SlideShare une entreprise Scribd logo
1  sur  45
Dynamic and Pass-
           Transistor Logic
                           Prof. Vojin G. Oklobdzija


References (used for creation of the presentation material):
1.   Masaki, “Deep-Submicron CMOS Warms Up to High-Speed Logic”, IEEE
     Circuits and Devices Magazine, November 1992.
2.   Krambeck, C.M. Lee, H.S. Law, “High-Speed Compact Circuits with CMOS”,
     IEEE Journal of Solid-State Circuits, Vol. SC-13, No 3, June 1982.
3.   V.G. Oklobdzija, R.K. Montoye, “Design-Performance Trade-Offs in CMOS-
     Domino Logic”, IEEE Journal of Solid-State Circuits, Vol. SC-21, No 2, April
     1986.
References:
 4.     Goncalves, H.J. DeMan, “NORA: A Racefree Dynamic CMOS Technique
        for Pipelined Logic Structures”, IEEE Journal of Solid-State Circuits,
        Vol. SC-18, No 3, June 1983.
 5.     L.G. Heller, et al, “Cascode Voltage Switch Logic: A Differential CMOS
        Logic Family”, in 1984 Digest of Technical Papers, IEEE International
        Solid-State Circuits Conference, February 1984.
 6.     L.C.M.G. Pfennings, et al, “Differential Split-Level CMOS Logic for
        Subnanosecond Speeds”, IEEE Journal of Solid-State Circuits, Vol. SC-
        20, No 5, October 1985.
 7.     K.M. Chu, D.L. Pulfrey, "A Comparison of CMOS Circuit Techniques:
        Differential Cascode Voltage Switch Logic Versus Conventional Logic",
        IEEE Jouirnal of Solid-State Circuits, Vol. SC-22, No.4, August 1987.




Prof. V.G. Oklobdzija      Advanced Digital Integrated Circuits                  2
References:
 Pass-Transistor Logic:
 8.    S. Whitaker, “Pass-transistor networks optimize n-MOS logic”,
       Electronics, September 1983.
 9.    K. Yano, et al, “A 3.8-ns CMOS 16x16-b Multiplier Using
       Complementary Pass-Transistor Logic”, IEEE Journal of Solid-State
       Circuits, Vol. 25, No 2, April 1990.
 10. K. Yano, et al, “Lean Integration: Achieving a Quantum Leap in
       Performance and Cost of Logic LSIs", Proceedings of the Custom
       Integrated Circuits Conference, San Diego, California, May 1-4, 1994.
 11. M. Suzuki, et al, “A 1.5ns 32b CMOS ALU in Double Pass-Transistor
       Logic”, Journal of Solid-State Circuits, Vol. 28. No 11, November 1993.
 12. N. Ohkubo, et al, “A 4.4-ns CMOS 54x54-b Multiplier Using Pass-
       transistor Multiplexer”, Proceedings of the Custom Integrated Circuits
       Conference, San Diego, California, May 1-4, 1994.




Prof. V.G. Oklobdzija     Advanced Digital Integrated Circuits                   3
References:
 13. V. G. Oklobdzija and B. Duchêne, “Pass-Transistor Dual Value Logic For
     Low-Power CMOS,” Proceedings of the 1995 International Symposium on
     VLSI Technology, Taipei, Taiwan, May 31-June 2nd, 1995.
 14. F.S. Lai, W. Hwang, “Differential Cascode Voltage Switch with the Pass-
     Gate (DCVSPG) Logic Tree for High Performance CMOS Digital
     Systems”, Proceedings of the 1993 International Symposium on VLSI
     Technology, Taipei, Taiwan, June 2-4, 1995
 15. A. Parameswar, H. Hara, T. Sakurai, “A Swing Restored Pass-Transistor
     Logic Based Multiply and Accumulate Circuit for Multimedia
     Applications”, Proceedings of the Custom Integrated Circuits Conference,
     San Diego, California, May 1-4, 1994.
 16. T. Fuse, et al, “0.5V SOI CMOS Pass-Gate Logic”, Digest of Technical
     Papers, 1996 IEEE International Solid-State Circuits Conference, San
     Francisco February 8, 1996.




Prof. V.G. Oklobdzija     Advanced Digital Integrated Circuits                  4
Dynamic CMOS Logic




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   5
(a)      Dynamic CMOS Latch (a), Dynamic CMOS
         Master-Slave Latch (b)




 Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   6
Dynamic Manchester Carry Chain




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   7
Radiation induced charge




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   8
Accidental charge caused by capacitive or inductive coupling between the signal
lines Y and Z. (a)
Prevention by inserting and inverter between the affected line and the pass-
transistor switch (b)




  Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits            9
CMOS Domino Logic




              CMOS logic block (a), Domino Logic (b)
Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   10
CMOS Domino Logic




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   11
CMOS Domino Logic Operation


                                    0
                                    1          1                                   1
                                                                          1
                                                                          0
          1
          0           1                                        1
                                                               0      1




1
0




                            Dominos
    Prof. V.G. Oklobdzija      Advanced Digital Integrated Circuits           12
CMOS Domino Logic: Charge Re-Distribution




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   13
Variations of CMOS Domino Logic:
                NORA Logic




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   14
CVS and DCVS Logic
                        IBM
                 (Heller et al. 1984)




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   15
Cascode Voltage Switch Logic CVS
IBM




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   16
DCVS Logic (IBM)




Prof. V.G. Oklobdzija     Advanced Digital Integrated Circuits   17
DCVS Logic (IBM)




                  (a)                                            (b)

                Differential Cascode Voltage Switch Logic:
                (a) Static DCVLS (b) Dynamic DCVSL
Prof. V.G. Oklobdzija     Advanced Digital Integrated Circuits         18
DCVS Logic vs CMOS




DCVS Logic consisting of two shared                 CMOS consisting of two separate:
nMOS transistor switching networks                  nMOS and pMOS transistor
                                                    switching networks
Prof. V.G. Oklobdzija    Advanced Digital Integrated Circuits                 19
Transistor sharing in DCVS Logic:
    Implementation of 3-input XOR function



                        Q                                                  Q



                            A       A                       A          A



                            B       B                       B          B


                                    C                       C
                                                                Q=a    ⊕ b ⊕ c

Prof. V.G. Oklobdzija           Advanced Digital Integrated Circuits             20
Switching Asymmetry in DCVSL




                                                         This asymmetry causes
                                                         current spikes and increased
                                                         power consumption !




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits                    21
Pass-Transistor Logic




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   22
Pass-Transistor Logic




                        (a)                                          (b)

       (a) XOR function implemented with pass-transistor
       circuit, (b) Karnaough map showing derivation of the
       XOR function
Prof. V.G. Oklobdzija         Advanced Digital Integrated Circuits         23
Pass-Transistor Logic




  General topology of pass-transistor
  function generator

Karnaough map of 16 possible
functions that can be realized

  Prof. V.G. Oklobdzija      Advanced Digital Integrated Circuits   24
Pass-Transistor Logic
Function generator
implemented with pass-
transistor logic




   Prof. V.G. Oklobdzija      Advanced Digital Integrated Circuits   25
Pass-Transistor Logic




Threshold voltage drop at the                     Voltage drop does not exceed Vth
output of the pass-transistor                        when there are multiple
gate                                                 transistors in the path


    Prof. V.G. Oklobdzija      Advanced Digital Integrated Circuits          26
Pass-Transistor Logic




                Elimination of the threshold voltage drop by:
                (a) pairing nMOS transistor with a pMOS
                (b) using a swing-restoring inverter
Prof. V.G. Oklobdzija     Advanced Digital Integrated Circuits   27
Complementary Pass-Transistor Logic
             (CPL)




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   28
Basic logic functions in CPL
       A        B           B   A        A B                               A   A   A   A   A B

B                                                              B


B                                                              B




                                                                       A       B   B   A    A B
        A        B          B   A       A C B C
                                                           B
C
                                                           B
C




    Prof. V.G. Oklobdzija           Advanced Digital Integrated Circuits                   29
CPL Logic
                                                                             A   A
                        A        A
                                                              B
        n1                  n2

B                                                             B
                   n3                   n4

B
                                                              C

                        Q        Qb                           C
             S                               S    (a)   (b)
                                                                  S                       S
                        XOR gate
                                                Sum circuit
      CPL provides an efficient implementation of XOR function
    Prof. V.G. Oklobdzija             Advanced Digital Integrated Circuits           30
CPL Inverter




Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   31
Double Pass-Transistor Logic (DPL):
                                                                  VDD
        A               B               B                A
                                                                               AND/NAND
                                                                                  A B
B                                                                          B

A                                                                          A



        O
                                                                 O


         A      B           A   B       A       B        A       B             XOR/XNOR
B                                                                          A
                                                                                  A B
A                                                                          B
B                                                                          A
A                                                                          B



        O
                                                                 O
    Prof. V.G. Oklobdzija           Advanced Digital Integrated Circuits                32
Double Pass-Transistor Logic (DPL):




                        XOR
                                                               One bit full-adder:
                                                                  Sum circuit

Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits                   33
Double Pass-Transistor Logic (DPL):
                                                    DPL Full Adder




                                         The critical path traverses two
                                         transistors only
                                         (not counting the buffer)
Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits           34
Formal Method for CPL Logic Derivation
                          Markovic et al. 2000


 (a) Cover the Karnaugh-map with largest possible cubes
     (overlapping allowed)
 (b) Express the value of the function in each cube in terms of
     input signals
 (c) Assign one branch of transistor(s) to each of the cubes and
     connect all the branches to one common node, which is the
     output of NMOS pass-transistor network




  Prof. V.G. Oklobdzija    Advanced Digital Integrated Circuits   35
Formal Method for P-T Logic Derivation
Complementary function can be implemented from the same circuit
  structure by applying complementarity principle:
Complementarity Principle: Using the same circuit topology, with
  pass signals inverted, complementary logic function is constructed
  in CPL.
By applying duality principle, a dual function is synthesized:

Duality Principle: Using the same circuit topology, with gate signals
  inverted, dual logic function is constructed.
Following pairs of basic functions are dual:
                                   AND-OR (and vice-versa)
                                 NAND-NOR (and vice-versa)
                            XOR and XNOR are self-dual (dual to itself)


    Prof. V.G. Oklobdzija          Advanced Digital Integrated Circuits   36
Derivation of P-T Logic
           A                               AND             A                               NAND
           B                                               B



                                                           A                               OR             A                              OR
                                                           B                                              B


                                       B                                               B                              B
                       0               1                               0               1                              0              1

                   0   0               0                           0   1               1              A           0   1              1

           A       1   0               1                  A        1   1               0                          1   1              0
                           L 1              L 2                            L 1             L 2                            L 1            L 2


                            A                B                              A               B                              A             B

                           L 2             L 1                             L 2             L 1                            L 1            L 2
               B                                               B                                              B

               B                                               B                                              B



                                 AND                                       NAND (OR)                                            OR


   Copmplementarity: AND  NAND;                                                                  Duality: AND  OR
Prof. V.G. Oklobdzija                             Advanced Digital Integrated Circuits                                                         37
Derivation of CPL Logic
                      Complementarity: AND  NAND

                             B
            B
    A            0           1                A           B          A          B           A        B         A         B
                                             L 2         L 1
        0        0           0
                                         B                                          B
                                         B                                          B
A       1        0           1
                     L 1         L 2
                                                   AND                   NAND                   OR                 NOR
                       (a)                                     (b)                                       (c)



                                                                                        Duality: AND  OR
                                                                                               NAND  NOR

                Prof. V.G. Oklobdzija        Advanced Digital Integrated Circuits                              38
Derivation of CPL Logic
                                    B
            B
    A               0               1                                    A            A          A               A
                                                                        L 2          L 1
        0           0               1
                                                        B
                                                        B
A       1           1               0
                        L 1             L 2
                                                                              XOR                    XNOR
                           (a)                                                             (b)
                (a) XOR function Karnaugh map, (b) XOR/XNOR circuit

            Prof. V.G. Oklobdzija             Advanced Digital Integrated Circuits                          39
Synthesis of three-input CPL logic

                                                                                    A           C     B          A      C        B
            BC                      C                                              L 1         L 2   L 3
    A              00         01         11       10
                                                                        A
                                                            L 1
        0          0          0          0        0                     A
                                                                        B
                                                            L 2
A       1          0          0          1        0                     B


                        L 3
                                              B
                                                                                              AND                    NAND
                                   (a)                                                                     (b)




                    (a) AND function Karnaugh map, (b) AND/NAND circuit

                 Prof. V.G. Oklobdzija                 Advanced Digital Integrated Circuits                                 40
Double Pass-Transistor Logic (DPL):
             Synthesis Rules
    1. Two NMOS branches can not be overlapped covering logic 1s.
Similarly, two PMOS branches can not be overlapped covering logic
0s.

   2. Pass signals are expressed in terms of input signals or supply.
Every input vector has to be covered with exactly two branches.

   3. At any time, excluding transitions, exactly two transistor
branches are active (any of the pairs NMOS/PMOS, NMOS/NMOS
and PMOS/PMOS are possible), i.e. they both provide output current.



   Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   41
Double Pass-Transistor Logic (DPL):
            Synthesis Rules
  Complementarity Principle: Complementary logic function in
DPL is generated after the following modifications:

    • Exchange PMOS and NMOS devices. Invert all pass and gate
signals

   Duality Principle: Dual logic function in DPL is generated
when:

    • PMOS and NMOS devices are exchanged, and VDD and GND
signals are exchanged.


  Prof. V.G. Oklobdzija   Advanced Digital Integrated Circuits   42
DPL Synthesis:
                                                             B           A                           B             A
                              B
            B                                               L 4         L 2
    A              0          1
                                        L 3
                                                   A             B                          A             B
        0          0          0
                                        L 4                                   AND                                            NAND

A       1          0          1                                                             A             B
                                                   A             B
                                                            L 3         L 1
                       L 1        L 2
                                                           GND         GND                      +V       DD   +V       DD
                        (a)                                                           (b)



                (a) AND function Karnaugh map                                 (b) AND/NAND circuit



                Prof. V.G. Oklobdzija          Advanced Digital Integrated Circuits                                     43
DPL Synthesis: OR/NOR circuit
          +V       DD   +V       DD                                          B         A


A                   B                                         A                  B

                                           OR                                              NOR


A                   B                                         A                  B


               B             A                                          GND          GND




Prof. V.G. Oklobdzija                 Advanced Digital Integrated Circuits                       44
DPL Synthesis:
                                                                   B                     A                                 B             A
                             B                                                                                                                           Complementarity
            B                                                  L 4                       L 2
    A            0           1                                                                                                                           Principle:
                                       L 3
                                                 A                     B                                        A               B                        Exchange PMOS
        0        0           0                                                                                                                           and NMOS
                                       L 4                                                          AND                                           NAND
                                                                                                                                                         devices. Invert
A       1        0           1                                                                                  A               B
                                                                                                                                                         all pass and gate
                                                 A                     B
                                                                   L 3                   L 1
                                                                                                                                                         signals
                     L 1         L 2
                                                                                                                                                         AND  NAND
                                                              GND                   GND                               +V       DD   +V       DD
                      (a)   AND function Karnaugh map                                                     (b)       AND/NAND circuit

                                                     +V       DD           +V       DD                                     B             A               Duality
                                                                                                                                                         Principle:
                                             A                 B                                                A               B                        PMOS and
                                                                                                                                                         NMOS devices
                                                                                               OR                                                 NOR    are exchanged,
                                                                                                                                                         and VDD and
                                             A                 B                                                A               B
                                                                                                                                                         GND signals
                                                                                                                                                         are exchanged:
                                                          B                     A                                     GND           GND                  AND  OR
                                                                                                                                                         NAND  NOR
                Prof. V.G. Oklobdzija                 Advanced Digital Integrated Circuits                                                                       45

Contenu connexe

Tendances

CMOS Topic 6 -_designing_combinational_logic_circuits
CMOS Topic 6 -_designing_combinational_logic_circuitsCMOS Topic 6 -_designing_combinational_logic_circuits
CMOS Topic 6 -_designing_combinational_logic_circuitsIkhwan_Fakrudin
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterIkhwan_Fakrudin
 
Fundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos TransistorsFundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos Transistorssrknec
 
Unit no. 5 cmos logic design
Unit no. 5 cmos logic designUnit no. 5 cmos logic design
Unit no. 5 cmos logic designswagatkarve
 
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...IJNSA Journal
 
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOSLec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOSHsien-Hsin Sean Lee, Ph.D.
 
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)MielWitwicky
 
FAST XOR-XNOR CIRCUIT
FAST XOR-XNOR CIRCUITFAST XOR-XNOR CIRCUIT
FAST XOR-XNOR CIRCUITILA SHARMA
 
Trends in cmos digital design
Trends in cmos digital designTrends in cmos digital design
Trends in cmos digital designRajesh Roshan
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarAkhil Masurkar
 
Mos transistor
Mos transistorMos transistor
Mos transistorMurali Rai
 
VLSI DESIGN- MOS TRANSISTOR
VLSI DESIGN- MOS TRANSISTORVLSI DESIGN- MOS TRANSISTOR
VLSI DESIGN- MOS TRANSISTORKarthik Vivek
 

Tendances (20)

CMOS Topic 6 -_designing_combinational_logic_circuits
CMOS Topic 6 -_designing_combinational_logic_circuitsCMOS Topic 6 -_designing_combinational_logic_circuits
CMOS Topic 6 -_designing_combinational_logic_circuits
 
Logic Gate
Logic GateLogic Gate
Logic Gate
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverter
 
Dynamic logic circuits
Dynamic logic circuitsDynamic logic circuits
Dynamic logic circuits
 
Fundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos TransistorsFundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos Transistors
 
Unit no. 5 cmos logic design
Unit no. 5 cmos logic designUnit no. 5 cmos logic design
Unit no. 5 cmos logic design
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
 
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOSLec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
Lec4 Intro to Computer Engineering by Hsien-Hsin Sean Lee Georgia Tech -- CMOS
 
Combinational Logic
Combinational LogicCombinational Logic
Combinational Logic
 
CMOS TG
CMOS TGCMOS TG
CMOS TG
 
Rc delay modelling in vlsi
Rc delay modelling in vlsiRc delay modelling in vlsi
Rc delay modelling in vlsi
 
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
 
Vlsi
VlsiVlsi
Vlsi
 
FAST XOR-XNOR CIRCUIT
FAST XOR-XNOR CIRCUITFAST XOR-XNOR CIRCUIT
FAST XOR-XNOR CIRCUIT
 
Lecture20
Lecture20Lecture20
Lecture20
 
Trends in cmos digital design
Trends in cmos digital designTrends in cmos digital design
Trends in cmos digital design
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
VLSI DESIGN- MOS TRANSISTOR
VLSI DESIGN- MOS TRANSISTORVLSI DESIGN- MOS TRANSISTOR
VLSI DESIGN- MOS TRANSISTOR
 

En vedette

Pass transistor logic
Pass transistor logicPass transistor logic
Pass transistor logicstudent
 
Catalogo sierra minera
Catalogo sierra mineraCatalogo sierra minera
Catalogo sierra mineraoptimistaist
 
Fremont Colleges Sports and Rehabilitation Therapy Students
Fremont Colleges Sports and Rehabilitation Therapy StudentsFremont Colleges Sports and Rehabilitation Therapy Students
Fremont Colleges Sports and Rehabilitation Therapy StudentsSean Lee
 
Avances Audiovisual
Avances AudiovisualAvances Audiovisual
Avances Audiovisualnatalita1
 
Bekerja sebagai Ibadah 2
Bekerja sebagai Ibadah 2Bekerja sebagai Ibadah 2
Bekerja sebagai Ibadah 2Kris Nitihardjo
 
Las controvertidas ratas ciborg de tel aviv
Las controvertidas ratas ciborg de tel avivLas controvertidas ratas ciborg de tel aviv
Las controvertidas ratas ciborg de tel avivJoha Rey
 
From Email Bankruptcy to Business Productivity
From Email Bankruptcy to Business ProductivityFrom Email Bankruptcy to Business Productivity
From Email Bankruptcy to Business ProductivityHyperOffice
 
Empirische Überprüfung von Hypothesen zum Einfluss von Social CRM auf die Ver...
Empirische Überprüfung von Hypothesen zum Einfluss von Social CRM auf die Ver...Empirische Überprüfung von Hypothesen zum Einfluss von Social CRM auf die Ver...
Empirische Überprüfung von Hypothesen zum Einfluss von Social CRM auf die Ver...Michael Lindemann
 
Clin Cancer Res-2012-Lechner-4549-59
Clin Cancer Res-2012-Lechner-4549-59Clin Cancer Res-2012-Lechner-4549-59
Clin Cancer Res-2012-Lechner-4549-59Karolina Megiel
 
Social partners - How to integrate social media into contact centres
Social partners  - How to integrate social media into contact centresSocial partners  - How to integrate social media into contact centres
Social partners - How to integrate social media into contact centresBrand Embassy
 
Listado de libros para el curso 11
Listado de libros para el curso 11Listado de libros para el curso 11
Listado de libros para el curso 11emitena
 

En vedette (19)

Pass transistor logic
Pass transistor logicPass transistor logic
Pass transistor logic
 
Pass transistor logic
Pass transistor logicPass transistor logic
Pass transistor logic
 
Euroconector
EuroconectorEuroconector
Euroconector
 
CV
CVCV
CV
 
Catalogo sierra minera
Catalogo sierra mineraCatalogo sierra minera
Catalogo sierra minera
 
Mawi dan ekin
Mawi dan ekinMawi dan ekin
Mawi dan ekin
 
Fremont Colleges Sports and Rehabilitation Therapy Students
Fremont Colleges Sports and Rehabilitation Therapy StudentsFremont Colleges Sports and Rehabilitation Therapy Students
Fremont Colleges Sports and Rehabilitation Therapy Students
 
Avances Audiovisual
Avances AudiovisualAvances Audiovisual
Avances Audiovisual
 
Folleto+iyolo
Folleto+iyoloFolleto+iyolo
Folleto+iyolo
 
Qlikview in the cloud (en)
Qlikview in the cloud (en)Qlikview in the cloud (en)
Qlikview in the cloud (en)
 
Bekerja sebagai Ibadah 2
Bekerja sebagai Ibadah 2Bekerja sebagai Ibadah 2
Bekerja sebagai Ibadah 2
 
Telepathy (w. w. baggally)
Telepathy (w. w. baggally)Telepathy (w. w. baggally)
Telepathy (w. w. baggally)
 
Las controvertidas ratas ciborg de tel aviv
Las controvertidas ratas ciborg de tel avivLas controvertidas ratas ciborg de tel aviv
Las controvertidas ratas ciborg de tel aviv
 
From Email Bankruptcy to Business Productivity
From Email Bankruptcy to Business ProductivityFrom Email Bankruptcy to Business Productivity
From Email Bankruptcy to Business Productivity
 
Empirische Überprüfung von Hypothesen zum Einfluss von Social CRM auf die Ver...
Empirische Überprüfung von Hypothesen zum Einfluss von Social CRM auf die Ver...Empirische Überprüfung von Hypothesen zum Einfluss von Social CRM auf die Ver...
Empirische Überprüfung von Hypothesen zum Einfluss von Social CRM auf die Ver...
 
Clin Cancer Res-2012-Lechner-4549-59
Clin Cancer Res-2012-Lechner-4549-59Clin Cancer Res-2012-Lechner-4549-59
Clin Cancer Res-2012-Lechner-4549-59
 
Social partners - How to integrate social media into contact centres
Social partners  - How to integrate social media into contact centresSocial partners  - How to integrate social media into contact centres
Social partners - How to integrate social media into contact centres
 
Listado de libros para el curso 11
Listado de libros para el curso 11Listado de libros para el curso 11
Listado de libros para el curso 11
 
Studie "Intranet – Marktübersicht und Trends 2015"
Studie "Intranet – Marktübersicht und Trends 2015"Studie "Intranet – Marktübersicht und Trends 2015"
Studie "Intranet – Marktübersicht und Trends 2015"
 

Similaire à Dynamic and Pass-Transistor Logic Circuits

Analysis on Fault Mapping of Reversible Gates with Extended Hardware Descript...
Analysis on Fault Mapping of Reversible Gates with Extended Hardware Descript...Analysis on Fault Mapping of Reversible Gates with Extended Hardware Descript...
Analysis on Fault Mapping of Reversible Gates with Extended Hardware Descript...VIT-AP University
 
Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic Synthesis
Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic SynthesisMinimum Cost Fault Tolerant Adder Circuits in Reversible Logic Synthesis
Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic SynthesisSajib Mitra
 
Report-Implementation of Quantum Gates using Verilog
Report-Implementation of Quantum Gates using VerilogReport-Implementation of Quantum Gates using Verilog
Report-Implementation of Quantum Gates using VerilogShashank Kumar
 
DESIGNING AN EFFICIENT APPROACH FOR JK AND T FLIP-FLOP WITH POWER DISSIPATION...
DESIGNING AN EFFICIENT APPROACH FOR JK AND T FLIP-FLOP WITH POWER DISSIPATION...DESIGNING AN EFFICIENT APPROACH FOR JK AND T FLIP-FLOP WITH POWER DISSIPATION...
DESIGNING AN EFFICIENT APPROACH FOR JK AND T FLIP-FLOP WITH POWER DISSIPATION...VLSICS Design
 
Designing Conservative Reversible N-Bit Binary Comparator for Emerging Quantu...
Designing Conservative Reversible N-Bit Binary Comparator for Emerging Quantu...Designing Conservative Reversible N-Bit Binary Comparator for Emerging Quantu...
Designing Conservative Reversible N-Bit Binary Comparator for Emerging Quantu...VIT-AP University
 
CArcMOOC 03.02 - Switching networks and combinational circuits
CArcMOOC 03.02 - Switching networks and combinational circuitsCArcMOOC 03.02 - Switching networks and combinational circuits
CArcMOOC 03.02 - Switching networks and combinational circuitsAlessandro Bogliolo
 
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptVlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptNikhilKumarJaiswal2
 
Low-Cost Synthesis Approach for Reversible Authenticator Circuits in QCA Envi...
Low-Cost Synthesis Approach for Reversible Authenticator Circuits in QCA Envi...Low-Cost Synthesis Approach for Reversible Authenticator Circuits in QCA Envi...
Low-Cost Synthesis Approach for Reversible Authenticator Circuits in QCA Envi...VIT-AP University
 
A review on reversible logic gates and their implementation
A review on reversible logic gates and their implementationA review on reversible logic gates and their implementation
A review on reversible logic gates and their implementationDebraj Maji
 
LECTURE NOTES-DSD1.doc
LECTURE NOTES-DSD1.docLECTURE NOTES-DSD1.doc
LECTURE NOTES-DSD1.docSai Venu
 
VLSI D PPT.pdf
VLSI D PPT.pdfVLSI D PPT.pdf
VLSI D PPT.pdfAMohan12
 
An Explicit Cell-Based Nesting Robust Architecture and Analysis of Full Adder
An Explicit Cell-Based Nesting Robust Architecture and Analysis of Full AdderAn Explicit Cell-Based Nesting Robust Architecture and Analysis of Full Adder
An Explicit Cell-Based Nesting Robust Architecture and Analysis of Full AdderVIT-AP University
 
Implementation of quantum gates using verilog
Implementation of quantum gates using verilogImplementation of quantum gates using verilog
Implementation of quantum gates using verilogShashank Kumar
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 
Area-Delay Efficient Binary Adders in QCA
Area-Delay Efficient Binary Adders in QCAArea-Delay Efficient Binary Adders in QCA
Area-Delay Efficient Binary Adders in QCAIJERA Editor
 
VLSI NOTES.docx notes for vlsi ece deptmnt
VLSI NOTES.docx notes for vlsi ece deptmntVLSI NOTES.docx notes for vlsi ece deptmnt
VLSI NOTES.docx notes for vlsi ece deptmntnitcse
 
Cost Efficient Design of Reversible Adder Circuits for Low Power Applications
Cost Efficient Design of Reversible Adder Circuits for Low Power ApplicationsCost Efficient Design of Reversible Adder Circuits for Low Power Applications
Cost Efficient Design of Reversible Adder Circuits for Low Power ApplicationsVIT-AP University
 

Similaire à Dynamic and Pass-Transistor Logic Circuits (20)

Analysis on Fault Mapping of Reversible Gates with Extended Hardware Descript...
Analysis on Fault Mapping of Reversible Gates with Extended Hardware Descript...Analysis on Fault Mapping of Reversible Gates with Extended Hardware Descript...
Analysis on Fault Mapping of Reversible Gates with Extended Hardware Descript...
 
Low Power VLSI Desgin
Low Power VLSI DesginLow Power VLSI Desgin
Low Power VLSI Desgin
 
9077262.ppt
9077262.ppt9077262.ppt
9077262.ppt
 
Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic Synthesis
Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic SynthesisMinimum Cost Fault Tolerant Adder Circuits in Reversible Logic Synthesis
Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic Synthesis
 
Report-Implementation of Quantum Gates using Verilog
Report-Implementation of Quantum Gates using VerilogReport-Implementation of Quantum Gates using Verilog
Report-Implementation of Quantum Gates using Verilog
 
DESIGNING AN EFFICIENT APPROACH FOR JK AND T FLIP-FLOP WITH POWER DISSIPATION...
DESIGNING AN EFFICIENT APPROACH FOR JK AND T FLIP-FLOP WITH POWER DISSIPATION...DESIGNING AN EFFICIENT APPROACH FOR JK AND T FLIP-FLOP WITH POWER DISSIPATION...
DESIGNING AN EFFICIENT APPROACH FOR JK AND T FLIP-FLOP WITH POWER DISSIPATION...
 
Designing Conservative Reversible N-Bit Binary Comparator for Emerging Quantu...
Designing Conservative Reversible N-Bit Binary Comparator for Emerging Quantu...Designing Conservative Reversible N-Bit Binary Comparator for Emerging Quantu...
Designing Conservative Reversible N-Bit Binary Comparator for Emerging Quantu...
 
Ijciet 10 02_067
Ijciet 10 02_067Ijciet 10 02_067
Ijciet 10 02_067
 
CArcMOOC 03.02 - Switching networks and combinational circuits
CArcMOOC 03.02 - Switching networks and combinational circuitsCArcMOOC 03.02 - Switching networks and combinational circuits
CArcMOOC 03.02 - Switching networks and combinational circuits
 
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptVlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
 
Low-Cost Synthesis Approach for Reversible Authenticator Circuits in QCA Envi...
Low-Cost Synthesis Approach for Reversible Authenticator Circuits in QCA Envi...Low-Cost Synthesis Approach for Reversible Authenticator Circuits in QCA Envi...
Low-Cost Synthesis Approach for Reversible Authenticator Circuits in QCA Envi...
 
A review on reversible logic gates and their implementation
A review on reversible logic gates and their implementationA review on reversible logic gates and their implementation
A review on reversible logic gates and their implementation
 
LECTURE NOTES-DSD1.doc
LECTURE NOTES-DSD1.docLECTURE NOTES-DSD1.doc
LECTURE NOTES-DSD1.doc
 
VLSI D PPT.pdf
VLSI D PPT.pdfVLSI D PPT.pdf
VLSI D PPT.pdf
 
An Explicit Cell-Based Nesting Robust Architecture and Analysis of Full Adder
An Explicit Cell-Based Nesting Robust Architecture and Analysis of Full AdderAn Explicit Cell-Based Nesting Robust Architecture and Analysis of Full Adder
An Explicit Cell-Based Nesting Robust Architecture and Analysis of Full Adder
 
Implementation of quantum gates using verilog
Implementation of quantum gates using verilogImplementation of quantum gates using verilog
Implementation of quantum gates using verilog
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
Area-Delay Efficient Binary Adders in QCA
Area-Delay Efficient Binary Adders in QCAArea-Delay Efficient Binary Adders in QCA
Area-Delay Efficient Binary Adders in QCA
 
VLSI NOTES.docx notes for vlsi ece deptmnt
VLSI NOTES.docx notes for vlsi ece deptmntVLSI NOTES.docx notes for vlsi ece deptmnt
VLSI NOTES.docx notes for vlsi ece deptmnt
 
Cost Efficient Design of Reversible Adder Circuits for Low Power Applications
Cost Efficient Design of Reversible Adder Circuits for Low Power ApplicationsCost Efficient Design of Reversible Adder Circuits for Low Power Applications
Cost Efficient Design of Reversible Adder Circuits for Low Power Applications
 

Dynamic and Pass-Transistor Logic Circuits

  • 1. Dynamic and Pass- Transistor Logic Prof. Vojin G. Oklobdzija References (used for creation of the presentation material): 1. Masaki, “Deep-Submicron CMOS Warms Up to High-Speed Logic”, IEEE Circuits and Devices Magazine, November 1992. 2. Krambeck, C.M. Lee, H.S. Law, “High-Speed Compact Circuits with CMOS”, IEEE Journal of Solid-State Circuits, Vol. SC-13, No 3, June 1982. 3. V.G. Oklobdzija, R.K. Montoye, “Design-Performance Trade-Offs in CMOS- Domino Logic”, IEEE Journal of Solid-State Circuits, Vol. SC-21, No 2, April 1986.
  • 2. References: 4. Goncalves, H.J. DeMan, “NORA: A Racefree Dynamic CMOS Technique for Pipelined Logic Structures”, IEEE Journal of Solid-State Circuits, Vol. SC-18, No 3, June 1983. 5. L.G. Heller, et al, “Cascode Voltage Switch Logic: A Differential CMOS Logic Family”, in 1984 Digest of Technical Papers, IEEE International Solid-State Circuits Conference, February 1984. 6. L.C.M.G. Pfennings, et al, “Differential Split-Level CMOS Logic for Subnanosecond Speeds”, IEEE Journal of Solid-State Circuits, Vol. SC- 20, No 5, October 1985. 7. K.M. Chu, D.L. Pulfrey, "A Comparison of CMOS Circuit Techniques: Differential Cascode Voltage Switch Logic Versus Conventional Logic", IEEE Jouirnal of Solid-State Circuits, Vol. SC-22, No.4, August 1987. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 2
  • 3. References: Pass-Transistor Logic: 8. S. Whitaker, “Pass-transistor networks optimize n-MOS logic”, Electronics, September 1983. 9. K. Yano, et al, “A 3.8-ns CMOS 16x16-b Multiplier Using Complementary Pass-Transistor Logic”, IEEE Journal of Solid-State Circuits, Vol. 25, No 2, April 1990. 10. K. Yano, et al, “Lean Integration: Achieving a Quantum Leap in Performance and Cost of Logic LSIs", Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994. 11. M. Suzuki, et al, “A 1.5ns 32b CMOS ALU in Double Pass-Transistor Logic”, Journal of Solid-State Circuits, Vol. 28. No 11, November 1993. 12. N. Ohkubo, et al, “A 4.4-ns CMOS 54x54-b Multiplier Using Pass- transistor Multiplexer”, Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 3
  • 4. References: 13. V. G. Oklobdzija and B. Duchêne, “Pass-Transistor Dual Value Logic For Low-Power CMOS,” Proceedings of the 1995 International Symposium on VLSI Technology, Taipei, Taiwan, May 31-June 2nd, 1995. 14. F.S. Lai, W. Hwang, “Differential Cascode Voltage Switch with the Pass- Gate (DCVSPG) Logic Tree for High Performance CMOS Digital Systems”, Proceedings of the 1993 International Symposium on VLSI Technology, Taipei, Taiwan, June 2-4, 1995 15. A. Parameswar, H. Hara, T. Sakurai, “A Swing Restored Pass-Transistor Logic Based Multiply and Accumulate Circuit for Multimedia Applications”, Proceedings of the Custom Integrated Circuits Conference, San Diego, California, May 1-4, 1994. 16. T. Fuse, et al, “0.5V SOI CMOS Pass-Gate Logic”, Digest of Technical Papers, 1996 IEEE International Solid-State Circuits Conference, San Francisco February 8, 1996. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 4
  • 5. Dynamic CMOS Logic Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 5
  • 6. (a) Dynamic CMOS Latch (a), Dynamic CMOS Master-Slave Latch (b) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 6
  • 7. Dynamic Manchester Carry Chain Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 7
  • 8. Radiation induced charge Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 8
  • 9. Accidental charge caused by capacitive or inductive coupling between the signal lines Y and Z. (a) Prevention by inserting and inverter between the affected line and the pass- transistor switch (b) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 9
  • 10. CMOS Domino Logic CMOS logic block (a), Domino Logic (b) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 10
  • 11. CMOS Domino Logic Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 11
  • 12. CMOS Domino Logic Operation 0 1 1 1 1 0 1 0 1 1 0 1 1 0 Dominos Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 12
  • 13. CMOS Domino Logic: Charge Re-Distribution Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 13
  • 14. Variations of CMOS Domino Logic: NORA Logic Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 14
  • 15. CVS and DCVS Logic IBM (Heller et al. 1984) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 15
  • 16. Cascode Voltage Switch Logic CVS IBM Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 16
  • 17. DCVS Logic (IBM) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 17
  • 18. DCVS Logic (IBM) (a) (b) Differential Cascode Voltage Switch Logic: (a) Static DCVLS (b) Dynamic DCVSL Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 18
  • 19. DCVS Logic vs CMOS DCVS Logic consisting of two shared CMOS consisting of two separate: nMOS transistor switching networks nMOS and pMOS transistor switching networks Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 19
  • 20. Transistor sharing in DCVS Logic: Implementation of 3-input XOR function Q Q A A A A B B B B C C Q=a ⊕ b ⊕ c Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 20
  • 21. Switching Asymmetry in DCVSL This asymmetry causes current spikes and increased power consumption ! Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 21
  • 22. Pass-Transistor Logic Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 22
  • 23. Pass-Transistor Logic (a) (b) (a) XOR function implemented with pass-transistor circuit, (b) Karnaough map showing derivation of the XOR function Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 23
  • 24. Pass-Transistor Logic General topology of pass-transistor function generator Karnaough map of 16 possible functions that can be realized Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 24
  • 25. Pass-Transistor Logic Function generator implemented with pass- transistor logic Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 25
  • 26. Pass-Transistor Logic Threshold voltage drop at the Voltage drop does not exceed Vth output of the pass-transistor when there are multiple gate transistors in the path Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 26
  • 27. Pass-Transistor Logic Elimination of the threshold voltage drop by: (a) pairing nMOS transistor with a pMOS (b) using a swing-restoring inverter Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 27
  • 28. Complementary Pass-Transistor Logic (CPL) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 28
  • 29. Basic logic functions in CPL A B B A A B A A A A A B B B B B A B B A A B A B B A A C B C B C B C Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 29
  • 30. CPL Logic A A A A B n1 n2 B B n3 n4 B C Q Qb C S S (a) (b) S S XOR gate Sum circuit CPL provides an efficient implementation of XOR function Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 30
  • 31. CPL Inverter Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 31
  • 32. Double Pass-Transistor Logic (DPL): VDD A B B A AND/NAND A B B B A A O O A B A B A B A B XOR/XNOR B A A B A B B A A B O O Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 32
  • 33. Double Pass-Transistor Logic (DPL): XOR One bit full-adder: Sum circuit Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 33
  • 34. Double Pass-Transistor Logic (DPL): DPL Full Adder The critical path traverses two transistors only (not counting the buffer) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 34
  • 35. Formal Method for CPL Logic Derivation Markovic et al. 2000 (a) Cover the Karnaugh-map with largest possible cubes (overlapping allowed) (b) Express the value of the function in each cube in terms of input signals (c) Assign one branch of transistor(s) to each of the cubes and connect all the branches to one common node, which is the output of NMOS pass-transistor network Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 35
  • 36. Formal Method for P-T Logic Derivation Complementary function can be implemented from the same circuit structure by applying complementarity principle: Complementarity Principle: Using the same circuit topology, with pass signals inverted, complementary logic function is constructed in CPL. By applying duality principle, a dual function is synthesized: Duality Principle: Using the same circuit topology, with gate signals inverted, dual logic function is constructed. Following pairs of basic functions are dual: AND-OR (and vice-versa) NAND-NOR (and vice-versa) XOR and XNOR are self-dual (dual to itself) Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 36
  • 37. Derivation of P-T Logic A AND A NAND B B A OR A OR B B B B B 0 1 0 1 0 1 0 0 0 0 1 1 A 0 1 1 A 1 0 1 A 1 1 0 1 1 0 L 1 L 2 L 1 L 2 L 1 L 2 A B A B A B L 2 L 1 L 2 L 1 L 1 L 2 B B B B B B AND NAND (OR) OR Copmplementarity: AND  NAND; Duality: AND  OR Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 37
  • 38. Derivation of CPL Logic Complementarity: AND  NAND B B A 0 1 A B A B A B A B L 2 L 1 0 0 0 B B B B A 1 0 1 L 1 L 2 AND NAND OR NOR (a) (b) (c) Duality: AND  OR NAND  NOR Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 38
  • 39. Derivation of CPL Logic B B A 0 1 A A A A L 2 L 1 0 0 1 B B A 1 1 0 L 1 L 2 XOR XNOR (a) (b) (a) XOR function Karnaugh map, (b) XOR/XNOR circuit Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 39
  • 40. Synthesis of three-input CPL logic A C B A C B BC C L 1 L 2 L 3 A 00 01 11 10 A L 1 0 0 0 0 0 A B L 2 A 1 0 0 1 0 B L 3 B AND NAND (a) (b) (a) AND function Karnaugh map, (b) AND/NAND circuit Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 40
  • 41. Double Pass-Transistor Logic (DPL): Synthesis Rules 1. Two NMOS branches can not be overlapped covering logic 1s. Similarly, two PMOS branches can not be overlapped covering logic 0s. 2. Pass signals are expressed in terms of input signals or supply. Every input vector has to be covered with exactly two branches. 3. At any time, excluding transitions, exactly two transistor branches are active (any of the pairs NMOS/PMOS, NMOS/NMOS and PMOS/PMOS are possible), i.e. they both provide output current. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 41
  • 42. Double Pass-Transistor Logic (DPL): Synthesis Rules Complementarity Principle: Complementary logic function in DPL is generated after the following modifications: • Exchange PMOS and NMOS devices. Invert all pass and gate signals Duality Principle: Dual logic function in DPL is generated when: • PMOS and NMOS devices are exchanged, and VDD and GND signals are exchanged. Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 42
  • 43. DPL Synthesis: B A B A B B L 4 L 2 A 0 1 L 3 A B A B 0 0 0 L 4 AND NAND A 1 0 1 A B A B L 3 L 1 L 1 L 2 GND GND +V DD +V DD (a) (b) (a) AND function Karnaugh map (b) AND/NAND circuit Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 43
  • 44. DPL Synthesis: OR/NOR circuit +V DD +V DD B A A B A B OR NOR A B A B B A GND GND Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 44
  • 45. DPL Synthesis: B A B A B Complementarity B L 4 L 2 A 0 1 Principle: L 3 A B A B Exchange PMOS 0 0 0 and NMOS L 4 AND NAND devices. Invert A 1 0 1 A B all pass and gate A B L 3 L 1 signals L 1 L 2 AND  NAND GND GND +V DD +V DD (a) AND function Karnaugh map (b) AND/NAND circuit +V DD +V DD B A Duality Principle: A B A B PMOS and NMOS devices OR NOR are exchanged, and VDD and A B A B GND signals are exchanged: B A GND GND AND  OR NAND  NOR Prof. V.G. Oklobdzija Advanced Digital Integrated Circuits 45