SlideShare une entreprise Scribd logo
1  sur  41
Presented to Dr.Ganesh Thiagarajan for CIV-ENGR 5501B Seismic Design of Structures
Date: April 25,2011
Jury : Mr. Shivaji Jagtap P.E.
       Mr. Shakeel




              Seismic Design of Structures
                        Project

                                                                             BY

                                                                  Anirudha Vasudevan

                                                                      Gunjan Shetye

                                                                       Harsh Shah
The Problem


Earthquakes don’t kill people ……but bad buildings do!!!!
                                   -- The Infrastructurist




Courtesy: Melissa Lafsky ,
http://www.infrastructurist.com/2010/01/20/earthquakes-dont-kill-
peoplebad-buildings-do-more-on-haitis-building-codes/
OBJECTIVES


 To analyze a 12 story steel frame building in Stockton, California using
  three methods of analysis in SAP 2000 :

              Equivalent lateral force (ELF) procedure.

              Three-dimensional, modal-response-spectrum analysis.

              Three-dimensional, modal time-history analysis.



 To report the results obtained from the above three methods and compare
  them with the FEMA 451 design example.
Why This Building??

 Highly irregular structure both in plan and elevation.

 Numerous Modeling challenges .

 Plenty of scope to learn the capabilities of SAP 2000.




                                                           Courtesy: Robot
                                                           Structural Analysis
                                                           Package
Description of The Structure

Special Moment                                             Girders range from W30X108
Frame of Structural                                        at roof to W30X132 at Level G
Steel as Lateral
Load Resisting
System


                                                                              25 ft.
                                                                              wide
                                                                              bays in Y-
                                                                              direction
Columns
range from
W24X146
at roof to
W24X229
                                                                              One-story
at Level G
                                                                              basement
                                                                              18ft below
                         30 ft. wide bays in X-direction                      grade
Ground Motion Parameters for Stockton
                            ,CA
Provisions Maps 3.3.1 and 3.3.2 NEHRP- (FEMA-450)

Spectral Response Accelerations:                        Ss = 1.25     S1 = 0.40

Site Class:                                             C (Assumption )

Site co-efficients:                                     Fa = 1.0 Fv = 1.4

Adjusted Spectral response                              SMS = 1.25    SM1 = 0.56
Accelerations:

Design spectral acceleration                            SDS = 0.833    SD1 = 0.373
parameters:

Ts=SD1/SDS = 0.373/0.833 = 0.45sec


  Maximum Considered Earthquake Ground Motion for the
 conterminous of United States of 0.2 sec Spectral
 Response Acceleration (5% of Critical Damping) –
 NEHRP2003 Fig. 3.3.1
Dynamic Properties

 Period of Vibration

Ta =1.59 sec
Cu = 1.4
Cu * Ta = 2.23 seconds
                                                         Courtesy: comp.uark.edu


 Damping

For steel structures damping ratio of 0.05 is appropriate.




                    Courtesy: edes.bris.ac.uk
Mass Distribution




                                                                Area masses on floor diaphragms (FEMA-451 Example 3.1)




                                                                Line masses on floor diaphragms (FEMA-451 Example 3.1)




                                                            Applied as Gravity Dead Load using Uniform
                                                           to Frame option in SAP.


                                                           Applied as Uniformly Distributed Loads in the
Diagram for computation of floor mass (FEMA-451 Example)
                                                           gravity direction.
Equivalent Lateral Force Analysis


                                 WHY ELF??
 For preliminary design purposes.

To asses the three dimensional response characteristics of the structure.

Most commonly used design procedure since the 1960s.
ELF Parameters


Seismic base shear
V = CsW                                       (NEHRP Provisions Eq 5.2.1)

Maximum spectral acceleration
Csmax = SDS/(R/I) = 0.833/(8/1) = 0.104       (NEHRP Provisions Eq 5.2.2)
R = 8 and I = 1

Cs = SD1/T(R/I) = 0.373/2.23 (8/1) = 0.021.   (NEHRP Provisions Eq 5.2.3)

And Cs shall not exceed 0.01.


Also, Csmin = 0.044ISDS = 0.037               (NEHRP Provisions Eq 5.4.1.1-2)
Equivalent Lateral Forces


                                                                                                ELF
                                       Fx = Cvx V
 Equivalent lateral Forces for buildings responding in X and Y directions based on NEHRP 2003

 Level       Wx         hx         k        wxhx^k       Cvx        V          Fx       Vx
    x       kips         ft                                        kips       kips     kips
  Roof     1656.5     155.5       1.86     19761048    0.16671     1124.5    187.5    187.464
   12     1595.67      143        1.86     16288013    0.13741     1124.5    154.5    341.981
   11     1595.67     130.5       1.86     13739744    0.11591     1124.5    130.3    472.324
   10     1595.67      118        1.86     11393145    0.09612     1124.5    108.1    580.406
    9       3401      105.5       1.86     19717698    0.16634     1124.5    187.1    767.459
    8      2232.6       93        1.86     10237389    0.08637     1124.5     97.1    864.577
    7      2232.6      80.5       1.86     7826926.5   0.06603     1124.5     74.3    938.827
    6      2232.6       68        1.86     5718439.1   0.04824     1124.5     54.2    993.076
    5      4325.8      55.5       1.86     7593664.1   0.06406     1124.5     72.0    1065.11
    4      3350.4       43        1.86     3658878.5   0.03087     1124.5     34.7    1099.82
    3      3350.4      30.5       1.86     1931498.4   0.01629     1124.5     18.3    1118.15
    2       3098        18        1.86      669712.3   0.00565     1124.5      6.4     1124.5
Totals     30666.9                        118536155       1
Accidental Torsion

Floor Diaphragms were modeled as infinitely rigid in-plane.

4 ksi concrete shell elements were used to represent diaphragm mass.




                                                                            ELF




                                                                        5 % eccentricity
Torsional Irregularity in X direction
                                                                                         δmax

       Computation for Torsional Irregularity with ELF Loads Acting in X Direction
                             (SAP 2000 Analysis Output)

Level δ1 (in.) δ2 (in.)     δavg (in.)    δmax (in.)      δmax/δavg       Irregularity
  R        6.03    6.19       6.11           6.19             1.01            none
 12        5.83    6.01       5.92           6.01             1.02            none
 11         5.5    5.72       5.61           5.72             1.02            none
 10        5.04    5.33       5.185          5.33             1.03            none
  9        4.54     4.8       4.67            4.8             1.03            none
  8        4.11    4.34       4.225          4.34             1.03            none
  7        3.61    3.81       3.71           3.81             1.03            none
  6        3.07    3.24       3.155          3.24             1.03            none
  5        2.55     2.7       2.625           2.7             1.03            none
  4        2.14    2.25       2.195          2.25             1.03            none
  3        1.71    1.79       1.75           1.79             1.02            none
  2        1.25     1.3       1.275           1.3             1.02            none
Tabulated displacements are not amplified by Cd. Analysis includes accidental torsion.
1 in. = 25.4mm.




                                                                                         δmin
Torsional Irregularity in Y direction

      Computation for Torsional Irregularity with ELF Loads Acting in Y Direction        δmax   δmin
                            (SAP 2000 Analysis Output)

Level δ1 (in.) δ2 (in.) δavg (in.)       δmax (in.)     δmax/δavg        Irregularity
  R       5.73    5.92       5.825          5.92            1.02             none
 12        5.6    5.79       5.695          5.79            1.02             none
 11       5.37    5.56       5.465          5.56            1.02             none
 10       5.06    5.24        5.15          5.24            1.02             none
  9        4.3    4.74        4.52          4.74            1.05             none
  8       3.96    4.27       4.115          4.27            1.04             none
  7       3.57    3.75        3.66          3.75            1.02             none
  6       3.14    3.18        3.16          3.18            1.01             none
  5       2.23     2.6       2.415           2.6            1.08             none
  4       1.78    2.09       1.935          2.09            1.08             none
  3       1.33    1.56       1.445          1.56            1.08             none
  2       0.86    1.02        0.94          1.02            1.09             none
Tabulated displacements are not amplified by Cd. Analysis includes accidental torsion.
1 in. =25.4mm.



            No Torsional Amplification Required
ELF Drifts in X Direction
           ELF Drift for Building Responding in X Direction
              (FEMA-451 Design Examples Table3.1-7)

Level       1             2             3             4           5
                                    Inelastic     Inealastic
        Total Drift   Story Drift     Story         Drift      Allowable
        from SAP      from SAP
          2000           2000         Drift     Times 0.568      Drift
           (in.)         (in.)        (in.)         (in.)        (in.)
 R         6.71          0.32         1.73         0.982           3
 12         6.4          0.45         2.48          1.41           3
 11        5.95          0.56         3.08          1.75           3                 ELF Drift for Building Responding in X Direction from
 10        5.39          5.39         3.38          1.92           3                                   SAP 2000
 9         4.77          0.59         3.22          1.83           3
 8         4.19          0.64         3.52            2            3       Level        1             2               3               4             5
 7         3.55          0.65         3.58          2.03           3
                                                                                   Total Drift   Story Drift   Inelastic Story Inealastic Drift Allowable
 6          2.9          0.63         3.44          1.95           3
                                                                                   from SAP      from SAP
 5         2.27          0.55           3            1.7           3                 2000           2000           Drift       Times 0.568       Drift
 4         1.73          0.55           3            1.7           3
                                                                                      (in.)         (in.)          (in.)          (in.)          (in.)
 3         1.18          0.54         2.94          1.67           3
                                                                            R         6.11          0.19          1.045           0.59             3
 2         0.65          0.65         3.55          2.02         4.32
                                                                            12        5.92          0.31          1.705           0.97             3
                                                                            11        5.61          0.43          2.365           1.34             3
                                                                            10       5.185          0.52           2.86           1.62             3
                                                                            9         4.67          0.45          2.475           1.41             3
                                                                            8        4.225          0.52           2.86           1.62             3
                                                                            7         3.71          0.56           3.08           1.75             3
                                                                            6        3.155          0.53          2.915           1.66             3
                                                                            5        2.625          0.43          2.365           1.34             3
                                                                            4        2.195          0.45          2.475           1.41             3
                                                                            3         1.75          0.48           2.64           1.50             3
                                                                            2        1.275         1.275          7.0125          3.98           4.32
ELF Drifts in Y Direction
ELF Drift for Building Responding in X Direction
      (FEMA-451 Design Examples Table3.1-7)

Level        1             2              3             4           5
                                      Inelastic     Inealastic
        Total Drift    Story Drift      Story         Drift      Allowable
        from SAP       from SAP
          2000           2000           Drift      Times 0.568     Drift
           (in.)          (in.)         (in.)          (in.)       (in.)
 R         6.01           0.22          1.21          0.687          3       ELF Drift for Building Responding in Y Direction
                                                                             from SAP 2000
 12        5.79           0.36          1.98           1.12          3
 11        5.43           0.45          2.48           1.41          3
 10        4.98           0.67          3.66           2.08          3        Level         1              2              3             4             5
 9         4.32           0.49           2.7           1.53          3                                                Inelastic
                                                                                       Total Drift    Story Drift       Story     Inealastic Drift Allowable
 8         3.83           0.57          3.11           1.77          3
                                                                                       from SAP
 7         3.26           0.58          3.19           1.81          3
                                                                                         2000        from SAP 2000      Drift      Times 0.568      Drift
 6         2.68           0.64          3.49           1.98          3
                                                                                          (in.)           (in.)          (in.)        (in.)         (in.)
 5         2.05           0.46          2.53           1.43          3
                                                                               R         5.825            0.13          0.715         0.41            3
 4         1.59           0.49          2.67           1.52          3
                                                                               12        5.695            0.23          1.265         0.72            3
 3          1.1           0.49           2.7           1.53          3
                                                                               11        5.465            0.32           1.76         1.00            3
 2         0.61           0.61          3.36           1.91        4.32
                                                                               10         5.15            0.63          3.465         1.97            3
                                                                               9          4.52            0.41          2.255         1.28            3
                                                                               8         4.115            0.46           2.53         1.44            3
                                                                               7          3.66             0.5           2.75         1.56            3
                                                                               6          3.16            0.75          4.125         2.34            3
                                                                               5         2.415            0.48           2.64         1.50            3
                                                                               4         1.935            0.49          2.695         1.53            3
                                                                               3         1.445            0.51          2.805         1.59            3
                                                                               2          0.94            0.94           5.17         2.94          4.32
Accurate period using Rayleigh Analysis

                                  ω=


       Rayleigh analysis for X-direction Period of Vibration                  Rayleigh analysis for Y-direction Period of Vibration


Lev   Drift,                                                        Level     Drift, δ    Force, F   Weight, W         δF           δ2W/g
 el      δ     Force, F   Weight, W      δF         δ2W/g                      (in.)       (kips)     (kips)       (in.-kips)   (in.-kips-sec2)
       (in.)    (kips)     (kips)    (in.-kips) (in.-kips-sec2)       R       5.825        186.9      1656          1088.7          145.42
 R     6.11     186.9      1656     1141.959        159.99            12      5.695         154       1598           877.0          134.13
 12    5.92      154       1598       911.68        144.94            11      5.465        129.9      1598           709.9          123.52
 11    5.61     129.9      1598      728.739        130.16            10       5.15        107.6      1598           554.1          109.69
 10   5.185     107.6      1598      557.906        111.18            9        4.52        186.3      3403           842.1          179.93
 9     4.67     186.3      3403      870.021        192.07            8       4.115        100.8      2330           414.8          102.11
 8    4.225     100.8      2330       425.88        107.64            7        3.66          77       2330           281.8           80.78
 7     3.71       77       2330       285.67         83.00            6        3.16         56.2      2330           177.6           60.21
 6    3.155      56.2      2330      177.311         60.02
                                                                      5       2.415         71.4      4323           172.4           65.25
 5    2.625      71.4      4323      187.425         77.09
                                                                      4       1.935         31.5      3066            61.0           29.71
 4    2.195      31.5      3066      69.1425         38.23
                                                                      3       1.445         16.6      3066            24.0           16.57
 3     1.75      16.6      3066        29.05         24.30
 2    1.275       6.3      3097       8.0325         13.03            2        0.94         6.3       3097            5.9             7.08
                                    5392.816       1141.65                                                         5209.34         1054.39
ω=(5392/1141)^0.5=2.17rad/sec. T=2π/ω=2.89sec 1.0in.=25.4mm , 1.0kip=4.45kN


                                                                    ω=(5209/1054)^0.5=2.22rad/sec. T=2π/ω=2.83 sec 1.0in.=25.4mm , 1.0kip=4.45kN
P-Delta Effects

Computation of P-Delta Effects for X-Direction Response                        Computation of P-Delta Effects for X-Direction Response
FEMA 451 Design Example                                                        from SAP 2000

 Level    hsx      Δ       PD       PL       PT       PX       VX       θX      Level    hsx       Δ       PD       PL       PT       PX       VX       θX
          (in.)   (in.)   (kips)   (kips)   (kips)   (kips)   (kips)                     (in.)    (in.)   (kips)   (kips)   (kips)   (kips)   (kips)
   R      150     1.73    1656.5   315      1971.5 1971.5 186.9        0.022      R      150     1.045 1656.5      315      1971.5 1971.5 186.9        0.013
  12      150     2.48    1595.8   315      1910.8 3882.3 340.9        0.034     12      150     1.705 1595.8      315      1910.8 3882.3 340.9        0.024
  11      150     3.08    1595.8   315      1910.8 5793.1 470.8        0.046     11      150     2.365 1595.8      315      1910.8 5793.1 470.8        0.035
  10      150     3.38    1595.8   315      1910.8 7703.9 578.4        0.055     10      150      2.86    1595.8   315      1910.8 7703.9 578.4        0.046

   9      150     3.22    3403     465      3868 11571.9 764.7         0.059      9      150     2.475    3403     465      3868 11571.9 764.7         0.045

   8      150     3.52    2330.8   465      2795.8 14367.7 865.8       0.071      8      150      2.86    2330.8   465      2795.8 14367.7 865.8       0.058

   7      150     3.58    2330.8   465      2795.8 17163.5 942.5       0.079      7      150      3.08    2330.8   465      2795.8 17163.5 942.5       0.068

   6      150     3.44    2330.8   465      2795.8 19959.3 998.8       0.083      6      150     2.915 2330.8      465      2795.8 19959.3 998.8       0.071

   5      150      3      4323.8   615      4938.8 24898.1 1070.2 0.085           5      150     2.365 4323.8      615      4938.8 24898.1 1070.2 0.067

   4      150      3      3066.1   615      3681.1 28579.2 1101.7 0.094           4      150     2.475 3066.1      615      3681.1 28579.2 1101.7 0.078

   3      150     2.94    3066.1   615      3681.1 32260.3 1118.2 0.103           3      150      2.64    3066.1   615      3681.1 32260.3 1118.2 0.092

   2      216     3.55    3097     615      3712 35972.3 1124.5 0.096             2      216     7.0125   3097     615      3712 35972.3 1124.5 0.189
ASCE 7 ELF Load Combinations
     Final Design Load Combinations
            1.37D + 0.5L + E
                0.73D+E

                 Four directions of seismic         forces
                 (+X,-X,+Y,-Y) were considered .

                 Total 8 possible combinations of direct
                 force plus accidental torsion were applied.

                  X direction forces + 30% Y direction
                 forces are applied.

                 X direction              5% accidental
                                           eccentricity

                 Y direction forces were applied without
                 eccentricity.
ELF Member forces

 Earthquake shears were obtained from SAP 2000 from gridline 1



                                                         Comparison of maximum Seismic Girder
                                                                        Shears
                                                        Girder                 FEMA 451 Design
                                                                  SAP 2000
                                                       Location                    Example
                                                        R-12        6.83            9.54
                                                        12-11       12.77           17.6
                                                        11-10       19.73           26.9
                                                         10-9       24.86           32.9
                                                         9-8        24.34           32.7
                                                         8-7        28.28            36
                                                         7-6        28.75           39.2
                                                         6-5        30.23           40.4
                                                         5-4        28.39           34.3
                                                         4-3        29.55           33.6
                                                         3-2        28.66            33
                                                         2-G        30.66            33
Modal-Response-Spectrum Analysis

I. Modal Analysis in SAP 2000
    • Mode Shapes
    • Period of vibration



              FEMA-451 Example SAP2000 Analysis
       Mode        Period          Period
                                                  MODE
                    (sec)            (sec)
                                                  SHAPES
        1          2.867             2.96         FEMA-451
        2          2.745             2.86         EXAMPLE
        3          1.565             1.79

        4          1.149             1.15

        5          1.074             1.08

        6          0.724             0.78

        7          0.697             0.67

        8          0.631             0.64

        9          0.434             0.47

        10         0.427             0.43
Mode Shapes from Modal Analysis in SAP2000




Mode 1       Mode 2       Mode 3       Mode 4       Mode 5
T=2.96 sec   T=2.86 sec   T=1.79 sec   T=1.15 sec   T=1.08 sec

Mode 6       Mode 7       Mode 8       Mode 9       Mode 10
T=0.78 sec   T=0.67 sec   T=0.64 sec   T=0.47 sec   T=0.43 sec
Response Spectrum Co-ordinates
                               _I__ = _1_
 SDS = 0.833 SD1 = 0.373        R      8
 To = 0.089sec Ts = 0.447sec   Modification




 Analysis using
Response Spectrum
Co-ordinates in SAP
2000.



 Combination of
Seismic motion in X
and Y direction is used.
Dynamic Base Shear

                    Story Shears from Modal-Response-Spectrum Analysis    Story Shears from Modal-Response-Spectrum Analysis
                    From FEMA-451 Example                                 From SAP 2000 analysis

                      Story   X Directn          Y Directn                  Story    X Directn              Y Directn

                             (SF =2.18)          (SF = 2.1)                         (SF =2.14)              (SF = 2.1)
Response spectrum             Unscaled Scaled    Unscaled     Scaled                 Unscaled     Scaled    Unscaled      Scaled
                               Shear    Shear      Shear      Shear                   Shear       Shear       Shear       Shear
analysis in SAP                (kips)   (kips)     (kips)     (kips)                   (kips)      (kips)     (kips)       (kips)
2000 for Time         R-12      82.5     180        79.2       167           R-12     72.11      154.3154     64.86      136.206
                    12 to 11    131      286       127.6       268         12 to 11   125.5       268.57      119.6       251.16
Period 2.87 sec     11 to 10 163.7       358       163.5       344         11 to 10   160.5       343.47     162.45      341.145
gives following     10 to 9    191.1     417        195        410          10 to 9   113.64     243.1896    173.97      365.337
                     9 t0 8    239.6     523       247.6       521           9 t0 8   185.78     397.5692    212.65      446.565
shears:                                                                     8 to 7    91.72      196.2808    181.65      381.465
                     8 to 7    268.4     586       277.2       583
                     7 to 6    292.5     638       302.1       635          7 to 6    300.03     642.0642     308.2       647.22
                     6 to 5    315.2     688        326        686          6 to 5   323.375     692.0225    333.97      701.337
                     5 to 4    358.6     783       371.8       782          5 to 4    372.93     798.0702    368.53      773.913
                     4 to 3    383.9     838       400.5       843          4 to 3   403.291     863.0427    401.18      842.478
                     3 to 2    409.4     894       426.2       897          3 to 2    425.94     911.5116    436.82      917.322
                     2 to G    437.7     956       454.6       956          2 to G    446.67     955.8738    458.12      962.052




ELF Base shear = 1124                                                  Factors for scaling Response Spectrum
kips for fundamental                                                   base shear to 85% base shear computed
period of T=2.23 sec                                                   in ELF
Response Spectrum Drifts in
                                          X-Direction
Response Spectrum Drift for Building Responding in X Direction
From FEMA-451 Example

                                          Scaled
 Level Total Drift from Scaled Total       Drift   Scaled Story   Allowable
           R.S. Analysis   Drift (in.)              Drift X Cd    Story Drift
                (in.)    [Col-1 X 2.18]   (in.)        (in.)         (in.)
   R           1.96           4.28        0.18         0.99            3
   12          1.88           4.1         0.26         1.43            3
   11          1.76           3.84         0.3         1.65            3
   10          1.62           3.54        0.33         1.82            3
    9          1.47           3.21        0.34         1.87            3
    8          1.32           2.87        0.36         1.98            3        Response Spectrum Drift for Building Responding in X Direction
                                                                                from SAP 2000
    7          1.15           2.51         0.4          2.2            3
    6         0.968           2.11        0.39         2.14            3
    5         0.789           1.72        0.38         2.09            3
    4         0.615           1.34        0.38         2.09            3         Level   Total Drift from Scaled Total Scaled Drift Scaled Story   Allowable
    3         0.439          0.958        0.42         2.31            3                  R.S. Analysis     Drift (in.)              Drift X Cd    Story Drift
    2         0.245          0.534        0.53         2.91          4.32                      (in.)      [Col-1 X 2.14]   (in.)        (in.)         (in.)
1 in. = 25.4 mm                                                                   R            1.93          4.1302       0.11         0.605            3
                                                                                  12           1.88          4.0232       0.17         0.935            3
                                                                                  11            1.8           3.852       0.22          1.21            3
                                                                                  10            1.7           3.638       0.23         1.265            3
                                                                                  9            1.59          3.4026       0.29         1.595            3
                                                                                  8            1.45           3.103       0.28          1.54            3
                                                                                  7            1.32          2.8248       0.32          1.76            3
                                                                                  6            1.17          2.5038       0.36          1.98            3
                                                                                  5              1             2.14         0.3         1.65            3
                                                                                  4            0.86          1.8404       0.34          1.87            3
                                                                                  3             0.7           1.498       0.41         2.255            3
                                                                                  2            0.51          1.0914       1.09         5.995          4.32
Response Spectrum Drifts in
                                            Y-Direction
Response Spectrum Drift for Building Responding in Y Direction
From FEMA-451 Example


 Level Total Drift from Scaled Total Scaled Drift Scaled Story Allowable
          R.S. Analysis     Drift (in.)            Drift X Cd    Story Drift
              (in.)       [Col-1 X 2.18]   (in.)      (in.)         (in.)
   R          1.84            3.87         0.12       0.66           3
  12          1.79            3.75         0.2        1.1            3
  11          1.69            3.55         0.24       1.32           3
  10          1.58            3.31         0.37       2.04           3
                                                                               Response Spectrum Drift for Building Responding in Y Direction
   9          1.4             2.94         0.29       1.6            3
                                                                               From SAP 2000
   8          1.26            2.65         0.33       1.82           3
   7          1.1             2.32         0.35       1.93           3          Level   Total Drift from Scaled Total     Scaled Drift Scaled Story Allowable
   6         0.938            1.97         0.38       2.09           3                    R.S. Analysis    Drift (in.)                 Drift X Cd   Story Drift
   5         0.757            1.59         0.32       1.76           3                        (in.)       [Col-1 X 2.1]      (in.)        (in.)        (in.)
   4         0.605            1.27         0.36        2             3            R           1.82           3.822           0.06        0.33           3
   3         0.432            0.908        0.39       2.14           3            12          1.79           3.759           0.13        0.715          3
   2         0.247            0.518        0.52       2.86          4.32          11          1.73           3.633           0.15        0.825          3
1 in. = 25.4 mm                                                                   10          1.66           3.486           0.32        1.76           3
                                                                                  9           1.51           3.171           0.23        1.265          3
                                                                                  8           1.4             2.94           0.27        1.485          3
                                                                                  7           1.27           2.667           0.29        1.595          3
                                                                                  6           1.13           2.373           0.49        2.695          3
                                                                                  5           0.9             1.89           0.32        1.76           3
                                                                                  4           0.75           1.575           0.38        2.09           3
                                                                                  3           0.57           1.197           0.4          2.2           3
                                                                                  2           0.38           0.798           0.79        4.345         4.32
P-Delta Effects

Computation of P-Delta Effects for X-Direction                               Computation of P-Delta Effects for X-Direction Response
Response from FEMA-451 Example                                              ffrom SAP 2000



Level hsx       Δ       PD       PL       PT       PX       VX       θX     Level    hsx       Δ       PD       PL       PT        PX        VX       θX
                                                                                    (in.)    (in.)    (kips)   (kips)   (kips)    (kips)    (kips)
       (in.)   (in.)   (kips)   (kips)   (kips)   (kips)   (kips)

  R    150     0.99    1656.5   315      1971.5 1971.5     180      0.013     R      150     0.605   1656.5    315      1971.5   1971.5    154.3154   0.01

 12    150     1.43    1595.8   315      1910.8 3882.3     286      0.024    12      150     0.935   1595.8    315      1910.8   3882.3     268.57    0.02
                                                                             11      150     1.21    1595.8    315      1910.8   5793.1     343.47    0.02
 11    150     1.65    1595.8   315      1910.8 5793.1     358      0.032

 10    150     1.82    1595.8   315      1910.8 7703.9     417      0.041    10      150     1.265   1595.8    315      1910.8   7703.9    243.1896   0.05

  9    150     1.87    3403     465      3868 11571.9      523      0.05      9      150     1.595    3403     465      3868     11571.9 397.5692     0.06

  8    150     1.98    2330.8   465      2795.8 14367.7    586      0.059     8      150     1.54    2330.8    465      2795.8   14367.7 196.2808     0.14

  7    150     2.2     2330.8   465      2795.8 17163.5    638      0.072     7      150     1.76    2330.8    465      2795.8   17163.5 642.0642     0.06

  6    150     2.14    2330.8   465      2795.8 19959.3    688      0.075     6      150     1.98    2330.8    465      2795.8   19959.3 692.0225     0.07

  5    150     2.09    4323.8   615      4938.8 24898.1    783      0.081     5      150     1.65    4323.8    615      4938.8   24898.1 798.0702     0.06

  4    150     2.09    3066.1   615      3681.1 28579.2    838      0.086     4      150     1.87    3066.1    615      3681.1   28579.2 863.0427     0.08

  3    150     2.31    3066.1   615      3681.1 32260.3    894      0.101     3      150     2.255   3066.1    615      3681.1   32260.3 911.5116     0.10

  2    216     2.91    3097     615      3712 35972.3      956      0.092     2      216     5.995    3097     615      3712     35972.3 955.8738     0.19
Torsion, Orthogonal Loading and
                  Load Combinations

Response Spectrum Analysis including accidental torsion and orthogonal loading
Effects in SAP 2000 for determining member design forces

 100 percent of scaled X spectrum acting in one direction, concurrent with 30
  percent of scaled Y spectrum in orthogonal direction.
 Similar analysis performed for larger loads in Y direction.
Member Design Forces

Design forces include 100 percent of the scaled X-direction spectrum added to 30
percent of scaled Y-direction spectrum and accidental torsion is added to combined
spectral loading.

                                                                                                          FEMA-451
                                                       SAP 2000 output for Shear forces                   Example
                                                              Scaled
                                             Shear Forces      Earth                    Scaled   Total
                                            from Response     quake     Accidental Accidental earthquak    Member
                                    Story      Spectrum        shear      Torsion       torsion e shear    forces
                                     level    Combinaton      forces Shear Force Shear force     force      (kips)
                                     R-12         2.03         4.344        0.43         0.37     4.71       9.9
                                   12 to 11       2.23         4.772        0.88         0.75     5.52       17.8
                                   11 to 10       7.58        16.221        1.35         1.15    17.37        26
                                   10 to 9        7.22        15.451        1.87         1.59    17.04       29.8
                                    9 to 8        8.03        17.184        1.83         1.56    18.74       26.6
                                    8 to 7        8.93        19.110        1.36         1.16    20.27        28
                                    7 to 6        9.68        20.715        1.51         1.28    22.00       30.9
                                    6 to5         8.69        18.597        1.78         1.51    20.11       32.3
                                    5 to 4        9.46        20.244        1.43         1.22    21.46       27.9
                                    4 to 3        10.1        21.614         1.1         0.94    22.55       28.8
                                    3 to 2       12.02        25.723        1.14         0.97    26.69       29.7
                                    2 to G       12.23        26.172         1.3         1.11    27.28       31.5
Modal Time History Analysis

 Structure analyzed for three different pairs of ground motion time-histories
 The emphasis here was to implement and understand Time-History approach




 Ground Motions Used for Analysis
Record Name   Orientation   Source Motion
  RecordA00        N-S          Lucern (Landers)
  RecordA90       E-W           Lucern (Landers)
  RecordB00        N-S       Corrolitos (Loma Prieta)
  RecordB90       E-W        Corrolitos (Loma Prieta)
  RecordC00        N-S        Dayhook (Tabas,Iran)
  RecordC90       E-W         Dayhook (Tabas,Iran)




                                                        Time History for Loma – Prieta used in SAP 2000
                                                        analysis
Modal Time History Analysis

 • Twelve individual time-history analysis performed in SAP 2000
 • 5% Damping considered
 • Maximum scaled base shears computed
Result Maxima from Time-History Analysis (Unscaled) from                     Result Maxima from Time-History Analysis (Scaled)
SAP 2000
                                                                              Analysis    Maximum Base       Required      Adjusted         Adjusted
 Analysis   Maximum Base      Time of Max.     Max. Roof      Time of Max.                     shear         Additional    Max. Roof        Max. Roof
                 shear           Shear       Displacement     Displacement                 (S.F. = 0.115)   Scale Factor   Displacement     Displacement
             (S.F. = 0.115)                  (S.F. = 0.115)                                                 for V=1124     (S.F. = 0.115)   X Cd
                 (kips)          (sec)            (in.)          (sec.)                        (kips)           kips               (in.)          (in.)
  A 00-X        372.77            11.4            1.94           12.75        A 00-X          372.77            3.02              5.85           32.17
  A 00-Y        354.87            11.4            1.61           12.64        A 00-Y          354.87            3.17              5.10           28.05
  A 90-X         819.3            12.8            5.02            11.4        A 90-X          819.3             1.37              6.89           37.88
  A 90-Y        714.95           12.78            4.34           11.34        A 90-Y          714.95            1.57              6.82           37.53
  B 00-X         269.7            4.96             1.3            5.96        B 00-X          269.7             4.17              5.42           29.80
  B 00-Y         350.7            8.45              1             7.37        B 00-Y          350.7             3.21              3.21           17.63
  B 90-X         307.4            8.64            1.01             7.4        B 90-X          307.4             3.66              3.69           20.31
  B 90-Y        350.63            8.5             0.98             7.3        B 90-Y          350.63            3.21              3.14           17.28
  C 00-X           875           13.32            4.16            21.3        C 00-X            875             1.28              5.34           29.39
  C 00-Y         816.3            13.4            3.47           11.92        C 00-Y          816.3             1.38              4.78           26.28
  C 90-X        817.53           12.85             4.8            14.2        C 90-X          817.53            1.37              6.60           36.30
  C 90-Y        823.63           13.02             4.1            14.1        C 90-Y          823.63            1.36              5.60           30.77


                   ELF Base shear = 1124 kips for                                        Factors for scaling Modal Time
                   fundamental period of T=2.23 sec                                      History base shear to 100 %
                                                                                         base shear computed in ELF
Drift


                  Drift and P-delta checked only for Motion A00 acting in X-direction


                                                                            Scaled Inertial Force and story shear envelopes from Analysis A00X
Time-History Drift for building responding in X Direction to Motion A 00X
                                                                                           At Time of Max. Roof        At Time of Max. Base
  Level          1             2              3                 4
                                                                            Level             Displacement                     Shear
           Elastic Total Elastic Story Inelastic Story     Allowable
                                                                                              (T = 12.75 sec)             (T = 11.4 sec)
               Drift         Drift          Drift             Drift
               (in.)         (in.)          (in.)             (in.)                    Story       Inertial force Story     Inertial force
   R      5.849612362        0.22           1.21                3                      Shear (k) (kips)           Shear (k) (kips)
   12     5.638543874        0.27          1.485                3               R        49.2085        49.21      35.57065           35.57
   11     5.367170105        0.38           2.09                3               12      92.08855        42.88       66.9185           34.35
   10     4.975185771        0.39          2.145                3               11      132.2868         40.2       68.402            1.482
    9     4.522896156        0.51          2.805                3               10      102.8882        -29.4       89.2239           20.82
    8     4.010301258         0.7           3.85                3                9       175.099        72.12       146.625           57.41
    7     3.316790514         0.3           1.65                3                8       83.6165       -91.39       74.3475           -72.28
    6     3.015264104        0.39          2.145                3                7      256.3868      172.77       214.1381           139.79
    5      2.62327977        0.33          1.815                3                6      272.7685        16.38      178.4478           -35.69
    4     2.291600719        0.42           2.31                3                5       290.582        17.81      220.0859           41.56
    3     1.869463744        0.48           2.64                3                4       317.86         27.28      234.9565           212.95
    2     1.387021488        1.39          7.645              4.32               3      336.5705        18.71      324.1816           89.22
                                                                                 2      352.7625        16.19      349.7587           25.58
Torsion and Orthogonal Loading


Accidental Torsion applied without using 0.85 as the factor.




 Orthogonal loading accounted by concurrently running one ground
motion in one principle direction with 30 percent of companion motion
in orthogonal direction.
Member Forces



                        Maximum Member Forces for each story
          story level   (kips)
          R to 12                      18.61
          12 to 11                     37.65
          11 to 10                     54.88
          10 to 9                      71.76
          9 to 8                       16.25
          8 to 7                       82.57
          7 to 6                       87.52
          6 to 5                       87.74
          5 to 4                       73.14
          4 to 3                       72.23
          3 to 2                       75.57
          2 to G                       73.34
Comparison of Methods for
 Various Methods of Analysis
ELF


       Response-spectrum Analysis



                                    Modal-time-history-analysis
Base Shears and Story shears
Summary of results from various Methods of Analysis: Story Shear   Summary of results from various Methods of Analysis: Story Shear
From FEMA-451 Example                                              from SAP 2000

                               Story Shear          (kips)                                         Story Shear           (kips)
  Level      ELF        RS     TH at Time of     TH at time of       Level      ELF        RS      TH at Time of     TH at time of
                                   Max.              Max.                                              Max.              Max.
                               Displacement       Base Shear                                       Displacement       Base Shear
   R         187       180          307              40.2             R         186.9     154.3        49.21             35.57
   12        341       286          530              44.3             12        340.9     268.6        42.88             34.35
   11        471       358          664              45.7             11        470.8     343.5         40.2             1.482
   10        578       417          731              95.6             10        578.4     243.2        -29.4             20.82
    9        765       523          788               319              9        764.7     397.6        72.12             57.41
    8        866       586          818               468              8        865.8     196.3       -91.39            -72.28
    7        943       638          844               559              7        942.5    642.02       172.77            139.79
    6        999       688          856               596              6        998.8    692.02        16.38            -35.69
    5       1070       783          829               663              5       1070.2    798.07        17.81             41.56
    4       1102       838          779               786              4       1102.7    863.04        27.28            212.95
    3       1118       894          718               972              3       1118.2     911.5        18.71             89.22
    2       1124       956          669              1124              2       1124.5     955.9        16.19             25.58
Drift
Summary of Results from Various Methods of Analysis: Story Drift       Summary of Results from Various Methods of Analysis: Story Drift
from FEMA-451 Example                                                  from SAP 2000

              X- Direction Drift (in.)                                                X- Direction Drift (in.)
  Level      ELF         RS          TH                                    Level     ELF         RS          TH
    R       0.982       0.99        2.57                                     R     0.59356     0.605        1.21
   12       1.41        1.43        3.63                                    12     0.96844     0.935        1.485
   11       1.75        1.65        4.14                                    11     1.34332      1.21        2.09
   10       1.92        1.82        4.12                                    10     1.62448     1.265        2.145
    9       1.83        1.87         3.4                                     9     1.4058      1.595        2.805
    8         2         1.98        3.34                                     8     1.62448      1.54        3.85
    7       2.03         2.2         3.2                                     7     1.74944      1.76        1.65
    6       1.95        2.14        2.95                                     6     1.65572      1.98        2.145
    5        1.7        2.09        2.32                                     5     1.34332      1.65        1.815
    4        1.7        2.09        2.12                                     4     1.4058       1.87        2.31
    3       1.67        2.31        1.89                                     3     1.49952     2.255        2.64
    2       2.02        2.91        2.13                                     2     3.9831      5.995        7.645
Member Forces
Summary of Results from Various Methods of Analysis: Beam Shear from Summary of Results from Various Methods of Analysis: Beam Shear from
FEMA-451 Example                                                     SAP 2000

             X- Direction Drift (in.)                                              X- Direction Drift (in.)
  Level     ELF         RS          TH                                 Level      ELF         RS           TH
    R       9.54        9.7        17.5                                  R        4.56         2         17.05
   12       17.6       17.7        32.3                                 12        9.75       4.08         35.9
   11       26.3       24.9        45.6                                 11       14.94        5.8        52.19
   10        31        27.7        49.3                                 10       17.96       6.63        60.48
    9       32.7       26.5        44.5                                  9       22.09       7.63        71.52
    8       34.1       26.7        43.5                                  8        27.2        9.5         88.9
    7       38.1       28.8        45.4                                  7       30.22      10.46        96.63
    6       38.4       30.4        42.9                                  6        31.3      11.09         95.1
    5       34.3       27.7        36.4                                  5        39.5      10.84        82.87
    4        31         27         35.3                                  4        27.7      10.69        75.28
    3       31.7       28.8        36.1                                  3        29.5      11.93        77.42
    2       31.8       30.6        37.3                                  2         34        14.4        88.66
Conclusion

         ELF             Modal-Response-spectrum Analysis   Modal-time-history-analysis


Useful for Preliminary                                      Beneficial in-
Design                                                      •Nonlinear dynamic
                            Modal analysis essential        time history analysis
ELF Analysis results        for Final Design
are necessary for                                           •Non-proportionally
application of                                              damped Linear
accidental torsion                                          systems
Questions
Thank you!

Contenu connexe

Tendances

Seismic Design of RC Diaphragms, Chords, and Collectors
Seismic Design of RC Diaphragms, Chords, and CollectorsSeismic Design of RC Diaphragms, Chords, and Collectors
Seismic Design of RC Diaphragms, Chords, and CollectorsRuangRangka
 
AITC Shear Wall Design Procedure (20151106)
AITC Shear Wall Design Procedure (20151106)AITC Shear Wall Design Procedure (20151106)
AITC Shear Wall Design Procedure (20151106)Fawad Najam
 
A Comperative study of Analysis of a G+3 Residential Building by the Equivale...
A Comperative study of Analysis of a G+3 Residential Building by the Equivale...A Comperative study of Analysis of a G+3 Residential Building by the Equivale...
A Comperative study of Analysis of a G+3 Residential Building by the Equivale...Kumar Aman
 
shear wall shear design
shear wall shear  design shear wall shear  design
shear wall shear design shehryar khan
 
Rc corbel example
Rc corbel exampleRc corbel example
Rc corbel examplemamilli
 
Nonlinear Static Analysis (Pushover)
Nonlinear Static Analysis (Pushover)Nonlinear Static Analysis (Pushover)
Nonlinear Static Analysis (Pushover)FabioDiTrapani2
 
The Pushover Analysis from basics - Rahul Leslie
The Pushover Analysis from basics - Rahul LeslieThe Pushover Analysis from basics - Rahul Leslie
The Pushover Analysis from basics - Rahul LeslieRahul Leslie
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeanujajape
 
Response Spectrum
Response SpectrumResponse Spectrum
Response SpectrumTeja Ande
 
Non linear static pushover analysis
Non linear static pushover analysisNon linear static pushover analysis
Non linear static pushover analysisjeyanthi4
 
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...AIT Solutions
 
Basement wall design
Basement wall designBasement wall design
Basement wall designCETCBIM
 
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...Chandan Kushwaha
 
Changes in IS 1893 and IS 13920.pdf
Changes in IS 1893 and IS 13920.pdfChanges in IS 1893 and IS 13920.pdf
Changes in IS 1893 and IS 13920.pdfMaharshiSalvi1
 
Project 3 - Building design for seismic effects
Project 3 - Building design for seismic effectsProject 3 - Building design for seismic effects
Project 3 - Building design for seismic effectsDinesha Kuruppuarachchi
 

Tendances (20)

Seismic Design of RC Diaphragms, Chords, and Collectors
Seismic Design of RC Diaphragms, Chords, and CollectorsSeismic Design of RC Diaphragms, Chords, and Collectors
Seismic Design of RC Diaphragms, Chords, and Collectors
 
AITC Shear Wall Design Procedure (20151106)
AITC Shear Wall Design Procedure (20151106)AITC Shear Wall Design Procedure (20151106)
AITC Shear Wall Design Procedure (20151106)
 
A Comperative study of Analysis of a G+3 Residential Building by the Equivale...
A Comperative study of Analysis of a G+3 Residential Building by the Equivale...A Comperative study of Analysis of a G+3 Residential Building by the Equivale...
A Comperative study of Analysis of a G+3 Residential Building by the Equivale...
 
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
 
Wind_Load
Wind_LoadWind_Load
Wind_Load
 
Seismic Design Basics - Superstructure
Seismic Design Basics - SuperstructureSeismic Design Basics - Superstructure
Seismic Design Basics - Superstructure
 
shear wall shear design
shear wall shear  design shear wall shear  design
shear wall shear design
 
Rc corbel example
Rc corbel exampleRc corbel example
Rc corbel example
 
Nonlinear Static Analysis (Pushover)
Nonlinear Static Analysis (Pushover)Nonlinear Static Analysis (Pushover)
Nonlinear Static Analysis (Pushover)
 
The Pushover Analysis from basics - Rahul Leslie
The Pushover Analysis from basics - Rahul LeslieThe Pushover Analysis from basics - Rahul Leslie
The Pushover Analysis from basics - Rahul Leslie
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajape
 
Design of footing as per IS 456-2000
Design of footing as per IS 456-2000Design of footing as per IS 456-2000
Design of footing as per IS 456-2000
 
Response Spectrum
Response SpectrumResponse Spectrum
Response Spectrum
 
Non linear static pushover analysis
Non linear static pushover analysisNon linear static pushover analysis
Non linear static pushover analysis
 
IS 1893 part 1-2016
IS 1893 part 1-2016IS 1893 part 1-2016
IS 1893 part 1-2016
 
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
 
Changes in IS 1893 and IS 13920.pdf
Changes in IS 1893 and IS 13920.pdfChanges in IS 1893 and IS 13920.pdf
Changes in IS 1893 and IS 13920.pdf
 
Project 3 - Building design for seismic effects
Project 3 - Building design for seismic effectsProject 3 - Building design for seismic effects
Project 3 - Building design for seismic effects
 

En vedette

Seismic Analysis
Seismic AnalysisSeismic Analysis
Seismic AnalysisKrishnagnr
 
Earthquake resistant structure
Earthquake resistant structureEarthquake resistant structure
Earthquake resistant structurevikskyn
 
Seismic Analysis of Structures - I
Seismic Analysis of Structures - ISeismic Analysis of Structures - I
Seismic Analysis of Structures - Itushardatta
 
Dynamic Analysis with Examples – Seismic Analysis
Dynamic Analysis with Examples – Seismic AnalysisDynamic Analysis with Examples – Seismic Analysis
Dynamic Analysis with Examples – Seismic Analysisopenseesdays
 
Earthquake Resistant Designs
Earthquake Resistant DesignsEarthquake Resistant Designs
Earthquake Resistant DesignsJNTU
 
NONLINEAR STRUCTURAL ANALYSIS FOR SEISMIC DESIGN (ALL COPYRIGHT BY NIST - US ...
NONLINEAR STRUCTURAL ANALYSIS FOR SEISMIC DESIGN (ALL COPYRIGHT BY NIST - US ...NONLINEAR STRUCTURAL ANALYSIS FOR SEISMIC DESIGN (ALL COPYRIGHT BY NIST - US ...
NONLINEAR STRUCTURAL ANALYSIS FOR SEISMIC DESIGN (ALL COPYRIGHT BY NIST - US ...Eduardo H. Pare
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - IIItushardatta
 
Seismic retrofit of building structures
Seismic retrofit of building structuresSeismic retrofit of building structures
Seismic retrofit of building structuresgopi1991
 
Earthquake and earthquake resistant design
Earthquake and earthquake resistant designEarthquake and earthquake resistant design
Earthquake and earthquake resistant designSatish Kambaliya
 
Volunteering at KCSTI
Volunteering at KCSTIVolunteering at KCSTI
Volunteering at KCSTIGunjan Shetye
 
Seismic Retrofitting Techniques
Seismic Retrofitting TechniquesSeismic Retrofitting Techniques
Seismic Retrofitting TechniquesAritra Banerjee
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shellneikrof
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSYousuf Dinar
 
SEISMIC_DESIGN
SEISMIC_DESIGNSEISMIC_DESIGN
SEISMIC_DESIGNMio Class
 
State of-the-art-non-linear-analysis
State of-the-art-non-linear-analysisState of-the-art-non-linear-analysis
State of-the-art-non-linear-analysishamdanraza
 
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)Ramil Artates
 

En vedette (18)

Seismic Analysis
Seismic AnalysisSeismic Analysis
Seismic Analysis
 
Earthquake resistant structure
Earthquake resistant structureEarthquake resistant structure
Earthquake resistant structure
 
Seismic Analysis of Structures - I
Seismic Analysis of Structures - ISeismic Analysis of Structures - I
Seismic Analysis of Structures - I
 
Dynamic Analysis with Examples – Seismic Analysis
Dynamic Analysis with Examples – Seismic AnalysisDynamic Analysis with Examples – Seismic Analysis
Dynamic Analysis with Examples – Seismic Analysis
 
Earthquake Resistant Designs
Earthquake Resistant DesignsEarthquake Resistant Designs
Earthquake Resistant Designs
 
NONLINEAR STRUCTURAL ANALYSIS FOR SEISMIC DESIGN (ALL COPYRIGHT BY NIST - US ...
NONLINEAR STRUCTURAL ANALYSIS FOR SEISMIC DESIGN (ALL COPYRIGHT BY NIST - US ...NONLINEAR STRUCTURAL ANALYSIS FOR SEISMIC DESIGN (ALL COPYRIGHT BY NIST - US ...
NONLINEAR STRUCTURAL ANALYSIS FOR SEISMIC DESIGN (ALL COPYRIGHT BY NIST - US ...
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - III
 
Seismic retrofit of building structures
Seismic retrofit of building structuresSeismic retrofit of building structures
Seismic retrofit of building structures
 
Earthquake and earthquake resistant design
Earthquake and earthquake resistant designEarthquake and earthquake resistant design
Earthquake and earthquake resistant design
 
Volunteering at KCSTI
Volunteering at KCSTIVolunteering at KCSTI
Volunteering at KCSTI
 
Dynamics Project
Dynamics ProjectDynamics Project
Dynamics Project
 
Seismic Retrofitting Techniques
Seismic Retrofitting TechniquesSeismic Retrofitting Techniques
Seismic Retrofitting Techniques
 
Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABS
 
SEISMIC_DESIGN
SEISMIC_DESIGNSEISMIC_DESIGN
SEISMIC_DESIGN
 
State of-the-art-non-linear-analysis
State of-the-art-non-linear-analysisState of-the-art-non-linear-analysis
State of-the-art-non-linear-analysis
 
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
Aitc step by-step procedure for pbd of 40-story rc building_overall (20141105)
 
20320140503034
2032014050303420320140503034
20320140503034
 

Similaire à Seismic Design Of Structures Project

sd project report Final.pdf
sd project report Final.pdfsd project report Final.pdf
sd project report Final.pdfSafalsha Babu
 
DESIGN AND ANALYSIS OF EARTH-QUAKE RESISTANT FOR MULTI-STORIED BUILDING ON A ...
DESIGN AND ANALYSIS OF EARTH-QUAKE RESISTANT FOR MULTI-STORIED BUILDING ON A ...DESIGN AND ANALYSIS OF EARTH-QUAKE RESISTANT FOR MULTI-STORIED BUILDING ON A ...
DESIGN AND ANALYSIS OF EARTH-QUAKE RESISTANT FOR MULTI-STORIED BUILDING ON A ...Ijripublishers Ijri
 
Infilled Frame and Soft Story behavior of L-Shaped Plain Irregular Building U...
Infilled Frame and Soft Story behavior of L-Shaped Plain Irregular Building U...Infilled Frame and Soft Story behavior of L-Shaped Plain Irregular Building U...
Infilled Frame and Soft Story behavior of L-Shaped Plain Irregular Building U...IRJET Journal
 
Analysis of Unsymmetrical Building Resting on Sloping Ground by Dividing in 2...
Analysis of Unsymmetrical Building Resting on Sloping Ground by Dividing in 2...Analysis of Unsymmetrical Building Resting on Sloping Ground by Dividing in 2...
Analysis of Unsymmetrical Building Resting on Sloping Ground by Dividing in 2...IRJET Journal
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Earthquake Analysis of Multi Storied Residential Building - A Case Study
Earthquake Analysis of Multi Storied Residential Building - A Case StudyEarthquake Analysis of Multi Storied Residential Building - A Case Study
Earthquake Analysis of Multi Storied Residential Building - A Case StudyIJERA Editor
 
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادىAdvanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادىEgyptian Engineers Association
 
Direct displacement design_methodology_for_woodframe_buildings_
Direct displacement design_methodology_for_woodframe_buildings_Direct displacement design_methodology_for_woodframe_buildings_
Direct displacement design_methodology_for_woodframe_buildings_Uriel Vélez Orejuela
 
Dynamic Analysis of Multistorey framed structure with roof tower
Dynamic Analysis of Multistorey framed structure with roof towerDynamic Analysis of Multistorey framed structure with roof tower
Dynamic Analysis of Multistorey framed structure with roof toweramitranjan145
 
Effect of Irregular Distribution of Load on RC Frame Structures
Effect of Irregular Distribution of Load  on RC Frame StructuresEffect of Irregular Distribution of Load  on RC Frame Structures
Effect of Irregular Distribution of Load on RC Frame StructuresIRJET Journal
 
P-Delta Effects on Tall RC Buildings with and Without Shear Wall
P-Delta Effects on Tall RC Buildings with and Without Shear WallP-Delta Effects on Tall RC Buildings with and Without Shear Wall
P-Delta Effects on Tall RC Buildings with and Without Shear WallIRJET Journal
 
Evaluation of Fixed Base vs. Base Isolated Building Systems
Evaluation of Fixed Base vs. Base Isolated Building SystemsEvaluation of Fixed Base vs. Base Isolated Building Systems
Evaluation of Fixed Base vs. Base Isolated Building SystemsIJERD Editor
 
Analysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingAnalysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingTarun kumar
 
IRJET- Seismic Performance of Building using Accordion Metallic Damper
IRJET-  	  Seismic Performance of Building using Accordion Metallic DamperIRJET-  	  Seismic Performance of Building using Accordion Metallic Damper
IRJET- Seismic Performance of Building using Accordion Metallic DamperIRJET Journal
 

Similaire à Seismic Design Of Structures Project (20)

presentation.pptx
presentation.pptxpresentation.pptx
presentation.pptx
 
sd project report Final.pdf
sd project report Final.pdfsd project report Final.pdf
sd project report Final.pdf
 
DESIGN AND ANALYSIS OF EARTH-QUAKE RESISTANT FOR MULTI-STORIED BUILDING ON A ...
DESIGN AND ANALYSIS OF EARTH-QUAKE RESISTANT FOR MULTI-STORIED BUILDING ON A ...DESIGN AND ANALYSIS OF EARTH-QUAKE RESISTANT FOR MULTI-STORIED BUILDING ON A ...
DESIGN AND ANALYSIS OF EARTH-QUAKE RESISTANT FOR MULTI-STORIED BUILDING ON A ...
 
Infilled Frame and Soft Story behavior of L-Shaped Plain Irregular Building U...
Infilled Frame and Soft Story behavior of L-Shaped Plain Irregular Building U...Infilled Frame and Soft Story behavior of L-Shaped Plain Irregular Building U...
Infilled Frame and Soft Story behavior of L-Shaped Plain Irregular Building U...
 
Analysis of Unsymmetrical Building Resting on Sloping Ground by Dividing in 2...
Analysis of Unsymmetrical Building Resting on Sloping Ground by Dividing in 2...Analysis of Unsymmetrical Building Resting on Sloping Ground by Dividing in 2...
Analysis of Unsymmetrical Building Resting on Sloping Ground by Dividing in 2...
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Am33223232
Am33223232Am33223232
Am33223232
 
Am33223232
Am33223232Am33223232
Am33223232
 
Earthquake Analysis of Multi Storied Residential Building - A Case Study
Earthquake Analysis of Multi Storied Residential Building - A Case StudyEarthquake Analysis of Multi Storied Residential Building - A Case Study
Earthquake Analysis of Multi Storied Residential Building - A Case Study
 
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادىAdvanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
 
Direct displacement design_methodology_for_woodframe_buildings_
Direct displacement design_methodology_for_woodframe_buildings_Direct displacement design_methodology_for_woodframe_buildings_
Direct displacement design_methodology_for_woodframe_buildings_
 
Dynamic Analysis of Multistorey framed structure with roof tower
Dynamic Analysis of Multistorey framed structure with roof towerDynamic Analysis of Multistorey framed structure with roof tower
Dynamic Analysis of Multistorey framed structure with roof tower
 
Effect of Irregular Distribution of Load on RC Frame Structures
Effect of Irregular Distribution of Load  on RC Frame StructuresEffect of Irregular Distribution of Load  on RC Frame Structures
Effect of Irregular Distribution of Load on RC Frame Structures
 
20320140507009
2032014050700920320140507009
20320140507009
 
20320140507009
2032014050700920320140507009
20320140507009
 
P-Delta Effects on Tall RC Buildings with and Without Shear Wall
P-Delta Effects on Tall RC Buildings with and Without Shear WallP-Delta Effects on Tall RC Buildings with and Without Shear Wall
P-Delta Effects on Tall RC Buildings with and Without Shear Wall
 
Evaluation of Fixed Base vs. Base Isolated Building Systems
Evaluation of Fixed Base vs. Base Isolated Building SystemsEvaluation of Fixed Base vs. Base Isolated Building Systems
Evaluation of Fixed Base vs. Base Isolated Building Systems
 
Final Ppt (18MTSE005 ).pptx
Final Ppt (18MTSE005 ).pptxFinal Ppt (18MTSE005 ).pptx
Final Ppt (18MTSE005 ).pptx
 
Analysis of g+3 rcc storied building
Analysis of g+3 rcc storied buildingAnalysis of g+3 rcc storied building
Analysis of g+3 rcc storied building
 
IRJET- Seismic Performance of Building using Accordion Metallic Damper
IRJET-  	  Seismic Performance of Building using Accordion Metallic DamperIRJET-  	  Seismic Performance of Building using Accordion Metallic Damper
IRJET- Seismic Performance of Building using Accordion Metallic Damper
 

Seismic Design Of Structures Project

  • 1. Presented to Dr.Ganesh Thiagarajan for CIV-ENGR 5501B Seismic Design of Structures Date: April 25,2011 Jury : Mr. Shivaji Jagtap P.E. Mr. Shakeel Seismic Design of Structures Project BY Anirudha Vasudevan Gunjan Shetye Harsh Shah
  • 2. The Problem Earthquakes don’t kill people ……but bad buildings do!!!! -- The Infrastructurist Courtesy: Melissa Lafsky , http://www.infrastructurist.com/2010/01/20/earthquakes-dont-kill- peoplebad-buildings-do-more-on-haitis-building-codes/
  • 3. OBJECTIVES  To analyze a 12 story steel frame building in Stockton, California using three methods of analysis in SAP 2000 :  Equivalent lateral force (ELF) procedure.  Three-dimensional, modal-response-spectrum analysis.  Three-dimensional, modal time-history analysis.  To report the results obtained from the above three methods and compare them with the FEMA 451 design example.
  • 4. Why This Building??  Highly irregular structure both in plan and elevation.  Numerous Modeling challenges .  Plenty of scope to learn the capabilities of SAP 2000. Courtesy: Robot Structural Analysis Package
  • 5. Description of The Structure Special Moment Girders range from W30X108 Frame of Structural at roof to W30X132 at Level G Steel as Lateral Load Resisting System 25 ft. wide bays in Y- direction Columns range from W24X146 at roof to W24X229 One-story at Level G basement 18ft below 30 ft. wide bays in X-direction grade
  • 6. Ground Motion Parameters for Stockton ,CA Provisions Maps 3.3.1 and 3.3.2 NEHRP- (FEMA-450) Spectral Response Accelerations: Ss = 1.25 S1 = 0.40 Site Class: C (Assumption ) Site co-efficients: Fa = 1.0 Fv = 1.4 Adjusted Spectral response SMS = 1.25 SM1 = 0.56 Accelerations: Design spectral acceleration SDS = 0.833 SD1 = 0.373 parameters: Ts=SD1/SDS = 0.373/0.833 = 0.45sec Maximum Considered Earthquake Ground Motion for the conterminous of United States of 0.2 sec Spectral Response Acceleration (5% of Critical Damping) – NEHRP2003 Fig. 3.3.1
  • 7. Dynamic Properties  Period of Vibration Ta =1.59 sec Cu = 1.4 Cu * Ta = 2.23 seconds Courtesy: comp.uark.edu  Damping For steel structures damping ratio of 0.05 is appropriate. Courtesy: edes.bris.ac.uk
  • 8. Mass Distribution Area masses on floor diaphragms (FEMA-451 Example 3.1) Line masses on floor diaphragms (FEMA-451 Example 3.1)  Applied as Gravity Dead Load using Uniform to Frame option in SAP. Applied as Uniformly Distributed Loads in the Diagram for computation of floor mass (FEMA-451 Example) gravity direction.
  • 9. Equivalent Lateral Force Analysis WHY ELF??  For preliminary design purposes. To asses the three dimensional response characteristics of the structure. Most commonly used design procedure since the 1960s.
  • 10. ELF Parameters Seismic base shear V = CsW (NEHRP Provisions Eq 5.2.1) Maximum spectral acceleration Csmax = SDS/(R/I) = 0.833/(8/1) = 0.104 (NEHRP Provisions Eq 5.2.2) R = 8 and I = 1 Cs = SD1/T(R/I) = 0.373/2.23 (8/1) = 0.021. (NEHRP Provisions Eq 5.2.3) And Cs shall not exceed 0.01. Also, Csmin = 0.044ISDS = 0.037 (NEHRP Provisions Eq 5.4.1.1-2)
  • 11. Equivalent Lateral Forces ELF Fx = Cvx V Equivalent lateral Forces for buildings responding in X and Y directions based on NEHRP 2003 Level Wx hx k wxhx^k Cvx V Fx Vx x kips ft kips kips kips Roof 1656.5 155.5 1.86 19761048 0.16671 1124.5 187.5 187.464 12 1595.67 143 1.86 16288013 0.13741 1124.5 154.5 341.981 11 1595.67 130.5 1.86 13739744 0.11591 1124.5 130.3 472.324 10 1595.67 118 1.86 11393145 0.09612 1124.5 108.1 580.406 9 3401 105.5 1.86 19717698 0.16634 1124.5 187.1 767.459 8 2232.6 93 1.86 10237389 0.08637 1124.5 97.1 864.577 7 2232.6 80.5 1.86 7826926.5 0.06603 1124.5 74.3 938.827 6 2232.6 68 1.86 5718439.1 0.04824 1124.5 54.2 993.076 5 4325.8 55.5 1.86 7593664.1 0.06406 1124.5 72.0 1065.11 4 3350.4 43 1.86 3658878.5 0.03087 1124.5 34.7 1099.82 3 3350.4 30.5 1.86 1931498.4 0.01629 1124.5 18.3 1118.15 2 3098 18 1.86 669712.3 0.00565 1124.5 6.4 1124.5 Totals 30666.9 118536155 1
  • 12. Accidental Torsion Floor Diaphragms were modeled as infinitely rigid in-plane. 4 ksi concrete shell elements were used to represent diaphragm mass. ELF 5 % eccentricity
  • 13. Torsional Irregularity in X direction δmax Computation for Torsional Irregularity with ELF Loads Acting in X Direction (SAP 2000 Analysis Output) Level δ1 (in.) δ2 (in.) δavg (in.) δmax (in.) δmax/δavg Irregularity R 6.03 6.19 6.11 6.19 1.01 none 12 5.83 6.01 5.92 6.01 1.02 none 11 5.5 5.72 5.61 5.72 1.02 none 10 5.04 5.33 5.185 5.33 1.03 none 9 4.54 4.8 4.67 4.8 1.03 none 8 4.11 4.34 4.225 4.34 1.03 none 7 3.61 3.81 3.71 3.81 1.03 none 6 3.07 3.24 3.155 3.24 1.03 none 5 2.55 2.7 2.625 2.7 1.03 none 4 2.14 2.25 2.195 2.25 1.03 none 3 1.71 1.79 1.75 1.79 1.02 none 2 1.25 1.3 1.275 1.3 1.02 none Tabulated displacements are not amplified by Cd. Analysis includes accidental torsion. 1 in. = 25.4mm. δmin
  • 14. Torsional Irregularity in Y direction Computation for Torsional Irregularity with ELF Loads Acting in Y Direction δmax δmin (SAP 2000 Analysis Output) Level δ1 (in.) δ2 (in.) δavg (in.) δmax (in.) δmax/δavg Irregularity R 5.73 5.92 5.825 5.92 1.02 none 12 5.6 5.79 5.695 5.79 1.02 none 11 5.37 5.56 5.465 5.56 1.02 none 10 5.06 5.24 5.15 5.24 1.02 none 9 4.3 4.74 4.52 4.74 1.05 none 8 3.96 4.27 4.115 4.27 1.04 none 7 3.57 3.75 3.66 3.75 1.02 none 6 3.14 3.18 3.16 3.18 1.01 none 5 2.23 2.6 2.415 2.6 1.08 none 4 1.78 2.09 1.935 2.09 1.08 none 3 1.33 1.56 1.445 1.56 1.08 none 2 0.86 1.02 0.94 1.02 1.09 none Tabulated displacements are not amplified by Cd. Analysis includes accidental torsion. 1 in. =25.4mm. No Torsional Amplification Required
  • 15. ELF Drifts in X Direction ELF Drift for Building Responding in X Direction (FEMA-451 Design Examples Table3.1-7) Level 1 2 3 4 5 Inelastic Inealastic Total Drift Story Drift Story Drift Allowable from SAP from SAP 2000 2000 Drift Times 0.568 Drift (in.) (in.) (in.) (in.) (in.) R 6.71 0.32 1.73 0.982 3 12 6.4 0.45 2.48 1.41 3 11 5.95 0.56 3.08 1.75 3 ELF Drift for Building Responding in X Direction from 10 5.39 5.39 3.38 1.92 3 SAP 2000 9 4.77 0.59 3.22 1.83 3 8 4.19 0.64 3.52 2 3 Level 1 2 3 4 5 7 3.55 0.65 3.58 2.03 3 Total Drift Story Drift Inelastic Story Inealastic Drift Allowable 6 2.9 0.63 3.44 1.95 3 from SAP from SAP 5 2.27 0.55 3 1.7 3 2000 2000 Drift Times 0.568 Drift 4 1.73 0.55 3 1.7 3 (in.) (in.) (in.) (in.) (in.) 3 1.18 0.54 2.94 1.67 3 R 6.11 0.19 1.045 0.59 3 2 0.65 0.65 3.55 2.02 4.32 12 5.92 0.31 1.705 0.97 3 11 5.61 0.43 2.365 1.34 3 10 5.185 0.52 2.86 1.62 3 9 4.67 0.45 2.475 1.41 3 8 4.225 0.52 2.86 1.62 3 7 3.71 0.56 3.08 1.75 3 6 3.155 0.53 2.915 1.66 3 5 2.625 0.43 2.365 1.34 3 4 2.195 0.45 2.475 1.41 3 3 1.75 0.48 2.64 1.50 3 2 1.275 1.275 7.0125 3.98 4.32
  • 16. ELF Drifts in Y Direction ELF Drift for Building Responding in X Direction (FEMA-451 Design Examples Table3.1-7) Level 1 2 3 4 5 Inelastic Inealastic Total Drift Story Drift Story Drift Allowable from SAP from SAP 2000 2000 Drift Times 0.568 Drift (in.) (in.) (in.) (in.) (in.) R 6.01 0.22 1.21 0.687 3 ELF Drift for Building Responding in Y Direction from SAP 2000 12 5.79 0.36 1.98 1.12 3 11 5.43 0.45 2.48 1.41 3 10 4.98 0.67 3.66 2.08 3 Level 1 2 3 4 5 9 4.32 0.49 2.7 1.53 3 Inelastic Total Drift Story Drift Story Inealastic Drift Allowable 8 3.83 0.57 3.11 1.77 3 from SAP 7 3.26 0.58 3.19 1.81 3 2000 from SAP 2000 Drift Times 0.568 Drift 6 2.68 0.64 3.49 1.98 3 (in.) (in.) (in.) (in.) (in.) 5 2.05 0.46 2.53 1.43 3 R 5.825 0.13 0.715 0.41 3 4 1.59 0.49 2.67 1.52 3 12 5.695 0.23 1.265 0.72 3 3 1.1 0.49 2.7 1.53 3 11 5.465 0.32 1.76 1.00 3 2 0.61 0.61 3.36 1.91 4.32 10 5.15 0.63 3.465 1.97 3 9 4.52 0.41 2.255 1.28 3 8 4.115 0.46 2.53 1.44 3 7 3.66 0.5 2.75 1.56 3 6 3.16 0.75 4.125 2.34 3 5 2.415 0.48 2.64 1.50 3 4 1.935 0.49 2.695 1.53 3 3 1.445 0.51 2.805 1.59 3 2 0.94 0.94 5.17 2.94 4.32
  • 17. Accurate period using Rayleigh Analysis ω= Rayleigh analysis for X-direction Period of Vibration Rayleigh analysis for Y-direction Period of Vibration Lev Drift, Level Drift, δ Force, F Weight, W δF δ2W/g el δ Force, F Weight, W δF δ2W/g (in.) (kips) (kips) (in.-kips) (in.-kips-sec2) (in.) (kips) (kips) (in.-kips) (in.-kips-sec2) R 5.825 186.9 1656 1088.7 145.42 R 6.11 186.9 1656 1141.959 159.99 12 5.695 154 1598 877.0 134.13 12 5.92 154 1598 911.68 144.94 11 5.465 129.9 1598 709.9 123.52 11 5.61 129.9 1598 728.739 130.16 10 5.15 107.6 1598 554.1 109.69 10 5.185 107.6 1598 557.906 111.18 9 4.52 186.3 3403 842.1 179.93 9 4.67 186.3 3403 870.021 192.07 8 4.115 100.8 2330 414.8 102.11 8 4.225 100.8 2330 425.88 107.64 7 3.66 77 2330 281.8 80.78 7 3.71 77 2330 285.67 83.00 6 3.16 56.2 2330 177.6 60.21 6 3.155 56.2 2330 177.311 60.02 5 2.415 71.4 4323 172.4 65.25 5 2.625 71.4 4323 187.425 77.09 4 1.935 31.5 3066 61.0 29.71 4 2.195 31.5 3066 69.1425 38.23 3 1.445 16.6 3066 24.0 16.57 3 1.75 16.6 3066 29.05 24.30 2 1.275 6.3 3097 8.0325 13.03 2 0.94 6.3 3097 5.9 7.08 5392.816 1141.65 5209.34 1054.39 ω=(5392/1141)^0.5=2.17rad/sec. T=2π/ω=2.89sec 1.0in.=25.4mm , 1.0kip=4.45kN ω=(5209/1054)^0.5=2.22rad/sec. T=2π/ω=2.83 sec 1.0in.=25.4mm , 1.0kip=4.45kN
  • 18. P-Delta Effects Computation of P-Delta Effects for X-Direction Response Computation of P-Delta Effects for X-Direction Response FEMA 451 Design Example from SAP 2000 Level hsx Δ PD PL PT PX VX θX Level hsx Δ PD PL PT PX VX θX (in.) (in.) (kips) (kips) (kips) (kips) (kips) (in.) (in.) (kips) (kips) (kips) (kips) (kips) R 150 1.73 1656.5 315 1971.5 1971.5 186.9 0.022 R 150 1.045 1656.5 315 1971.5 1971.5 186.9 0.013 12 150 2.48 1595.8 315 1910.8 3882.3 340.9 0.034 12 150 1.705 1595.8 315 1910.8 3882.3 340.9 0.024 11 150 3.08 1595.8 315 1910.8 5793.1 470.8 0.046 11 150 2.365 1595.8 315 1910.8 5793.1 470.8 0.035 10 150 3.38 1595.8 315 1910.8 7703.9 578.4 0.055 10 150 2.86 1595.8 315 1910.8 7703.9 578.4 0.046 9 150 3.22 3403 465 3868 11571.9 764.7 0.059 9 150 2.475 3403 465 3868 11571.9 764.7 0.045 8 150 3.52 2330.8 465 2795.8 14367.7 865.8 0.071 8 150 2.86 2330.8 465 2795.8 14367.7 865.8 0.058 7 150 3.58 2330.8 465 2795.8 17163.5 942.5 0.079 7 150 3.08 2330.8 465 2795.8 17163.5 942.5 0.068 6 150 3.44 2330.8 465 2795.8 19959.3 998.8 0.083 6 150 2.915 2330.8 465 2795.8 19959.3 998.8 0.071 5 150 3 4323.8 615 4938.8 24898.1 1070.2 0.085 5 150 2.365 4323.8 615 4938.8 24898.1 1070.2 0.067 4 150 3 3066.1 615 3681.1 28579.2 1101.7 0.094 4 150 2.475 3066.1 615 3681.1 28579.2 1101.7 0.078 3 150 2.94 3066.1 615 3681.1 32260.3 1118.2 0.103 3 150 2.64 3066.1 615 3681.1 32260.3 1118.2 0.092 2 216 3.55 3097 615 3712 35972.3 1124.5 0.096 2 216 7.0125 3097 615 3712 35972.3 1124.5 0.189
  • 19. ASCE 7 ELF Load Combinations Final Design Load Combinations 1.37D + 0.5L + E 0.73D+E Four directions of seismic forces (+X,-X,+Y,-Y) were considered . Total 8 possible combinations of direct force plus accidental torsion were applied.  X direction forces + 30% Y direction forces are applied. X direction 5% accidental eccentricity Y direction forces were applied without eccentricity.
  • 20. ELF Member forces  Earthquake shears were obtained from SAP 2000 from gridline 1 Comparison of maximum Seismic Girder Shears Girder FEMA 451 Design SAP 2000 Location Example R-12 6.83 9.54 12-11 12.77 17.6 11-10 19.73 26.9 10-9 24.86 32.9 9-8 24.34 32.7 8-7 28.28 36 7-6 28.75 39.2 6-5 30.23 40.4 5-4 28.39 34.3 4-3 29.55 33.6 3-2 28.66 33 2-G 30.66 33
  • 21. Modal-Response-Spectrum Analysis I. Modal Analysis in SAP 2000 • Mode Shapes • Period of vibration FEMA-451 Example SAP2000 Analysis Mode Period Period MODE (sec) (sec) SHAPES 1 2.867 2.96 FEMA-451 2 2.745 2.86 EXAMPLE 3 1.565 1.79 4 1.149 1.15 5 1.074 1.08 6 0.724 0.78 7 0.697 0.67 8 0.631 0.64 9 0.434 0.47 10 0.427 0.43
  • 22. Mode Shapes from Modal Analysis in SAP2000 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 T=2.96 sec T=2.86 sec T=1.79 sec T=1.15 sec T=1.08 sec Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 T=0.78 sec T=0.67 sec T=0.64 sec T=0.47 sec T=0.43 sec
  • 23. Response Spectrum Co-ordinates _I__ = _1_ SDS = 0.833 SD1 = 0.373 R 8 To = 0.089sec Ts = 0.447sec Modification  Analysis using Response Spectrum Co-ordinates in SAP 2000.  Combination of Seismic motion in X and Y direction is used.
  • 24. Dynamic Base Shear Story Shears from Modal-Response-Spectrum Analysis Story Shears from Modal-Response-Spectrum Analysis From FEMA-451 Example From SAP 2000 analysis Story X Directn Y Directn Story X Directn Y Directn (SF =2.18) (SF = 2.1) (SF =2.14) (SF = 2.1) Response spectrum Unscaled Scaled Unscaled Scaled Unscaled Scaled Unscaled Scaled Shear Shear Shear Shear Shear Shear Shear Shear analysis in SAP (kips) (kips) (kips) (kips) (kips) (kips) (kips) (kips) 2000 for Time R-12 82.5 180 79.2 167 R-12 72.11 154.3154 64.86 136.206 12 to 11 131 286 127.6 268 12 to 11 125.5 268.57 119.6 251.16 Period 2.87 sec 11 to 10 163.7 358 163.5 344 11 to 10 160.5 343.47 162.45 341.145 gives following 10 to 9 191.1 417 195 410 10 to 9 113.64 243.1896 173.97 365.337 9 t0 8 239.6 523 247.6 521 9 t0 8 185.78 397.5692 212.65 446.565 shears: 8 to 7 91.72 196.2808 181.65 381.465 8 to 7 268.4 586 277.2 583 7 to 6 292.5 638 302.1 635 7 to 6 300.03 642.0642 308.2 647.22 6 to 5 315.2 688 326 686 6 to 5 323.375 692.0225 333.97 701.337 5 to 4 358.6 783 371.8 782 5 to 4 372.93 798.0702 368.53 773.913 4 to 3 383.9 838 400.5 843 4 to 3 403.291 863.0427 401.18 842.478 3 to 2 409.4 894 426.2 897 3 to 2 425.94 911.5116 436.82 917.322 2 to G 437.7 956 454.6 956 2 to G 446.67 955.8738 458.12 962.052 ELF Base shear = 1124 Factors for scaling Response Spectrum kips for fundamental base shear to 85% base shear computed period of T=2.23 sec in ELF
  • 25. Response Spectrum Drifts in X-Direction Response Spectrum Drift for Building Responding in X Direction From FEMA-451 Example Scaled Level Total Drift from Scaled Total Drift Scaled Story Allowable R.S. Analysis Drift (in.) Drift X Cd Story Drift (in.) [Col-1 X 2.18] (in.) (in.) (in.) R 1.96 4.28 0.18 0.99 3 12 1.88 4.1 0.26 1.43 3 11 1.76 3.84 0.3 1.65 3 10 1.62 3.54 0.33 1.82 3 9 1.47 3.21 0.34 1.87 3 8 1.32 2.87 0.36 1.98 3 Response Spectrum Drift for Building Responding in X Direction from SAP 2000 7 1.15 2.51 0.4 2.2 3 6 0.968 2.11 0.39 2.14 3 5 0.789 1.72 0.38 2.09 3 4 0.615 1.34 0.38 2.09 3 Level Total Drift from Scaled Total Scaled Drift Scaled Story Allowable 3 0.439 0.958 0.42 2.31 3 R.S. Analysis Drift (in.) Drift X Cd Story Drift 2 0.245 0.534 0.53 2.91 4.32 (in.) [Col-1 X 2.14] (in.) (in.) (in.) 1 in. = 25.4 mm R 1.93 4.1302 0.11 0.605 3 12 1.88 4.0232 0.17 0.935 3 11 1.8 3.852 0.22 1.21 3 10 1.7 3.638 0.23 1.265 3 9 1.59 3.4026 0.29 1.595 3 8 1.45 3.103 0.28 1.54 3 7 1.32 2.8248 0.32 1.76 3 6 1.17 2.5038 0.36 1.98 3 5 1 2.14 0.3 1.65 3 4 0.86 1.8404 0.34 1.87 3 3 0.7 1.498 0.41 2.255 3 2 0.51 1.0914 1.09 5.995 4.32
  • 26. Response Spectrum Drifts in Y-Direction Response Spectrum Drift for Building Responding in Y Direction From FEMA-451 Example Level Total Drift from Scaled Total Scaled Drift Scaled Story Allowable R.S. Analysis Drift (in.) Drift X Cd Story Drift (in.) [Col-1 X 2.18] (in.) (in.) (in.) R 1.84 3.87 0.12 0.66 3 12 1.79 3.75 0.2 1.1 3 11 1.69 3.55 0.24 1.32 3 10 1.58 3.31 0.37 2.04 3 Response Spectrum Drift for Building Responding in Y Direction 9 1.4 2.94 0.29 1.6 3 From SAP 2000 8 1.26 2.65 0.33 1.82 3 7 1.1 2.32 0.35 1.93 3 Level Total Drift from Scaled Total Scaled Drift Scaled Story Allowable 6 0.938 1.97 0.38 2.09 3 R.S. Analysis Drift (in.) Drift X Cd Story Drift 5 0.757 1.59 0.32 1.76 3 (in.) [Col-1 X 2.1] (in.) (in.) (in.) 4 0.605 1.27 0.36 2 3 R 1.82 3.822 0.06 0.33 3 3 0.432 0.908 0.39 2.14 3 12 1.79 3.759 0.13 0.715 3 2 0.247 0.518 0.52 2.86 4.32 11 1.73 3.633 0.15 0.825 3 1 in. = 25.4 mm 10 1.66 3.486 0.32 1.76 3 9 1.51 3.171 0.23 1.265 3 8 1.4 2.94 0.27 1.485 3 7 1.27 2.667 0.29 1.595 3 6 1.13 2.373 0.49 2.695 3 5 0.9 1.89 0.32 1.76 3 4 0.75 1.575 0.38 2.09 3 3 0.57 1.197 0.4 2.2 3 2 0.38 0.798 0.79 4.345 4.32
  • 27. P-Delta Effects Computation of P-Delta Effects for X-Direction Computation of P-Delta Effects for X-Direction Response Response from FEMA-451 Example ffrom SAP 2000 Level hsx Δ PD PL PT PX VX θX Level hsx Δ PD PL PT PX VX θX (in.) (in.) (kips) (kips) (kips) (kips) (kips) (in.) (in.) (kips) (kips) (kips) (kips) (kips) R 150 0.99 1656.5 315 1971.5 1971.5 180 0.013 R 150 0.605 1656.5 315 1971.5 1971.5 154.3154 0.01 12 150 1.43 1595.8 315 1910.8 3882.3 286 0.024 12 150 0.935 1595.8 315 1910.8 3882.3 268.57 0.02 11 150 1.21 1595.8 315 1910.8 5793.1 343.47 0.02 11 150 1.65 1595.8 315 1910.8 5793.1 358 0.032 10 150 1.82 1595.8 315 1910.8 7703.9 417 0.041 10 150 1.265 1595.8 315 1910.8 7703.9 243.1896 0.05 9 150 1.87 3403 465 3868 11571.9 523 0.05 9 150 1.595 3403 465 3868 11571.9 397.5692 0.06 8 150 1.98 2330.8 465 2795.8 14367.7 586 0.059 8 150 1.54 2330.8 465 2795.8 14367.7 196.2808 0.14 7 150 2.2 2330.8 465 2795.8 17163.5 638 0.072 7 150 1.76 2330.8 465 2795.8 17163.5 642.0642 0.06 6 150 2.14 2330.8 465 2795.8 19959.3 688 0.075 6 150 1.98 2330.8 465 2795.8 19959.3 692.0225 0.07 5 150 2.09 4323.8 615 4938.8 24898.1 783 0.081 5 150 1.65 4323.8 615 4938.8 24898.1 798.0702 0.06 4 150 2.09 3066.1 615 3681.1 28579.2 838 0.086 4 150 1.87 3066.1 615 3681.1 28579.2 863.0427 0.08 3 150 2.31 3066.1 615 3681.1 32260.3 894 0.101 3 150 2.255 3066.1 615 3681.1 32260.3 911.5116 0.10 2 216 2.91 3097 615 3712 35972.3 956 0.092 2 216 5.995 3097 615 3712 35972.3 955.8738 0.19
  • 28. Torsion, Orthogonal Loading and Load Combinations Response Spectrum Analysis including accidental torsion and orthogonal loading Effects in SAP 2000 for determining member design forces  100 percent of scaled X spectrum acting in one direction, concurrent with 30 percent of scaled Y spectrum in orthogonal direction.  Similar analysis performed for larger loads in Y direction.
  • 29. Member Design Forces Design forces include 100 percent of the scaled X-direction spectrum added to 30 percent of scaled Y-direction spectrum and accidental torsion is added to combined spectral loading. FEMA-451 SAP 2000 output for Shear forces Example Scaled Shear Forces Earth Scaled Total from Response quake Accidental Accidental earthquak Member Story Spectrum shear Torsion torsion e shear forces level Combinaton forces Shear Force Shear force force (kips) R-12 2.03 4.344 0.43 0.37 4.71 9.9 12 to 11 2.23 4.772 0.88 0.75 5.52 17.8 11 to 10 7.58 16.221 1.35 1.15 17.37 26 10 to 9 7.22 15.451 1.87 1.59 17.04 29.8 9 to 8 8.03 17.184 1.83 1.56 18.74 26.6 8 to 7 8.93 19.110 1.36 1.16 20.27 28 7 to 6 9.68 20.715 1.51 1.28 22.00 30.9 6 to5 8.69 18.597 1.78 1.51 20.11 32.3 5 to 4 9.46 20.244 1.43 1.22 21.46 27.9 4 to 3 10.1 21.614 1.1 0.94 22.55 28.8 3 to 2 12.02 25.723 1.14 0.97 26.69 29.7 2 to G 12.23 26.172 1.3 1.11 27.28 31.5
  • 30. Modal Time History Analysis  Structure analyzed for three different pairs of ground motion time-histories  The emphasis here was to implement and understand Time-History approach Ground Motions Used for Analysis Record Name Orientation Source Motion RecordA00 N-S Lucern (Landers) RecordA90 E-W Lucern (Landers) RecordB00 N-S Corrolitos (Loma Prieta) RecordB90 E-W Corrolitos (Loma Prieta) RecordC00 N-S Dayhook (Tabas,Iran) RecordC90 E-W Dayhook (Tabas,Iran) Time History for Loma – Prieta used in SAP 2000 analysis
  • 31. Modal Time History Analysis • Twelve individual time-history analysis performed in SAP 2000 • 5% Damping considered • Maximum scaled base shears computed Result Maxima from Time-History Analysis (Unscaled) from Result Maxima from Time-History Analysis (Scaled) SAP 2000 Analysis Maximum Base Required Adjusted Adjusted Analysis Maximum Base Time of Max. Max. Roof Time of Max. shear Additional Max. Roof Max. Roof shear Shear Displacement Displacement (S.F. = 0.115) Scale Factor Displacement Displacement (S.F. = 0.115) (S.F. = 0.115) for V=1124 (S.F. = 0.115) X Cd (kips) (sec) (in.) (sec.) (kips) kips (in.) (in.) A 00-X 372.77 11.4 1.94 12.75 A 00-X 372.77 3.02 5.85 32.17 A 00-Y 354.87 11.4 1.61 12.64 A 00-Y 354.87 3.17 5.10 28.05 A 90-X 819.3 12.8 5.02 11.4 A 90-X 819.3 1.37 6.89 37.88 A 90-Y 714.95 12.78 4.34 11.34 A 90-Y 714.95 1.57 6.82 37.53 B 00-X 269.7 4.96 1.3 5.96 B 00-X 269.7 4.17 5.42 29.80 B 00-Y 350.7 8.45 1 7.37 B 00-Y 350.7 3.21 3.21 17.63 B 90-X 307.4 8.64 1.01 7.4 B 90-X 307.4 3.66 3.69 20.31 B 90-Y 350.63 8.5 0.98 7.3 B 90-Y 350.63 3.21 3.14 17.28 C 00-X 875 13.32 4.16 21.3 C 00-X 875 1.28 5.34 29.39 C 00-Y 816.3 13.4 3.47 11.92 C 00-Y 816.3 1.38 4.78 26.28 C 90-X 817.53 12.85 4.8 14.2 C 90-X 817.53 1.37 6.60 36.30 C 90-Y 823.63 13.02 4.1 14.1 C 90-Y 823.63 1.36 5.60 30.77 ELF Base shear = 1124 kips for Factors for scaling Modal Time fundamental period of T=2.23 sec History base shear to 100 % base shear computed in ELF
  • 32. Drift Drift and P-delta checked only for Motion A00 acting in X-direction Scaled Inertial Force and story shear envelopes from Analysis A00X Time-History Drift for building responding in X Direction to Motion A 00X At Time of Max. Roof At Time of Max. Base Level 1 2 3 4 Level Displacement Shear Elastic Total Elastic Story Inelastic Story Allowable (T = 12.75 sec) (T = 11.4 sec) Drift Drift Drift Drift (in.) (in.) (in.) (in.) Story Inertial force Story Inertial force R 5.849612362 0.22 1.21 3 Shear (k) (kips) Shear (k) (kips) 12 5.638543874 0.27 1.485 3 R 49.2085 49.21 35.57065 35.57 11 5.367170105 0.38 2.09 3 12 92.08855 42.88 66.9185 34.35 10 4.975185771 0.39 2.145 3 11 132.2868 40.2 68.402 1.482 9 4.522896156 0.51 2.805 3 10 102.8882 -29.4 89.2239 20.82 8 4.010301258 0.7 3.85 3 9 175.099 72.12 146.625 57.41 7 3.316790514 0.3 1.65 3 8 83.6165 -91.39 74.3475 -72.28 6 3.015264104 0.39 2.145 3 7 256.3868 172.77 214.1381 139.79 5 2.62327977 0.33 1.815 3 6 272.7685 16.38 178.4478 -35.69 4 2.291600719 0.42 2.31 3 5 290.582 17.81 220.0859 41.56 3 1.869463744 0.48 2.64 3 4 317.86 27.28 234.9565 212.95 2 1.387021488 1.39 7.645 4.32 3 336.5705 18.71 324.1816 89.22 2 352.7625 16.19 349.7587 25.58
  • 33. Torsion and Orthogonal Loading Accidental Torsion applied without using 0.85 as the factor.  Orthogonal loading accounted by concurrently running one ground motion in one principle direction with 30 percent of companion motion in orthogonal direction.
  • 34. Member Forces Maximum Member Forces for each story story level (kips) R to 12 18.61 12 to 11 37.65 11 to 10 54.88 10 to 9 71.76 9 to 8 16.25 8 to 7 82.57 7 to 6 87.52 6 to 5 87.74 5 to 4 73.14 4 to 3 72.23 3 to 2 75.57 2 to G 73.34
  • 35. Comparison of Methods for Various Methods of Analysis ELF Response-spectrum Analysis Modal-time-history-analysis
  • 36. Base Shears and Story shears Summary of results from various Methods of Analysis: Story Shear Summary of results from various Methods of Analysis: Story Shear From FEMA-451 Example from SAP 2000 Story Shear (kips) Story Shear (kips) Level ELF RS TH at Time of TH at time of Level ELF RS TH at Time of TH at time of Max. Max. Max. Max. Displacement Base Shear Displacement Base Shear R 187 180 307 40.2 R 186.9 154.3 49.21 35.57 12 341 286 530 44.3 12 340.9 268.6 42.88 34.35 11 471 358 664 45.7 11 470.8 343.5 40.2 1.482 10 578 417 731 95.6 10 578.4 243.2 -29.4 20.82 9 765 523 788 319 9 764.7 397.6 72.12 57.41 8 866 586 818 468 8 865.8 196.3 -91.39 -72.28 7 943 638 844 559 7 942.5 642.02 172.77 139.79 6 999 688 856 596 6 998.8 692.02 16.38 -35.69 5 1070 783 829 663 5 1070.2 798.07 17.81 41.56 4 1102 838 779 786 4 1102.7 863.04 27.28 212.95 3 1118 894 718 972 3 1118.2 911.5 18.71 89.22 2 1124 956 669 1124 2 1124.5 955.9 16.19 25.58
  • 37. Drift Summary of Results from Various Methods of Analysis: Story Drift Summary of Results from Various Methods of Analysis: Story Drift from FEMA-451 Example from SAP 2000 X- Direction Drift (in.) X- Direction Drift (in.) Level ELF RS TH Level ELF RS TH R 0.982 0.99 2.57 R 0.59356 0.605 1.21 12 1.41 1.43 3.63 12 0.96844 0.935 1.485 11 1.75 1.65 4.14 11 1.34332 1.21 2.09 10 1.92 1.82 4.12 10 1.62448 1.265 2.145 9 1.83 1.87 3.4 9 1.4058 1.595 2.805 8 2 1.98 3.34 8 1.62448 1.54 3.85 7 2.03 2.2 3.2 7 1.74944 1.76 1.65 6 1.95 2.14 2.95 6 1.65572 1.98 2.145 5 1.7 2.09 2.32 5 1.34332 1.65 1.815 4 1.7 2.09 2.12 4 1.4058 1.87 2.31 3 1.67 2.31 1.89 3 1.49952 2.255 2.64 2 2.02 2.91 2.13 2 3.9831 5.995 7.645
  • 38. Member Forces Summary of Results from Various Methods of Analysis: Beam Shear from Summary of Results from Various Methods of Analysis: Beam Shear from FEMA-451 Example SAP 2000 X- Direction Drift (in.) X- Direction Drift (in.) Level ELF RS TH Level ELF RS TH R 9.54 9.7 17.5 R 4.56 2 17.05 12 17.6 17.7 32.3 12 9.75 4.08 35.9 11 26.3 24.9 45.6 11 14.94 5.8 52.19 10 31 27.7 49.3 10 17.96 6.63 60.48 9 32.7 26.5 44.5 9 22.09 7.63 71.52 8 34.1 26.7 43.5 8 27.2 9.5 88.9 7 38.1 28.8 45.4 7 30.22 10.46 96.63 6 38.4 30.4 42.9 6 31.3 11.09 95.1 5 34.3 27.7 36.4 5 39.5 10.84 82.87 4 31 27 35.3 4 27.7 10.69 75.28 3 31.7 28.8 36.1 3 29.5 11.93 77.42 2 31.8 30.6 37.3 2 34 14.4 88.66
  • 39. Conclusion ELF Modal-Response-spectrum Analysis Modal-time-history-analysis Useful for Preliminary Beneficial in- Design •Nonlinear dynamic Modal analysis essential time history analysis ELF Analysis results for Final Design are necessary for •Non-proportionally application of damped Linear accidental torsion systems