Informatique 
Décisionnelle 
Hajer TRABELSI 
Mastère de recherche IMD/ISAMM 
Mai 2014 
1 
Michel de rougemont 
Université ...
Contexte 
 But: préciser la robustesse de certains modèles, par rapport à l’incertitude de 
données. 
 Les données écono...
Plan 
 Modèles d’automates 
 Modèle relationnel 
 Modèle Olap 
 Data-Mining 
 Modèle XML 
3
Introduction 
4 Les principaux liens entre les modèles
Introduction 
 Les automates sur les mots se généralisent aux arbres et sont le fondement 
du langage du XML. 
 Le modèl...
Les modèles d’automates 
 Le traitement de l’information nécessite un modèle de calcul 
 les automates finis sont un des...
Les modèles d’automates 
 Dans cet exemple on a 4 états {0, 
1, 2, 3}. 
 L’état 4 est l’état qui permet de 
compléter l’...
Modèle relationnel 
 Les données sont représentées par des tables. 
 Une table est constituée de plusieurs colonnes appe...
Modèle relationnel - Entité-Relations 
 La conception d’un schéma est facilitée par un diagramme Entité-Relations. 
 Il ...
Modèle relationnel - Schéma relationnel 
 Chaque relation peut être considérée comme une table. 
 Un attribut est le nom...
Modèle Olap 
 Online Analytic Processing, permet de définir des requêtes. 
 Effectuer des résumés/ agrégations selon plu...
Modèle Olap – Intégration des 
informations 
 Le besoin: collecter des informations à partir des plusieurs sources dont l...
Modèle Olap – Intégration des 
informations 
 Avec données courantes provenant d’une seule source (vues matérialisées) ou...
Modèle Olap – Construction d’un 
entrepôt de données 
 Architecture à trois niveaux : sources – entrepôt – data mart 
 d...
Modèle Olap – Caractéristiques 
principales d’un entrepôt de données 
 C’est un endroit où les données intégrées sont sto...
Modèle Olap – Expressions de chemin 
et langage OLAP 
Un schéma dimensionnel aussi appelé Schéma Etoile est un graphe conn...
Modèle Olap – Expressions de chemin 
 Etant donné un schéma dimensionnel S, une expression de chemin sur S est 
une expre...
Modèle Olap – Requête OLAP 
 Etant donné un schéma dimensionnel S, un ‘OLAP Pattern’ sur S est un couple 
P= (u, v), où u...
Modèle Olap – Exemple OLAP 
 Considérons un entrepôt qui 
regroupe toutes factures émises 
par une chaine de magasin. 
 ...
Modèle Olap – Exemple OLAP 
 On peut exprimer cette requête 
par les chemins: f2of1 pour Gamme 
et h2oh1 pour Ville. 
 L...
Modèle Olap – Exemple OLAP 
 On affiche alors un tableau ordonné selon les valeurs des attributs. 
 Dans le cas de l’ana...
Data-Mining 
 Le terme Data-Mining est utilisé dans de nombreux contextes avec un sens 
différent. 
 Dans son interpréta...
Data-Mining – Arbres de décision 
 Un arbre de décision est une représentation succincte d’une fonction. 
 Dans le cas d...
Data-Mining – Arbres de décision 
 Dans le cas d’une table T avec les 
attributs A, B, C, supposons que la 
3ème colonne ...
Data-Mining – Arbres de décision 
Approximation et arbre de décision: 
 Dans un cas réel, on peut imaginer 30 
attributs,...
Data-Mining – logiciels de Fouille de 
Données 
3 trois logiciels qui implémentent les techniques de fouilles de données. ...
Data-Mining – logiciels de Fouille de 
Données 
 Weka: ce logiciel libre a une interface, largement inspirée de celle de ...
Modèle XML 
 Langage générique qui permet d’unifier la manipulation de données sur des 
serveurs différents. 
 Les fonct...
Conclusion 
Nous avons étudier les Modèles d’automates, le Modèle relationnel, le Modèle 
Olap, le Data-Mining et le Modèl...
Merci pour votre attention 
30
Prochain SlideShare
Chargement dans…5
×

Informatique Décisionnelle décisionnelle

1 208 vues

Publié le

Informatique Décisionnelle

Publié dans : Formation
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
1 208
Sur SlideShare
0
Issues des intégrations
0
Intégrations
3
Actions
Partages
0
Téléchargements
75
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Informatique Décisionnelle décisionnelle

  1. 1. Informatique Décisionnelle Hajer TRABELSI Mastère de recherche IMD/ISAMM Mai 2014 1 Michel de rougemont Université Parie II 2007
  2. 2. Contexte  But: préciser la robustesse de certains modèles, par rapport à l’incertitude de données.  Les données économiques sont en effet souvent bruitées (inexactes et approximatives)  Il est fondamental d’isoler les procédures informatiques robustes au bruit, c’est à dire qui produisent des résultat approchés lorsque les données sont bruitées. 2
  3. 3. Plan  Modèles d’automates  Modèle relationnel  Modèle Olap  Data-Mining  Modèle XML 3
  4. 4. Introduction 4 Les principaux liens entre les modèles
  5. 5. Introduction  Les automates sur les mots se généralisent aux arbres et sont le fondement du langage du XML.  Le modèle relationnel se généralise au modèle OLAP et constitue le coeur des systèmes d’information.  Le Data-Mining s’applique à tous les modèles, mais décrit son utilisation à partir du modèle OLAP, qui constitue les fondements du Business Intelligence. 5
  6. 6. Les modèles d’automates  Le traitement de l’information nécessite un modèle de calcul  les automates finis sont un des modèles les plus simples, qui ont des variantes selon les classes de structures considérés.  Un automate fini est défini par (Q, q0, F, ) - Q est un ensemble fini d’états - q0 Є est l’état initial - F Ϲ Q est un ensemble d’états finaux -  Ϲ Q x Σ x Q (Σ alphabet fini)  On présente souvent un automate par un graphe où les noeuds sont les états et les arêtes sont des transitions possibles lorsque l’automate lit un symbole s.  Chaque arête est étiquetée par un tel symboles s tel que q.s.q’ soit une transition. 6
  7. 7. Les modèles d’automates  Dans cet exemple on a 4 états {0, 1, 2, 3}.  L’état 4 est l’état qui permet de compléter l’automate pour que la fonctions  soit toujours définie.  On obtient alors la complétion de l’automates. 7
  8. 8. Modèle relationnel  Les données sont représentées par des tables.  Une table est constituée de plusieurs colonnes appelées attributs et de plusieurs lignes appelées enregistrement ou tuples.  Une requête est une fonction qui associe à un ensemble de tables une nouvelle table.  C’est la représentation mathématique d’une question posée à une BD.  La définition des différentes tables constitue le Schéma.  Pour concevoir un schéma, il est utile d’isoler des entités et des relations entre entités.  Une entité décrit un objet muni d’attributs. 8
  9. 9. Modèle relationnel - Entité-Relations  La conception d’un schéma est facilitée par un diagramme Entité-Relations.  Il qui décrit de manière graphique des entités munies d’attributs et des relations entre entités. 9 Buy Name add Date Item Price
  10. 10. Modèle relationnel - Schéma relationnel  Chaque relation peut être considérée comme une table.  Un attribut est le nom d’une colonne dont les valeurs sont dans un domaine Di.  L’information spécifiant le domaine de chaque attribut définit le schéma. 10
  11. 11. Modèle Olap  Online Analytic Processing, permet de définir des requêtes.  Effectuer des résumés/ agrégations selon plusieurs critères et sur plusieurs dimensions.  Générer des rapports.  Répondre à des questions de gestionnaires et d’économistes, pour analyser des données. Par exemple : - Quels sont les produits les plus vendus en 2005 ? - Quels sont les magasins et les produits les plus vendus entre 2004 et 2005 en Europe ?  Ces requêtes généralisent le GROUP BY de SQL mais en l’intégrant à plusieurs attributs.  Les requêtes OLAP étendent SQL dans ce sens. 11
  12. 12. Modèle Olap – Intégration des informations  Le besoin: collecter des informations à partir des plusieurs sources dont le but est d’exploiter leur synthèse.  Le problème: les sources peuvent être autonomes et hétérogènes. - autorisations nécessaires pour l’extraction - utilisation de plusieurs langages pour la définition de l’information à extraire.  La solution: utiliser un schéma fédérateur, avec ou sans données, que les utilisateurs manipulent comme s’il s’agissait d’une BD habituelle. 12
  13. 13. Modèle Olap – Intégration des informations  Avec données courantes provenant d’une seule source (vues matérialisées) ou de plusieurs sources autonomes et éventuellement hétérogènes (base de données intégrée). besoin d’outils pour la conception du schéma, transformation/chargement de données et propagation de changements.  Avec données historiques (entrepôt de données, données en avance), c’est notre cas. besoin d’outils pour la conception du schéma, transformation/chargement de données propagation de changements et rafraîchissement périodique.  Sans données, au sein d’une seule source (vues virtuelles) ou lié à plusieurs sources autonomes et éventuellement hétérogènes (médiateurs, données à la demande). besoin d’outils pour la récriture/évaluation des requêtes et la fusion des résultats.  Dans tous les cas, l’accès aux données se fait presque exclusivement en lecture. 13
  14. 14. Modèle Olap – Construction d’un entrepôt de données  Architecture à trois niveaux : sources – entrepôt – data mart  data mart : ‘petit’ entrepôt orienté sujet, dont les données sont dérivées de l’entrepôt  Extraction, Transformation, Chargement de données  outils ETL  Extracteur : - traduction vers le langage source, évaluation, traduction vers le langage de l’entrepôt - détection de changements aux sources  Intégrateur : - réconciliation /correction d’erreurs/filtrage/estampillage pour conformer au schéma de l’entrepôt - chargement de données, rafraîchissement 14
  15. 15. Modèle Olap – Caractéristiques principales d’un entrepôt de données  C’est un endroit où les données intégrées sont stockées et exploitées à l’aide d’un système de gestion de BD.  Par conséquent, un entrepôt de données est avant tout une BD, même si les caractéristiques suivantes le distinguent clairement des BD transactionnelles habituelles. - Utilisations: Les utilisateurs principaux sont les décideurs de l’entreprise qui ont besoin des schémas faciles à lire. - Mode d’accès: souvent à travers un data mart, en lecture uniquement. - Volume: de l’ordre de tera octets - Maintenance: les mises à jour sont propagées de sources vers l’entrepôt immédiatement ou périodiquement, par construction ou de manière incrémentale. 15
  16. 16. Modèle Olap – Expressions de chemin et langage OLAP Un schéma dimensionnel aussi appelé Schéma Etoile est un graphe connexe, orienté, acyclique, étiqueté tel que:  Une seule racine, appelé l’origine et notée O.  Chaque noeud a une étiquette (dimension) et chaque arête (flèche) a une étiquette.  Toutes les flèches ont des étiquettes distinctes.  Les flèches de source O sont d’un de deux types, dimension ou mesure. 16
  17. 17. Modèle Olap – Expressions de chemin  Etant donné un schéma dimensionnel S, une expression de chemin sur S est une expression bien formée dont les opérandes sont des flèches de S et dont les opérateurs sont ceux de l’algèbre fonctionnelle.  Une expression dimensionnelle sur S: toute expression de chemin constituée uniquement de flèches figurant sur des chemins dimensionnels.  Une évaluation d’une expression de chemin e par rapport à une BDD  sur S: se fait en remplaçant chaque flèche f figurant dans e par la fonction (f) qui lui est associée par , et en effectuant les opérations de l’algèbre fonctionnelle.  Une vue sur S: schéma dimensionnel S’ dont chaque sommet est un sommet de S et donc chaque flèche est une expression de chemin sur S.  Un data mart est défini comme une vue sur S, pouvant être virtuelle ou matérialisée suivant les besoins de l’application. 17
  18. 18. Modèle Olap – Requête OLAP  Etant donné un schéma dimensionnel S, un ‘OLAP Pattern’ sur S est un couple P= (u, v), où u est une expression dimensionnelle, v une expression de mesure et source(u)= source(v)= O.  La cible de u est appelée le niveau d’agrégation de P et la cible de v le niveau de mesure de P.  Une requête OLAP sur S est alors un couple Q= <P, op>, où P est un OLAP pattern et op est une opération applicable sur le domaine du niveau de mesure de P. 18
  19. 19. Modèle Olap – Exemple OLAP  Considérons un entrepôt qui regroupe toutes factures émises par une chaine de magasin.  Le schéma pourrait être défini par cet arbre.  On peut analyser le nombre de ventes par gamme de produits et par ville.  Les démentions de cette requête sont Gamme, Ville. 19
  20. 20. Modèle Olap – Exemple OLAP  On peut exprimer cette requête par les chemins: f2of1 pour Gamme et h2oh1 pour Ville.  La mesure est Ventes et l’opérateur est la somme.  On peut aussi donner des conditions de sélection: par exemple Année= 2004, Région= Europe. 20
  21. 21. Modèle Olap – Exemple OLAP  On affiche alors un tableau ordonné selon les valeurs des attributs.  Dans le cas de l’analyse Gamme, Ville, où Gamme a les valeurs (A,B, C) et Ville a les valeurs (NY, Paris, Berlin) on aura un tableau comme dans cet exemple. 21
  22. 22. Data-Mining  Le terme Data-Mining est utilisé dans de nombreux contextes avec un sens différent.  Dans son interprétation la plus simple, il s’agit de trouver une fonction f sur la base d’échantillons de valeurs xi, yi= f(xi). 22
  23. 23. Data-Mining – Arbres de décision  Un arbre de décision est une représentation succincte d’une fonction.  Dans le cas d’une fonction booléenne, on imagine une arbre dont les noeuds sont les variables et les arêtes représentent les valeurs des variables.  Deux noeuds terminaux correspondent aux valeurs de la fonction.  L’arbre de décision est déterminé par l’ordre des variables. Deux arbres de décision pour la fonction f= (x1 Λ x2) Λ (x2 V x3), selon deux 23 ordres différents: x1, x2, x3 et x2, x1, x3.
  24. 24. Data-Mining – Arbres de décision  Dans le cas d’une table T avec les attributs A, B, C, supposons que la 3ème colonne soit la valeur de la fonction.  On peut donc représenter la table suivante par plusieurs arbres possibles: 24
  25. 25. Data-Mining – Arbres de décision Approximation et arbre de décision:  Dans un cas réel, on peut imaginer 30 attributs, des valeurs cibles discrètes, par exemple 10, 20, 50, 100.  On cherche alors un arbre de profondeur minimum et chaque feuille correspond à une valeur prépondérante.  Par exemple: la feuille gauche correspond à la valeur prépondérante de 100, à 90%.  Chaque feuille est une distribution de valeurs, qui permet de prédire une valeur et une confiance.  La feuille gauche correspond à la prédiction 100 avec la confiance 90% ou la valeur 20 avec la confiance 10% , ou la valeur 50 avec la confiance 10%. 25
  26. 26. Data-Mining – logiciels de Fouille de Données 3 trois logiciels qui implémentent les techniques de fouilles de données.  Dtree : ce logiciel est très simple, construit des arbres de décision à partir d’un fichier de données, sur des valeurs discrètes.  SAS / Entreprise Miner: ce module de SAS intègre les 3 principaux modèles et permet de les comparer, en sortant des courbes de lift. 26
  27. 27. Data-Mining – logiciels de Fouille de Données  Weka: ce logiciel libre a une interface, largement inspirée de celle de SAS/ Entreprise Miner.  De très nombreux modèles sont disponibles, ce qui rend le logiciel plus difficile à utiliser. 27
  28. 28. Modèle XML  Langage générique qui permet d’unifier la manipulation de données sur des serveurs différents.  Les fonctions essentielles sont: - La transmission de données semi-structurées entre Client et Serveur. - L’interrogation de données semi-structurées. - La transmission de données. - L’intégration de données.  Ce langage est important dans l’usage du Web, car XML (eXtensible Markup Langage) est une recommandation du W3C, l’organisme de normalisation de logiciels pour le Web. 28
  29. 29. Conclusion Nous avons étudier les Modèles d’automates, le Modèle relationnel, le Modèle Olap, le Data-Mining et le Modèle XML, qui représentent les principaux modèles informatiques, afin de connaître les principaux liens entre eux et de préciser leur robustesse par rapport à l’incertitude de données. 29
  30. 30. Merci pour votre attention 30

×