SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
International Life Saving Federation                                                                    1/5
Policy Statement 7. In water resuscitation




               INTERNATIONAL LIFE SAVING FEDERATION
                                      Headquarters for World Water Safety
                                  Gemeenteplein 26 – 3010 Leuven – Belgium
                                  Tel: (32.16) 35.35.00 – Fax: (32.16) 35.01.02
                                 E-mail: ils.hq@pandora.be – Web: www.ilsf.org




                                ILS POLICY STATEMENT N° 7.


                   STATEMENTS ON IN WATER RESUSCITATION



1. BACKGROUND

Whenever an apparently non-breathing victim is found in the water, the rescuer is confronted with a
difficult choice. Should the rescuer attempt resuscitation procedures in the water or should the rescuer
bring the victim to shore first, then attempt resuscitation?

The hypoxia (oxygen starvation) caused by prolonged submersion results first in cessation of
breathing (1,3,4,5,6,7). If this hypoxia is not corrected quickly, respiratory arrest is followed by cardiac
arrest at a variable but short time interval determined by physical condition of the victim, water
temperature, previous hypoxia, emotional state, and associated diseases (1,3,5,8,10,11).

When respiratory arrest is corrected prior to onset of cardiac arrest, the death rate is less (0% to 44%)
than in those cases where full CPR (including chest compressions) is needed (33% to 93%) (1,3,5).
For these reasons, in cases of respiratory arrest without cardiac arrest while the victim is still in the
water, the time involved in rescue will be enough, in the majority of cases, to result in cardiac arrest.
This will lead to an increase in the likelihood of death (1,3,5). If hypoxia can be corrected in the water,
before cardiac arrest takes place, the victim’s chance of survival increases significantly.

Ventilation in deep water using a rescue board was demonstrated in Australia by Surf Life Saving New
Zealand in 1975. Deep water ventilation using a rescue board subsequently became part of lifeguard
training in Australia in 1976 (1). In 1978, during a World Lifesaving Association medical conference in
California, it was agreed that artificial ventilation with the aid of a flotation device should be employed
in any case in which there is a delay in removing the non-breathing victim from the water. No
successful resuscitation in the water was reported until 1981, although several lifesaving
organizations worldwide had been teaching the use of artificial ventilation in the water (2).

Water temperature and known time of submersion, are the main factors in the chance of
survival and will influence decisions on resuscitation. Small children have been known to
survive submersion in icy water for more than one hour (22). Such certainty of knowledge is,
however, rare and if submersion time is uncertain in more temperate conditions, resuscitation
should be commenced as early as possible. Further, pulse checks in the water are highly
unreliable and waste time. Cardiac compressions in the water have been evaluated and the
procedure is not effective.

In most cases, the rescuer does not know all the circumstances related to the victim before the rescue
is attempted, and the resuscitation window decreases with time. The proper training for different
International Life Saving Federation                                                                    2/5
Policy Statement 7. In water resuscitation


situations, with or without lifesaving equipment, will improve the rescuer’s ability to make the right
decision and select the right rescue equipment for the circumstances. By maintaining good physical
conditioning and using the correct rescue techniques the rescuer can avoid unnecessary risks to both
the rescuer and victim.

In considering the best course of action in treating a non-breathing victim in the water, lifeguards and
other in-water rescuers have raised several questions:

What if the victim is actually breathing and the rescuer mistakenly gives ventilations?

It can be difficult to determine whether an unconscious victim is breathing spontaneously while the
rescuer and victim are still in the water. Even so, if the rescuer ventilates a breathing victim, it is very
unlikely to have a negative impact. On the other hand, ventilating a victim who is not breathing may
revive the victim, or at least maintain circulation.

If the victim is in cardiac arrest, won’t the time involved in giving ventilations in the water delay CPR,
early defibrillation, and other critical interventions?

There will indeed be a delay, but the brief time involved in trying to immediately restart breathing is the
best approach. The higher death rate resulting from cardiac arrest (33% to 93%) versus respiratory
arrest alone (0% to 44%) justifies the risk of attempting in-water resuscitation immediately. In the
majority of these cases, breathing is usually restored by “mouth-to-mouth” ventilation in the first
minute (1,8).

Doesn’t mouth-to-mouth place the rescuer at higher risk of contracting a communicable disease?

Studies suggest that the chance of contracting a communicable disease via mouth-to-mouth
resuscitation attempts is extremely small. On the other hand, the chance of saving a life in these
cases is high. Rescuers should take this into account in deciding the best course of action. If the
rescuer has a barrier device, it may be used, but these devices are usually very difficult to use in-
water and attempts to use them may add further delays.

What if the water conditions are such that the rescuer or victim are endangered (e.g. high surf, very
cold water, etc.)?

If the rescuer is to successfully assist the victim, the rescuer must maintain a reasonable degree of
safety. If the rescuer cannot safely provide ventilation at the location where the victim is found, then
the rescuer should immediately move to a position of safety. This may be elsewhere in the water
(such as further offshore), on-shore, into a rescue boat, etc.

2. STATEMENT

Whenever possible, if a victim is found in the water, the rescuer should immediately establish whether
spontaneous breathing is present and, if it is absent, initiate artificial ventilation. Exceptions include
threats to the safety of the rescuer and victim if immediate rescue is not initiated and cases of known
submersion over 15 minutes (12,13). Initiating artificial ventilation while still in the water in cases of
isolated respiratory arrest may improve chances of survival of the non-breathing victim by more than
50% (1,3). The rescuer’s ability to perform this procedure will depend on factors such as water
conditions at the location of the incident (surf, currents, etc.), the availability of a rescue flotation
device (rescue buoy, rescue tube, rescue board, etc.), rescuer training, physical conditioning of the
rescuer, and the techniques used.

Specific recommendations for different water depths are as follows in cases where the submersion
time is unknown or is known to be less than 15 minutes:

Shallow Water (if the rescuer can stand on the bottom)

Open the victim’s airway by extending the victim’s neck, evaluate the victim’s breathing, and, if the
victim is not breathing, begin one minute of mouth-to-mouth ventilation (12 to 16 ventilations). If
International Life Saving Federation                                                                 3/5
Policy Statement 7. In water resuscitation


ventilations are restored at any time during the first minute of ventilation, proceed towards shore and
stop to check from time to time that the victim is still breathing.

If breathing is not restored after one minute of ventilation, the rescuer should rescue the victim while
ventilations are continued or stop every one or two minutes to ventilate again for approximately one
minute (12 to 16 ventilations). This may be done without great difficulty and without lifesaving
equipment. Attempt to prevent unnecessary neck movement if there is a suspicion of head or neck
trauma.

Deep water

Note: In general, only trained lifeguards have the skills to perform rescue breathing in deep
water.

Position the victim face up, extending the neck to open the airway. This can be accomplished by a
single trained rescuer with the aid of appropriate lifesaving equipment (a rescue tube, rescue can,
rescue board, bodyboard, etc.) or by two or more trained rescuers without lifesaving equipment. In
either case, swim fins are highly recommended and will greatly facilitate these procedures.

If there is no spontaneous breathing, the rescuer should attempt to ventilate for approximately one
minute (12 to 16 ventilations), and then proceed depending on circumstances.

If ventilation is restored, proceed toward shore intermittently stopping to check that the victim
is still breathing.


If breathing is not restored after one minute of ventilation, the rescuer should consider if it is a
long (over five minutes) or a short swim to a dry or shallow place. If a short swim, rescue the
victim while ventilations are continued or stop every one or two minutes to ventilate again for
approximately one minute (12 to 16 ventilations). If a long swim, continue ventilation one
additional minute in place and check for movement or reaction to ventilation. If present, use
the same procedures as with the short swim. If movement or reaction to ventilation is absent,
the rescuer should bring the victim to shore without further ventilations.


When performed in deep water, this is a difficult procedure, requiring extreme fitness, swimming
ability, a flotation device and prior training. Do not check victim’s pulse or attempt compressions while
in the water (21). These are difficult and inefficient, and will slow the rescue process.

In case of a suspected back or neck injury the rescuer should check breathing before extending the
victim’s neck, then if there is no breathing, tilt the victim’s neck backwards to check for breathing
again. If there is no spontaneous breathing the rescuer should immediately start ventilations (1,21)
consistent with the rescuer’s training protocol. Suspicions of back/neck injury should be greater in
shallow water.

The rescuer should always keep the victim under observation during the rescue, even if the victim is
breathing spontaneously, since during the first 5 to 10 minutes the victim could again cease breathing
(1).
International Life Saving Federation                                                                        4/5
 Policy Statement 7. In water resuscitation


 ALGORITHM - IN-WATER RESUSCITATION PROCEDURES


                        Check VICTIM´S RESPONSE STILL IN-WATER

     Conscious?                                                    Unconscious?
    (speaking and/or moving)                                       (No movement)
                                                                               How deep
        Warning if any suspicion of                                          is the water?
          cervical spine injury - use
                                                                            Shallow
                                           Deep
                                 Place the victim’s face, out of               Cervical Spine Injury?
                                 water and extend the neck to            In case of suspected back / neck
                                 open the airway                           injury, check breathing first. If
                                                                        lacking, proceed to extend victim’s
                                                                                      neck and.

                               1 rescuer            2 or more
                                                    rescuers                       Immobilize the
                                                                                    cervical spine
            Without With equipment                                                 during rescue if
                                                                                      possible.
           equipment

                           Check for breathing. If no spontaneous breathing, ventilate for
                                approximately one minute (12 to 16 ventilations).


                                              Ventilation restored ?
                                                                           Consider if it is a long
                                Yes                                        (over 5 min) or a short
                                                                                 swim back.
    Rescue the
   victim to the
  shore or pool                              Long swim (> 5 min)                        short swim
 side as soon as                 continuing ventilation 1 additional min. in              (< 5 min)
     possible.                   place and check movement or reaction to                rescue while
                                 ventilation. If present, proceed with the            ventilations are
                                 same as short swim protocols. If absent              continued or by
                                 (cardiac arrest), the rescuer should bring the    stopping every 1 or 2
                                 victim to shore without further ventilations.     min. to ventilate again
                                                                                      for one minute.




In-Water Basic Life Support – Szpilman 2001 (references below).
Note: recommendations for in-water resuscitation are for cases where the submersion time is
unknown or is known to be less than 15 minutes. If breathing is not restored after one minute of
ventilation in shallow water, proceed with short swim procedure.
International Life Saving Federation                                                                                      5/5
Policy Statement 7. In water resuscitation


REFERENCES

1      Manolios N, Mackie IJ: drowning and near drowning on Australian beaches patrolled by life-savers: a 10 year study
       (1973-1983). M J Aust vol 148:165-171, 1988
2      Ghaphery JC. In-Water resuscitation. JAMA 1981; 245:821.
3      Szpilman D. Near-Drowning and Drowning: A Proposal to Stratify Mortality Based on the Analysis of 1,831 cases:
       CHEST 1997; 112, p 660-665.
4      Pearn JH,Bart RD Jr,Yamaoka R (1979);Neurologic sequelae after childhood near-drowning: A total population study
       from Hawaii; Pediatrics 64:187-191.
5      Bierens JJLM, Velde EAV, Berkel M, Zanten JJ. Submersion in the Netherlands: Prognostic- Indicator and results of
       resuscitation. Annals of Emergency Medicine 19:1390-1395.
6      Modell JH, Graves SA, Ketover A: Clinical course of 91 consecutive near-drowning victims. Chest 1976, 70::231-238.
7      Dziukas Linas. Near-drowning: Australian Family Physician. Vol 18, 10, October 1989: 1242-6.
8      Orlowski JP, Abulleil MM,Phillips JM; The homodynamic and cardiovascular effects of near-drowning in hypotonic,
       isotonic, or hypertonic solutions; Annals of emergency medicine, October 1989;18:1044-1049.
9      Quan L, Gore EJ, Wentz K, et al: Ten-year study of pediatric drowning and near-drowning in king county, Washington:
       Lessons in Injury Prevention. Pediatrics 83:1035-40, 1989.
10     Orlowski JP, et al: Effects of tonicities of saline solutions on pulmonary injury in drowning. Crit Care Med 15, 2:126,
       1987
11     Gooden BA: Drowning and the diving reflex in man. Department of human Physiology and Pharmacology University of
       Adelaide; The Medical Journal of Australia, vol2:583-587, 1972
12     Orlowski JP: Adolescent Drowning: Swimming, Boating, Diving, and Scuba Accidents. Pediatric Annals 17: 2/Feb 1987.
13     Haynes, Bruce E. Citation: Near-drowning: Rescuing victims effectively; The Physician and Sportsmedicine, June 1991,
       V19, n6, P31(3).
14     Allman FD, Nelson WD, Pacentine GA, et al: Outcome following cardiopulmonary resuscitation in severe pediatric near-
       drowning. Am J Dis Child 1986; 140: 571.
15     Peterson B: Morbidity of childhood near-drowning. Pediatrics 1977, 59:364.
16     Jacobsen WK, Mason LJ, Briggs BA, et al: Correlation of spontaneous respiration and neurologic damage in near-
       drowning. Crit. Care Med 1983; 11:487.
17     Nichter MA, Everett PB: Childhood near-drowning: Is Cardiopulmonary resuscitation always indicated ?. Crit Care Med
       1989; 17: 993-5.
18     Modell JH: Treatment of Near-drowning: Is There a role of H.Y.P.E.R Therapy ?. Crit Care Med 14: 583-584, 1986.
19     Model JH: Drowning: To treat or not to treat - an unanswerable question ?. Cit Care Med 21:313-5, 1993.
20     Bolte RG, Block PG, et al: The use of extracorporeal rewarming in a child submerged for 66 minutes. JAMA 260: 260-
       377, 1988.
21     Orlowski JP: Drowning, near-drowning, and ice water submersion. Pediatrics Clin North Am, 34:92, 1987

PRIMARY AUTHOR
David Szpilman, M.D. (Brazil)

APPROVED
Glen Hagemann, M.D. (South Africa), Ian Mackie, MD. (Australia), Joost Bierens, M.D. (Netherlands),
Peter Fenner, M.D. (Australia), Peter Wernicki, M.D. (United States), Steven Beerman, M.D.
(Canada), Tony Handley, M.D. (United Kingdom)


Policy Statement approved by the Board of Directors: 4 September 2001

Contenu connexe

Similaire à Medicalpolicy07in waterresuscitation

Drowning and Water Safety for the EMS Provider: Clinical and Practical Implic...
Drowning and Water Safety for the EMS Provider: Clinical and Practical Implic...Drowning and Water Safety for the EMS Provider: Clinical and Practical Implic...
Drowning and Water Safety for the EMS Provider: Clinical and Practical Implic...bobpratt
 
Water Safety for the EMS Provider: Clinical and Practical Implications
Water Safety for the EMS Provider: Clinical and Practical ImplicationsWater Safety for the EMS Provider: Clinical and Practical Implications
Water Safety for the EMS Provider: Clinical and Practical Implicationsbobpratt
 
Sea Survival bertahan di laut... 2.pptx
Sea Survival bertahan di laut...  2.pptxSea Survival bertahan di laut...  2.pptx
Sea Survival bertahan di laut... 2.pptxFadiljen
 
Field version short guidelines disaster management
Field version short guidelines disaster managementField version short guidelines disaster management
Field version short guidelines disaster managementSaroj Suwal
 
cardiopulmonary resuscitation
cardiopulmonary resuscitationcardiopulmonary resuscitation
cardiopulmonary resuscitationTejal Ragji
 
CPR- Cardio Pulmonary Resusciatation (Pediatrics)
CPR- Cardio Pulmonary Resusciatation (Pediatrics)CPR- Cardio Pulmonary Resusciatation (Pediatrics)
CPR- Cardio Pulmonary Resusciatation (Pediatrics)TheRoyAshish
 
Neonatal resuscitation part 2 by dr.saleem
Neonatal resuscitation part 2 by dr.saleemNeonatal resuscitation part 2 by dr.saleem
Neonatal resuscitation part 2 by dr.saleemzahid mehmood
 
Cardiopulmonary Resuscitation
Cardiopulmonary ResuscitationCardiopulmonary Resuscitation
Cardiopulmonary Resuscitationijtsrd
 
Basic life support 2021 (bls)
Basic life support 2021 (bls)Basic life support 2021 (bls)
Basic life support 2021 (bls)islamali260580
 
How Lifeguards would know the severity, treatment and outcome of drowning on ...
How Lifeguards would know the severity, treatment and outcome of drowning on ...How Lifeguards would know the severity, treatment and outcome of drowning on ...
How Lifeguards would know the severity, treatment and outcome of drowning on ...ILS - International Life Saving Federation
 
Unconsciousness and syncope - Management
Unconsciousness and syncope - ManagementUnconsciousness and syncope - Management
Unconsciousness and syncope - ManagementKathirvelGopalakrish
 
9.3 disaster management
9.3 disaster management9.3 disaster management
9.3 disaster managementShital Patil
 

Similaire à Medicalpolicy07in waterresuscitation (20)

Basic Life Support - BLS
Basic Life Support - BLSBasic Life Support - BLS
Basic Life Support - BLS
 
Group 5 PPT in CDI 9.pdf
Group 5 PPT in CDI 9.pdfGroup 5 PPT in CDI 9.pdf
Group 5 PPT in CDI 9.pdf
 
In-water resuscitiation: What are the highlights and pitfalls?
In-water resuscitiation: What are the highlights and pitfalls?In-water resuscitiation: What are the highlights and pitfalls?
In-water resuscitiation: What are the highlights and pitfalls?
 
Drowning and Water Safety for the EMS Provider: Clinical and Practical Implic...
Drowning and Water Safety for the EMS Provider: Clinical and Practical Implic...Drowning and Water Safety for the EMS Provider: Clinical and Practical Implic...
Drowning and Water Safety for the EMS Provider: Clinical and Practical Implic...
 
Water Safety for the EMS Provider: Clinical and Practical Implications
Water Safety for the EMS Provider: Clinical and Practical ImplicationsWater Safety for the EMS Provider: Clinical and Practical Implications
Water Safety for the EMS Provider: Clinical and Practical Implications
 
Sea Survival bertahan di laut... 2.pptx
Sea Survival bertahan di laut...  2.pptxSea Survival bertahan di laut...  2.pptx
Sea Survival bertahan di laut... 2.pptx
 
ACLS & BLS
ACLS & BLSACLS & BLS
ACLS & BLS
 
Field version short guidelines disaster management
Field version short guidelines disaster managementField version short guidelines disaster management
Field version short guidelines disaster management
 
cardiopulmonary resuscitation
cardiopulmonary resuscitationcardiopulmonary resuscitation
cardiopulmonary resuscitation
 
BLS CHILD.pptx
BLS CHILD.pptxBLS CHILD.pptx
BLS CHILD.pptx
 
CPR- Cardio Pulmonary Resusciatation (Pediatrics)
CPR- Cardio Pulmonary Resusciatation (Pediatrics)CPR- Cardio Pulmonary Resusciatation (Pediatrics)
CPR- Cardio Pulmonary Resusciatation (Pediatrics)
 
Neonatal resuscitation part 2 by dr.saleem
Neonatal resuscitation part 2 by dr.saleemNeonatal resuscitation part 2 by dr.saleem
Neonatal resuscitation part 2 by dr.saleem
 
Cardiopulmonary Resuscitation
Cardiopulmonary ResuscitationCardiopulmonary Resuscitation
Cardiopulmonary Resuscitation
 
CPR.pptx
CPR.pptxCPR.pptx
CPR.pptx
 
Basic life support 2021 (bls)
Basic life support 2021 (bls)Basic life support 2021 (bls)
Basic life support 2021 (bls)
 
Paediatric bls
Paediatric blsPaediatric bls
Paediatric bls
 
How Lifeguards would know the severity, treatment and outcome of drowning on ...
How Lifeguards would know the severity, treatment and outcome of drowning on ...How Lifeguards would know the severity, treatment and outcome of drowning on ...
How Lifeguards would know the severity, treatment and outcome of drowning on ...
 
Unconsciousness and syncope - Management
Unconsciousness and syncope - ManagementUnconsciousness and syncope - Management
Unconsciousness and syncope - Management
 
CPR SEMINAR PPT.pptx
CPR SEMINAR PPT.pptxCPR SEMINAR PPT.pptx
CPR SEMINAR PPT.pptx
 
9.3 disaster management
9.3 disaster management9.3 disaster management
9.3 disaster management
 

Plus de Jordi Bas

Borrador decreto sos galicia
Borrador decreto sos galiciaBorrador decreto sos galicia
Borrador decreto sos galiciaJordi Bas
 
Anabolisme heteròtrof
Anabolisme heteròtrofAnabolisme heteròtrof
Anabolisme heteròtrofJordi Bas
 
Composició Éssers Vius
Composició Éssers ViusComposició Éssers Vius
Composició Éssers ViusJordi Bas
 
Presentació enzims bona 11 12
Presentació enzims bona 11 12Presentació enzims bona 11 12
Presentació enzims bona 11 12Jordi Bas
 
Reproducció
ReproduccióReproducció
ReproduccióJordi Bas
 
Història Terra
Història TerraHistòria Terra
Història TerraJordi Bas
 
8. dinàmica dels ecosistemes
8. dinàmica dels ecosistemes8. dinàmica dels ecosistemes
8. dinàmica dels ecosistemesJordi Bas
 
No delimitat per membranes
No delimitat per membranesNo delimitat per membranes
No delimitat per membranesJordi Bas
 
ús microscopi
ús microscopiús microscopi
ús microscopiJordi Bas
 
La cèl·lula
La cèl·lulaLa cèl·lula
La cèl·lulaJordi Bas
 
Genètica i evolució
Genètica i evolucióGenètica i evolució
Genètica i evolucióJordi Bas
 
àc. nucleics
àc. nucleicsàc. nucleics
àc. nucleicsJordi Bas
 
Guia de genètica per a Batxillerat
Guia de genètica per a BatxilleratGuia de genètica per a Batxillerat
Guia de genètica per a BatxilleratJordi Bas
 
ligamiento y recombinación
ligamiento y recombinaciónligamiento y recombinación
ligamiento y recombinaciónJordi Bas
 
Genètica mendeliana 2
Genètica mendeliana 2Genètica mendeliana 2
Genètica mendeliana 2Jordi Bas
 

Plus de Jordi Bas (20)

Teixits (1)
Teixits (1)Teixits (1)
Teixits (1)
 
Delimitat
DelimitatDelimitat
Delimitat
 
Borrador decreto sos galicia
Borrador decreto sos galiciaBorrador decreto sos galicia
Borrador decreto sos galicia
 
Anabolisme heteròtrof
Anabolisme heteròtrofAnabolisme heteròtrof
Anabolisme heteròtrof
 
Composició Éssers Vius
Composició Éssers ViusComposició Éssers Vius
Composició Éssers Vius
 
Unitat 1
Unitat 1Unitat 1
Unitat 1
 
Presentació enzims bona 11 12
Presentació enzims bona 11 12Presentació enzims bona 11 12
Presentació enzims bona 11 12
 
Reproducció
ReproduccióReproducció
Reproducció
 
Història Terra
Història TerraHistòria Terra
Història Terra
 
8. dinàmica dels ecosistemes
8. dinàmica dels ecosistemes8. dinàmica dels ecosistemes
8. dinàmica dels ecosistemes
 
No delimitat per membranes
No delimitat per membranesNo delimitat per membranes
No delimitat per membranes
 
ús microscopi
ús microscopiús microscopi
ús microscopi
 
La cèl·lula
La cèl·lulaLa cèl·lula
La cèl·lula
 
ecologia
ecologiaecologia
ecologia
 
Genètica i evolució
Genètica i evolucióGenètica i evolució
Genètica i evolució
 
àc. nucleics
àc. nucleicsàc. nucleics
àc. nucleics
 
Guia de genètica per a Batxillerat
Guia de genètica per a BatxilleratGuia de genètica per a Batxillerat
Guia de genètica per a Batxillerat
 
ligamiento y recombinación
ligamiento y recombinaciónligamiento y recombinación
ligamiento y recombinación
 
Proteïnes
ProteïnesProteïnes
Proteïnes
 
Genètica mendeliana 2
Genètica mendeliana 2Genètica mendeliana 2
Genètica mendeliana 2
 

Medicalpolicy07in waterresuscitation

  • 1. International Life Saving Federation 1/5 Policy Statement 7. In water resuscitation INTERNATIONAL LIFE SAVING FEDERATION Headquarters for World Water Safety Gemeenteplein 26 – 3010 Leuven – Belgium Tel: (32.16) 35.35.00 – Fax: (32.16) 35.01.02 E-mail: ils.hq@pandora.be – Web: www.ilsf.org ILS POLICY STATEMENT N° 7. STATEMENTS ON IN WATER RESUSCITATION 1. BACKGROUND Whenever an apparently non-breathing victim is found in the water, the rescuer is confronted with a difficult choice. Should the rescuer attempt resuscitation procedures in the water or should the rescuer bring the victim to shore first, then attempt resuscitation? The hypoxia (oxygen starvation) caused by prolonged submersion results first in cessation of breathing (1,3,4,5,6,7). If this hypoxia is not corrected quickly, respiratory arrest is followed by cardiac arrest at a variable but short time interval determined by physical condition of the victim, water temperature, previous hypoxia, emotional state, and associated diseases (1,3,5,8,10,11). When respiratory arrest is corrected prior to onset of cardiac arrest, the death rate is less (0% to 44%) than in those cases where full CPR (including chest compressions) is needed (33% to 93%) (1,3,5). For these reasons, in cases of respiratory arrest without cardiac arrest while the victim is still in the water, the time involved in rescue will be enough, in the majority of cases, to result in cardiac arrest. This will lead to an increase in the likelihood of death (1,3,5). If hypoxia can be corrected in the water, before cardiac arrest takes place, the victim’s chance of survival increases significantly. Ventilation in deep water using a rescue board was demonstrated in Australia by Surf Life Saving New Zealand in 1975. Deep water ventilation using a rescue board subsequently became part of lifeguard training in Australia in 1976 (1). In 1978, during a World Lifesaving Association medical conference in California, it was agreed that artificial ventilation with the aid of a flotation device should be employed in any case in which there is a delay in removing the non-breathing victim from the water. No successful resuscitation in the water was reported until 1981, although several lifesaving organizations worldwide had been teaching the use of artificial ventilation in the water (2). Water temperature and known time of submersion, are the main factors in the chance of survival and will influence decisions on resuscitation. Small children have been known to survive submersion in icy water for more than one hour (22). Such certainty of knowledge is, however, rare and if submersion time is uncertain in more temperate conditions, resuscitation should be commenced as early as possible. Further, pulse checks in the water are highly unreliable and waste time. Cardiac compressions in the water have been evaluated and the procedure is not effective. In most cases, the rescuer does not know all the circumstances related to the victim before the rescue is attempted, and the resuscitation window decreases with time. The proper training for different
  • 2. International Life Saving Federation 2/5 Policy Statement 7. In water resuscitation situations, with or without lifesaving equipment, will improve the rescuer’s ability to make the right decision and select the right rescue equipment for the circumstances. By maintaining good physical conditioning and using the correct rescue techniques the rescuer can avoid unnecessary risks to both the rescuer and victim. In considering the best course of action in treating a non-breathing victim in the water, lifeguards and other in-water rescuers have raised several questions: What if the victim is actually breathing and the rescuer mistakenly gives ventilations? It can be difficult to determine whether an unconscious victim is breathing spontaneously while the rescuer and victim are still in the water. Even so, if the rescuer ventilates a breathing victim, it is very unlikely to have a negative impact. On the other hand, ventilating a victim who is not breathing may revive the victim, or at least maintain circulation. If the victim is in cardiac arrest, won’t the time involved in giving ventilations in the water delay CPR, early defibrillation, and other critical interventions? There will indeed be a delay, but the brief time involved in trying to immediately restart breathing is the best approach. The higher death rate resulting from cardiac arrest (33% to 93%) versus respiratory arrest alone (0% to 44%) justifies the risk of attempting in-water resuscitation immediately. In the majority of these cases, breathing is usually restored by “mouth-to-mouth” ventilation in the first minute (1,8). Doesn’t mouth-to-mouth place the rescuer at higher risk of contracting a communicable disease? Studies suggest that the chance of contracting a communicable disease via mouth-to-mouth resuscitation attempts is extremely small. On the other hand, the chance of saving a life in these cases is high. Rescuers should take this into account in deciding the best course of action. If the rescuer has a barrier device, it may be used, but these devices are usually very difficult to use in- water and attempts to use them may add further delays. What if the water conditions are such that the rescuer or victim are endangered (e.g. high surf, very cold water, etc.)? If the rescuer is to successfully assist the victim, the rescuer must maintain a reasonable degree of safety. If the rescuer cannot safely provide ventilation at the location where the victim is found, then the rescuer should immediately move to a position of safety. This may be elsewhere in the water (such as further offshore), on-shore, into a rescue boat, etc. 2. STATEMENT Whenever possible, if a victim is found in the water, the rescuer should immediately establish whether spontaneous breathing is present and, if it is absent, initiate artificial ventilation. Exceptions include threats to the safety of the rescuer and victim if immediate rescue is not initiated and cases of known submersion over 15 minutes (12,13). Initiating artificial ventilation while still in the water in cases of isolated respiratory arrest may improve chances of survival of the non-breathing victim by more than 50% (1,3). The rescuer’s ability to perform this procedure will depend on factors such as water conditions at the location of the incident (surf, currents, etc.), the availability of a rescue flotation device (rescue buoy, rescue tube, rescue board, etc.), rescuer training, physical conditioning of the rescuer, and the techniques used. Specific recommendations for different water depths are as follows in cases where the submersion time is unknown or is known to be less than 15 minutes: Shallow Water (if the rescuer can stand on the bottom) Open the victim’s airway by extending the victim’s neck, evaluate the victim’s breathing, and, if the victim is not breathing, begin one minute of mouth-to-mouth ventilation (12 to 16 ventilations). If
  • 3. International Life Saving Federation 3/5 Policy Statement 7. In water resuscitation ventilations are restored at any time during the first minute of ventilation, proceed towards shore and stop to check from time to time that the victim is still breathing. If breathing is not restored after one minute of ventilation, the rescuer should rescue the victim while ventilations are continued or stop every one or two minutes to ventilate again for approximately one minute (12 to 16 ventilations). This may be done without great difficulty and without lifesaving equipment. Attempt to prevent unnecessary neck movement if there is a suspicion of head or neck trauma. Deep water Note: In general, only trained lifeguards have the skills to perform rescue breathing in deep water. Position the victim face up, extending the neck to open the airway. This can be accomplished by a single trained rescuer with the aid of appropriate lifesaving equipment (a rescue tube, rescue can, rescue board, bodyboard, etc.) or by two or more trained rescuers without lifesaving equipment. In either case, swim fins are highly recommended and will greatly facilitate these procedures. If there is no spontaneous breathing, the rescuer should attempt to ventilate for approximately one minute (12 to 16 ventilations), and then proceed depending on circumstances. If ventilation is restored, proceed toward shore intermittently stopping to check that the victim is still breathing. If breathing is not restored after one minute of ventilation, the rescuer should consider if it is a long (over five minutes) or a short swim to a dry or shallow place. If a short swim, rescue the victim while ventilations are continued or stop every one or two minutes to ventilate again for approximately one minute (12 to 16 ventilations). If a long swim, continue ventilation one additional minute in place and check for movement or reaction to ventilation. If present, use the same procedures as with the short swim. If movement or reaction to ventilation is absent, the rescuer should bring the victim to shore without further ventilations. When performed in deep water, this is a difficult procedure, requiring extreme fitness, swimming ability, a flotation device and prior training. Do not check victim’s pulse or attempt compressions while in the water (21). These are difficult and inefficient, and will slow the rescue process. In case of a suspected back or neck injury the rescuer should check breathing before extending the victim’s neck, then if there is no breathing, tilt the victim’s neck backwards to check for breathing again. If there is no spontaneous breathing the rescuer should immediately start ventilations (1,21) consistent with the rescuer’s training protocol. Suspicions of back/neck injury should be greater in shallow water. The rescuer should always keep the victim under observation during the rescue, even if the victim is breathing spontaneously, since during the first 5 to 10 minutes the victim could again cease breathing (1).
  • 4. International Life Saving Federation 4/5 Policy Statement 7. In water resuscitation ALGORITHM - IN-WATER RESUSCITATION PROCEDURES Check VICTIM´S RESPONSE STILL IN-WATER Conscious? Unconscious? (speaking and/or moving) (No movement) How deep Warning if any suspicion of is the water? cervical spine injury - use Shallow Deep Place the victim’s face, out of Cervical Spine Injury? water and extend the neck to In case of suspected back / neck open the airway injury, check breathing first. If lacking, proceed to extend victim’s neck and. 1 rescuer 2 or more rescuers Immobilize the cervical spine Without With equipment during rescue if possible. equipment Check for breathing. If no spontaneous breathing, ventilate for approximately one minute (12 to 16 ventilations). Ventilation restored ? Consider if it is a long Yes (over 5 min) or a short swim back. Rescue the victim to the shore or pool Long swim (> 5 min) short swim side as soon as continuing ventilation 1 additional min. in (< 5 min) possible. place and check movement or reaction to rescue while ventilation. If present, proceed with the ventilations are same as short swim protocols. If absent continued or by (cardiac arrest), the rescuer should bring the stopping every 1 or 2 victim to shore without further ventilations. min. to ventilate again for one minute. In-Water Basic Life Support – Szpilman 2001 (references below). Note: recommendations for in-water resuscitation are for cases where the submersion time is unknown or is known to be less than 15 minutes. If breathing is not restored after one minute of ventilation in shallow water, proceed with short swim procedure.
  • 5. International Life Saving Federation 5/5 Policy Statement 7. In water resuscitation REFERENCES 1 Manolios N, Mackie IJ: drowning and near drowning on Australian beaches patrolled by life-savers: a 10 year study (1973-1983). M J Aust vol 148:165-171, 1988 2 Ghaphery JC. In-Water resuscitation. JAMA 1981; 245:821. 3 Szpilman D. Near-Drowning and Drowning: A Proposal to Stratify Mortality Based on the Analysis of 1,831 cases: CHEST 1997; 112, p 660-665. 4 Pearn JH,Bart RD Jr,Yamaoka R (1979);Neurologic sequelae after childhood near-drowning: A total population study from Hawaii; Pediatrics 64:187-191. 5 Bierens JJLM, Velde EAV, Berkel M, Zanten JJ. Submersion in the Netherlands: Prognostic- Indicator and results of resuscitation. Annals of Emergency Medicine 19:1390-1395. 6 Modell JH, Graves SA, Ketover A: Clinical course of 91 consecutive near-drowning victims. Chest 1976, 70::231-238. 7 Dziukas Linas. Near-drowning: Australian Family Physician. Vol 18, 10, October 1989: 1242-6. 8 Orlowski JP, Abulleil MM,Phillips JM; The homodynamic and cardiovascular effects of near-drowning in hypotonic, isotonic, or hypertonic solutions; Annals of emergency medicine, October 1989;18:1044-1049. 9 Quan L, Gore EJ, Wentz K, et al: Ten-year study of pediatric drowning and near-drowning in king county, Washington: Lessons in Injury Prevention. Pediatrics 83:1035-40, 1989. 10 Orlowski JP, et al: Effects of tonicities of saline solutions on pulmonary injury in drowning. Crit Care Med 15, 2:126, 1987 11 Gooden BA: Drowning and the diving reflex in man. Department of human Physiology and Pharmacology University of Adelaide; The Medical Journal of Australia, vol2:583-587, 1972 12 Orlowski JP: Adolescent Drowning: Swimming, Boating, Diving, and Scuba Accidents. Pediatric Annals 17: 2/Feb 1987. 13 Haynes, Bruce E. Citation: Near-drowning: Rescuing victims effectively; The Physician and Sportsmedicine, June 1991, V19, n6, P31(3). 14 Allman FD, Nelson WD, Pacentine GA, et al: Outcome following cardiopulmonary resuscitation in severe pediatric near- drowning. Am J Dis Child 1986; 140: 571. 15 Peterson B: Morbidity of childhood near-drowning. Pediatrics 1977, 59:364. 16 Jacobsen WK, Mason LJ, Briggs BA, et al: Correlation of spontaneous respiration and neurologic damage in near- drowning. Crit. Care Med 1983; 11:487. 17 Nichter MA, Everett PB: Childhood near-drowning: Is Cardiopulmonary resuscitation always indicated ?. Crit Care Med 1989; 17: 993-5. 18 Modell JH: Treatment of Near-drowning: Is There a role of H.Y.P.E.R Therapy ?. Crit Care Med 14: 583-584, 1986. 19 Model JH: Drowning: To treat or not to treat - an unanswerable question ?. Cit Care Med 21:313-5, 1993. 20 Bolte RG, Block PG, et al: The use of extracorporeal rewarming in a child submerged for 66 minutes. JAMA 260: 260- 377, 1988. 21 Orlowski JP: Drowning, near-drowning, and ice water submersion. Pediatrics Clin North Am, 34:92, 1987 PRIMARY AUTHOR David Szpilman, M.D. (Brazil) APPROVED Glen Hagemann, M.D. (South Africa), Ian Mackie, MD. (Australia), Joost Bierens, M.D. (Netherlands), Peter Fenner, M.D. (Australia), Peter Wernicki, M.D. (United States), Steven Beerman, M.D. (Canada), Tony Handley, M.D. (United Kingdom) Policy Statement approved by the Board of Directors: 4 September 2001