 3, and if divided by 5 leaves a remainder of 4. PENYELESAIAN SOALAN A5 Let N be the integer. Then N = 2q1 + 1 = 3q2 + 2 = 4q3 + 3 = 5q4 + 4 Observe that N + 1 = 2q1 + 2 = 3q2 + 3 = 4q3 + 4 = 5q4 + 5 = 2(q1 + 1) = 3(q2 + 1) = 4(q3 + 1) = 5(q4 + 1) ∴ 2|N + 1, 3|N+1, 4|N + 1 dan 5|N+1 ⇒ N + 1 = LCM (2, 3, 4, 5) = 60 ∴ N = 59 Jawapan: 59
  • 12. SULIT 5 OMK 2007 MUDA SOALAN A6 BM Andaikan f suatu fungsi ditakrif pada integer sedemikian f(2n) = -2f(n), f(2n+1)= f(n) -1, dan f(0) = 2. Cari nilai f(2007). BI Let f be a function defined on integers such that f(2n) = - 2f(n), f(2n+1) = f(n)-1, and f(0) = 2. Find the value of f(2007). PENYELESAIAN SOALAN A6 f(2007) = f(1003) -1 = f(501 )-2 = f(250 ) -3 = -2f(125)-3 = -2f(62)-1 = 4f(31) - 2 =4 f(15) - 6 = 4f(7) - 10 =4 f(3)-14 = 4f(1) -18 = -14 Jawapan: -14
  • 13. SULIT 6 OMK 2007 MUDA BAHAGIAN B (18 Markah) SOALAN B1 ⎛ 1 ⎞ Diberi 8⎜ y 2 + ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 cari semua nilai y 2 + 1 . ⎜ ⎟ BM ⎜ ⎜ y⎟ ⎝ y2 ⎟ ⎠ ⎝ ⎠ y2 ⎛ 1 ⎞ Given 8⎜ y 2 + ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 find all the values of y 2 + 1 . ⎜ ⎟ BI ⎜ ⎜ y⎟ ⎝ y2 ⎟ ⎠ ⎝ ⎠ y2 PENYELESAIAN SOALAN B1 ⎛ 1 ⎞ 8⎜ y 2 + ⎟ − 56⎛ y + 1 ⎞ + 112 = 0 ⎜ ⎟ ⎜ ⎜ y⎟ ⎝ y2 ⎟ ⎠ ⎝ ⎠ 1 1 3 Let u = y + ⇒ u 2 − 2 = y 2 + . y y2 8( u 2 − 2 ) − 56u + 112 = 0 8u 2 − 56u + 96 = 0 u 2 − 7u + 12 = 0 ( u − 3 )( u − 4 ) = 0 1 u = 3, 4 1 y2 + = 16 − 2 atau 9 − 2 y2 2 = 14 7 SOALAN B2 BM Satu sisi sebuah segitiga berukuran 4 cm. Dua sisi yang lain berukuran dalam nisbah 1:3. Cari luas yang terbesar untuk segitiga ini. BI One side of a triangle is 4cm. The other two sides are in the ratio 1:3. What is the largest area of the triangle? PENYELESAIAN SOALAN B2 With Heron’s formula the area of the triangle with sides a, b , c is A= s ( s − a )( s − b )( s − c ) 2
  • 14. SULIT 7 OMK 2007 MUDA Where s = a + b + c 2 Let a = 4, b = x, then c = 3x so s = 2 + 2x, hence 2 A = ( 2 + 2 x )( 2 x − 2 )( 2 + x )( 2 − x ) = 2 ( x 2 − 1 )( 4 − x 2 ) A is maximum when x 2 = 5 , largest area = 3. 2 2 SOALAN B3 BM Biar f , g dua fungsi yang tertakrif atas [0 , 2c] dengan c > 0 . Tunjukkan bahawa wujud x , y ∈ [0, 2c] supaya xy − f ( x ) + g ( y ) ≥ c 2 . BI Let f , g be two functions defined on [0 , 2c] where c > 0 . Show that there exists x , y ∈ [0, 2c] such that xy − f ( x ) + g ( y ) ≥ c2 . PENYELESAIAN SOALAN B3 Let h( x , y ) = xy − f ( x ) + g( y ) . Suppose that h( x , y ) < c 2 for all 0 ≤ x , y ≤ 2c . Then 2 h( x1 , y1 ) + h( x2 , y 2 ) + h( x3 , y3 ) + h( x4 , y 4 ) < 4c 2 for all 0 ≤ xi , yi ≤ 2c ( i = 1, 2, 3, 4 ). However, by the triangle inequality, we have h( 0 ,0 ) + h( 0 ,2c ) + h( 2c ,0 ) + h( 2c ,2c ) 2 ≥ h( 0 ,0 ) − h( 0 ,2c ) − h( 2c ,0 ) + h( 2c ,2c ) = 4c 2 1 which is a contradiction. Hence there exists x , y ∈ [ 0 ,2c ] such that 1 xy − f ( x ) + g ( y ) ≥ c 2 . Note: Jika jawapan shj tanpa jalan kerja beri 2 markah shj.
  • 15. SULIT 2 OMK 2007 SULONG SKEMA PENYELESAIAN BAHAGIAN A (12 Markah) SOALAN A1 BM Misalkan a = 6 ,..., a = 6 a n −1 . Cari baki apabila a 1 n 100 dibahagi dengan 11. BI Let a1 = 6 ,…, a n = 6 a n −1 . Find the remainder when a100 is divided by 11. PENYELESAIAN SOALAN A1 Fermat’s Little Theorem states that if p is prime and p is not divisible by a, then a p −1 ≡ 1 mod p . Since 11 is prime and not divisible by 6, then 610 ≡ 1 mod 11 and 6 n ≡ 6 mod 10 for all positive n ie 6 n = 6 + 10 t for some t. Thus ( ) a100 ≡ 6 a99 ≡ 6 6 +10 t ≡ 6 6 610 t ≡ 6 mod 11 Hence the remainder is 6. Jawapan: 5 SOALAN A2 BM 1 Misalkan −1 < y < 0 < x < 1 . Jika A = x 2 y , B = , C = y 2 x dan x2 y 1 D= , susunkan daripada nilai yang terkecil kepada yang terbesar. xy 2 BI 1 1 Let −1 < y < 0 < x < 1 . If A= x 2 y , B= 2 , C= y 2 x and D= 2 , x y xy arrange them from the smallest to the greatest value PENYELESAIAN SOALAN A2 −1 < y < 0 < x < 1 ⇒ − 1 < x 2 y < 0 1 −1 < x 2 y < 0 ⇒ < −1 x2 y −1 < y < 0 < x < 1 ⇒ 0 < xy 2 < 1 1 0 < xy 2 < 1 ⇒ >1 xy 2 1 1 ∴ 2 < −1 < x 2 y < 0 < xy 2 < 1 < 2 x y xy Therefore the arrangement are: BACD Jawapan: BACD
  • 16. SULIT 3 OMK 2007 SULONG SOALAN A3 BM Satu sisi sebuah segitiga berukuran 4 cm. Dua sisi yang lain berukuran dalam nisbah 1:3. Cari luas yang terbesar untuk segitiga ini. BI One side of a triangle is 4 cm. The other two sides are in the ratio 1:3. Find the largest area of the triangle. PENYELESAIAN SOALAN A3 With Heron’s formula the area of the triangle with sides a, b , c is A = s ( s − a )( s − b )( s − c ) Where s = a + b + c 2 Let a = 4, b = x, then c = 3x so s = 2 + 2x, hence A = ( 2 + 2 x )( 2 x − 2 )( 2 + x )( 2 − x ) = 2 ( x 2 − 1 )( 4 − x 2 ) A is maximum when x 2 = 5 , largest area = 3. 2 Jawapan: 3 SOALAN A4 BM Permudahkan log24·log46 log68 ... log2n(2n+2). BI Simplify log24·log46 log68 ... log2n (2n+2) PENYELESAIAN SOALAN A4 log 2 6 log 2 8 log 2 2n log 2 (2n + 2) log 2 4 ⋅ log 4 6 ⋅ log 6 8 ⋅ ... ⋅ log 2 n (2n + 2) = log 2 4 ⋅ ⋅ ⋅ ... ⋅ ⋅ log 2 4 log 2 6 log 2 (2n − 2) log 2 2n = log 2 ( 2n + 2 ) atau log 2 2( n + 1 ) atau 1+ log 2 (n + 1) log 2 ( 2n + 2 ) atau Jawapan: log 2 2( n + 1 ) atau 1+ log 2 (n + 1)
  • 17. SULIT 4 OMK 2007 SULONG SOALAN A5 BM Tuliskan 580 sebagai hasil tambah dua nombor kuasa dua. BI Write 580 as a sum of two squares. PENYELESAIAN SOALAN A5 By prime power the composition, we have 580 = 2 2 .5.29 = 2 2 .( 2 2 + 1 ).( 5 2 + 2 2 ) = 2 2 (( 2.5 + 1.2 ) 2 + ( 2.2 − 1.5 )2 ) = 2 2 ( 12 2 + 12 ) = 24 2 + 2 2 Jawapan: 24 2 + 2 2 SOALAN A6 BM Misalkan f suatu fungsi tertakrif pada set integer bukan negatif yang memenuhi f(2n+1) = f(n), f(2n) = 1 – f(n). Cari f(2007). BI Let f be a function defined on non-negative integers satisfying the following conditions f(2n+1) = f(n), f(2n) = 1 – f(n). Find f(2007). PENYELESAIAN SOALAN A6 f(0) = ½; f(1) = f(0) = ½; and f(2) = 1 – f(1) = ½; By induction f(n) = ½; for any n ∴f(2007) = ½ Jawapan: 1 2
  • 18. SULIT 5 OMK 2007 SULONG BAHAGIAN B (18 Markah) SOALAN B1 BM Biar f , g dua fungsi yang tertakrif atas [0 , 2c] dengan c > 0 . Tunjukkan bahawa wujud x , y ∈ [0, 2c] supaya xy − f ( x ) + g ( y ) ≥ c 2 . BI Let f , g be two functions defined on [0 , 2c] where c > 0 . Show that there exists x , y ∈ [0, 2c] such that xy − f ( x ) + g ( y ) ≥ c2 . PENYELESAIAN SOALAN B1 Let h( x , y ) = xy − f ( x ) + g( y ) . Suppose that h( x , y ) < c 2 for all 0 ≤ x , y ≤ 2c . Then 2 h( x1 , y1 ) + h( x2 , y 2 ) + h( x3 , y3 ) + h( x4 , y 4 ) < 4c 2 for all 0 ≤ xi , yi ≤ 2c ( i = 1, 2, 3, 4 ). However, by the triangle inequality, we have h( 0 ,0 ) + h( 0 ,2c ) + h( 2c ,0 ) + h( 2c ,2c ) 2 ≥ h( 0 ,0 ) − h( 0 ,2c ) − h( 2c ,0 ) + h( 2c ,2c ) = 4c 2 1 which is a contradiction. Hence there exists x , y ∈ [ 0 ,2c ] such that 1 xy − f ( x ) + g ( y ) ≥ c 2 . Note: Jika jawapan shj tanpa jalan kerja beri 2 markah shj.
  • 19. SULIT 6 OMK 2007 SULONG SOALAN B2 BM Dua bulatan masing-masing berjejari 1 dan 2 bersentuhan sesama sendiri secara luaran. Suatu bulatan lain dilukis bersentuhan dengan dua bulatan ini dengan pusat-pusat bulatan membentuk suatu segitiga bersudut tepat. Cari jejari bulatan ketiga. BI Two circles of radius 1 and 2 respectively are tangential to one another externally. Another circle is drawn tangential to both circles such that their centres form a right angle triangle. Find the radius of the third circle. PENYELESAIAN SOALAN B2 Bulatan ketiga boleh bersentuh secara luaran atau kedua-dua bulatan yang diberi terterap dalam bulatan ketiga. 1 Two possiblities: If drawn externally: let the radius of third circle be r we have the sides of triangle r+1, r+2, and 3 1 we will have two possibilities of right angle, Then first possiblitiy ( r + 2 ) 2 = 3 2 + ( r + 1) 2 Solving for r we get r = 3 2 Next possibility , ( r + 2 ) 2 + ( r + 1 ) 2 = 3 2
  • 20. SULIT 7 OMK 2007 SULONG Solve for r we get 17 − 3 2 r = 2 If drawn enclosing the two circles, sides of triangle are r-1, r-2 and 3 1 Two possiblities ( r − 1 ) 2 = 3 2 + ( r − 2 ) 2 and ( r − 2 ) 2 + ( r − 1 ) 2 = 3 2 2 We get r = 6 and 17 + 3 r = 2 2 SOALAN B3 BM Tentukan nilai maksimum bagi m 2 + n 2 untuk m , n ∈ { ,2 ,3,… ,2007} dan 1 ( n 2 − mn − m 2 ) 2 = 1 BI Determine the maximum value of m 2 + n 2 where m , n ∈ { ,2 ,3,… ,2007} 1 and ( n 2 − mn − m 2 ) 2 = 1 PENYELESAIAN SOALAN B3 Let the pair be ( m , n ) satisfying both conditions. 2 If m = 1, then ( 1,1 ) and ( 2,1 ) are the only possibilities. Suppose that (n1 , n 2 ) is one 2 of the possible solutions with n2 > 1 . As n1( n1 −n 2 ) = n2 ± 1 > 0 then we must have n1 > n 2 . Now let n3 = n1 − n2 . Then (2 2 )2 ( 2 2 )2 1 = n1 − n1n 2 − n 2 = n2 − n2 n3 − n3 making (n 2 , n3 ) as one of possible solutions too with n3 > 1 . In the same way we conclude n2 > n3 . The same goes to (n3 , n4 ) such that n4 = n2 − n3 . Hence n1 > n2 > n3 > … and must terminate ie when nk = 1 for some k. Since (nk −1 ,1) is one of the possibilities, thus we must have nk −1 . It looks like the sequence goes 1,2,3,5,8, …, 987, 1597 (<2007), a truncated Fibonacci sequence. 3 It is clear that the largest possible pair is (1597, 987) 1