SlideShare a Scribd company logo
1 of 44
Mining and supporting community structures  in sensor network research Alberto Pepe (University of California at Los Angeles) Marko A. Rodriguez (Los Alamos National Laboratory) CENS Friday Seminar | May 2, 2008
Outline. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Alberto Marko
Data practices group. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Current study. ,[object Object],[object Object],Rodriguez, M.A., Pepe, A., “On the relationship between the structural and socioacademic communities of a coauthorship network”, Journal of Informetrics, in press, 2008.
Steps of the study. ,[object Object],[object Object],[object Object],[object Object]
Steps of the study. ,[object Object],[object Object],[object Object],[object Object]
Gather data. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Steps of the study. ,[object Object],[object Object],[object Object],[object Object]
Generate coauthorship network. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Alberto Marko coauthor
CENS population statistics. Socioacademic communities
Study model. Alberto Marko coauthor Affiliation: UCLA Department: IS Origin: Italy Position: PhD Student Affiliation: LANL Department: CS Origin: USA Position: PostDoc
Steps of the study. ,[object Object],[object Object],[object Object],[object Object]
Structural communities. ,[object Object],Girvan, M., & Newman, M. E. J., “Community structure in social and biological networks”. Proceedings of the National Academy of Sciences, 99, 7821, 2002.
Community detection methods. ,[object Object],[object Object],[object Object],[object Object],[1]  Girvan, M., & Newman, M. E. J. “Community structure in social and biological networks”, Proceedings of the National Academy of Sciences, 99:7821, 2002.  [2]  Pons, P., & Latapy, M., “Computing communities in large networks using random walks”, Journal of Graph Algorithms and Applications, 10:2, 2006.  [3]  Reichardt, J., & Bornholdt, S, “Statistical mechanics of community detection”, Physical Review E, 74 (016110), 2006.  [4]  Newman, M. E. J., “Finding community structure in networks using the eigenvectors of matrices”. Physical Review E, 74, 2006.
Coauthorship network map. 27 structural detected CENS communities (LEV).
Coauthorship network statistics. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Steps of the study. ,[object Object],[object Object],[object Object],[object Object]
Chi square test. ,[object Object],Alberto Marko coauthor Community: A Affiliation: UCLA Department: IS Origin: Italy Position: PhD Student Community: B Affiliation: LANL Department: CS Origin: USA Position: PostDoc
Chi square analysis.  N.B. p-value greater than 0.05 is considered statistically independent leading eigenvector (LEV), walktrap (WT), edge betweenness (EB), spinglass (SG).
Anecdotal example.
Anecdotal example.
Remarks. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Metadata reuse. ,[object Object]
Everything is metadata. Borgman Article2 JCDL Pepe Italy UCLA CENS writtenBy writtenBy member country attended hasLab Article1 Sensor Networks cites topic researches contains member member
Introduction to the Semantic Web. ,[object Object],[object Object],[object Object],[object Object],T. Berners-Lee, J. Hendler. Publishing on the Semantic Web. Nature, 410(6832):1023–1024, April 2001.
The Uniform Resource Identifier. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],W3C/IETF. URIs, URLs, and URNs: Clarifications and recommendations 1.0, September 2001.
The undirected network. ,[object Object],[object Object],[object Object],[object Object],[object Object],i j
Example undirected network. Herbert Marko Aric Ed Zhiwu Alberto Jen Johan Luda Stephan Whenzong
The directed network. ,[object Object],[object Object],[object Object],i j
Example directed network. Muskrat Bear Fish Fox Meerkat Lion Human Wolf Deer Beetle Hyena
The semantic network. ,[object Object],[object Object],[object Object],i j s
Example semantic network. SantaFe Marko NewMexico Ryan California UnitedStates LANL livesIn worksWith cityOf originallyFrom stateOf stateOf locatedIn hasLab Cells Atoms madeOf madeOf researches Oregon southOf hasResident Arnold governerOf northOf
The technologies of the Semantic Web. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
RDF and RDFS. lanl:marko lanl:cookie lanl:Human lanl:Food lanl:isEating rdf:type rdf:type lanl:isEating rdfs:domain rdfs:range ontology instance RDF is not a syntax. It’s a data model. Various syntaxes exist to encode RDF including RDF/XML, N-TRIPLE, TRiX, N3, etc.
RDF, RDFS, and OWL. lanl:fluffy lanl:marko lanl:Pet lanl:Human lanl:hasOwner rdf:type rdf:type lanl:hasOwner rdfs:domain rdfs:range ontology instance _:0123 rdfs:subClassOf owl:onProperty “ 1” owl:maxCardinality lanl:bob lanl:hasOwner owl:Restriction rdf:type
General-purpose modeling. next next next item item item item key value key value entry entry el el el el el el List Map Set
General-purpose computing. next value test PC item heap el Program Virtual Machine false true next next stack el next item next el Rodriguez, M.A., “General-Purpose Computing on a Semantic Network Substrate”, in review, Journal of Web Semantics, LA-UR-07-2885, April 2007.
A web of data and process. 127.0.0.1 127.0.0.0 127.0.0.2 127.0.0.3
The triple-store. SELECT ?a ?c WHERE  { ?a type human ?a wrote ?b  ?b type article  ?c wrote ?b  ?c type human  ?a != ?c } ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],INSERT ?a coauthor ?c WHERE  { ?a type human ?a wrote ?b  ?b type article  ?c wrote ?b  ?c type human  ?a != ?c } DELETE ?s ?p ?o WHERE { ?s ?p ?o }
Triple-store vs. relational database. Triple-store Relational Database SQL Interface SPARQL Interface SELECT ?x1 ?x2 WHERE {  ?x1 lanl:hasFriend ?x2 . ?x2 lanl:worksFor ?x3 . ?x3 lanl:collaboratesWith ?x4 .  ?x4 lanl:hasEmployee ?x1 . } SELECT friendTable.personId1, friendTable.personId2 FROM personTable, authorTable, articleTable, friendTable,  hasEmployeeTable, organizationTable, worksForTable, collaboratesWithTable WHERE personTable.id = authorTable.personId AND personTable.id = friendTable.personId1 AND friendTable.personId2 = worksForTable.personId AND worksForTable.orgId = collaboratesWithTable.orgId2 AND collaboratesWithTable.ordId2 = personTable.id “ Give me all pairs of people that are friends, but whom work for collaborating companies. Now!”
Triple-store and graph-analysis. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Rodriguez, M.A., "A Multi-Relational Network to Support the Scholarly Communication Process", International Journal of Public Information Systems, volume 2007, issue 1, pages 13-29, ISSN: 1653-4360, LA-UR-06-2416, March 2007.
Modeling the scholarly community. ,[object Object],[object Object],[object Object],Rodriguez, M.A., Bollen, J., Van de Sompel, H., “A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and their Usage”, 2007 ACM/IEEE Joint Conference on Digital Libraries, pages 278-287, Vancouver, Canada, ACM/IEEE Computing, doi:10.1145/1255175.1255229, LA-UR-07-0665, June 2007.
Demonstration.
Conclusion. ,[object Object]

More Related Content

What's hot

CS6010 Social Network Analysis Unit II
CS6010 Social Network Analysis   Unit IICS6010 Social Network Analysis   Unit II
CS6010 Social Network Analysis Unit IIpkaviya
 
Social networkanalysisfinal
Social networkanalysisfinalSocial networkanalysisfinal
Social networkanalysisfinalkcarter14
 
NE7012- SOCIAL NETWORK ANALYSIS
NE7012- SOCIAL NETWORK ANALYSISNE7012- SOCIAL NETWORK ANALYSIS
NE7012- SOCIAL NETWORK ANALYSISrathnaarul
 
Adaptive named entity recognition for social network analysis and domain onto...
Adaptive named entity recognition for social network analysis and domain onto...Adaptive named entity recognition for social network analysis and domain onto...
Adaptive named entity recognition for social network analysis and domain onto...Cuong Tran Van
 
Link network search analysis of literary books the achebe's
Link network search analysis of literary books the achebe'sLink network search analysis of literary books the achebe's
Link network search analysis of literary books the achebe'sAlexander Decker
 
Knowledge Organisation Systems in Digital Libraries: A Comparative Study
Knowledge Organisation Systems in Digital Libraries: A Comparative StudyKnowledge Organisation Systems in Digital Libraries: A Comparative Study
Knowledge Organisation Systems in Digital Libraries: A Comparative StudyBhojaraju Gunjal
 
An Efficient Modified Common Neighbor Approach for Link Prediction in Social ...
An Efficient Modified Common Neighbor Approach for Link Prediction in Social ...An Efficient Modified Common Neighbor Approach for Link Prediction in Social ...
An Efficient Modified Common Neighbor Approach for Link Prediction in Social ...IOSR Journals
 
Snowbird comp-top-may2017
Snowbird comp-top-may2017Snowbird comp-top-may2017
Snowbird comp-top-may2017Mason Porter
 
Contextualized versus Structural Overlapping Communities in Social Media.
Contextualized versus Structural Overlapping Communities in Social Media. Contextualized versus Structural Overlapping Communities in Social Media.
Contextualized versus Structural Overlapping Communities in Social Media. Mohsen Shahriari
 
Social Network Analysis: An Overview
Social Network Analysis: An OverviewSocial Network Analysis: An Overview
Social Network Analysis: An OverviewPenn State University
 
Brown Bag: New Models of Scholarly Communication for Digital Scholarship, by ...
Brown Bag: New Models of Scholarly Communication for Digital Scholarship, by ...Brown Bag: New Models of Scholarly Communication for Digital Scholarship, by ...
Brown Bag: New Models of Scholarly Communication for Digital Scholarship, by ...Micah Altman
 
Relationship Web: Trailblazing, Analytics and Computing for Human Experience
Relationship Web: Trailblazing, Analytics and Computing for Human ExperienceRelationship Web: Trailblazing, Analytics and Computing for Human Experience
Relationship Web: Trailblazing, Analytics and Computing for Human ExperienceAmit Sheth
 
Linked Data Workshop Stanford University
Linked Data Workshop Stanford University Linked Data Workshop Stanford University
Linked Data Workshop Stanford University Talis Consulting
 
Tags as tools for social classification
Tags as tools for social classificationTags as tools for social classification
Tags as tools for social classificationIsabella Peters
 
Wimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity ReportWimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity ReportFabien Gandon
 
Knowledge Organisation Systems in ETDs: A Comparative Study
Knowledge Organisation Systems in ETDs: A Comparative StudyKnowledge Organisation Systems in ETDs: A Comparative Study
Knowledge Organisation Systems in ETDs: A Comparative StudyBhojaraju Gunjal
 
Fuzzy AndANN Based Mining Approach Testing For Social Network Analysis
Fuzzy AndANN Based Mining Approach Testing For Social Network AnalysisFuzzy AndANN Based Mining Approach Testing For Social Network Analysis
Fuzzy AndANN Based Mining Approach Testing For Social Network AnalysisIJERA Editor
 
Leveraging social networks for p2 p content based file sharing in disconnecte...
Leveraging social networks for p2 p content based file sharing in disconnecte...Leveraging social networks for p2 p content based file sharing in disconnecte...
Leveraging social networks for p2 p content based file sharing in disconnecte...Papitha Velumani
 
Anatomy of Social Networks, a guide for social media strategists
Anatomy of Social Networks, a guide for social media strategistsAnatomy of Social Networks, a guide for social media strategists
Anatomy of Social Networks, a guide for social media strategistsPaolo Nesi
 
Extracting Key Terms From Noisy and Multi-theme Documents
Extracting Key Terms From Noisy and Multi-theme DocumentsExtracting Key Terms From Noisy and Multi-theme Documents
Extracting Key Terms From Noisy and Multi-theme Documentsmaria.grineva
 

What's hot (20)

CS6010 Social Network Analysis Unit II
CS6010 Social Network Analysis   Unit IICS6010 Social Network Analysis   Unit II
CS6010 Social Network Analysis Unit II
 
Social networkanalysisfinal
Social networkanalysisfinalSocial networkanalysisfinal
Social networkanalysisfinal
 
NE7012- SOCIAL NETWORK ANALYSIS
NE7012- SOCIAL NETWORK ANALYSISNE7012- SOCIAL NETWORK ANALYSIS
NE7012- SOCIAL NETWORK ANALYSIS
 
Adaptive named entity recognition for social network analysis and domain onto...
Adaptive named entity recognition for social network analysis and domain onto...Adaptive named entity recognition for social network analysis and domain onto...
Adaptive named entity recognition for social network analysis and domain onto...
 
Link network search analysis of literary books the achebe's
Link network search analysis of literary books the achebe'sLink network search analysis of literary books the achebe's
Link network search analysis of literary books the achebe's
 
Knowledge Organisation Systems in Digital Libraries: A Comparative Study
Knowledge Organisation Systems in Digital Libraries: A Comparative StudyKnowledge Organisation Systems in Digital Libraries: A Comparative Study
Knowledge Organisation Systems in Digital Libraries: A Comparative Study
 
An Efficient Modified Common Neighbor Approach for Link Prediction in Social ...
An Efficient Modified Common Neighbor Approach for Link Prediction in Social ...An Efficient Modified Common Neighbor Approach for Link Prediction in Social ...
An Efficient Modified Common Neighbor Approach for Link Prediction in Social ...
 
Snowbird comp-top-may2017
Snowbird comp-top-may2017Snowbird comp-top-may2017
Snowbird comp-top-may2017
 
Contextualized versus Structural Overlapping Communities in Social Media.
Contextualized versus Structural Overlapping Communities in Social Media. Contextualized versus Structural Overlapping Communities in Social Media.
Contextualized versus Structural Overlapping Communities in Social Media.
 
Social Network Analysis: An Overview
Social Network Analysis: An OverviewSocial Network Analysis: An Overview
Social Network Analysis: An Overview
 
Brown Bag: New Models of Scholarly Communication for Digital Scholarship, by ...
Brown Bag: New Models of Scholarly Communication for Digital Scholarship, by ...Brown Bag: New Models of Scholarly Communication for Digital Scholarship, by ...
Brown Bag: New Models of Scholarly Communication for Digital Scholarship, by ...
 
Relationship Web: Trailblazing, Analytics and Computing for Human Experience
Relationship Web: Trailblazing, Analytics and Computing for Human ExperienceRelationship Web: Trailblazing, Analytics and Computing for Human Experience
Relationship Web: Trailblazing, Analytics and Computing for Human Experience
 
Linked Data Workshop Stanford University
Linked Data Workshop Stanford University Linked Data Workshop Stanford University
Linked Data Workshop Stanford University
 
Tags as tools for social classification
Tags as tools for social classificationTags as tools for social classification
Tags as tools for social classification
 
Wimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity ReportWimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity Report
 
Knowledge Organisation Systems in ETDs: A Comparative Study
Knowledge Organisation Systems in ETDs: A Comparative StudyKnowledge Organisation Systems in ETDs: A Comparative Study
Knowledge Organisation Systems in ETDs: A Comparative Study
 
Fuzzy AndANN Based Mining Approach Testing For Social Network Analysis
Fuzzy AndANN Based Mining Approach Testing For Social Network AnalysisFuzzy AndANN Based Mining Approach Testing For Social Network Analysis
Fuzzy AndANN Based Mining Approach Testing For Social Network Analysis
 
Leveraging social networks for p2 p content based file sharing in disconnecte...
Leveraging social networks for p2 p content based file sharing in disconnecte...Leveraging social networks for p2 p content based file sharing in disconnecte...
Leveraging social networks for p2 p content based file sharing in disconnecte...
 
Anatomy of Social Networks, a guide for social media strategists
Anatomy of Social Networks, a guide for social media strategistsAnatomy of Social Networks, a guide for social media strategists
Anatomy of Social Networks, a guide for social media strategists
 
Extracting Key Terms From Noisy and Multi-theme Documents
Extracting Key Terms From Noisy and Multi-theme DocumentsExtracting Key Terms From Noisy and Multi-theme Documents
Extracting Key Terms From Noisy and Multi-theme Documents
 

Viewers also liked

Toward semantic modeling of pharmacogenomic knowledge for clinical and transl...
Toward semantic modeling of pharmacogenomic knowledge for clinical and transl...Toward semantic modeling of pharmacogenomic knowledge for clinical and transl...
Toward semantic modeling of pharmacogenomic knowledge for clinical and transl...Richard Boyce, PhD
 
Updated on the LAERTES evidence base to the OHDSI community
Updated on the LAERTES evidence base to the OHDSI communityUpdated on the LAERTES evidence base to the OHDSI community
Updated on the LAERTES evidence base to the OHDSI communityRichard Boyce, PhD
 
Initial progress on the journey toward an open source potential drug-drug int...
Initial progress on the journey toward an open source potential drug-drug int...Initial progress on the journey toward an open source potential drug-drug int...
Initial progress on the journey toward an open source potential drug-drug int...Richard Boyce, PhD
 
From the Signal to the Symbol: Structure and Process in Artificial Intelligence
From the Signal to the Symbol: Structure and Process in Artificial IntelligenceFrom the Signal to the Symbol: Structure and Process in Artificial Intelligence
From the Signal to the Symbol: Structure and Process in Artificial IntelligenceMarko Rodriguez
 
Keynote malone-clinical-relevance-of-ddi-evidence
Keynote malone-clinical-relevance-of-ddi-evidenceKeynote malone-clinical-relevance-of-ddi-evidence
Keynote malone-clinical-relevance-of-ddi-evidenceRichard Boyce, PhD
 
Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardi...
Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardi...Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardi...
Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardi...Richard Boyce, PhD
 
An Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational NetworksAn Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational NetworksMarko Rodriguez
 
The Gremlin in the Graph
The Gremlin in the GraphThe Gremlin in the Graph
The Gremlin in the GraphMarko Rodriguez
 
Gremlin's Graph Traversal Machinery
Gremlin's Graph Traversal MachineryGremlin's Graph Traversal Machinery
Gremlin's Graph Traversal MachineryMarko Rodriguez
 

Viewers also liked (11)

Toward semantic modeling of pharmacogenomic knowledge for clinical and transl...
Toward semantic modeling of pharmacogenomic knowledge for clinical and transl...Toward semantic modeling of pharmacogenomic knowledge for clinical and transl...
Toward semantic modeling of pharmacogenomic knowledge for clinical and transl...
 
Updated on the LAERTES evidence base to the OHDSI community
Updated on the LAERTES evidence base to the OHDSI communityUpdated on the LAERTES evidence base to the OHDSI community
Updated on the LAERTES evidence base to the OHDSI community
 
Initial progress on the journey toward an open source potential drug-drug int...
Initial progress on the journey toward an open source potential drug-drug int...Initial progress on the journey toward an open source potential drug-drug int...
Initial progress on the journey toward an open source potential drug-drug int...
 
From the Signal to the Symbol: Structure and Process in Artificial Intelligence
From the Signal to the Symbol: Structure and Process in Artificial IntelligenceFrom the Signal to the Symbol: Structure and Process in Artificial Intelligence
From the Signal to the Symbol: Structure and Process in Artificial Intelligence
 
Keynote malone-clinical-relevance-of-ddi-evidence
Keynote malone-clinical-relevance-of-ddi-evidenceKeynote malone-clinical-relevance-of-ddi-evidence
Keynote malone-clinical-relevance-of-ddi-evidence
 
Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardi...
Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardi...Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardi...
Piloting a Comprehensive Knowledge Base for Pharmacovigilance Using Standardi...
 
An Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational NetworksAn Evidential Logic for Multi-Relational Networks
An Evidential Logic for Multi-Relational Networks
 
Triple Stores
Triple StoresTriple Stores
Triple Stores
 
The Gremlin in the Graph
The Gremlin in the GraphThe Gremlin in the Graph
The Gremlin in the Graph
 
Gremlin's Graph Traversal Machinery
Gremlin's Graph Traversal MachineryGremlin's Graph Traversal Machinery
Gremlin's Graph Traversal Machinery
 
Personalized medicine
Personalized medicinePersonalized medicine
Personalized medicine
 

Similar to Mining and Supporting Community Structures in Sensor Network Research

Searching for patterns in crowdsourced information
Searching for patterns in crowdsourced informationSearching for patterns in crowdsourced information
Searching for patterns in crowdsourced informationSilvia Puglisi
 
02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and OverviewDuke Network Analysis Center
 
15 minute co teaching week 16
15 minute co teaching week 1615 minute co teaching week 16
15 minute co teaching week 16Kazim Pardhan
 
Small Worlds Social Graphs Social Media
Small Worlds Social Graphs Social MediaSmall Worlds Social Graphs Social Media
Small Worlds Social Graphs Social Mediasuresh sood
 
Open Grid Forum workshop on Social Networks, Semantic Grids and Web
Open Grid Forum workshop on Social Networks, Semantic Grids and WebOpen Grid Forum workshop on Social Networks, Semantic Grids and Web
Open Grid Forum workshop on Social Networks, Semantic Grids and WebNoshir Contractor
 
Applying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainApplying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainAngelo Salatino
 
Analysis Of A Learning Community As A Social Network
Analysis Of A Learning Community As A Social NetworkAnalysis Of A Learning Community As A Social Network
Analysis Of A Learning Community As A Social NetworkMaria Perkins
 
01 Introduction to Networks Methods and Measures (2016)
01 Introduction to Networks Methods and Measures (2016)01 Introduction to Networks Methods and Measures (2016)
01 Introduction to Networks Methods and Measures (2016)Duke Network Analysis Center
 
01 Introduction to Networks Methods and Measures
01 Introduction to Networks Methods and Measures01 Introduction to Networks Methods and Measures
01 Introduction to Networks Methods and Measuresdnac
 
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...Marko Rodriguez
 
00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and OverviewDuke Network Analysis Center
 
The “use” of an electronic resource from a social network analysis perspective
The “use” of an electronic resource from a social network analysis perspectiveThe “use” of an electronic resource from a social network analysis perspective
The “use” of an electronic resource from a social network analysis perspectiveMarie Kennedy
 
OntoSOC: S ociocultural K nowledge O ntology
OntoSOC:  S ociocultural  K nowledge  O ntology OntoSOC:  S ociocultural  K nowledge  O ntology
OntoSOC: S ociocultural K nowledge O ntology IJwest
 
Social Network Analysis
Social Network AnalysisSocial Network Analysis
Social Network AnalysisFred Stutzman
 
Virtual Organizations 2.0: Social Constructs for Data-centered Collaborative ...
Virtual Organizations 2.0: Social Constructs for Data-centered Collaborative ...Virtual Organizations 2.0: Social Constructs for Data-centered Collaborative ...
Virtual Organizations 2.0: Social Constructs for Data-centered Collaborative ...Globus
 
New Metrics for New Media Bay Area CIO IT Executives Meetup
New Metrics for New Media Bay Area CIO IT Executives MeetupNew Metrics for New Media Bay Area CIO IT Executives Meetup
New Metrics for New Media Bay Area CIO IT Executives MeetupTatyana Kanzaveli
 

Similar to Mining and Supporting Community Structures in Sensor Network Research (20)

Searching for patterns in crowdsourced information
Searching for patterns in crowdsourced informationSearching for patterns in crowdsourced information
Searching for patterns in crowdsourced information
 
DREaM Event 2: Louise Cooke
DREaM Event 2: Louise CookeDREaM Event 2: Louise Cooke
DREaM Event 2: Louise Cooke
 
03 Communities in Networks (2017)
03 Communities in Networks (2017)03 Communities in Networks (2017)
03 Communities in Networks (2017)
 
Network literacy-high-res
Network literacy-high-resNetwork literacy-high-res
Network literacy-high-res
 
06 Community Detection
06 Community Detection06 Community Detection
06 Community Detection
 
02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview02 Introduction to Social Networks and Health: Key Concepts and Overview
02 Introduction to Social Networks and Health: Key Concepts and Overview
 
15 minute co teaching week 16
15 minute co teaching week 1615 minute co teaching week 16
15 minute co teaching week 16
 
Small Worlds Social Graphs Social Media
Small Worlds Social Graphs Social MediaSmall Worlds Social Graphs Social Media
Small Worlds Social Graphs Social Media
 
Open Grid Forum workshop on Social Networks, Semantic Grids and Web
Open Grid Forum workshop on Social Networks, Semantic Grids and WebOpen Grid Forum workshop on Social Networks, Semantic Grids and Web
Open Grid Forum workshop on Social Networks, Semantic Grids and Web
 
Applying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domainApplying machine learning techniques to big data in the scholarly domain
Applying machine learning techniques to big data in the scholarly domain
 
Analysis Of A Learning Community As A Social Network
Analysis Of A Learning Community As A Social NetworkAnalysis Of A Learning Community As A Social Network
Analysis Of A Learning Community As A Social Network
 
01 Introduction to Networks Methods and Measures (2016)
01 Introduction to Networks Methods and Measures (2016)01 Introduction to Networks Methods and Measures (2016)
01 Introduction to Networks Methods and Measures (2016)
 
01 Introduction to Networks Methods and Measures
01 Introduction to Networks Methods and Measures01 Introduction to Networks Methods and Measures
01 Introduction to Networks Methods and Measures
 
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
A Practical Ontology for the Large-Scale Modeling of Scholarly Artifacts and ...
 
00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview00 Introduction to SN&H: Key Concepts and Overview
00 Introduction to SN&H: Key Concepts and Overview
 
The “use” of an electronic resource from a social network analysis perspective
The “use” of an electronic resource from a social network analysis perspectiveThe “use” of an electronic resource from a social network analysis perspective
The “use” of an electronic resource from a social network analysis perspective
 
OntoSOC: S ociocultural K nowledge O ntology
OntoSOC:  S ociocultural  K nowledge  O ntology OntoSOC:  S ociocultural  K nowledge  O ntology
OntoSOC: S ociocultural K nowledge O ntology
 
Social Network Analysis
Social Network AnalysisSocial Network Analysis
Social Network Analysis
 
Virtual Organizations 2.0: Social Constructs for Data-centered Collaborative ...
Virtual Organizations 2.0: Social Constructs for Data-centered Collaborative ...Virtual Organizations 2.0: Social Constructs for Data-centered Collaborative ...
Virtual Organizations 2.0: Social Constructs for Data-centered Collaborative ...
 
New Metrics for New Media Bay Area CIO IT Executives Meetup
New Metrics for New Media Bay Area CIO IT Executives MeetupNew Metrics for New Media Bay Area CIO IT Executives Meetup
New Metrics for New Media Bay Area CIO IT Executives Meetup
 

More from Marko Rodriguez

mm-ADT: A Virtual Machine/An Economic Machine
mm-ADT: A Virtual Machine/An Economic Machinemm-ADT: A Virtual Machine/An Economic Machine
mm-ADT: A Virtual Machine/An Economic MachineMarko Rodriguez
 
mm-ADT: A Multi-Model Abstract Data Type
mm-ADT: A Multi-Model Abstract Data Typemm-ADT: A Multi-Model Abstract Data Type
mm-ADT: A Multi-Model Abstract Data TypeMarko Rodriguez
 
Open Problems in the Universal Graph Theory
Open Problems in the Universal Graph TheoryOpen Problems in the Universal Graph Theory
Open Problems in the Universal Graph TheoryMarko Rodriguez
 
Gremlin 101.3 On Your FM Dial
Gremlin 101.3 On Your FM DialGremlin 101.3 On Your FM Dial
Gremlin 101.3 On Your FM DialMarko Rodriguez
 
Quantum Processes in Graph Computing
Quantum Processes in Graph ComputingQuantum Processes in Graph Computing
Quantum Processes in Graph ComputingMarko Rodriguez
 
ACM DBPL Keynote: The Graph Traversal Machine and Language
ACM DBPL Keynote: The Graph Traversal Machine and LanguageACM DBPL Keynote: The Graph Traversal Machine and Language
ACM DBPL Keynote: The Graph Traversal Machine and LanguageMarko Rodriguez
 
The Gremlin Graph Traversal Language
The Gremlin Graph Traversal LanguageThe Gremlin Graph Traversal Language
The Gremlin Graph Traversal LanguageMarko Rodriguez
 
Faunus: Graph Analytics Engine
Faunus: Graph Analytics EngineFaunus: Graph Analytics Engine
Faunus: Graph Analytics EngineMarko Rodriguez
 
Solving Problems with Graphs
Solving Problems with GraphsSolving Problems with Graphs
Solving Problems with GraphsMarko Rodriguez
 
Titan: The Rise of Big Graph Data
Titan: The Rise of Big Graph DataTitan: The Rise of Big Graph Data
Titan: The Rise of Big Graph DataMarko Rodriguez
 
The Pathology of Graph Databases
The Pathology of Graph DatabasesThe Pathology of Graph Databases
The Pathology of Graph DatabasesMarko Rodriguez
 
Traversing Graph Databases with Gremlin
Traversing Graph Databases with GremlinTraversing Graph Databases with Gremlin
Traversing Graph Databases with GremlinMarko Rodriguez
 
The Path-o-Logical Gremlin
The Path-o-Logical GremlinThe Path-o-Logical Gremlin
The Path-o-Logical GremlinMarko Rodriguez
 
Memoirs of a Graph Addict: Despair to Redemption
Memoirs of a Graph Addict: Despair to RedemptionMemoirs of a Graph Addict: Despair to Redemption
Memoirs of a Graph Addict: Despair to RedemptionMarko Rodriguez
 
Graph Databases: Trends in the Web of Data
Graph Databases: Trends in the Web of DataGraph Databases: Trends in the Web of Data
Graph Databases: Trends in the Web of DataMarko Rodriguez
 
Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, and Reco...
Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, and Reco...Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, and Reco...
Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, and Reco...Marko Rodriguez
 
A Perspective on Graph Theory and Network Science
A Perspective on Graph Theory and Network ScienceA Perspective on Graph Theory and Network Science
A Perspective on Graph Theory and Network ScienceMarko Rodriguez
 
The Graph Traversal Programming Pattern
The Graph Traversal Programming PatternThe Graph Traversal Programming Pattern
The Graph Traversal Programming PatternMarko Rodriguez
 
The Network Data Structure in Computing
The Network Data Structure in ComputingThe Network Data Structure in Computing
The Network Data Structure in ComputingMarko Rodriguez
 

More from Marko Rodriguez (20)

mm-ADT: A Virtual Machine/An Economic Machine
mm-ADT: A Virtual Machine/An Economic Machinemm-ADT: A Virtual Machine/An Economic Machine
mm-ADT: A Virtual Machine/An Economic Machine
 
mm-ADT: A Multi-Model Abstract Data Type
mm-ADT: A Multi-Model Abstract Data Typemm-ADT: A Multi-Model Abstract Data Type
mm-ADT: A Multi-Model Abstract Data Type
 
Open Problems in the Universal Graph Theory
Open Problems in the Universal Graph TheoryOpen Problems in the Universal Graph Theory
Open Problems in the Universal Graph Theory
 
Gremlin 101.3 On Your FM Dial
Gremlin 101.3 On Your FM DialGremlin 101.3 On Your FM Dial
Gremlin 101.3 On Your FM Dial
 
Quantum Processes in Graph Computing
Quantum Processes in Graph ComputingQuantum Processes in Graph Computing
Quantum Processes in Graph Computing
 
ACM DBPL Keynote: The Graph Traversal Machine and Language
ACM DBPL Keynote: The Graph Traversal Machine and LanguageACM DBPL Keynote: The Graph Traversal Machine and Language
ACM DBPL Keynote: The Graph Traversal Machine and Language
 
The Gremlin Graph Traversal Language
The Gremlin Graph Traversal LanguageThe Gremlin Graph Traversal Language
The Gremlin Graph Traversal Language
 
The Path Forward
The Path ForwardThe Path Forward
The Path Forward
 
Faunus: Graph Analytics Engine
Faunus: Graph Analytics EngineFaunus: Graph Analytics Engine
Faunus: Graph Analytics Engine
 
Solving Problems with Graphs
Solving Problems with GraphsSolving Problems with Graphs
Solving Problems with Graphs
 
Titan: The Rise of Big Graph Data
Titan: The Rise of Big Graph DataTitan: The Rise of Big Graph Data
Titan: The Rise of Big Graph Data
 
The Pathology of Graph Databases
The Pathology of Graph DatabasesThe Pathology of Graph Databases
The Pathology of Graph Databases
 
Traversing Graph Databases with Gremlin
Traversing Graph Databases with GremlinTraversing Graph Databases with Gremlin
Traversing Graph Databases with Gremlin
 
The Path-o-Logical Gremlin
The Path-o-Logical GremlinThe Path-o-Logical Gremlin
The Path-o-Logical Gremlin
 
Memoirs of a Graph Addict: Despair to Redemption
Memoirs of a Graph Addict: Despair to RedemptionMemoirs of a Graph Addict: Despair to Redemption
Memoirs of a Graph Addict: Despair to Redemption
 
Graph Databases: Trends in the Web of Data
Graph Databases: Trends in the Web of DataGraph Databases: Trends in the Web of Data
Graph Databases: Trends in the Web of Data
 
Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, and Reco...
Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, and Reco...Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, and Reco...
Problem-Solving using Graph Traversals: Searching, Scoring, Ranking, and Reco...
 
A Perspective on Graph Theory and Network Science
A Perspective on Graph Theory and Network ScienceA Perspective on Graph Theory and Network Science
A Perspective on Graph Theory and Network Science
 
The Graph Traversal Programming Pattern
The Graph Traversal Programming PatternThe Graph Traversal Programming Pattern
The Graph Traversal Programming Pattern
 
The Network Data Structure in Computing
The Network Data Structure in ComputingThe Network Data Structure in Computing
The Network Data Structure in Computing
 

Recently uploaded

Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 

Recently uploaded (20)

Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 

Mining and Supporting Community Structures in Sensor Network Research

  • 1. Mining and supporting community structures in sensor network research Alberto Pepe (University of California at Los Angeles) Marko A. Rodriguez (Los Alamos National Laboratory) CENS Friday Seminar | May 2, 2008
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10. CENS population statistics. Socioacademic communities
  • 11. Study model. Alberto Marko coauthor Affiliation: UCLA Department: IS Origin: Italy Position: PhD Student Affiliation: LANL Department: CS Origin: USA Position: PostDoc
  • 12.
  • 13.
  • 14.
  • 15. Coauthorship network map. 27 structural detected CENS communities (LEV).
  • 16.
  • 17.
  • 18.
  • 19. Chi square analysis. N.B. p-value greater than 0.05 is considered statistically independent leading eigenvector (LEV), walktrap (WT), edge betweenness (EB), spinglass (SG).
  • 22.
  • 23.
  • 24. Everything is metadata. Borgman Article2 JCDL Pepe Italy UCLA CENS writtenBy writtenBy member country attended hasLab Article1 Sensor Networks cites topic researches contains member member
  • 25.
  • 26.
  • 27.
  • 28. Example undirected network. Herbert Marko Aric Ed Zhiwu Alberto Jen Johan Luda Stephan Whenzong
  • 29.
  • 30. Example directed network. Muskrat Bear Fish Fox Meerkat Lion Human Wolf Deer Beetle Hyena
  • 31.
  • 32. Example semantic network. SantaFe Marko NewMexico Ryan California UnitedStates LANL livesIn worksWith cityOf originallyFrom stateOf stateOf locatedIn hasLab Cells Atoms madeOf madeOf researches Oregon southOf hasResident Arnold governerOf northOf
  • 33.
  • 34. RDF and RDFS. lanl:marko lanl:cookie lanl:Human lanl:Food lanl:isEating rdf:type rdf:type lanl:isEating rdfs:domain rdfs:range ontology instance RDF is not a syntax. It’s a data model. Various syntaxes exist to encode RDF including RDF/XML, N-TRIPLE, TRiX, N3, etc.
  • 35. RDF, RDFS, and OWL. lanl:fluffy lanl:marko lanl:Pet lanl:Human lanl:hasOwner rdf:type rdf:type lanl:hasOwner rdfs:domain rdfs:range ontology instance _:0123 rdfs:subClassOf owl:onProperty “ 1” owl:maxCardinality lanl:bob lanl:hasOwner owl:Restriction rdf:type
  • 36. General-purpose modeling. next next next item item item item key value key value entry entry el el el el el el List Map Set
  • 37. General-purpose computing. next value test PC item heap el Program Virtual Machine false true next next stack el next item next el Rodriguez, M.A., “General-Purpose Computing on a Semantic Network Substrate”, in review, Journal of Web Semantics, LA-UR-07-2885, April 2007.
  • 38. A web of data and process. 127.0.0.1 127.0.0.0 127.0.0.2 127.0.0.3
  • 39.
  • 40. Triple-store vs. relational database. Triple-store Relational Database SQL Interface SPARQL Interface SELECT ?x1 ?x2 WHERE { ?x1 lanl:hasFriend ?x2 . ?x2 lanl:worksFor ?x3 . ?x3 lanl:collaboratesWith ?x4 . ?x4 lanl:hasEmployee ?x1 . } SELECT friendTable.personId1, friendTable.personId2 FROM personTable, authorTable, articleTable, friendTable, hasEmployeeTable, organizationTable, worksForTable, collaboratesWithTable WHERE personTable.id = authorTable.personId AND personTable.id = friendTable.personId1 AND friendTable.personId2 = worksForTable.personId AND worksForTable.orgId = collaboratesWithTable.orgId2 AND collaboratesWithTable.ordId2 = personTable.id “ Give me all pairs of people that are friends, but whom work for collaborating companies. Now!”
  • 41.
  • 42.
  • 44.