SlideShare une entreprise Scribd logo
1  sur  75
Recombinant protein purification using
gradient assisted Simulated Moving Bed-
Hydrophobic Interaction Chromatography
               (SMB-HIC)
                  Sivakumar P.
                   BT04D006
                  PhD viva-voce
                                          MAX-PLANCK-INSTITUT

        Research Advisors:                DYNAMIK KOMPLEXER
                                             TECHNISCHER

        Prof. Guhan Jayaraman
                                               SYSTEME
                                              MAGDEBURG

        Prof.Andreas Seidel-Morgenstern
Overview

   Background and objectives
   Scheme for the work
   Preparative work
       Production and purification of recombinant streptokinase (rec-stk)
   Adsorption isotherm estimation
   SMB theory
   Design of SMB
       Scanning the separation zone
       Simulation profiles
   Experimental realization
   Conclusion and Discussion
                                                                             2
Back ground and Objective

   Background
    work at IIT-Madras

    purification of rec-stk (batch chromatography*)




   Objectives
         Developing a continuous gradient assisted

         HIC-SMB process for the purification of rec- stk


                                                                              3

*B. Balagurunathan et al. / Biochemical Engineering Journal 39 (2008) 84–90
Scheme        Prep. purification   Est. Adsorption       SMB          SMB        SMB        Conclusion &
                  of rec-Stk            isotherm         Theory       Design   Experiments    discussion




                              Scheme for the work


                       Preparative work for SMB (batch)

                                Adsorption isotherm estimation

                                      SMB Design

                                              SMB Experiments

                                                      Data analysis
100L reactor                                                                           SMB
   HZI                                                                                 MPI


                                                                                                  4
Scheme           Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
                    of rec-Stk            isotherm      Theory   Design   Experiments    discussion




              Preparative work for SMB

 rec-stk was produced in 100 L reactor and used as a feed for
         HIC Matrices screening
         Pure rec-stk production for adsorption isotherm estimation
         SMB experiments


 HIC matrices screening- Butyl sepharose
         Selectivity
         Binding capacity
         Ease of regeneration

  Preparative batch purification of rec-stk
                                                                                             5
Scheme               Prep. purification    Est. Adsorption           SMB        SMB                 SMB        Conclusion &
                              of rec-Stk             isotherm             Theory     Design            Experiments    discussion


                        Adsorption equilibrium constants
                            (PULSE experiments)
                                                                      14
                                                                                                           STK
     (NH4)2SO4        Contaminants                   STK                                                   STK+Degraded product
                                                                      12
       [mM]                                        (Target)
                    KH,con1          KH,con2         KH,STK           10


        50                            2.23            2.23                8




                                                                    H,i
       100                            1.59            3.69
                     ˜ 0                                                  6




                                                                   K
       150                            1.52            7.76
                                                                          4
       200                            1.57           11.74
                                                                          2


qi     K H ,i (Csalt )Ci       i= degraded STK+STK,STK                    0
                                                                              0     50        100          150       200        250

                                                                                            C (NH            [M]
                                                                                                    4)2SO4

KH,i depend on Csalt approximately linearly between 100 and 200mM
                                                                                                                           6

      Hi (Csalt ) a1,i           a2,i (Csalt )         a1,im 1.59; a2,im           0.0002     a1, sk      4.34; a2, sk     0.081
Scheme               Prep. purification   Est. Adsorption        SMB          SMB               SMB        Conclusion &
                               of rec-Stk            isotherm          Theory       Design          Experiments    discussion




                Introduction to continuous chromatography
 Batch Chromatography
                                                             Species have different affinity towards adsorbent:
                                                             migrate with different velocities
                                                             leave column at different time points
   S        A        A, B         B                        True Moving Bed Chromatography
                                           Analogy
                                                            Liquid and solid phase move in countercurrent:
                                                            Continuous operation.
                Solid Phase                                 Two outlets. Good for binary separations.
                                                            Difficult to realise due to the movement of the solid
                                                            phase.
         Simulated Moving Bed
                                                              S
                                                                    Raffinate                Feed             Extract
Practical realisation of the TMB concept:                               A                   A, B                 B

 periodic switching of the columns
                                                                   1            2       3           4        5        6
                                           (or ports)                                                                   7

Periodic behaviour (cyclic steady state).                                                                                  7
Scheme   Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
            of rec-Stk            isotherm      Theory   Design   Experiments    discussion




                        SMB theory


                                                                                     8
Scheme                Prep. purification       Est. Adsorption        SMB          SMB             SMB        Conclusion &
                             of rec-Stk                isotherm          Theory       Design        Experiments    discussion


                Isocratic separation of binary mixture
                           (four zone SMB)
                                                   Lets consider
                                                        A+B mixture
                       Zone IV
                                                        A is weakly retained, B is strongly retained
                       &
                  mIV VIV                Raffinate
                                          A &           follows linear Henrys isotherm model
                  ,                                VR
                      Zone III                                          Keys for separation
                              &
                      mIII , VIII
Feed                            &
                                                                        &
                                                                       Vi
       &
      VF                                                        mi
                      Zone II                                           &
                                                                       VS
 A+B
                             &
                      mII , VII          Extract                i    1, 2, 3, 4
                                               B
                                                    &
                                                   VE
                      Zone I
                            &
                      mI , VI                                        Flow rate ratios mi
      &
     Vsolid                                                           m4          HA < H B     m1
                         Desorbent
                                                                      H A m2          H                                9
                                                                                       B       Triangle
                                                                      H A m3          HB
Morbidelli et al., 1997
Scheme                Prep. purification        Est. Adsorption     SMB             SMB         SMB        Conclusion &
                             of rec-Stk                 isotherm       Theory          Design    Experiments    discussion

                            Four zones closed loop SMB
                           Illustration of Triangle theory
                HA                                                    Flow rate ratios mi

                                                                                 QI                 Safety value
                                                                          mI            HB
                                                                                 QS
      4               2                        6           HB                    QII
                                                                          mII            HA
                                                                                 QS
                      1                                                                             HB / H A      1
      3                                                                          QIII
                                                                          mIII            HB /
                                                                                 QS
                                                                                 QIV
                                                                          mIV             HA /
                                                                                 QS


     5                    H A m2               H
                                                B        Triangle
                          H A m3               HB


                 HA                                                    After considering dead volume

                                                                                                                   10


Morbidelli et al., 1997
Scheme            Prep. purification    Est. Adsorption      SMB       SMB          SMB        Conclusion &
                            of rec-Stk             isotherm        Theory    Design     Experiments    discussion


                         Separation region (gradient SMB)
                                  Linear isotherm
                HA                                 1.   Complete separation
                                                   2.   Pure extract and raffinate polluted with species B
                                                   3.   Pure raffinate and extract polluted with species A
                     2                        HB   4.   Both raffinate extract containing A and B
    4                             6
                                                   5.   Extract flooded with desorbent (A&B at raffinate)
                     1                             6.   Raffinate flooded with desorbent (A&B at extract)
    3
                                                   7.   Extract flooded with desorbent (A accumulates)
                                                   8.   Raffinate flooded with desorbent (B accumulates)
                                                   9.   Raffinate and extract flooded and (A& B accumulates)
   5



                HA
                                                             After considering dead volume

                                                                                                          11

Mazzotti et al., 1999, Abel et al., 2002
Scheme          Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
                   of rec-Stk            isotherm      Theory   Design   Experiments    discussion




         Design of continuous separation process

                3-zone open-loop two step-gradient SMB




                                                                                           12
Scheme            Prep. purification        Est. Adsorption    SMB      SMB                             SMB          Conclusion &
                          of rec-Stk                 isotherm      Theory   Design                        Experiments      discussion


                     Design of 3-zone open-loop
                two-step gradient process (TMB Model)


 Raffinate:                                                                                               Two-step salt
  contaminants,                                                                                             gradient
  degraded                     &
                              VZ
  streptokinase mz                 Z        I , II , III
                               &
                              VS
Feed: E.coli cell




                                                                                     salt concentration
 homogenate
 containing
 streptokinase

Extract:
 streptokinase
                               Vcol (1      )
                         t*                                                                                  D     R      F
                                                                                                           C salt Csalt C salt
                                     &
                                    VS                                                                                           13

Gueorguieva L et al. J. Chromatogr. A, 1176,(2007) 69.
Scheme               Prep. purification        Est. Adsorption      SMB           SMB              SMB         Conclusion &
                            of rec-Stk                 isotherm        Theory        Design         Experiments     discussion


         Design of 3-zone open-loop gradient process

                            Parameters set:                      F       D       &
                                                                Csalt , Csalt , VF
                                                                      &
                                                                     VZ
                      Design parameters:                        mz              Z    I , II , III
                                                                      &
                                                                     VS

              Inequalities for complete separation under gradient conditions
                                                                                                Henrys constants
                         D              D
           mI        K   H , STK
                                   (C   salt
                                               )                                    K H ,i    K H ,i (Csalt ) i con, STK
             D           D                            D           D                             D         D
                                                                                              K H ,con (C salt ) 1.55
           K H , con ( C salt )         m II        K H , STK ( C salt )
                                                                                                D          D
             R           R                             R           R                          K H , STK (C salt ) 3.69
           K H , con ( C salt )         m III        K H , STK ( C salt )                       R         R
                                                                                              K H ,con (C salt ) 1.55
                                          Feed                D                                 R          R
              R      ( mIII        mII )C salt          mII C salt                            K H , STK (C salt ) 11.74
          C   salt
                                        mIII                                                                              14


Rhee et al. (1970), Mazzotti et al. (1997)
Scheme                         Prep. purification               Est. Adsorption            SMB            SMB             SMB          Conclusion &
                                              of rec-Stk                        isotherm              Theory         Design        Experiments      discussion

                         Design of 3-zone open-loop gradient TMB
                                                Calculation of separation regions
                                                    (scanning program MPI)
 1) Equilibrium theory Nz→ , Purity=99.99%
2) Equilibrium stage model NI= NII=NIII=20 , Purity=99%
                                                                                             16
     F
C
1 . salt
                      Csalt
                  200mM , F
                  III
                                           Csalt , D
     D
             m                                          m II                                 14
C    salt            C
                 100mMsalt , F             Csalt , R
                                                                                             12
 &                                                                                                             P2
VF           1mL/ min
2.           H sk2R (Csalt , R )
                L
                  ,
                      *
                                                                                             10                                    L2
  Value in zone 1                                                   *
                                                        Csalt , R        Csalt , D
      PurityDconstraint H sk , D )
       H sk , ( H sk , F
                                                                                       III



                                                                                             8
                                                                                        m


                                                        Csalt , F       Csalt , D                        L1
                                                                                             6          lower
            D             D                                                                             bound
  K         H ,con   (C ) 1.55
                          salt     C salt ,F C salt , R
                                                        *
              II , L 2     *
3. m
            D         (C  ) H sk2R
                           D
                               L                                                             4
  K         H , STK   (C ) 3.69 , C salt ,F C salt ,D
                           salt , R
                           salt                                                                                                             P3
                                                                                             2
            R             R
     K      H ,con   (C   salt   ) 1.55                Csalt ,F         Csalt ,D                                    P1
             III , L 2     *
4.    mR                 (CR ,R
                           salt       ) m II ,L 2                                  *         0                                                         15
     K H , STK (C salt ) 11.74                         Csalt ,F         Csalt ,R                  0     1       Him,D 2            3      Hsk,D4             5
                                                                                                                              II
                                                                                                                              m
Scheme             Prep. purification        Est. Adsorption        SMB           SMB              SMB        Conclusion &
                            of rec-Stk                 isotherm          Theory        Design         Experiments    discussion


        Separation region predictions from
                scanning program
       16

                                                                                  Separation regions
       14
                                                                                  Thick lines: equilibrium theory
       12                                                                         Symbols: predictions of
                                   R2
                                                                                  equilibrium stage model
       10


        8                                                                         NI      N II      N III   50        I
                                                                                                                          2
III
 m




                R3                      R1
        6
                                                                                  R1: (○), Pusk ,E Puim,R 99%
        4
                                                                                  R2: (∆), Pusk ,E 99%, Puim,R 70%
        2

                                                                                  R3: (x),       Pusk ,E 70%, Puim,R 99%
        0
            0        1              2                3               4       5
                                              II
                                             m                                                                            16
Scheme              Prep. purification            Est. Adsorption                 SMB               SMB        SMB        Conclusion &
                                   of rec-Stk                     isotherm                   Theory            Design   Experiments    discussion




                                       Experimental operating points
                16
               14
                14
                                    Operation line                               175mM
                                                                                  b
               14
                                                                          b      1
               12
                12
                12
                                       P2
               10
                10
                                                                      b
                                                                      2                 140mM
                10                                                    L2

                88
                                                        Separation zone                                 a
                     Operation
       m III




                 8                                       b
                                                       3
      III

            m




                              L1
III




                      points lower
 m




                                                                     a
                66
                 6                                                  1
                                bound                         a
                                            b
                                        4                    2
                 4                                     a
                44                                    3                P3
                                         a
                2                      4                          Diagonal line
                22                              P1
                0

                00
                    0           1       Him,D 2                           3      Hsk,D4                 5
                                                               II
                  0,0
                   0,0   0,5
                          0,5   1,0
                                 1,0    1,5
                                         1,5         2,0
                                                      2,0   m2,5
                                                              2,5         3,0
                                                                           3,0   3,5
                                                                                  3,5     4,0
                                                                                           4,0   4,5
                                                                                                  4,5       5,0
                                                                                                             5,0
                                                                II
                                                                 II
                                                             m
                                                             m
                                                                                                                                          17
Scheme               Prep. purification   Est. Adsorption       SMB      SMB        SMB        Conclusion &
                        of rec-Stk            isotherm         Theory   Design   Experiments    discussion


                                       Parameters used for
                                        simulation studies

Point                                         I                &         &        &             &
         Csalt , R   m II      m III                t*        VD        VE       VR            VF
 Nr.     [mM]         [-]       [-]       [-]      [s]      [mL/min] [mL/min] [mL/min] [mL/min]
 1b       175        3.30      13.2       2         84        0.75      0.41     1.33           1
 2b       175        2.64      10.6       2        125        0.93      0.60     1.33           1
 3b       175        1.98      7.95       2        167        1.24      0.91     1.33           1
 4b       175        1.32       5.3       2        208        1.86      1.53     1.33           1


 1a       140        3.30       5.5       1.1       37        1.85      0.35     2.50           1
 2a       140        2.64       4.4       1.1       28        2.32      0.82     2.50           1
 3a       140        1.98       3.3       1.1       37        3.09      1.59     2.50           1
                                                                                                     18
 4a       140        1.32       2.2       1.1       46        2.32      1.57     1.25          0.5
Scheme                             Prep. purification          Est. Adsorption    SMB       SMB              SMB        Conclusion &
                                          of rec-Stk                   isotherm      Theory    Design         Experiments    discussion


             Illustration of internal profiles
(rec stk enriched) at 175mM raffinate salt concentration
                                           R
                                       C       salt
                                                      = 175mM          STK
                              30                                                                         b
                                   CSTK= CIM = 5mg/mL                                                   1
                                                                                                          b
                                      C
                                          F
                                                     = 200mM                                            2
                              25           salt
                                                                                                          b
                                      C
                                          D
                                              salt
                                                     = 100mM                                            3
        C STK, C IM [mg/ml]




                                       VF = 1mL/Min
                              20


                              15


                              10
                                                                                                  IM
Feed
concentration5


                              0
                               0.00                             0.33                 0.66                0.99
                                    Desorbent                      Extract              Feed                  Raffinate         19

                                                                       Normalised Length
Scheme       Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
                of rec-Stk            isotherm      Theory   Design   Experiments    discussion




    Experimental Validation

             3-zone open-loop two-step gradient SMB




                                                                                        20
Scheme       Prep. purification   Est. Adsorption      SMB          SMB        SMB             Conclusion &
                   of rec-Stk            isotherm        Theory       Design   Experiments         discussion



                    KNAUER (moving columns)                                        precission valve from smb.mp4



              CSEP C916                                 Multi-function valve        Configuration



                                                                  stator



                                                                  rotor


                                                         Stationary phase Butyl HP
Mobile phase
                                                         Configuration
Desorbent
                                                         Three zones 1-1-1-(1)
phosphate buffer +100 mM (NH4)2 SO4
                                                         Each zone one 2 x1mL column
Feed
20 mM phosphate buffer+200 mM (NH4)2 SO4               UV product profile
Regeneration                                           Internal UV profile and conductivity profile
Milli Q at flow rate of 3 mL/min.                      Cleaning zone conductivity and UV profile
                                                                                               21
                                                       SEC, SDS(PAGE) analysis
Scheme         Prep. purification     Est. Adsorption               SMB              SMB              SMB        Conclusion &
                  of rec-Stk              isotherm                 Theory           Design         Experiments    discussion




                  Experimental operating points

                 14
                                                                                b

                                     Operation line
                                                                       b
                                                                       1
                 12                                                175mM
                                                                    b
                 10                                                2

                  8
                                                                                    140mM          a
                                                   Separation zone
                                                    3
                                                        b
         III
          m




                      Operation                                  a
                  6
                       points                                   1
                                              b           a
                                          4              2
                                                    a
                  4                                3
                                           a
                                          4
                  2                                                        Diagonal line

                  0
                      0,0   0,5     1,0   1,5     2,0       2,5         3,0   3,5     4,0    4,5       5,0
                                                              II
                                                            m                                                        22
Scheme               Prep. purification   Est. Adsorption    SMB      SMB        SMB          Conclusion &
                        of rec-Stk            isotherm      Theory   Design   Experiments      discussion




                     Parameters used for experiments

Point                                         I              &        &        &               &
         Csalt , R   m II      m III                t*      VD       VE       VR              VF
 Nr.     [mM]         [-]       [-]       [-]      [s]                                      [mL/min]
 1b       175        3.30      13.2       2         84      0.83     0.39     1.42             1
 2b       175        2.64      10.6       2        125      1.03     0.57     1.44             1
 3b       175        1.98      7.95       2        167      1.37     0.87     1.48             1
 4b       175        1.32       5.3       2        208       -         -           -           1


 1a       140        3.30       5.5       1.1       37      2.21     0.24     2.89             1
 2a       140        2.64       4.4       1.1       28      2.76     0.67     2.99             1
 3a       140        1.98       3.3       1.1       37      3.68     1.40     3.15             1
                                                                                                    23
 4a       140        1.32       2.2       1.1       46      2.76     1.42     1.74            0.5
Scheme                Prep. purification                      Est. Adsorption                                    SMB                     SMB                   SMB        Conclusion &
                              of rec-Stk                               isotherm                                      Theory                  Design              Experiments    discussion


                                SDS-PAGE analysis of the
                               extract and raffinate outlet..
                                                 14
                                                                                                                         b
                                                                                                           b         1
                                                                                                                     175mM
                                                 12

                                                                                                           b
                                                 10                                                    2

                                                     8
                                                                                                                                         a 140mM
                                                                                            b
                                                                                        3
                                           III
                                            m
                                                                                                                     a
                                                     6                                                               1
                                                                                b                      a
                                                                            4                          2
                                                                                        a
                                                     4                                3
                                                                            a
                                                                            4
          Raffinate                                  2                                                                                                  Raffinate
 salt concentration 140mM                            0                                                                                         salt concentration 175mM
                                                         0,0    0,5   1,0   1,5      2,0        2,5            3,0   3,5     4,0   4,5   5,0
                                                                                                  II
                  4a              3a                     2a                 1a                  m
                                                                                                           L                       3b               2b           1b       R-Raffinate
              R        E      R        E         R             E        R           E                                          R         E      R        E   R        E
                                                                                                                                                                          E-Extract
                                                                                                                                                                          L-Load

rec-stk



                                                                                                                                                                                   24

purity            73%             84%                          78%                  70%                                             77%               57%             56%
Scheme                  Prep. purification         Est. Adsorption                            SMB                  SMB                 SMB         Conclusion &
                                                of rec-Stk                  isotherm                              Theory               Design            Experiments     discussion


                                                              Product trends
                                 Closed symbols (175mM)                                                                               140mM (open symbols)




                           mII vs Extract purity                                                                          mII vs Extract concentration
                     100                                                                                                  2.0
                      95
                      90                                                                                                  1.8




                                                                                          Extract concentraiton (mg/mL)
                      85
                                                                                                                          1.6
                      80
Extract purity (%)




                      75                                                        3b                                        1.4
                      70
                      65                                                        2b                                        1.2
                      60
                      55                                                        1b                                        1.0
                      50
                      45
                                                                                4a                                        0.8

                                                                                                                          0.6
                      40                                                        3a
                      35                                                                                                  0.4
                      30                                                        2a
                      25                                                                                                  0.2
                      20
                                                                                1a


                                                                                                                          0.0
                      15
                      10                                                                                              -0.2
                       5
                       0                                                                                              -0.4
                           1.0   1.5   2.0       2.5    3.0       3.5     4.0
                                                                                                                      -0.6
                                                                                                                                1.0   1.5   2.0    2.5      3.0   3.5    4.0
                                                                                                                                                                               25
                                                 mII                                                                                              mII
Scheme           Prep. purification    Est. Adsorption             SMB        SMB              SMB        Conclusion &
                     of rec-Stk             isotherm               Theory     Design         Experiments    discussion




Experiments Vs simulation prediction
          Point                            exp             th           exp     th      Yield
                      Csalt , R           Csk ,E          Csk ,E      Pusk ,E Pusk ,E
           Nr.        [mM]             [mg/mL]      [mg/mL]            [%]      [%]     [%]

           1a           140             0.34              13.6          70      100      2

           2a           140             0.50              6.07          78      100      8

           3a           140             0.98              3.14          84     99.88     31

           4a           140             1.42              1.60          73     78.83     93



           1b           175             0.33              2.97         56.0     100      4

           2b           175             0.31              6.15         57.0     100      6

           3b           175             0.44              5.51          77     99.96     12

           4b*      175           -         3.29        -     94.38     -
                                                                                                               26
     * Operation point 4b is not feasible because of the flow rate constraints
Scheme                              Prep. purification       Est. Adsorption        SMB                      SMB              SMB        Conclusion &
                                       of rec-Stk                isotherm          Theory                   Design         Experiments    discussion




                                                       Extract purity
                                   Experimental                                                                   Theoretical
                 100                                                                                100




                                                                               Extract purity [%]
Extract purity [%]




                     80                                                                             80



                     60                                                                             60



                     40                                                                             40



                     20                                                                             20


                                                                                                     0
                      0
                                                                                                      1.0   1.5      2.0   2.5    3.0    3.5        4.0
                       1.0   1.5     2.0    2.5        3.0   3.5     4.0
                                                                                                                             II
                                            m
                                                  II                                                                       m

                                   Closed squares for raffinate salt concentration 140mM
                                        a)                                               b)                                                    27
                                   Closed triangles for raffinate salt concentration 175mM
Scheme                  Prep. purification    Est. Adsorption                                     SMB             SMB                 SMB              Conclusion &
                                                           of rec-Stk             isotherm                                       Theory          Design            Experiments          discussion




                                                          Extract concentrations
                                                  Experimental                                                                                       Theoretical
                                2.0                                                                                             14
Extract concentraiton [mg/mL]




                                                                                                Extract concentraiton [mg/mL]
                                                                                                                                12

                                1.5
                                                                                                                                10


                                                                                                                                 8
                                1.0

                                                                                                                                 6


                                                                                                                                 4
                                0.5

                                                                                                                                 2


                                0.0                                                                                              0
                                      1.0   1.5   2.0        2.5      3.0    3.5     4.0                                             1.0   1.5      2.0   2.5         3.0        3.5       4.0

                                                                 II                                                                                           II
                                                             m                                                                                            m


                                                           Closed squares for raffinate salt concentration 140mM
                                                           Closed triangles for raffinate salt concentration 175mMb)
                                                           a)                                                                                                                              28
Scheme           Prep. purification             Est. Adsorption                                         SMB                   SMB           SMB        Conclusion &
                    of rec-Stk                      isotherm                                           Theory                Design      Experiments    discussion


               Enhancing the yield of the process
                Effect of safety values (β factor)
                                     14                                                                                               SDA-PAGE gel analysis
                                     12
                                                                                         b         175mM
                                                                                                   1
                                                                                                       b




                                                                                         b
                                     10                                              2

                                      8
                                                                                                                       a 140mM
                                                                          b
                               III
                                m                                     3
                                                                                                   a
                                      6                                                            1
                                                                b                    a
                                                            4                        2
                                                                      a
                                      4                              3
                                                            a
                                                            4
                                      2


                                      0
                                          0,0   0,5   1,0   1,5     2,0       2,5            3,0   3,5     4,0   4,5   5,0                      R E
                                                                                                                                                β =1.1
                                                                                II
                                                                              m


S.          Operational                               β =1.1                                                     β =2                 R- Raffinate
NO.          point 2a                                                                                                                 E- Extract
1        Load (mg/mL)                                  17.2                                                      17.2
2        Raffinate (mg/mL)                             5.94                                                      6.65
3        Extract (mg/mL)                               0.34                                                      0.20
4        Purity of stk (%)                             69.8                                                      69.4                                      29
                                                                                                                                               R E
5        Recovery (%)                                 1.5%                                                       6.7%                          β =2
Scheme         Prep. purification        Est. Adsorption            SMB                 SMB            SMB        Conclusion &
                    of rec-Stk                 isotherm              Theory              Design       Experiments    discussion


                           Reprocessing the Raffinate
            (isocratic run at 140mM raffinate salt concentration )
                      14                                                            14
                      13                                                            13
                      12                                                            12
                      11                                                            11
                      10                                                            10
                       9                                                            9
                       8                                                            8
               mIII    7                                                            7
                       6                                                            6
                       5                                                            5
                       4                                                            4
                       3                                                            3        β =1.1            β =2
                       2                                                            2
                       1                                                            1        R E               R E L
                       0                                                            0
                           0   1   2   3    4    5   6   7   8   9   10   11   12
                                                mII
S.NO                                       β =1.1                    β =2

 1     Load (mg/mL)                         6.76                      6.76
 2     Raffinate (mg/mL)                    2.69                      3.12                 R- Raffinate
 3     Extract (mg/mL)                      0.38                      0.20                 E- Extract
                                                                                           L- Load (raffinate from SMB)
 4     Purity of stk (%)                        79                     84                                               30

 5     Recovery (%)                             38                     42
Scheme         Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
                      of rec-Stk            isotherm      Theory   Design   Experiments    discussion




                                    Conclusions..
      Butyl sepharose matrice found to be suitable for the continuous HIC-SMB
       purification of rec-stk.

      Adsorption isotherms for rec-stk with butyl sepharose matrice found to be:
                linear adsorption isotherm, parameters depend on the salt
                 concentration.

                perturbation method applied to evaluate isotherm linearity.


      3 zone open- loop two- step gradient SMB design was proposed and
       designed.
                                                                                              31
Scheme        Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
                     of rec-Stk            isotherm      Theory   Design   Experiments    discussion




                                       Conclusions
     Scanning program based on the equilibrium model and the equilibrium stage
      model was employed to predict the separation zone.


     Experimental realisation of the continuous purification of rec-stk.


     Simulation predicts for more idealistic conditions and correlate with product
      purity trends.

     Highest product purity=84%(3a), and concentration of =1.4mg/mL with a mass
&
m     flux of =2mg/min for operation point 4a

     Recycling the raffinate will increase the yield of the process
                                                                                                   32
Scheme        Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
                 of rec-Stk            isotherm      Theory   Design   Experiments    discussion




    Discussion

   Demonstrate the potential of SMB for the continuous recombinant protein
    purification.

   SMB could be placed for the high throughput capture and intermediate
    purification of the recombinant protein from complex mixtures.

   Fractionation and Feed back SMB or Tandem chromatography could be
    proposed for increasing the yield of the purification process




                                                                                         33
presentations
Palani S., Jayaraman G., Gueorguieva L., Rinas U., Seidel-Morgenstern A., “Determination of adsorption isotherm
parameters from total protein mixtures” PREP 2009 meeting, July 19-22, 2009, Loews philadelphia, USA(oral).

Palani S., Jayaraman G., Gueorguieva L., Rinas U., Seidel-Morgenstern A., “Determination of adsorption isotherm
parameters for recombinant streptokinase using perturbation method” 5th Doktorandenseminar Präparative
chromatographie, March 1-3,2009, Wetter Ruhr, Germany(oral).

Palani S., Gueorguieva L., Rinas U., Jayaraman G., Seidel-Morgenstern A., “Simulated Moving Bed Chromatography
(SMBC) current status and applications for protein purification”(oral presentation), International symposium Gene to vial
concept for the biotechnology based health care molecules, Feb 7-10, 2010, VIT, Vellore, T.N, India.(oral).
Palani S., Jayaraman G., Gueorguieva L., Kessler L C., Rinas U., Seidel-Morgenstern A., “Continuous separation of
Recombinant streptokinase using hic gradient simulated moving bed chromatography”, 28th International Symposium on the
separation of Proteins, Peptides and        Polynucleotide’s (ISPPP 2008), September 21-24, 2008, Baden-Baden,
Germany(poster).

Palani S., Jayaraman G., Gueorguieva L., Rinas U., Seidel-Morgenstern A., “Continuous simulated moving bed (SMB)
purification of recombinant streptokinase”, 34th International Symposium on High Performance Liquid Phase Separations
and Related techniques, HPLC 2009,June 28-July 2, 2008, Dresden, Germany(poster).

Palani S., Jayaraman G., Gueorguieva L., Rinas U., Seidel-Morgenstern A., “Kontinuierliche aufreinigung der
rekombinanten streptokinase mittels simulated moving bed (SMB) chromatographie”, 27th DECHEMA Jahrestagung der
                                                                                                       34
Biotechnologen, gemeinsam mit International workshop on downstream processing. September 8-10, 2009, Mannheim,
Germany(poster).
Publications


Palani S., Gueorguieva L, Rinas U., Seidel-Morgenstern A., Jayaraman G., “ Continuous
purification of recombinant streptokinase using Hydrophobic Interaction- Gradient assisted
Simulated moving Bed Chromatography. part I. Determination of adsorption isotherms
applying perturbation method ”(Journal of chromatography A., manuscript submitted).


Gueorguieva L., Palani S., Rinas U., Jayaraman G.,Seidel-Morgenstern A.,“ Continuous
purification of recombinant streptokinase using Hydrophobic Interaction- Gradient assisted
Simulated moving Bed Chromatography. Part II. SMB experimental design analysis for the
operating conditions”(Journal of chromatography A., manuscript submitted).




                                                                                         35
Acknowledgement
          Prof Guhan Jayaraman
          Herr.Prof Andreas Seidel-Morgenstern, MPI,Magdeburg
          Frau Ludmila Guorguieva, Dr.Christian Kessler,MPI
          Frau Dr. Rinas, HZI, Braunschweig
          Herr Dr. Wilko, IFN, Magdeburg
          Collegues at IITM,MPI,IFN,HZI
          IITM,Deutscher Academic Austausch Dienst (DAAD),
           GDCh, Deutsche Forschungemeinschaft (SFG-578)




still lots needs to be explored with SMB!!!
                                                                36
37
Back up slides
Scheme           Prep. purification                                  Est. Adsorption                                                                SMB              SMB                                     SMB                Conclusion &
                                                  of rec-Stk                                           isotherm                                                                  Theory           Design                                Experiments            discussion



                                                           Steady state profiles
                                       Cleaning profile                                                                                                                                Outlet (Raffinate ,Extract) profile
                              1200                                                                   180                                                                      1200
                                                                                                                                                                                                                                  Extract concentration
                                                                                                     160
                                                                                                                                                                                                                                  Raffinate concentration
                              1000
Detector signal 280nm [mAu]




                                                                                                                                                                              1000




                                                                                                                                                Detector signal 280nm [mAu]
                                                                                                     140




                                                                                                            Conductivity [mS/cM]
                              800                                                                    120                                                                      800

                                                                                                     100
                              600                                                                                                                                             600
                                                                                                     80

                              400                                                                    60                                                                       400

                                                                                                     40
                              200                                                                                                                                             200
                                                                                                     20

                                0                                                                     0                                                                         0
                                 322    324      326                                     328       330                                                                           322       324                              326          328            330
                                                                                          1200                                                                                               180
                                              Time [min]                                                                                                                                                                  Time [min]
                                                                                                                                                                                             160
                                                                                         1000
                                                           Detector signal 280nm [mAu]




                                                                                                                                                                                             140




                                                                                                                                                                                                   Conductivity [mS/cM]
                                                                                          800                                                                                                120

                                                                                                                                                                                             100
                                                                                          600
                                                                                                                                                                                             80
                                                                                                                                                                                                                           Internal profile
                                                                                          400                                                                                                60

                                                                                                                                                                                             40
                                                                                          200
                                                                                                                                                                                             20
                                                                                                                                                                                                                                                                  39
                                                                                            0                                                                                                 0
                                                                                             322          324                         326                                        328       330

                                                                                                                                   Time [min]
Scheme   Prep. purification      Est. Adsorption              SMB           SMB        SMB        Conclusion &
            of rec-Stk               isotherm                Theory        Design   Experiments    discussion




Classical True Moving Bed (TMB) chromatography

                                         B
                                         C Zone IV
                                         S Zone IV
                                         M
                                           mIV V&IV
                                                &
                                           mIV VIV                    Raffinate
                                                                      Raffinate
                                                                       A &
                                                                       A &
                                           ,,                            VR
                                                                         VR
                                         C
                                         S
                                         M
                                         B
                                                Zone III
                                                Zone III
                                             mIII ,,V&III
                                                     &
                                             mIII VIII&&
                      Feed
                      Feed
                               &
                               &
                              VF
                              VF         S
                                         M
                                         B
                                         C
                       A+B
                       A+B                      Zone II
                                                Zone II
                                                mII ,,V&II
                                                mII VII&
                                                                      Extract
                                                                      Extract
                                                                       B
                                                                       B
                                         M
                                         B
                                         C
                                         S
                                                Zone II
                                                Zone
                                                                           V&E
                                                                            &
                                                                           VE
                                                mII,,V&I
                                                m VI  &
                               &
                               &
                              Vsolid
                              Vsolid
                                                   Desorbent
                                                   Desorbent
                                                                                                      40
Scheme            Prep. purification   Est. Adsorption    SMB       SMB          SMB          Conclusion &
                         of rec-Stk            isotherm      Theory    Design     Experiments      discussion




             Adsorption isotherm estimation
    Dynamic methods
               Method and                  Special favorable feature       Special        Applicable for
             characterization                                            unfavorable      more than one
                                                                           feature           solute
             Perturbation                   No detector calibration      Isotherm               Difficult
        (Dynamic, small samples)                   required            model required

         Dispersed front analysis            Low sample amount,         High column               No
                 (ECP)                         small number of           efficiency
         (dynamic, intermediate                  experiments              required
                samples)
          Chromatogram fitting               Low sample amount,        Models for the           Difficult
              (dynamic)                        small number of          isotherms and
                                                 experiments           to simulate the
                                                                       chromatogram
                                                                                                       41
                                                                           required
Seidel-Morgenstern A, J. Chromatogr. A 1037,(2004) 255
Scheme   Prep. purification   Est. Adsorption    SMB       SMB             SMB        Conclusion &
            of rec-Stk            isotherm      Theory    Design        Experiments    discussion




                     Adsorption isotherms

                                                     •   Relationship between the
                                                         equilibrium protein
                                                         concentration in the
                                                         stationary phase and the
                                                         protein concentration in the
                                                         mobile phase

                                                     •   Slope gives the information
                                                         about the affinity

                                                     •   Plateau gives the information
                                                         about the capacity
                                                                                          42
Scheme          Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
                   of rec-Stk            isotherm      Theory   Design   Experiments    discussion




      SMB under linear and non-linear conditions

Regions 1 to 4 correspond to higher and higher feed concentrations




                                                                                           43
Scheme   Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
            of rec-Stk            isotherm      Theory   Design   Experiments    discussion




Effect of feed concentration over flow rate ratios




                                                                                    44
Scheme          Prep. purification   Est. Adsorption    SMB      SMB           SMB        Conclusion &
                   of rec-Stk            isotherm      Theory   Design      Experiments    discussion

    Hydrophobic chromatographic purification of
                  streptokinase


                                                                   Equilibration         5CV
                                                                   Washing               15CV
                                                                   75% step gradient     10CV
                                                                   85% step gradient     12CV
                                                                   100% step gradient    10CV




            Resin Phenyl Sepharose
               Buffer A: 20mM sodium phosphate buffer pH 7.2
                                    +1M Ammonium sulphate
               Buffer B : 20mM sodium phosphate buffer pH 7.2                                45

            Flow rate 1ml/min
Scheme           Prep. purification       Est. Adsorption    SMB          SMB            SMB        Conclusion &
                    of rec-Stk                isotherm      Theory       Design       Experiments    discussion




              SDS-PAGE analysis (silver staining)

    1               2                 3                4             5            6

                                                                                                     rec-stk




            lane 1: molecular weight marker
            lane 2: inlet feed sample
            lane 3: Standard streptokinase
                                                                                   46
            lane 4, 5, 6: 85% step gradient fraction number 28, 29, 40, respectively
Scheme             Prep. purification   Est. Adsorption      SMB           SMB           SMB        Conclusion &
                         of rec-Stk            isotherm        Theory        Design      Experiments    discussion




     Procedure            Total   Activity                   Specific                 Purific Yield %
                          Protein (units)                    activity                 ation
                          (mg)                               Units/mg                 factor




     Crude                     35          5,30,833              15,166                 0              100
     cellular
     extract

     HIC                       1.4         3,60,966             2,57,883                17             68
                                                                                                            47

B. Balagurunathan et al. / Biochemical Engineering Journal 39 (2008) 84–90
Scheme                                Prep. purification          Est. Adsorption    SMB          SMB            SMB        Conclusion &
                                                        of rec-Stk                   isotherm      Theory       Design       Experiments    discussion




                                                 Pulse experiment fraction analysis
                                 2       3           4         5
                18
                17                                                                Vinj=100 µl          1    2       3    4   5    6
                16                                                                Vinj=50 µl
                15
                14
                13
                12
Signal [mAu]




                11
                10
                 9
                 8
                 7
                 6
                 5
                 4
                 3
                 2
                 1
                         2                               3         4
                 0
                 0   1       2       3   4   5   6   7   8    9 10 11 12 13 14 15 16 17 18 19 20

                                                             VR [mL]
                                                                                                     1 Fraction 2 (contaminant )
                Butyl HP (1mL) column                                                                2 Fraction 3 (stk degraded product)
                                                                                                     3 Fraction 4 (stk + stk degraded product)
                V F =0.5mL /Min
                                                                                                     4 Fraction 5( stk)
                CSTK =2mg/ML                                                                         5 load                              48
                Mobile phase 150mM (NH4)2 SO4                                                        6 Molecular weight marker
Scheme              Prep. purification   Est. Adsorption    SMB         SMB             SMB        Conclusion &
                       of rec-Stk            isotherm      Theory      Design        Experiments    discussion




                 Motivation for perturbation method
            • Commercial preparations
                • Presence of Bovine Serum Albumin (BSA) as stabiliser

            • Standards from NIBSC
                 • Smaller in quantity

            • Over expression and purification
                •Storage and degradation problem

            • Perturbation method
                 • Crude homogenate as the feed material



                                                                                                       49
         Blumel C, Hugo p, Seidel Morgenstern P, (1999) J. Chromatogr. A 865 (1999)51
         Heuer C, Kusers E, Plattner T, Seidel-Morgenstern A, J. Chromatogr. A 827 (1998)175.
Scheme              Prep. purification        Est. Adsorption          SMB                    SMB                      SMB                  Conclusion &
                                     of rec-Stk                 isotherm            Theory                 Design                 Experiments              discussion


                              Retention time and adsorption isotherm
                                            parameters
              6

                                                                                                8
                                                                                                         STK+degraded product
              5
                                                                                                         STK

                                                         Streptokinase
              4                                                                                 6
                                                            100 mM
tR, i [min]




                                                            150 mM
              3                                             200 mM
                                                         Contaminants                           4




                                                                                         KH,i
              2                                             100 mM
                                                            150 mM
                                                            200 mM
              1                                                                                 2


              0
                  0.0   0.5     1.0      1.5       2.0        2.5        3.0
                                                                                                0
                                      Ci [mg/ml]                                                    0          50           100                     150     200          250
                                                                                                                                C(NH       )2SO4
                                                                                                                                                   [M]
                                                                                                                                       4




                                                                               linear isotherms; KHi depend on Csalt

                                                                                    qi              K H ,i (Csalt )Ci
                                                                                                                                                              50
                                                                                   i= degraded STK+STK,STK
Scheme       Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
                of rec-Stk            isotherm      Theory   Design   Experiments    discussion




         True Moving bed chromatography-Analogy




                                    Stationary phase

                                   Mobile Phase




                                                                                        51
Scheme   Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
            of rec-Stk            isotherm      Theory   Design   Experiments    discussion



          Illustration of binary separation




                                                                                    52
Scheme   Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
            of rec-Stk            isotherm      Theory   Design   Experiments    discussion


          Illustration of binary separation
                   (Fast solid flow)




                                                                                    53
Scheme   Prep. purification   Est. Adsorption    SMB      SMB        SMB        Conclusion &
            of rec-Stk            isotherm      Theory   Design   Experiments    discussion


          Illustration of binary separation
                   Slow solid flow




                                                                                    54
Scheme         Prep. purification   Est. Adsorption    SMB      SMB             SMB        Conclusion &
                  of rec-Stk            isotherm      Theory   Design        Experiments    discussion


               Bioreactor production of rec-stk
                    (HZI, Braunschweig)




Preparation of the 10L              Inoculums preparation        Preparation for the Reactor
    (100L) reactor



 Inoculation

         Optical Density(OD) 4

                                                                          Product analysis
 Induction        Fermentation              Harvesting and              Storage of cell pellet
                                                                                               55

 with IPTG          (4 hours)               centrifugation                   in -80 ˚C
Scheme                Prep. purification      Est. Adsorption        SMB        SMB              SMB        Conclusion &
                             of rec-Stk               isotherm          Theory     Design         Experiments    discussion


             Bioreactor Production of rec-stk
                     10 L Bioreactor
S.No   Parameters              Fermentor                 SDS PAGE analysis
1      Agitator speed         400-1000 in cascade                                       rec-stk
                              mode                            1     2    3   4 5
2      Temperature            37 Degree Celsius

3      Aeration               5 LPM                                                    1 un-induced sample
4      Inoculum volume        2%
       to fermentation                                                                 2 after induction (1.20 hours)
       volume
                                                                                       3 after induction (2.20 hours)
5      IPTG                   0.1mM
       concentration
                                                                                       4 after induction (3.30 hours)
6      Induction OD           4                                                        5 after induction (5 hours)
7      Fermentation           11 hours
       duration (total)
8      Wet biomass            260 grams (10L)
       produced               2.8kG (100L)
                                                                                                                    56
Scheme             Prep. purification   Est. Adsorption        SMB      SMB        SMB        Conclusion &
                          of rec-Stk            isotherm          Theory   Design   Experiments    discussion



                               HIC matrices screening




Screening criteria
    • binding conditions at 250,500,750mM
    •Selective binding for the target protein
             •Step (or) linear elution
                                                     Positive candidates
    •Ease of regeneration
                                                              Phenyl sepharose                       57

                                                              Butyl sepharose
Scheme            Prep. purification   Est. Adsorption     SMB       SMB        SMB        Conclusion &
                     of rec-Stk            isotherm       Theory    Design   Experiments    discussion




                       HIC matrices screening
        Phenyl sepharose – more hydrophobic streptokinase tails all over the gradients

        Butyl sepharose - weakly hydrophobic

             Binding capacity is higher for stk at low salt concentration

             More selective binding of stk and easy regeneration

             Manufacturers
             recommendations
    1        Recommended flow rate                 1mL/Min
    2        Maximum flow rate                     4mL/Min
    3        Column dimensions                     0.7X2.5 cm
    4        Column volume                         1mL
    5        Maximum backpressure                  3 bar, 42psi, 0.3Mpa                        58
Scheme                           Prep. purification                     Est. Adsorption                 SMB      SMB        SMB        Conclusion &
                                                                   of rec-Stk                              isotherm                   Theory   Design   Experiments    discussion


                                                     Preparative purification of recombinant
                                                                  streptokinase
                                         2 46             9 1115 21 23     35


                              3500
                                                                                                  100
 Absorbance at 280 nm (mAu)




                                                                                                        Modifier Concentration (%B)
                              3000
                                                                                                  80
                              2500


                              2000                                                                60


                              1500
                                                                                                  40

                              1000

                                                                                                  20
                              500


                                0                                                                 0
                                     0   20     40   60    80   100      120    140   160   180

                                         Volume (mL)                     Absorbance at 280 nm (mAu)
                                                                         Conductivity (mS/cm)
                                                                         Modifier concentration (%B)


Feed                                                            : Total protein mixture from E.coli homogenate
Solid Phase                                                     : Butyl sepharose HP, GE Biosciences
                                                                           L= 12cm; D= 0.5 cm,
                                                                           Vcol= 9.5mL; dpart= 34 µm
Ligand                                                          : Butyl, 10 μmol/mL,
Mobile Phase                                                    : Buffer A: 20 mM sodium phosphate buffer + 0.2M (NH4)2S04 (pH 7.2)
                                                                                                                                  59

Elution buffer                                                  : Buffer B: 20 mM sodium phosphate buffer (pH 7.2)
Scheme                                         Prep. purification                             Est. Adsorption                                                                SMB          SMB             SMB        Conclusion &
                                                  of rec-Stk                                      isotherm                                                                  Theory       Design        Experiments    discussion


                                               Preparative batch product analysis
                                                SDS-PAGE analysis (qualitative)
                                             9 13 17 21                      35
                                                                                                                                                                        1     2      3   4   5 6   7    8   9 10      MW Marker
                             100

                                                                                                                                   100
                                                                                                                                                                                                                              117
Absorbance at 280 nm (mAu)




                                                                                                                                         Modifier Concentration (%B)
                             80
                                                                                                                                                                                                                              85
                                                                                                                                   80

                                                             3500
                                                                                                                             100
                             60                              3000


                                                             2500
                                                                                                                             80    60                                                                                         48
                                                             2000                                                            60


                                                             1500
                             40                                                                                              40

                                                                                                                                   40
                                                             1000

                                                                                                                             20
                                                                                                                                                                                                                              34
                                                             500


                                                               0                                                             0
                                                                    0   20    40    60   80   100   120   140   160    180

                             20                                                                                                    20                                                                                         26


                              0                                                                                                    0
                                   40   60      80     100     120                 140              160               180                                              1-3. unbound (fraction 2,4,6)
                                                     Volume (mL)

                                               Absorbance at 280 nM (mAu)
                                                                                                                                                                       4-6,9. elution at 25% B,150mM (NH4)2SO4)
                                               Conductivity (mS/cm)
                                               Modifier concentration (%B)                                                                                             7 .Molecular weight marker
                                                                                                                                                                       8. Load
                                                                                                                                                                                                                         60
                                                                                                                                                                       10. Regeneration fractions
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic
Recomb Protein Purification Using Smb Hic

Contenu connexe

Tendances

Perfusion scaling slideshare
Perfusion scaling slidesharePerfusion scaling slideshare
Perfusion scaling slideshare3D Biotek
 
Deformulating Complex Polymer Mixtures By GPC-IR Technology
Deformulating Complex Polymer Mixtures By GPC-IR TechnologyDeformulating Complex Polymer Mixtures By GPC-IR Technology
Deformulating Complex Polymer Mixtures By GPC-IR Technologymzhou45
 
Screening Assays For Gpc Rs 3
Screening Assays For Gpc Rs 3Screening Assays For Gpc Rs 3
Screening Assays For Gpc Rs 3Shirley Pullan
 
GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical Formulatio...
GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical Formulatio...GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical Formulatio...
GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical Formulatio...mzhou45
 
ACS2010 GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical ...
ACS2010   GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical ...ACS2010   GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical ...
ACS2010 GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical ...mzhou45
 
M A S S T R A N S F E R O P E R A T I O N S I J N T U M O D E L P A P E...
M A S S  T R A N S F E R  O P E R A T I O N S  I  J N T U  M O D E L  P A P E...M A S S  T R A N S F E R  O P E R A T I O N S  I  J N T U  M O D E L  P A P E...
M A S S T R A N S F E R O P E R A T I O N S I J N T U M O D E L P A P E...guest3f9c6b
 
Product Range 2010
Product Range 2010Product Range 2010
Product Range 2010hunter7504
 
EarthLed LumiSelect™ MR16 Pro Lamp - 7 watt
EarthLed LumiSelect™ MR16 Pro Lamp - 7 wattEarthLed LumiSelect™ MR16 Pro Lamp - 7 watt
EarthLed LumiSelect™ MR16 Pro Lamp - 7 wattEarthLED
 
3rd Group Meeting VIVA M.Phil Transfer 2010 2nd Draft
3rd Group Meeting VIVA M.Phil Transfer 2010 2nd Draft3rd Group Meeting VIVA M.Phil Transfer 2010 2nd Draft
3rd Group Meeting VIVA M.Phil Transfer 2010 2nd DraftSaiful Irwan Zubairi
 
17 leco's citius high res lcms-faster results-fewer runs david schlegel - lec...
17 leco's citius high res lcms-faster results-fewer runs david schlegel - lec...17 leco's citius high res lcms-faster results-fewer runs david schlegel - lec...
17 leco's citius high res lcms-faster results-fewer runs david schlegel - lec...CPSA-2012_5-Minutes-Fame
 
36 qingyu wu_en
36 qingyu wu_en36 qingyu wu_en
36 qingyu wu_enTet Ho
 
New Ultra-High Capacity TOYOPEARL® Protein A Resin
New Ultra-High Capacity TOYOPEARL® Protein A Resin New Ultra-High Capacity TOYOPEARL® Protein A Resin
New Ultra-High Capacity TOYOPEARL® Protein A Resin Tosoh Bioscience GmbH
 
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 

Tendances (19)

Perfusion scaling slideshare
Perfusion scaling slidesharePerfusion scaling slideshare
Perfusion scaling slideshare
 
Deformulating Complex Polymer Mixtures By GPC-IR Technology
Deformulating Complex Polymer Mixtures By GPC-IR TechnologyDeformulating Complex Polymer Mixtures By GPC-IR Technology
Deformulating Complex Polymer Mixtures By GPC-IR Technology
 
Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012
 
Screening Assays For Gpc Rs 3
Screening Assays For Gpc Rs 3Screening Assays For Gpc Rs 3
Screening Assays For Gpc Rs 3
 
GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical Formulatio...
GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical Formulatio...GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical Formulatio...
GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical Formulatio...
 
ACS2010 GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical ...
ACS2010   GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical ...ACS2010   GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical ...
ACS2010 GPC-IR To Characterize Macromolecular Excipients In Pharmaceutical ...
 
Capitulo 2 a
Capitulo 2 aCapitulo 2 a
Capitulo 2 a
 
M A S S T R A N S F E R O P E R A T I O N S I J N T U M O D E L P A P E...
M A S S  T R A N S F E R  O P E R A T I O N S  I  J N T U  M O D E L  P A P E...M A S S  T R A N S F E R  O P E R A T I O N S  I  J N T U  M O D E L  P A P E...
M A S S T R A N S F E R O P E R A T I O N S I J N T U M O D E L P A P E...
 
Product Range 2010
Product Range 2010Product Range 2010
Product Range 2010
 
EarthLed LumiSelect™ MR16 Pro Lamp - 7 watt
EarthLed LumiSelect™ MR16 Pro Lamp - 7 wattEarthLed LumiSelect™ MR16 Pro Lamp - 7 watt
EarthLed LumiSelect™ MR16 Pro Lamp - 7 watt
 
JEFFAMINE(R) RFD-270
JEFFAMINE(R) RFD-270JEFFAMINE(R) RFD-270
JEFFAMINE(R) RFD-270
 
3rd Group Meeting VIVA M.Phil Transfer 2010 2nd Draft
3rd Group Meeting VIVA M.Phil Transfer 2010 2nd Draft3rd Group Meeting VIVA M.Phil Transfer 2010 2nd Draft
3rd Group Meeting VIVA M.Phil Transfer 2010 2nd Draft
 
17 leco's citius high res lcms-faster results-fewer runs david schlegel - lec...
17 leco's citius high res lcms-faster results-fewer runs david schlegel - lec...17 leco's citius high res lcms-faster results-fewer runs david schlegel - lec...
17 leco's citius high res lcms-faster results-fewer runs david schlegel - lec...
 
36 qingyu wu_en
36 qingyu wu_en36 qingyu wu_en
36 qingyu wu_en
 
New Ultra-High Capacity TOYOPEARL® Protein A Resin
New Ultra-High Capacity TOYOPEARL® Protein A Resin New Ultra-High Capacity TOYOPEARL® Protein A Resin
New Ultra-High Capacity TOYOPEARL® Protein A Resin
 
Lawrence Hightower
Lawrence HightowerLawrence Hightower
Lawrence Hightower
 
Succinic Acid- Presentation
Succinic Acid- PresentationSuccinic Acid- Presentation
Succinic Acid- Presentation
 
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry Jntu Model Paper{Www.Studentyogi.Com}
 
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
 

En vedette

Automated Protein Purificaton on Tecan Systems
Automated Protein Purificaton on Tecan SystemsAutomated Protein Purificaton on Tecan Systems
Automated Protein Purificaton on Tecan SystemsChris Suh
 
Barrett presentation valerie metea
Barrett presentation valerie meteaBarrett presentation valerie metea
Barrett presentation valerie meteaMills Cbst
 
Expression Purification and Immunodetection of a fusion protein Glutathione S...
Expression Purification and Immunodetection of a fusion protein Glutathione S...Expression Purification and Immunodetection of a fusion protein Glutathione S...
Expression Purification and Immunodetection of a fusion protein Glutathione S...iosrjce
 
Examples of Qualifying Techniques- Affinity Chromatography, SDS-Page, Gel Ele...
Examples of Qualifying Techniques- Affinity Chromatography, SDS-Page, Gel Ele...Examples of Qualifying Techniques- Affinity Chromatography, SDS-Page, Gel Ele...
Examples of Qualifying Techniques- Affinity Chromatography, SDS-Page, Gel Ele...Jacob Feste
 
Protein purification stratigies
Protein purification stratigiesProtein purification stratigies
Protein purification stratigiesNawfal Aldujaily
 

En vedette (8)

Automated Protein Purificaton on Tecan Systems
Automated Protein Purificaton on Tecan SystemsAutomated Protein Purificaton on Tecan Systems
Automated Protein Purificaton on Tecan Systems
 
Barrett presentation valerie metea
Barrett presentation valerie meteaBarrett presentation valerie metea
Barrett presentation valerie metea
 
Expression Purification and Immunodetection of a fusion protein Glutathione S...
Expression Purification and Immunodetection of a fusion protein Glutathione S...Expression Purification and Immunodetection of a fusion protein Glutathione S...
Expression Purification and Immunodetection of a fusion protein Glutathione S...
 
Examples of Qualifying Techniques- Affinity Chromatography, SDS-Page, Gel Ele...
Examples of Qualifying Techniques- Affinity Chromatography, SDS-Page, Gel Ele...Examples of Qualifying Techniques- Affinity Chromatography, SDS-Page, Gel Ele...
Examples of Qualifying Techniques- Affinity Chromatography, SDS-Page, Gel Ele...
 
Campbell6e lecture ch5
Campbell6e lecture ch5Campbell6e lecture ch5
Campbell6e lecture ch5
 
Proteins purification
Proteins purificationProteins purification
Proteins purification
 
Protein purification stratigies
Protein purification stratigiesProtein purification stratigies
Protein purification stratigies
 
Immobilized Metal affinity-chromatography
Immobilized Metal  affinity-chromatographyImmobilized Metal  affinity-chromatography
Immobilized Metal affinity-chromatography
 

Recomb Protein Purification Using Smb Hic

  • 1. Recombinant protein purification using gradient assisted Simulated Moving Bed- Hydrophobic Interaction Chromatography (SMB-HIC) Sivakumar P. BT04D006 PhD viva-voce MAX-PLANCK-INSTITUT Research Advisors: DYNAMIK KOMPLEXER TECHNISCHER Prof. Guhan Jayaraman SYSTEME MAGDEBURG Prof.Andreas Seidel-Morgenstern
  • 2. Overview  Background and objectives  Scheme for the work  Preparative work  Production and purification of recombinant streptokinase (rec-stk)  Adsorption isotherm estimation  SMB theory  Design of SMB  Scanning the separation zone  Simulation profiles  Experimental realization  Conclusion and Discussion 2
  • 3. Back ground and Objective  Background work at IIT-Madras purification of rec-stk (batch chromatography*)  Objectives  Developing a continuous gradient assisted HIC-SMB process for the purification of rec- stk 3 *B. Balagurunathan et al. / Biochemical Engineering Journal 39 (2008) 84–90
  • 4. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Scheme for the work Preparative work for SMB (batch) Adsorption isotherm estimation SMB Design SMB Experiments Data analysis 100L reactor SMB HZI MPI 4
  • 5. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Preparative work for SMB rec-stk was produced in 100 L reactor and used as a feed for HIC Matrices screening Pure rec-stk production for adsorption isotherm estimation SMB experiments HIC matrices screening- Butyl sepharose Selectivity Binding capacity Ease of regeneration Preparative batch purification of rec-stk 5
  • 6. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Adsorption equilibrium constants (PULSE experiments) 14 STK (NH4)2SO4 Contaminants STK STK+Degraded product 12 [mM] (Target) KH,con1 KH,con2 KH,STK 10 50 2.23 2.23 8 H,i 100 1.59 3.69 ˜ 0 6 K 150 1.52 7.76 4 200 1.57 11.74 2 qi K H ,i (Csalt )Ci i= degraded STK+STK,STK 0 0 50 100 150 200 250 C (NH [M] 4)2SO4 KH,i depend on Csalt approximately linearly between 100 and 200mM 6 Hi (Csalt ) a1,i a2,i (Csalt ) a1,im 1.59; a2,im 0.0002 a1, sk 4.34; a2, sk 0.081
  • 7. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Introduction to continuous chromatography Batch Chromatography Species have different affinity towards adsorbent: migrate with different velocities leave column at different time points S A A, B B True Moving Bed Chromatography Analogy Liquid and solid phase move in countercurrent: Continuous operation. Solid Phase Two outlets. Good for binary separations. Difficult to realise due to the movement of the solid phase. Simulated Moving Bed S Raffinate Feed Extract Practical realisation of the TMB concept: A A, B B  periodic switching of the columns 1 2 3 4 5 6 (or ports) 7 Periodic behaviour (cyclic steady state). 7
  • 8. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion SMB theory 8
  • 9. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Isocratic separation of binary mixture (four zone SMB) Lets consider A+B mixture Zone IV A is weakly retained, B is strongly retained & mIV VIV Raffinate A & follows linear Henrys isotherm model , VR Zone III Keys for separation & mIII , VIII Feed & & Vi & VF mi Zone II & VS A+B & mII , VII Extract i 1, 2, 3, 4 B & VE Zone I & mI , VI Flow rate ratios mi & Vsolid m4 HA < H B m1 Desorbent H A m2 H 9 B Triangle H A m3 HB Morbidelli et al., 1997
  • 10. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Four zones closed loop SMB Illustration of Triangle theory HA Flow rate ratios mi QI Safety value mI HB QS 4 2 6 HB QII mII HA QS 1 HB / H A 1 3 QIII mIII HB / QS QIV mIV HA / QS 5 H A m2 H B Triangle H A m3 HB HA After considering dead volume 10 Morbidelli et al., 1997
  • 11. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Separation region (gradient SMB) Linear isotherm HA 1. Complete separation 2. Pure extract and raffinate polluted with species B 3. Pure raffinate and extract polluted with species A 2 HB 4. Both raffinate extract containing A and B 4 6 5. Extract flooded with desorbent (A&B at raffinate) 1 6. Raffinate flooded with desorbent (A&B at extract) 3 7. Extract flooded with desorbent (A accumulates) 8. Raffinate flooded with desorbent (B accumulates) 9. Raffinate and extract flooded and (A& B accumulates) 5 HA After considering dead volume 11 Mazzotti et al., 1999, Abel et al., 2002
  • 12. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Design of continuous separation process  3-zone open-loop two step-gradient SMB 12
  • 13. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Design of 3-zone open-loop two-step gradient process (TMB Model) Raffinate: Two-step salt contaminants, gradient degraded & VZ streptokinase mz Z I , II , III & VS Feed: E.coli cell salt concentration homogenate containing streptokinase Extract: streptokinase Vcol (1 ) t* D R F C salt Csalt C salt & VS 13 Gueorguieva L et al. J. Chromatogr. A, 1176,(2007) 69.
  • 14. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Design of 3-zone open-loop gradient process Parameters set: F D & Csalt , Csalt , VF & VZ Design parameters: mz Z I , II , III & VS Inequalities for complete separation under gradient conditions Henrys constants D D mI K H , STK (C salt ) K H ,i K H ,i (Csalt ) i con, STK D D D D D D K H ,con (C salt ) 1.55 K H , con ( C salt ) m II K H , STK ( C salt ) D D R R R R K H , STK (C salt ) 3.69 K H , con ( C salt ) m III K H , STK ( C salt ) R R K H ,con (C salt ) 1.55 Feed D R R R ( mIII mII )C salt mII C salt K H , STK (C salt ) 11.74 C salt mIII 14 Rhee et al. (1970), Mazzotti et al. (1997)
  • 15. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Design of 3-zone open-loop gradient TMB Calculation of separation regions (scanning program MPI) 1) Equilibrium theory Nz→ , Purity=99.99% 2) Equilibrium stage model NI= NII=NIII=20 , Purity=99% 16 F C 1 . salt Csalt 200mM , F III Csalt , D D m m II 14 C salt C 100mMsalt , F Csalt , R 12 & P2 VF 1mL/ min 2. H sk2R (Csalt , R ) L , * 10 L2 Value in zone 1 * Csalt , R Csalt , D PurityDconstraint H sk , D ) H sk , ( H sk , F III 8 m Csalt , F Csalt , D L1 6 lower D D bound K H ,con (C ) 1.55 salt C salt ,F C salt , R * II , L 2 * 3. m D (C ) H sk2R D L 4 K H , STK (C ) 3.69 , C salt ,F C salt ,D salt , R salt P3 2 R R K H ,con (C salt ) 1.55 Csalt ,F Csalt ,D P1 III , L 2 * 4. mR (CR ,R salt ) m II ,L 2 * 0 15 K H , STK (C salt ) 11.74 Csalt ,F Csalt ,R 0 1 Him,D 2 3 Hsk,D4 5 II m
  • 16. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Separation region predictions from scanning program 16 Separation regions 14 Thick lines: equilibrium theory 12 Symbols: predictions of R2 equilibrium stage model 10 8 NI N II N III 50 I 2 III m R3 R1 6 R1: (○), Pusk ,E Puim,R 99% 4 R2: (∆), Pusk ,E 99%, Puim,R 70% 2 R3: (x), Pusk ,E 70%, Puim,R 99% 0 0 1 2 3 4 5 II m 16
  • 17. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Experimental operating points 16 14 14 Operation line 175mM b 14 b 1 12 12 12 P2 10 10 b 2 140mM 10 L2 88 Separation zone a Operation m III 8 b 3 III m L1 III points lower m a 66 6 1 bound a b 4 2 4 a 44 3 P3 a 2 4 Diagonal line 22 P1 0 00 0 1 Him,D 2 3 Hsk,D4 5 II 0,0 0,0 0,5 0,5 1,0 1,0 1,5 1,5 2,0 2,0 m2,5 2,5 3,0 3,0 3,5 3,5 4,0 4,0 4,5 4,5 5,0 5,0 II II m m 17
  • 18. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Parameters used for simulation studies Point I & & & & Csalt , R m II m III t* VD VE VR VF Nr. [mM] [-] [-] [-] [s] [mL/min] [mL/min] [mL/min] [mL/min] 1b 175 3.30 13.2 2 84 0.75 0.41 1.33 1 2b 175 2.64 10.6 2 125 0.93 0.60 1.33 1 3b 175 1.98 7.95 2 167 1.24 0.91 1.33 1 4b 175 1.32 5.3 2 208 1.86 1.53 1.33 1 1a 140 3.30 5.5 1.1 37 1.85 0.35 2.50 1 2a 140 2.64 4.4 1.1 28 2.32 0.82 2.50 1 3a 140 1.98 3.3 1.1 37 3.09 1.59 2.50 1 18 4a 140 1.32 2.2 1.1 46 2.32 1.57 1.25 0.5
  • 19. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Illustration of internal profiles (rec stk enriched) at 175mM raffinate salt concentration R C salt = 175mM STK 30 b CSTK= CIM = 5mg/mL 1 b C F = 200mM 2 25 salt b C D salt = 100mM 3 C STK, C IM [mg/ml] VF = 1mL/Min 20 15 10 IM Feed concentration5 0 0.00 0.33 0.66 0.99 Desorbent Extract Feed Raffinate 19 Normalised Length
  • 20. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Experimental Validation  3-zone open-loop two-step gradient SMB 20
  • 21. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion KNAUER (moving columns) precission valve from smb.mp4 CSEP C916 Multi-function valve Configuration stator rotor Stationary phase Butyl HP Mobile phase Configuration Desorbent Three zones 1-1-1-(1) phosphate buffer +100 mM (NH4)2 SO4 Each zone one 2 x1mL column Feed 20 mM phosphate buffer+200 mM (NH4)2 SO4 UV product profile Regeneration Internal UV profile and conductivity profile Milli Q at flow rate of 3 mL/min. Cleaning zone conductivity and UV profile 21 SEC, SDS(PAGE) analysis
  • 22. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Experimental operating points 14 b Operation line b 1 12 175mM b 10 2 8 140mM a Separation zone 3 b III m Operation a 6 points 1 b a 4 2 a 4 3 a 4 2 Diagonal line 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 II m 22
  • 23. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Parameters used for experiments Point I & & & & Csalt , R m II m III t* VD VE VR VF Nr. [mM] [-] [-] [-] [s] [mL/min] 1b 175 3.30 13.2 2 84 0.83 0.39 1.42 1 2b 175 2.64 10.6 2 125 1.03 0.57 1.44 1 3b 175 1.98 7.95 2 167 1.37 0.87 1.48 1 4b 175 1.32 5.3 2 208 - - - 1 1a 140 3.30 5.5 1.1 37 2.21 0.24 2.89 1 2a 140 2.64 4.4 1.1 28 2.76 0.67 2.99 1 3a 140 1.98 3.3 1.1 37 3.68 1.40 3.15 1 23 4a 140 1.32 2.2 1.1 46 2.76 1.42 1.74 0.5
  • 24. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion SDS-PAGE analysis of the extract and raffinate outlet.. 14 b b 1 175mM 12 b 10 2 8 a 140mM b 3 III m a 6 1 b a 4 2 a 4 3 a 4 Raffinate 2 Raffinate salt concentration 140mM 0 salt concentration 175mM 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 II 4a 3a 2a 1a m L 3b 2b 1b R-Raffinate R E R E R E R E R E R E R E E-Extract L-Load rec-stk 24 purity 73% 84% 78% 70% 77% 57% 56%
  • 25. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Product trends Closed symbols (175mM) 140mM (open symbols) mII vs Extract purity mII vs Extract concentration 100 2.0 95 90 1.8 Extract concentraiton (mg/mL) 85 1.6 80 Extract purity (%) 75 3b 1.4 70 65 2b 1.2 60 55 1b 1.0 50 45 4a 0.8 0.6 40 3a 35 0.4 30 2a 25 0.2 20 1a 0.0 15 10 -0.2 5 0 -0.4 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -0.6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 25 mII mII
  • 26. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Experiments Vs simulation prediction Point exp th exp th Yield Csalt , R Csk ,E Csk ,E Pusk ,E Pusk ,E Nr. [mM] [mg/mL] [mg/mL] [%] [%] [%] 1a 140 0.34 13.6 70 100 2 2a 140 0.50 6.07 78 100 8 3a 140 0.98 3.14 84 99.88 31 4a 140 1.42 1.60 73 78.83 93 1b 175 0.33 2.97 56.0 100 4 2b 175 0.31 6.15 57.0 100 6 3b 175 0.44 5.51 77 99.96 12 4b* 175 - 3.29 - 94.38 - 26 * Operation point 4b is not feasible because of the flow rate constraints
  • 27. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Extract purity Experimental Theoretical 100 100 Extract purity [%] Extract purity [%] 80 80 60 60 40 40 20 20 0 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 II m II m Closed squares for raffinate salt concentration 140mM a) b) 27 Closed triangles for raffinate salt concentration 175mM
  • 28. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Extract concentrations Experimental Theoretical 2.0 14 Extract concentraiton [mg/mL] Extract concentraiton [mg/mL] 12 1.5 10 8 1.0 6 4 0.5 2 0.0 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 II II m m Closed squares for raffinate salt concentration 140mM Closed triangles for raffinate salt concentration 175mMb) a) 28
  • 29. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Enhancing the yield of the process Effect of safety values (β factor) 14 SDA-PAGE gel analysis 12 b 175mM 1 b b 10 2 8 a 140mM b III m 3 a 6 1 b a 4 2 a 4 3 a 4 2 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 R E β =1.1 II m S. Operational β =1.1 β =2 R- Raffinate NO. point 2a E- Extract 1 Load (mg/mL) 17.2 17.2 2 Raffinate (mg/mL) 5.94 6.65 3 Extract (mg/mL) 0.34 0.20 4 Purity of stk (%) 69.8 69.4 29 R E 5 Recovery (%) 1.5% 6.7% β =2
  • 30. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Reprocessing the Raffinate (isocratic run at 140mM raffinate salt concentration ) 14 14 13 13 12 12 11 11 10 10 9 9 8 8 mIII 7 7 6 6 5 5 4 4 3 3 β =1.1 β =2 2 2 1 1 R E R E L 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 mII S.NO β =1.1 β =2 1 Load (mg/mL) 6.76 6.76 2 Raffinate (mg/mL) 2.69 3.12 R- Raffinate 3 Extract (mg/mL) 0.38 0.20 E- Extract L- Load (raffinate from SMB) 4 Purity of stk (%) 79 84 30 5 Recovery (%) 38 42
  • 31. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Conclusions..  Butyl sepharose matrice found to be suitable for the continuous HIC-SMB purification of rec-stk.  Adsorption isotherms for rec-stk with butyl sepharose matrice found to be:  linear adsorption isotherm, parameters depend on the salt concentration.  perturbation method applied to evaluate isotherm linearity.  3 zone open- loop two- step gradient SMB design was proposed and designed. 31
  • 32. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Conclusions  Scanning program based on the equilibrium model and the equilibrium stage model was employed to predict the separation zone.  Experimental realisation of the continuous purification of rec-stk.  Simulation predicts for more idealistic conditions and correlate with product purity trends.  Highest product purity=84%(3a), and concentration of =1.4mg/mL with a mass & m flux of =2mg/min for operation point 4a  Recycling the raffinate will increase the yield of the process 32
  • 33. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Discussion  Demonstrate the potential of SMB for the continuous recombinant protein purification.  SMB could be placed for the high throughput capture and intermediate purification of the recombinant protein from complex mixtures.  Fractionation and Feed back SMB or Tandem chromatography could be proposed for increasing the yield of the purification process 33
  • 34. presentations Palani S., Jayaraman G., Gueorguieva L., Rinas U., Seidel-Morgenstern A., “Determination of adsorption isotherm parameters from total protein mixtures” PREP 2009 meeting, July 19-22, 2009, Loews philadelphia, USA(oral). Palani S., Jayaraman G., Gueorguieva L., Rinas U., Seidel-Morgenstern A., “Determination of adsorption isotherm parameters for recombinant streptokinase using perturbation method” 5th Doktorandenseminar Präparative chromatographie, March 1-3,2009, Wetter Ruhr, Germany(oral). Palani S., Gueorguieva L., Rinas U., Jayaraman G., Seidel-Morgenstern A., “Simulated Moving Bed Chromatography (SMBC) current status and applications for protein purification”(oral presentation), International symposium Gene to vial concept for the biotechnology based health care molecules, Feb 7-10, 2010, VIT, Vellore, T.N, India.(oral). Palani S., Jayaraman G., Gueorguieva L., Kessler L C., Rinas U., Seidel-Morgenstern A., “Continuous separation of Recombinant streptokinase using hic gradient simulated moving bed chromatography”, 28th International Symposium on the separation of Proteins, Peptides and Polynucleotide’s (ISPPP 2008), September 21-24, 2008, Baden-Baden, Germany(poster). Palani S., Jayaraman G., Gueorguieva L., Rinas U., Seidel-Morgenstern A., “Continuous simulated moving bed (SMB) purification of recombinant streptokinase”, 34th International Symposium on High Performance Liquid Phase Separations and Related techniques, HPLC 2009,June 28-July 2, 2008, Dresden, Germany(poster). Palani S., Jayaraman G., Gueorguieva L., Rinas U., Seidel-Morgenstern A., “Kontinuierliche aufreinigung der rekombinanten streptokinase mittels simulated moving bed (SMB) chromatographie”, 27th DECHEMA Jahrestagung der 34 Biotechnologen, gemeinsam mit International workshop on downstream processing. September 8-10, 2009, Mannheim, Germany(poster).
  • 35. Publications Palani S., Gueorguieva L, Rinas U., Seidel-Morgenstern A., Jayaraman G., “ Continuous purification of recombinant streptokinase using Hydrophobic Interaction- Gradient assisted Simulated moving Bed Chromatography. part I. Determination of adsorption isotherms applying perturbation method ”(Journal of chromatography A., manuscript submitted). Gueorguieva L., Palani S., Rinas U., Jayaraman G.,Seidel-Morgenstern A.,“ Continuous purification of recombinant streptokinase using Hydrophobic Interaction- Gradient assisted Simulated moving Bed Chromatography. Part II. SMB experimental design analysis for the operating conditions”(Journal of chromatography A., manuscript submitted). 35
  • 36. Acknowledgement Prof Guhan Jayaraman Herr.Prof Andreas Seidel-Morgenstern, MPI,Magdeburg Frau Ludmila Guorguieva, Dr.Christian Kessler,MPI Frau Dr. Rinas, HZI, Braunschweig Herr Dr. Wilko, IFN, Magdeburg Collegues at IITM,MPI,IFN,HZI IITM,Deutscher Academic Austausch Dienst (DAAD), GDCh, Deutsche Forschungemeinschaft (SFG-578) still lots needs to be explored with SMB!!! 36
  • 37. 37
  • 39. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Steady state profiles Cleaning profile Outlet (Raffinate ,Extract) profile 1200 180 1200 Extract concentration 160 Raffinate concentration 1000 Detector signal 280nm [mAu] 1000 Detector signal 280nm [mAu] 140 Conductivity [mS/cM] 800 120 800 100 600 600 80 400 60 400 40 200 200 20 0 0 0 322 324 326 328 330 322 324 326 328 330 1200 180 Time [min] Time [min] 160 1000 Detector signal 280nm [mAu] 140 Conductivity [mS/cM] 800 120 100 600 80 Internal profile 400 60 40 200 20 39 0 0 322 324 326 328 330 Time [min]
  • 40. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Classical True Moving Bed (TMB) chromatography B C Zone IV S Zone IV M mIV V&IV & mIV VIV Raffinate Raffinate A & A & ,, VR VR C S M B Zone III Zone III mIII ,,V&III & mIII VIII&& Feed Feed & & VF VF S M B C A+B A+B Zone II Zone II mII ,,V&II mII VII& Extract Extract B B M B C S Zone II Zone V&E & VE mII,,V&I m VI & & & Vsolid Vsolid Desorbent Desorbent 40
  • 41. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Adsorption isotherm estimation Dynamic methods Method and Special favorable feature Special Applicable for characterization unfavorable more than one feature solute Perturbation No detector calibration Isotherm Difficult (Dynamic, small samples) required model required Dispersed front analysis Low sample amount, High column No (ECP) small number of efficiency (dynamic, intermediate experiments required samples) Chromatogram fitting Low sample amount, Models for the Difficult (dynamic) small number of isotherms and experiments to simulate the chromatogram 41 required Seidel-Morgenstern A, J. Chromatogr. A 1037,(2004) 255
  • 42. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Adsorption isotherms • Relationship between the equilibrium protein concentration in the stationary phase and the protein concentration in the mobile phase • Slope gives the information about the affinity • Plateau gives the information about the capacity 42
  • 43. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion SMB under linear and non-linear conditions Regions 1 to 4 correspond to higher and higher feed concentrations 43
  • 44. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Effect of feed concentration over flow rate ratios 44
  • 45. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Hydrophobic chromatographic purification of streptokinase  Equilibration 5CV  Washing 15CV  75% step gradient 10CV  85% step gradient 12CV  100% step gradient 10CV  Resin Phenyl Sepharose  Buffer A: 20mM sodium phosphate buffer pH 7.2 +1M Ammonium sulphate  Buffer B : 20mM sodium phosphate buffer pH 7.2 45  Flow rate 1ml/min
  • 46. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion SDS-PAGE analysis (silver staining) 1 2 3 4 5 6 rec-stk  lane 1: molecular weight marker  lane 2: inlet feed sample  lane 3: Standard streptokinase 46  lane 4, 5, 6: 85% step gradient fraction number 28, 29, 40, respectively
  • 47. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Procedure Total Activity Specific Purific Yield % Protein (units) activity ation (mg) Units/mg factor Crude 35 5,30,833 15,166 0 100 cellular extract HIC 1.4 3,60,966 2,57,883 17 68 47 B. Balagurunathan et al. / Biochemical Engineering Journal 39 (2008) 84–90
  • 48. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Pulse experiment fraction analysis 2 3 4 5 18 17 Vinj=100 µl 1 2 3 4 5 6 16 Vinj=50 µl 15 14 13 12 Signal [mAu] 11 10 9 8 7 6 5 4 3 2 1 2 3 4 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 VR [mL] 1 Fraction 2 (contaminant ) Butyl HP (1mL) column 2 Fraction 3 (stk degraded product) 3 Fraction 4 (stk + stk degraded product) V F =0.5mL /Min 4 Fraction 5( stk) CSTK =2mg/ML 5 load 48 Mobile phase 150mM (NH4)2 SO4 6 Molecular weight marker
  • 49. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Motivation for perturbation method • Commercial preparations • Presence of Bovine Serum Albumin (BSA) as stabiliser • Standards from NIBSC • Smaller in quantity • Over expression and purification •Storage and degradation problem • Perturbation method • Crude homogenate as the feed material 49 Blumel C, Hugo p, Seidel Morgenstern P, (1999) J. Chromatogr. A 865 (1999)51 Heuer C, Kusers E, Plattner T, Seidel-Morgenstern A, J. Chromatogr. A 827 (1998)175.
  • 50. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Retention time and adsorption isotherm parameters 6 8 STK+degraded product 5 STK Streptokinase 4 6 100 mM tR, i [min] 150 mM 3 200 mM Contaminants 4 KH,i 2 100 mM 150 mM 200 mM 1 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 Ci [mg/ml] 0 50 100 150 200 250 C(NH )2SO4 [M] 4 linear isotherms; KHi depend on Csalt qi K H ,i (Csalt )Ci 50 i= degraded STK+STK,STK
  • 51. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion True Moving bed chromatography-Analogy Stationary phase Mobile Phase 51
  • 52. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Illustration of binary separation 52
  • 53. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Illustration of binary separation (Fast solid flow) 53
  • 54. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Illustration of binary separation Slow solid flow 54
  • 55. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Bioreactor production of rec-stk (HZI, Braunschweig) Preparation of the 10L Inoculums preparation Preparation for the Reactor (100L) reactor Inoculation Optical Density(OD) 4 Product analysis Induction Fermentation Harvesting and Storage of cell pellet 55 with IPTG (4 hours) centrifugation in -80 ˚C
  • 56. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Bioreactor Production of rec-stk 10 L Bioreactor S.No Parameters Fermentor SDS PAGE analysis 1 Agitator speed 400-1000 in cascade rec-stk mode 1 2 3 4 5 2 Temperature 37 Degree Celsius 3 Aeration 5 LPM 1 un-induced sample 4 Inoculum volume 2% to fermentation 2 after induction (1.20 hours) volume 3 after induction (2.20 hours) 5 IPTG 0.1mM concentration 4 after induction (3.30 hours) 6 Induction OD 4 5 after induction (5 hours) 7 Fermentation 11 hours duration (total) 8 Wet biomass 260 grams (10L) produced 2.8kG (100L) 56
  • 57. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion HIC matrices screening Screening criteria • binding conditions at 250,500,750mM •Selective binding for the target protein •Step (or) linear elution Positive candidates •Ease of regeneration Phenyl sepharose 57 Butyl sepharose
  • 58. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion HIC matrices screening  Phenyl sepharose – more hydrophobic streptokinase tails all over the gradients  Butyl sepharose - weakly hydrophobic  Binding capacity is higher for stk at low salt concentration  More selective binding of stk and easy regeneration Manufacturers recommendations 1 Recommended flow rate 1mL/Min 2 Maximum flow rate 4mL/Min 3 Column dimensions 0.7X2.5 cm 4 Column volume 1mL 5 Maximum backpressure 3 bar, 42psi, 0.3Mpa 58
  • 59. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Preparative purification of recombinant streptokinase 2 46 9 1115 21 23 35 3500 100 Absorbance at 280 nm (mAu) Modifier Concentration (%B) 3000 80 2500 2000 60 1500 40 1000 20 500 0 0 0 20 40 60 80 100 120 140 160 180 Volume (mL) Absorbance at 280 nm (mAu) Conductivity (mS/cm) Modifier concentration (%B) Feed : Total protein mixture from E.coli homogenate Solid Phase : Butyl sepharose HP, GE Biosciences L= 12cm; D= 0.5 cm, Vcol= 9.5mL; dpart= 34 µm Ligand : Butyl, 10 μmol/mL, Mobile Phase : Buffer A: 20 mM sodium phosphate buffer + 0.2M (NH4)2S04 (pH 7.2) 59 Elution buffer : Buffer B: 20 mM sodium phosphate buffer (pH 7.2)
  • 60. Scheme Prep. purification Est. Adsorption SMB SMB SMB Conclusion & of rec-Stk isotherm Theory Design Experiments discussion Preparative batch product analysis SDS-PAGE analysis (qualitative) 9 13 17 21 35 1 2 3 4 5 6 7 8 9 10 MW Marker 100 100 117 Absorbance at 280 nm (mAu) Modifier Concentration (%B) 80 85 80 3500 100 60 3000 2500 80 60 48 2000 60 1500 40 40 40 1000 20 34 500 0 0 0 20 40 60 80 100 120 140 160 180 20 20 26 0 0 40 60 80 100 120 140 160 180 1-3. unbound (fraction 2,4,6) Volume (mL) Absorbance at 280 nM (mAu) 4-6,9. elution at 25% B,150mM (NH4)2SO4) Conductivity (mS/cm) Modifier concentration (%B) 7 .Molecular weight marker 8. Load 60 10. Regeneration fractions

Notes de l'éditeur

  1. Where it is carried outKey words
  2. Continuation of the work IITM expertiseMpi expertise
  3. Y=mx +c and the values given hereWithin this 100 -200 mm Separation is assumed to be pseudo binary separation
  4. Mark the areas with number so that it is easy to explainExpalin why it is called triangleAnd mark the triangle hereWhat is the case with non linnear chromatographyHigher feed concentration
  5. T star is the switch time in the smb unitQj is the fluid flow rate in the smb unitεb and εp are the bed void fraction and particle porosityε* is the overall bed void fraction ε* =εb +(1-εb)εpV is the column volumej-=1,2,3,4
  6. Show the scanning prog here
  7. Explain that same points were chosen for the experiments also
  8. What is NIBSC
  9. Easy to connect two columns togatherAdvantagesGood at higher flowrate maximum of 4ml per minute
  10. What is NIBSC
  11. So that one need not adjust the salt concentration
  12. Talk about the assumptions Talk about the other namesTalk about the disadvantagesTalk about the way it is done