SlideShare a Scribd company logo
1 of 10
Download to read offline
UE#MEMS#
#
Cours#1#:#bases#théorique#des#systèmes#
électromécaniques#intégrés#
Dimitri&Galayko&(dimitri.galayko@lip6.fr)&
Tél.&01&44&27&70&16,&salle&403c&tour&65D66&
#
1#
Plan#du#cours#1#
•  MEMS#:#introduc>on#et#programme#de#l UE#
•  Introduc>on#à#la#physique#de#systèmes#
électromécaniques#:#rappel#des#éléments#de#la#
mécanique#(au#tableau#+#fiches#de#rappel)#
•  Interfaces#électromécaniques#à#l aide#de#
transducteurs#électrosta>ques#
–  Introduc>on#:#discussion#sur#les#transducteurs#
–  Géométries#de#transducteurs#électrosta>que#
–  Conversion#mécaniqueIélectrique#
–  Conversion#électriqueImécanique##
•  Bibliographie#:#S.#Senturia,#Microsystem#Design##
2#
Informa>on#générale#sur#l UE#
Equipe#pédagogique#:#Dimitri#Galayko,#Philippe#Basset#(ESYCOM)#
•  Cours#1#:#Bases#théoriques#des#MEMS#:#Rappel#de#la#mécanique#:#systèmes#
mécaniques#à#paramètres#localisés,#équivalence#électromécanique,##
transducteur#capaci>f,#modélisa>on#(TP1.1)#
•  Cours#2#:#Structures#mécaniques#des#MEMS#:#poutres,#résonateurs,#
éléments#de#la#mécanique#du#solide.#Transduc>on#piezoélectrique#et#sa#
modélisa>on#(TP1.2).##
•  Cours#3#:#Technologies#de#microIusinage#de#silicium#(intervenant#externe#P.#
Basset,#ESYCOM)##
•  Cours#4#:#Applica>ons#des#MEMS#:#capteurs,#MEMS#RF,#récupéra>on#
d énergie,#intégra>on#avec#l électronique#
•  TP2I3:#miniIprojet#:#concep>on#et#modélisa>on#d un#accéléromètre#
asservi,#ou#d un#oscillateur#à#base#de#résonateur#MEMS#(Dimitri#Galayko)#
#(1#cours#ou#TP#correspond#à#un#créneau#de#4#heures)##
3#
MEMS:#introduc>on#
•  MEMS:#un#terme#générique#pour#désigner#les#microsystèmes#
réalisés#avec#les#technologies#de#microusinage##
•  Le#plus#souvent#il#y#a#une#par>e#mécanique,#mais#pas#toujours#
(exemple#:#une#inductance#3D#microIusinée)#
•  La#significa>on#de#l’abrévia>on#MEMS#:##
–  «#Micro#»#:#technologies#de#microusinage#issues#de#la#
microélectronique#classique#
–  «#Electro*mechanical#»#:#il#y#a#du#traitement#du#signal#effectué#dans#le#
domaine#mécanique#et#électrique#
–  «#System#»#:#ce#terme#souligne#la#complexité#du#disposi>f,#sa#
fonc>onnalisa>on#forte#
•  Echelle#:#1I3000#μm#–#MEMS,#<1μm#–#NEMS##
•  Important#:#usinage#de#surface#–#usinage#de#substrat,#
technologies#de#silicium#!##
4#
MEMS:#introduc>on#
•  Un#peu#d histoire#:#
– Richard#Feynman#(Prix#Nobel#Physique),#«#There s#
Plenty#of#Room#at#the#Bofom#»,#présenta>on,#le#
26#décembre#1959#à#CalTech#
hfp://www.zyvex.com/nanotech/feynman.html#
– Wes>nghouse#a#crée#un#transisotr#MOS#avec#une#
grille#résonnante#
– Capteurs#de#pression#à#par>r#du#silicium#usiné#en#
volume:#1970##
– Transducteur#électrosta>ques#à#peignes#
interdigités#:#1980#
5#
MEMS:#introduc>on#
Élément#mobile#(résonateur,#interrupteur)#
Membrane#(capteurs#de#pression…)#
Microusinage#de#volume##
(bulk#micromachining)#
Microusinage#de#surface##
(surface#micromachining)#
Technologies&MEMS&
6#
MicroIusinage#:#principe#
(plus#de#détails,#cf.#cours#3)#
•  ##Microusinage#
de#surface#
U. Srinivasan ©
EEC245
MEMS Processing
• Unique to MEMS fabrication
• Sacrificial etching
• Mechanical properties critical
• Thicker films and deep etching
• Etching into substrate
• Double-sided lithography
• 3-D assembly
• Wafer-bonding
• Molding
• Integration with electronics, fluidics
• Unique to MEMS packaging and testing
• Delicate mechanical structures
• Packaging: before or after dicing?
• Sealing in gas environments
• Interconnect - electrical, mechanical, fluidic
• Testing – electrical, mechanical, fluidic
Package
Dice
Release
sacrificial layer
structural layer
Photolithography:
Masks and Photoresist
• Photolithography steps
• Photoresist spinnning, 1-10 µm spin coating
• Optical exposure through a photomask
• Developing to dissolve exposed resist
• Bake to drive off solvents
• Remove using solvents (acetone) or O2 plasma
10
U. Srinivasan ©
EEC245
• Distribution of exposed area ~ loading
• Structure geometry
U. Srinivasan ©
EEC245
Anisotropic Etching of Silicon
• Etching of Si with KOH
Si + 2OH- Si(OH)2
2+ + 4e-
4H2O + 4e- 4(OH) - + 2H2
<100>
Maluf
• Crystal orientation relative etch
rates
• {110}:{100}:{111} = 600:400:1
• {111} plane has three of its bonds
below the surface
• {111} may form protective oxide
quickly
• {111} smoother than other crystal
planes
•  ##Microusinage#
de#volume#
7#
MEMS#:#interface#entre#2#mondes#
•  La#clé#du#succès#des#MEMS#:#une#possibilité#de#
rapprocher#l électronique#de#la#mécanique#
•  L élément#clé#:#un#transducteur#électromécanique#
•  Un#transducteur#:#un#système#qui#couple#un#signal#
électrique#à#un#signal#mécanique#
•  Deux#types#principaux#:#électrosta>que#et#
piézoélectrique#
8#
MEMS:#introduc>on#
Peut#être#u>lisé#:##
•  dans#les#applica>ons#
op>ques#(contrôle#très#
précis#de#la#posi>on),##
•  dans#les#disposi>fs#de#
conversion#d’énergie##
Illustre#bien#les#possibilités#
de#la#technologie#MEMS#
Moteur#électrosta>que#
9#
MEMS#:#introduc>on#
Transistor#à#grille#résonnante#
10#
MEMS:#introduc>on#
•  Raisons#du#succès#:##
–  Technologie#issues#de#la#microélectronique:#avantages#de#la#
produc>on#à#grande#échelle#(fabrica>on#dite#collec>ve,#ou#batch*
processing)#
–  Exten>on#de#la#base#de#composants#de#la#microélectronique#
classique#:#capacité#variable,#interrupteur#mécanique,#résonateur#à#
très#haut#Q,#microImiroirs,#etc.#
–  Possibilités#infinie#de#réaliser#des#capteurs/ac>onneurs#qui,#de#plus,#
sont#intégrés#sur#la#puce,#donc#à#proximité#de#l’électronique#de#
traitement#
–  Miniaturisa>on#de#systèmes#mul>physique#:#économie#substan>elle#
de#la#place,#de#la#consomma>on#d’énergie,#des#parasites.##
11#
MEMS:#introduc>on#
•  Raisons#du#succès#N°1:#la#fabrica>on#collec>ve#
(batch#process)#:#
12#
MEMS:#introduc>on#
•  Raisons#du#succès#N°2:#la#réduc>on#de#l échelle#modifie#le#«#rapport#
des#forces#»#existant#dans#le#macromonde.##
•  Notamment,#les#forces#d origine#électrique#(électrosta>que)#
deviennent#comparables#avec#les#forces#mécaniques#(élas>ques)#
• #Les#forces#de#gravité##
#sont#négligeables#
• #La#contrepar>e#:#les#forces##
#de#surface#deviennent#
#nonInégligeables#
13#
MEMS:#introduc>on#
•  Raisons#du#succès#N°3:#U>lisa>on#très#large#de#structures#résonnantes##
•  Résonateur#LC#intégré:#très#mauvais#performances#(Q~10#en#HF#uniquement)#
•  Résonateur#LC#basse#fréquence#:#impossible#d’intégrer#
•  Résonateur#MEMS#:#basse#fréquence#(à#part.#des#1I10#Hz),#très#
grand#Q#(jusqu’à#105)##
Applica>ons#innombrables#!#
Yang#et#al.,#Sensors#actuators#
#journal:#A,#2000###
14#
Les#principales#familles#des#disposi>fs#
MEMS##
•  Capteurs#iner>els##
•  Capteurs#résonants#et#membranes##
•  Disposi>fs#RF#passifs#(MEMS#RF)#
•  Microfluidique##
•  Disposi>fs#op>ques#
15#
Les#marchés#par#faimilles#de#
composants#
MEMS Market Breakdown 2011/2017
InkJet Heads
15%
Pressure
Sensors
14%
Microphones
4%
Accelerometers
15%
Gyroscopes
13%
Compasses
4%
Combos
1%
Uncooled IR
3%
Micro displays
0%
Optical MEMS
11%
Microfluidics
14%
RF MEMS
4%
Oscillators
0%
Others
(microstructure
s, micro tips,
flow  meter  …)
2%
InkJet
Heads
9%
Pressure Sensors
11%
Microphones
4%
Accelerometers
8%
Gyroscopes
7%
Compasses
2%
Combos
8%
Uncooled IR
3%
Micro displays
1%
Optical
MEMS
12%
Microfluidics
23%
RF MEMS
5%
Oscillators
2%
Others
(microstructures,
micro tips, flow
meter  …)
5%
2017 MEMS Market Value
Breakdown
(TOTAL $21B)
2011 MEMS Market Value
Breakdown
(TOTAL $10,2B)
Yole#Développment,#
#2012#
#
hfp://dmems.univI
fcomte.fr/presenta>ons/
mounier.pdf#
16#
Capteurs#iner>els#
•  Capteurs#iner>els#:#accéléromètres,#gyroscopes#
(commercialisé#par#Analog#Devices,#Motorola#depuis#
1991)#
•  Applica>ons#:#au#départ#automobiles#(airbag),#
avia>on,#maintenant#iPhones,#Wii,&applicaJon&
militaires&…##
•  Actuellement#les#acteurs#clés#:#Bosch#Group,#ST#
Microelectronics,#Kionix,#Freescale#Semiconductors##
•  Le#marche#global#$1.55B#en#2009#
#
17#
Capteurs#iner>els#
Structure#d un#capteur#d accéléra>on#u>lisé#pour#airbag#
18#
Capteurs#iner>els#
Accéléromètre#complet#:#capteur#intégré#avec#ces#circuits#
de#condi>onnement##
19#
Capteurs#résonants#
•  A#la#base,#un#microIrésonateur#(poutre#
encastréeIencastrée,#encastréeIlibre…)#associé#
à#un#transducteur#
•  La#fréquence#d’oscilla>on#est#impactée#par#
diverses#facteurs#exogènes#(température,#
environnement#gazeux,#etc…)#
•  Capteurs#d’énergie#ciné>que##
•  Applica>ons#RF##
20#
Capteurs#résonants##
•  Raison#du#succès#:#de#très#bonnes#qualités#mécaniques#du#
silicium#
–  Fables#pertes#mécanique#(grand#facteur#de#qualité)#
–  Elas>cité#&#solidité#(grandes#amplitudes)#
–  Facilité#d’associer#avec#des#transducteurs#électromécaniques:#
capaci>f,#piézoélectrique#
Résonateur#avec#transducteur#
à##peignes#interdigitées,#MNX#
#
Fréquence#:#~10I100#kHz#
Q:# #jusqu’à#100#000#dans#le#vide#
21#
Capteurs#résonants#
•  Applica>ons#:##
–  Mesure#de#température#
–  Mesure#de#la#masse#(compteurs,#détecteurs##de#gaz)#
–  Microscopie#à#force#atomique#
–  Mesure#de#pression##
•  Raison#du#succès#:##
–  On#crée#un#oscillateur#oscillant#à#la#fréquence#propre#du#
résonateur,#et#on#mesure#la#fréquence#
–  La#fréquence#:#très#facile#à#mesurer#
22#
Capteurs#résonants#
Premier#disposi>f#MEMS#
intégré#avec#les#circuits##
#
Capteur#de#vapeur#résonant,#à#base#
de#microIpont#
23#
Capteurs#résonants#
Accélérometre#MEMS#3#axes##
24#
Capteurs#résonants#
Accéléromètre#complet#:#capteur#intégré#avec#ces#circuits#
de#condi>onnement##
25#
MEMS#RF#
•  #RF#MEMS#:#concept#
promefeur#au#début#
des#2000#
•  Radio#réconfigurable/
mul>standard#
26#
MEMS#RF#
•  Applica>ons#100MHz#I#40GHz#
•  L ac>onnement#DC#peutIêtre#compris#dans#le#signal#ou#appliqué#
à#l aide#d une#électrode#séparée#
gnd&
gnd&
signal&
Interrupteur&bloqué&
gnd&
gnd&
signal&
Interrupteur&passant&
Interrupteur#RF#
27#
MEMS#RF#
Interrupteur#ohmique# Interrupteur#capaci>f#
28#
MEMS#RF#
Capacité#contrôlée#par#une#tension#:##
(pour#la#varia>on#de#la#fréquence#d’élément#LC)#
29#
MEMS#RF#
Une#autre#capacité#contrôlée#par#une#tension:##
30#
MEMS#RF#
Filtre#électromécanique#pour#les##
fréquences#intermédiaires#(Clark#T.C.#Nguyen)#
31#
Microfluidique#
•  Manipula>on#de#liquide#à#très#pe>tes#
quan>tés#:#des#microlitres,#dans#des#canaux#de#
largeurs#micrométriques#
•  Une#branche#de#science#de#l’ingénieur#et#
technologique#rela>vement#nouvelle##
•  Applica>ons:#biologie,#analyse#chimique#de#
gaz/liquide##
•  14#%#du#marché#MEMS##
32#
Microfluidique#
•  Manipula>on#de#liquides#et#de#par>cules#par#
champ#électrique#:#micropompes,#mélangeurs#
•  Manipula>on#de#cellules##
•  Manipula>on#de#cellules#
•  Séquenceurs#d’ADN#(Puces#à#ADN)#
me of normal saline
mally extracted ISF
o establish electrical
le it is transferred
me of normal saline
E3, shown as the red
e extraction chamber
ctrode pair E3 and
ves. And the volume
blue curve in Figure
)
43 tt
S
−
+ , (1)
crochannel between
the width and height
time for the head of
e pair E1 and E2, t3
ple flowing through
0mm) is the distance
. The volume of
to the difference
efined input volume
ensor for controlling
asy collection of ISF
Collection Chamber,
Saline Chamber, D:
Saline. V1-V3 are
rs of electrodes.
lucose Sensor
concentrations of the
S dielectric glucose
ated electrode and a
acitive detector, is
tem. As shown in
s situated inside a
se-sensitive polymer
a semi-permeable
tween glucose and
) causes permittivity
solution, which is
r to determine the
ISF Transdermal
cose Sensor
top layer of the ISF
volume sensor for
n. A microchamber
(Figure 5) is aligned between the extraction chip and the
glucose sensor for containing the collected ISF sample in
glucose concentration measurement step.
Figure 3: Schematic of the dielectric glucose sensor.
Figure 4: The polymer composition and the mechanism of
interaction with glucose.
Figure 5: Schematic of the integration structure between
ISF transdermal extraction chip with volume sensor
(TECVS) and MEMS dielectric glucose sensor. APGS:
Access Ports for Glucose Sensor.
FABRICATION PROCESS
The microfluidic chip without glucose sensor, which
is designed for ISF transdermal extraction, collection, and
volume measurement, is fabricated from five PDMS layers
using micromolding techniques. 250 m thick epoxy dry
films (SUEX TDFS, DJ DevCorp) and photoresist films
(FX930, DuPont) instead of common photoresists are
utilized for micromolds fabrication. As shown in Figure 6a,
the electrodes of the volume sensor are fabricated with
conductive PDMS (Ag- P/PDMS, 11:2 weight ratio)
similar to the method utilized by Niu et al. [6]. After
molding, the five PDMS layers are aligned and bonded
together using Corona (Laboratory Corona Treater,
BD-20ACV, Electro-Technic Products, Inc.).
For the fabrication of the MEMS dielectric glucose
sensor (Figure 6b), two gold layers are firstly deposited,
patterned, and passivated with Parylene to form the bottom
electrode and perforated electrode. And a sacrificial
photoresist layer is deposited and patterned between the
two gold layers. Then two SU-8 layers are deposited and
patterned to form the diaphragm and the sensor chamber.
366
Mesure#de#glycémie#sur#puce#
Transducer#2013,#Li#et#al.#
#
33#
Microfluidique#
34#
Microfluidique#
•  Domaine#scien>fique#rela>vement#nouveau#:##
– Comportement#de#liquides#à#volumes#réduits#
– Interac>on#avec#le#champ#électrique#
– Technologies#(biocompa>bles#?)##
•  Domaine#en#plein#essor##
35#
MEMS#pour#op>que:#MOEMS#
•  Domaine#:#traitement#d’informa>on#
op>que,#principalement#dans#les#télécoms#
•  #Interrupteurs,#miroirs##
Interrupteur#op>que##
Sélec>onneur/mul>plexeur#
op>que#à#microImiroirs# 36#
MEMS#pour#op>que:#MOEMS#
•  Membranes#déformables#pour#l’op>que#
adapta>ve:#len>lles#&#miroirs#contrôlées#
Introduction
In this paper we present a single-crystal-silicon continuous
membrane deformable mirror array with electrostatic actuation for
applications in adaptive optics [1, 2]. Adaptive optics used to
correct for atmospheric distortion requires large strokes of up to
several microns. In space-based telescopes, where atmospheric
distortion is a non-issue, imperfection of the optical system is the
main reason for image degradation. Under these conditions, short-
stroke programmable adaptive optics can correct for imperfections
in the optical elements, such as local defects of a few nanometers to
large curvature flaws of several hundred nanometers, and for mis-
alignments without the prohibitively high cost of having to replace
the components. In such systems continuous face-sheet mirrors, as
described in this paper, are more suitable than segmented mirrors
since these types of mirrors add to the degradation by lower fill-
factor and diffraction.
Figure 1. (a) Cross-section diagram of a single deformable mirror
pixel. (b) Cross-section diagram of an array
Design and Fabrication
Our approach to the fabrication of continuous membrane MEMS
mirrors differ from earlier reported methods [3,4,5,6] in that we
fabricate the electronics and MEMS on different wafers and
combine these with flip-chip bonding [7]. The advantage of this
approach is that the MEMS and electronics can be optimized
independently and separate foundries can be used for each. In
particular, the electronics can be made in a standard foundry
without the extra complexity that is associated with direct
the fabrication of the top membrane using a sufficiently flat low-
stress SCS device layer.
Figure 2. SEM of a pixel with the membrane partially removed to
show the underlying structure
The diagrams in Fig. 1 show the structure of the deformable mirror.
Figure 1(a) shows the cross-sectional view of a single pixel and Fig.
1(b) shows three elements of an array. Figure 2 shows a SEM of
the structure. The upper electrode, membrane and spring structures
are all at the ground potential and the bottom electrodes are
individually addressed for control of the array. A potential applied
between the two electrodes pulls the membrane towards the
substrate by parallel-plate actuation.
The fabrication for the MEMS and electronics wafers is done
separately and flip-chip bonded together (Fig 3.). The top
membrane is a 300nm SOI (silicon-on-insulator) device layer. The
pedestal that links the membrane and upper electrode plate is
formed by a 2.0 m poly via that also forms the upper electrode and
mechanical spring layer. As shown in Fig. 1(b), the mechanical
springs are attached to the frame of the actuator and to the upper
electrode. The upper and lower electrode areas are both 50 m x
50 m. The 3.0 m gap between the upper and lower parallel plate
electrodes is determined by the 2.0 m thick poly layer offsets made
on the electronics chip and gold bond layers of 0.5 m. Wiring lines
and lower electrodes are formed on the lower poly layer. The
1520-7803-9562-X/06/$20.00 ©2006 IEEE
for Adaptive Optics
Il Woong Junga
, Yves-Alain Peterb
, Emily Carrc
, Jen-Shiang Wanga
and Olav Solgaarda
a
E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA 94305
Tel +1-650-723-1992, Fax +1-650-725-2533, E-mail: iwjung@stanford.edu
b
Départment de Génie Physique, Ecole Polytechnique de Montréal, Montréal, Québec Canada
c
Lawrence Livermore National Laboratory
Abstract
e present a single-crystal-silicon (SCS) continuous membrane deformable mirror array with applications as a corrective adaptive optics
ement for space-based telescopes. The continuous membrane is made from a thin silicon-on-insulator (SOI) layer with good optical surface
uality. The membrane is able to deform locally by 125nm at 100V with a resonance frequency of 25kHz.
Introduction
this paper we present a single-crystal-silicon continuous
embrane deformable mirror array with electrostatic actuation for
plications in adaptive optics [1, 2]. Adaptive optics used to
rrect for atmospheric distortion requires large strokes of up to
veral microns. In space-based telescopes, where atmospheric
stortion is a non-issue, imperfection of the optical system is the
ain reason for image degradation. Under these conditions, short-
roke programmable adaptive optics can correct for imperfections
the optical elements, such as local defects of a few nanometers to
rge curvature flaws of several hundred nanometers, and for mis-
ignments without the prohibitively high cost of having to replace
e components. In such systems continuous face-sheet mirrors, as
scribed in this paper, are more suitable than segmented mirrors
nce these types of mirrors add to the degradation by lower fill-
ctor and diffraction.
gure 1. (a) Cross-section diagram of a single deformable mirror
xel. (b) Cross-section diagram of an array
Design and Fabrication
ur approach to the fabrication of continuous membrane MEMS
irrors differ from earlier reported methods [3,4,5,6] in that we
bricate the electronics and MEMS on different wafers and
mbine these with flip-chip bonding [7]. The advantage of this
proach is that the MEMS and electronics can be optimized
dependently and separate foundries can be used for each. In
rticular, the electronics can be made in a standard foundry
ithout the extra complexity that is associated with direct
integration of MEMS. Just as important, this method also allows
the fabrication of the top membrane using a sufficiently flat low-
stress SCS device layer.
Figure 2. SEM of a pixel with the membrane partially removed to
show the underlying structure
The diagrams in Fig. 1 show the structure of the deformable mirror.
Figure 1(a) shows the cross-sectional view of a single pixel and Fig.
1(b) shows three elements of an array. Figure 2 shows a SEM of
the structure. The upper electrode, membrane and spring structures
are all at the ground potential and the bottom electrodes are
individually addressed for control of the array. A potential applied
between the two electrodes pulls the membrane towards the
substrate by parallel-plate actuation.
The fabrication for the MEMS and electronics wafers is done
separately and flip-chip bonded together (Fig 3.). The top
membrane is a 300nm SOI (silicon-on-insulator) device layer. The
pedestal that links the membrane and upper electrode plate is
formed by a 2.0 m poly via that also forms the upper electrode and
mechanical spring layer. As shown in Fig. 1(b), the mechanical
springs are attached to the frame of the actuator and to the upper
electrode. The upper and lower electrode areas are both 50 m x
50 m. The 3.0 m gap between the upper and lower parallel plate
electrodes is determined by the 2.0 m thick poly layer offsets made
on the electronics chip and gold bond layers of 0.5 m. Wiring lines
and lower electrodes are formed on the lower poly layer. The
1523-9562-X/06/$20.00 ©2006 IEEE
Jung,#I.#et#al.,#SingleICrystalISilicon#Con>nuous#Membrane#Deformable#Mirror#Array#for#Adap>ve#Op>cs.#In#
Op>cal#MEMS#and#Their#Applica>ons#Conference,#2006.#
37#
MEMS:#introduc>on#
•  Automobile#:#système#N°1#qui#peut#profiter#
des#MEMS#
• #Contrôle#de#déploiement#
# ##de#airbag#
• #Contrôle#de#la#dynamique#
#du#véhicule#
• #Système#de#naviga>on…##
38#
MEMS:#introduc>on#
•  Téléphonie#mobile#:#applica>on#phare#
© 2012• 9
2011 Copyrights © Yole Développement SA. All right reserved.
…  to  Smartphones:  where  the  business  is  today.
Microphone
BAW filters/duplexers
RF switch / variable capacitor
Oscillator
Micro mirror
Auto focus
Accelerometer
Gyroscope
Electronic compass
Pressure sensor
Micro display
Proximity sensor
39#
MEMS:#introduc>on#
Ressources#en#ligne#:##
40#

More Related Content

Viewers also liked

Mems accelerometer designing and fabrication
Mems accelerometer designing and fabricationMems accelerometer designing and fabrication
Mems accelerometer designing and fabricationprashant singh
 
Micro electro mechanical systems
Micro electro mechanical systemsMicro electro mechanical systems
Micro electro mechanical systemssree navya
 
Accident messaging system using GPS,GSM and MEMS
Accident messaging system using GPS,GSM and MEMSAccident messaging system using GPS,GSM and MEMS
Accident messaging system using GPS,GSM and MEMSJithin Prasad
 
INTERVENCIÓN ARTÍSTICA URBANA. REGIÓN DE MURCIA
INTERVENCIÓN ARTÍSTICA URBANA. REGIÓN DE MURCIAINTERVENCIÓN ARTÍSTICA URBANA. REGIÓN DE MURCIA
INTERVENCIÓN ARTÍSTICA URBANA. REGIÓN DE MURCIAellés guerrero guerrero
 
Carpetas y archivos
Carpetas y archivosCarpetas y archivos
Carpetas y archivosalerohe
 
CURRICULAMVITAE
CURRICULAMVITAECURRICULAMVITAE
CURRICULAMVITAEAkhil Das
 
Biblioteca
BibliotecaBiblioteca
Bibliotecasarini80
 
Sadie Tate Portfolio Sample
Sadie Tate Portfolio SampleSadie Tate Portfolio Sample
Sadie Tate Portfolio SampleSadie Tate
 

Viewers also liked (12)

Mems accelerometer designing and fabrication
Mems accelerometer designing and fabricationMems accelerometer designing and fabrication
Mems accelerometer designing and fabrication
 
Mems technology ppt
Mems technology pptMems technology ppt
Mems technology ppt
 
Mems
MemsMems
Mems
 
Micro electro mechanical systems
Micro electro mechanical systemsMicro electro mechanical systems
Micro electro mechanical systems
 
Accident messaging system using GPS,GSM and MEMS
Accident messaging system using GPS,GSM and MEMSAccident messaging system using GPS,GSM and MEMS
Accident messaging system using GPS,GSM and MEMS
 
INTERVENCIÓN ARTÍSTICA URBANA. REGIÓN DE MURCIA
INTERVENCIÓN ARTÍSTICA URBANA. REGIÓN DE MURCIAINTERVENCIÓN ARTÍSTICA URBANA. REGIÓN DE MURCIA
INTERVENCIÓN ARTÍSTICA URBANA. REGIÓN DE MURCIA
 
CV Adit
CV AditCV Adit
CV Adit
 
Carpetas y archivos
Carpetas y archivosCarpetas y archivos
Carpetas y archivos
 
CURRICULAMVITAE
CURRICULAMVITAECURRICULAMVITAE
CURRICULAMVITAE
 
Biblioteca
BibliotecaBiblioteca
Biblioteca
 
Sadie Tate Portfolio Sample
Sadie Tate Portfolio SampleSadie Tate Portfolio Sample
Sadie Tate Portfolio Sample
 
Resumen unidad vi
Resumen unidad viResumen unidad vi
Resumen unidad vi
 

Recently uploaded

Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXDole Philippines School
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squaresusmanzain586
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 

Recently uploaded (20)

Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
 
Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squares
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 

Mems introduction and_images

  • 1. UE#MEMS# # Cours#1#:#bases#théorique#des#systèmes# électromécaniques#intégrés# Dimitri&Galayko&(dimitri.galayko@lip6.fr)& Tél.&01&44&27&70&16,&salle&403c&tour&65D66& # 1# Plan#du#cours#1# •  MEMS#:#introduc>on#et#programme#de#l UE# •  Introduc>on#à#la#physique#de#systèmes# électromécaniques#:#rappel#des#éléments#de#la# mécanique#(au#tableau#+#fiches#de#rappel)# •  Interfaces#électromécaniques#à#l aide#de# transducteurs#électrosta>ques# –  Introduc>on#:#discussion#sur#les#transducteurs# –  Géométries#de#transducteurs#électrosta>que# –  Conversion#mécaniqueIélectrique# –  Conversion#électriqueImécanique## •  Bibliographie#:#S.#Senturia,#Microsystem#Design## 2# Informa>on#générale#sur#l UE# Equipe#pédagogique#:#Dimitri#Galayko,#Philippe#Basset#(ESYCOM)# •  Cours#1#:#Bases#théoriques#des#MEMS#:#Rappel#de#la#mécanique#:#systèmes# mécaniques#à#paramètres#localisés,#équivalence#électromécanique,## transducteur#capaci>f,#modélisa>on#(TP1.1)# •  Cours#2#:#Structures#mécaniques#des#MEMS#:#poutres,#résonateurs,# éléments#de#la#mécanique#du#solide.#Transduc>on#piezoélectrique#et#sa# modélisa>on#(TP1.2).## •  Cours#3#:#Technologies#de#microIusinage#de#silicium#(intervenant#externe#P.# Basset,#ESYCOM)## •  Cours#4#:#Applica>ons#des#MEMS#:#capteurs,#MEMS#RF,#récupéra>on# d énergie,#intégra>on#avec#l électronique# •  TP2I3:#miniIprojet#:#concep>on#et#modélisa>on#d un#accéléromètre# asservi,#ou#d un#oscillateur#à#base#de#résonateur#MEMS#(Dimitri#Galayko)# #(1#cours#ou#TP#correspond#à#un#créneau#de#4#heures)## 3# MEMS:#introduc>on# •  MEMS:#un#terme#générique#pour#désigner#les#microsystèmes# réalisés#avec#les#technologies#de#microusinage## •  Le#plus#souvent#il#y#a#une#par>e#mécanique,#mais#pas#toujours# (exemple#:#une#inductance#3D#microIusinée)# •  La#significa>on#de#l’abrévia>on#MEMS#:## –  «#Micro#»#:#technologies#de#microusinage#issues#de#la# microélectronique#classique# –  «#Electro*mechanical#»#:#il#y#a#du#traitement#du#signal#effectué#dans#le# domaine#mécanique#et#électrique# –  «#System#»#:#ce#terme#souligne#la#complexité#du#disposi>f,#sa# fonc>onnalisa>on#forte# •  Echelle#:#1I3000#μm#–#MEMS,#<1μm#–#NEMS## •  Important#:#usinage#de#surface#–#usinage#de#substrat,# technologies#de#silicium#!## 4#
  • 2. MEMS:#introduc>on# •  Un#peu#d histoire#:# – Richard#Feynman#(Prix#Nobel#Physique),#«#There s# Plenty#of#Room#at#the#Bofom#»,#présenta>on,#le# 26#décembre#1959#à#CalTech# hfp://www.zyvex.com/nanotech/feynman.html# – Wes>nghouse#a#crée#un#transisotr#MOS#avec#une# grille#résonnante# – Capteurs#de#pression#à#par>r#du#silicium#usiné#en# volume:#1970## – Transducteur#électrosta>ques#à#peignes# interdigités#:#1980# 5# MEMS:#introduc>on# Élément#mobile#(résonateur,#interrupteur)# Membrane#(capteurs#de#pression…)# Microusinage#de#volume## (bulk#micromachining)# Microusinage#de#surface## (surface#micromachining)# Technologies&MEMS& 6# MicroIusinage#:#principe# (plus#de#détails,#cf.#cours#3)# •  ##Microusinage# de#surface# U. Srinivasan © EEC245 MEMS Processing • Unique to MEMS fabrication • Sacrificial etching • Mechanical properties critical • Thicker films and deep etching • Etching into substrate • Double-sided lithography • 3-D assembly • Wafer-bonding • Molding • Integration with electronics, fluidics • Unique to MEMS packaging and testing • Delicate mechanical structures • Packaging: before or after dicing? • Sealing in gas environments • Interconnect - electrical, mechanical, fluidic • Testing – electrical, mechanical, fluidic Package Dice Release sacrificial layer structural layer Photolithography: Masks and Photoresist • Photolithography steps • Photoresist spinnning, 1-10 µm spin coating • Optical exposure through a photomask • Developing to dissolve exposed resist • Bake to drive off solvents • Remove using solvents (acetone) or O2 plasma 10 U. Srinivasan © EEC245 • Distribution of exposed area ~ loading • Structure geometry U. Srinivasan © EEC245 Anisotropic Etching of Silicon • Etching of Si with KOH Si + 2OH- Si(OH)2 2+ + 4e- 4H2O + 4e- 4(OH) - + 2H2 <100> Maluf • Crystal orientation relative etch rates • {110}:{100}:{111} = 600:400:1 • {111} plane has three of its bonds below the surface • {111} may form protective oxide quickly • {111} smoother than other crystal planes •  ##Microusinage# de#volume# 7# MEMS#:#interface#entre#2#mondes# •  La#clé#du#succès#des#MEMS#:#une#possibilité#de# rapprocher#l électronique#de#la#mécanique# •  L élément#clé#:#un#transducteur#électromécanique# •  Un#transducteur#:#un#système#qui#couple#un#signal# électrique#à#un#signal#mécanique# •  Deux#types#principaux#:#électrosta>que#et# piézoélectrique# 8#
  • 3. MEMS:#introduc>on# Peut#être#u>lisé#:## •  dans#les#applica>ons# op>ques#(contrôle#très# précis#de#la#posi>on),## •  dans#les#disposi>fs#de# conversion#d’énergie## Illustre#bien#les#possibilités# de#la#technologie#MEMS# Moteur#électrosta>que# 9# MEMS#:#introduc>on# Transistor#à#grille#résonnante# 10# MEMS:#introduc>on# •  Raisons#du#succès#:## –  Technologie#issues#de#la#microélectronique:#avantages#de#la# produc>on#à#grande#échelle#(fabrica>on#dite#collec>ve,#ou#batch* processing)# –  Exten>on#de#la#base#de#composants#de#la#microélectronique# classique#:#capacité#variable,#interrupteur#mécanique,#résonateur#à# très#haut#Q,#microImiroirs,#etc.# –  Possibilités#infinie#de#réaliser#des#capteurs/ac>onneurs#qui,#de#plus,# sont#intégrés#sur#la#puce,#donc#à#proximité#de#l’électronique#de# traitement# –  Miniaturisa>on#de#systèmes#mul>physique#:#économie#substan>elle# de#la#place,#de#la#consomma>on#d’énergie,#des#parasites.## 11# MEMS:#introduc>on# •  Raisons#du#succès#N°1:#la#fabrica>on#collec>ve# (batch#process)#:# 12#
  • 4. MEMS:#introduc>on# •  Raisons#du#succès#N°2:#la#réduc>on#de#l échelle#modifie#le#«#rapport# des#forces#»#existant#dans#le#macromonde.## •  Notamment,#les#forces#d origine#électrique#(électrosta>que)# deviennent#comparables#avec#les#forces#mécaniques#(élas>ques)# • #Les#forces#de#gravité## #sont#négligeables# • #La#contrepar>e#:#les#forces## #de#surface#deviennent# #nonInégligeables# 13# MEMS:#introduc>on# •  Raisons#du#succès#N°3:#U>lisa>on#très#large#de#structures#résonnantes## •  Résonateur#LC#intégré:#très#mauvais#performances#(Q~10#en#HF#uniquement)# •  Résonateur#LC#basse#fréquence#:#impossible#d’intégrer# •  Résonateur#MEMS#:#basse#fréquence#(à#part.#des#1I10#Hz),#très# grand#Q#(jusqu’à#105)## Applica>ons#innombrables#!# Yang#et#al.,#Sensors#actuators# #journal:#A,#2000### 14# Les#principales#familles#des#disposi>fs# MEMS## •  Capteurs#iner>els## •  Capteurs#résonants#et#membranes## •  Disposi>fs#RF#passifs#(MEMS#RF)# •  Microfluidique## •  Disposi>fs#op>ques# 15# Les#marchés#par#faimilles#de# composants# MEMS Market Breakdown 2011/2017 InkJet Heads 15% Pressure Sensors 14% Microphones 4% Accelerometers 15% Gyroscopes 13% Compasses 4% Combos 1% Uncooled IR 3% Micro displays 0% Optical MEMS 11% Microfluidics 14% RF MEMS 4% Oscillators 0% Others (microstructure s, micro tips, flow  meter  …) 2% InkJet Heads 9% Pressure Sensors 11% Microphones 4% Accelerometers 8% Gyroscopes 7% Compasses 2% Combos 8% Uncooled IR 3% Micro displays 1% Optical MEMS 12% Microfluidics 23% RF MEMS 5% Oscillators 2% Others (microstructures, micro tips, flow meter  …) 5% 2017 MEMS Market Value Breakdown (TOTAL $21B) 2011 MEMS Market Value Breakdown (TOTAL $10,2B) Yole#Développment,# #2012# # hfp://dmems.univI fcomte.fr/presenta>ons/ mounier.pdf# 16#
  • 5. Capteurs#iner>els# •  Capteurs#iner>els#:#accéléromètres,#gyroscopes# (commercialisé#par#Analog#Devices,#Motorola#depuis# 1991)# •  Applica>ons#:#au#départ#automobiles#(airbag),# avia>on,#maintenant#iPhones,#Wii,&applicaJon& militaires&…## •  Actuellement#les#acteurs#clés#:#Bosch#Group,#ST# Microelectronics,#Kionix,#Freescale#Semiconductors## •  Le#marche#global#$1.55B#en#2009# # 17# Capteurs#iner>els# Structure#d un#capteur#d accéléra>on#u>lisé#pour#airbag# 18# Capteurs#iner>els# Accéléromètre#complet#:#capteur#intégré#avec#ces#circuits# de#condi>onnement## 19# Capteurs#résonants# •  A#la#base,#un#microIrésonateur#(poutre# encastréeIencastrée,#encastréeIlibre…)#associé# à#un#transducteur# •  La#fréquence#d’oscilla>on#est#impactée#par# diverses#facteurs#exogènes#(température,# environnement#gazeux,#etc…)# •  Capteurs#d’énergie#ciné>que## •  Applica>ons#RF## 20#
  • 6. Capteurs#résonants## •  Raison#du#succès#:#de#très#bonnes#qualités#mécaniques#du# silicium# –  Fables#pertes#mécanique#(grand#facteur#de#qualité)# –  Elas>cité#&#solidité#(grandes#amplitudes)# –  Facilité#d’associer#avec#des#transducteurs#électromécaniques:# capaci>f,#piézoélectrique# Résonateur#avec#transducteur# à##peignes#interdigitées,#MNX# # Fréquence#:#~10I100#kHz# Q:# #jusqu’à#100#000#dans#le#vide# 21# Capteurs#résonants# •  Applica>ons#:## –  Mesure#de#température# –  Mesure#de#la#masse#(compteurs,#détecteurs##de#gaz)# –  Microscopie#à#force#atomique# –  Mesure#de#pression## •  Raison#du#succès#:## –  On#crée#un#oscillateur#oscillant#à#la#fréquence#propre#du# résonateur,#et#on#mesure#la#fréquence# –  La#fréquence#:#très#facile#à#mesurer# 22# Capteurs#résonants# Premier#disposi>f#MEMS# intégré#avec#les#circuits## # Capteur#de#vapeur#résonant,#à#base# de#microIpont# 23# Capteurs#résonants# Accélérometre#MEMS#3#axes## 24#
  • 7. Capteurs#résonants# Accéléromètre#complet#:#capteur#intégré#avec#ces#circuits# de#condi>onnement## 25# MEMS#RF# •  #RF#MEMS#:#concept# promefeur#au#début# des#2000# •  Radio#réconfigurable/ mul>standard# 26# MEMS#RF# •  Applica>ons#100MHz#I#40GHz# •  L ac>onnement#DC#peutIêtre#compris#dans#le#signal#ou#appliqué# à#l aide#d une#électrode#séparée# gnd& gnd& signal& Interrupteur&bloqué& gnd& gnd& signal& Interrupteur&passant& Interrupteur#RF# 27# MEMS#RF# Interrupteur#ohmique# Interrupteur#capaci>f# 28#
  • 9. Microfluidique# •  Manipula>on#de#liquides#et#de#par>cules#par# champ#électrique#:#micropompes,#mélangeurs# •  Manipula>on#de#cellules## •  Manipula>on#de#cellules# •  Séquenceurs#d’ADN#(Puces#à#ADN)# me of normal saline mally extracted ISF o establish electrical le it is transferred me of normal saline E3, shown as the red e extraction chamber ctrode pair E3 and ves. And the volume blue curve in Figure ) 43 tt S − + , (1) crochannel between the width and height time for the head of e pair E1 and E2, t3 ple flowing through 0mm) is the distance . The volume of to the difference efined input volume ensor for controlling asy collection of ISF Collection Chamber, Saline Chamber, D: Saline. V1-V3 are rs of electrodes. lucose Sensor concentrations of the S dielectric glucose ated electrode and a acitive detector, is tem. As shown in s situated inside a se-sensitive polymer a semi-permeable tween glucose and ) causes permittivity solution, which is r to determine the ISF Transdermal cose Sensor top layer of the ISF volume sensor for n. A microchamber (Figure 5) is aligned between the extraction chip and the glucose sensor for containing the collected ISF sample in glucose concentration measurement step. Figure 3: Schematic of the dielectric glucose sensor. Figure 4: The polymer composition and the mechanism of interaction with glucose. Figure 5: Schematic of the integration structure between ISF transdermal extraction chip with volume sensor (TECVS) and MEMS dielectric glucose sensor. APGS: Access Ports for Glucose Sensor. FABRICATION PROCESS The microfluidic chip without glucose sensor, which is designed for ISF transdermal extraction, collection, and volume measurement, is fabricated from five PDMS layers using micromolding techniques. 250 m thick epoxy dry films (SUEX TDFS, DJ DevCorp) and photoresist films (FX930, DuPont) instead of common photoresists are utilized for micromolds fabrication. As shown in Figure 6a, the electrodes of the volume sensor are fabricated with conductive PDMS (Ag- P/PDMS, 11:2 weight ratio) similar to the method utilized by Niu et al. [6]. After molding, the five PDMS layers are aligned and bonded together using Corona (Laboratory Corona Treater, BD-20ACV, Electro-Technic Products, Inc.). For the fabrication of the MEMS dielectric glucose sensor (Figure 6b), two gold layers are firstly deposited, patterned, and passivated with Parylene to form the bottom electrode and perforated electrode. And a sacrificial photoresist layer is deposited and patterned between the two gold layers. Then two SU-8 layers are deposited and patterned to form the diaphragm and the sensor chamber. 366 Mesure#de#glycémie#sur#puce# Transducer#2013,#Li#et#al.# # 33# Microfluidique# 34# Microfluidique# •  Domaine#scien>fique#rela>vement#nouveau#:## – Comportement#de#liquides#à#volumes#réduits# – Interac>on#avec#le#champ#électrique# – Technologies#(biocompa>bles#?)## •  Domaine#en#plein#essor## 35# MEMS#pour#op>que:#MOEMS# •  Domaine#:#traitement#d’informa>on# op>que,#principalement#dans#les#télécoms# •  #Interrupteurs,#miroirs## Interrupteur#op>que## Sélec>onneur/mul>plexeur# op>que#à#microImiroirs# 36#
  • 10. MEMS#pour#op>que:#MOEMS# •  Membranes#déformables#pour#l’op>que# adapta>ve:#len>lles#&#miroirs#contrôlées# Introduction In this paper we present a single-crystal-silicon continuous membrane deformable mirror array with electrostatic actuation for applications in adaptive optics [1, 2]. Adaptive optics used to correct for atmospheric distortion requires large strokes of up to several microns. In space-based telescopes, where atmospheric distortion is a non-issue, imperfection of the optical system is the main reason for image degradation. Under these conditions, short- stroke programmable adaptive optics can correct for imperfections in the optical elements, such as local defects of a few nanometers to large curvature flaws of several hundred nanometers, and for mis- alignments without the prohibitively high cost of having to replace the components. In such systems continuous face-sheet mirrors, as described in this paper, are more suitable than segmented mirrors since these types of mirrors add to the degradation by lower fill- factor and diffraction. Figure 1. (a) Cross-section diagram of a single deformable mirror pixel. (b) Cross-section diagram of an array Design and Fabrication Our approach to the fabrication of continuous membrane MEMS mirrors differ from earlier reported methods [3,4,5,6] in that we fabricate the electronics and MEMS on different wafers and combine these with flip-chip bonding [7]. The advantage of this approach is that the MEMS and electronics can be optimized independently and separate foundries can be used for each. In particular, the electronics can be made in a standard foundry without the extra complexity that is associated with direct the fabrication of the top membrane using a sufficiently flat low- stress SCS device layer. Figure 2. SEM of a pixel with the membrane partially removed to show the underlying structure The diagrams in Fig. 1 show the structure of the deformable mirror. Figure 1(a) shows the cross-sectional view of a single pixel and Fig. 1(b) shows three elements of an array. Figure 2 shows a SEM of the structure. The upper electrode, membrane and spring structures are all at the ground potential and the bottom electrodes are individually addressed for control of the array. A potential applied between the two electrodes pulls the membrane towards the substrate by parallel-plate actuation. The fabrication for the MEMS and electronics wafers is done separately and flip-chip bonded together (Fig 3.). The top membrane is a 300nm SOI (silicon-on-insulator) device layer. The pedestal that links the membrane and upper electrode plate is formed by a 2.0 m poly via that also forms the upper electrode and mechanical spring layer. As shown in Fig. 1(b), the mechanical springs are attached to the frame of the actuator and to the upper electrode. The upper and lower electrode areas are both 50 m x 50 m. The 3.0 m gap between the upper and lower parallel plate electrodes is determined by the 2.0 m thick poly layer offsets made on the electronics chip and gold bond layers of 0.5 m. Wiring lines and lower electrodes are formed on the lower poly layer. The 1520-7803-9562-X/06/$20.00 ©2006 IEEE for Adaptive Optics Il Woong Junga , Yves-Alain Peterb , Emily Carrc , Jen-Shiang Wanga and Olav Solgaarda a E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA 94305 Tel +1-650-723-1992, Fax +1-650-725-2533, E-mail: iwjung@stanford.edu b Départment de Génie Physique, Ecole Polytechnique de Montréal, Montréal, Québec Canada c Lawrence Livermore National Laboratory Abstract e present a single-crystal-silicon (SCS) continuous membrane deformable mirror array with applications as a corrective adaptive optics ement for space-based telescopes. The continuous membrane is made from a thin silicon-on-insulator (SOI) layer with good optical surface uality. The membrane is able to deform locally by 125nm at 100V with a resonance frequency of 25kHz. Introduction this paper we present a single-crystal-silicon continuous embrane deformable mirror array with electrostatic actuation for plications in adaptive optics [1, 2]. Adaptive optics used to rrect for atmospheric distortion requires large strokes of up to veral microns. In space-based telescopes, where atmospheric stortion is a non-issue, imperfection of the optical system is the ain reason for image degradation. Under these conditions, short- roke programmable adaptive optics can correct for imperfections the optical elements, such as local defects of a few nanometers to rge curvature flaws of several hundred nanometers, and for mis- ignments without the prohibitively high cost of having to replace e components. In such systems continuous face-sheet mirrors, as scribed in this paper, are more suitable than segmented mirrors nce these types of mirrors add to the degradation by lower fill- ctor and diffraction. gure 1. (a) Cross-section diagram of a single deformable mirror xel. (b) Cross-section diagram of an array Design and Fabrication ur approach to the fabrication of continuous membrane MEMS irrors differ from earlier reported methods [3,4,5,6] in that we bricate the electronics and MEMS on different wafers and mbine these with flip-chip bonding [7]. The advantage of this proach is that the MEMS and electronics can be optimized dependently and separate foundries can be used for each. In rticular, the electronics can be made in a standard foundry ithout the extra complexity that is associated with direct integration of MEMS. Just as important, this method also allows the fabrication of the top membrane using a sufficiently flat low- stress SCS device layer. Figure 2. SEM of a pixel with the membrane partially removed to show the underlying structure The diagrams in Fig. 1 show the structure of the deformable mirror. Figure 1(a) shows the cross-sectional view of a single pixel and Fig. 1(b) shows three elements of an array. Figure 2 shows a SEM of the structure. The upper electrode, membrane and spring structures are all at the ground potential and the bottom electrodes are individually addressed for control of the array. A potential applied between the two electrodes pulls the membrane towards the substrate by parallel-plate actuation. The fabrication for the MEMS and electronics wafers is done separately and flip-chip bonded together (Fig 3.). The top membrane is a 300nm SOI (silicon-on-insulator) device layer. The pedestal that links the membrane and upper electrode plate is formed by a 2.0 m poly via that also forms the upper electrode and mechanical spring layer. As shown in Fig. 1(b), the mechanical springs are attached to the frame of the actuator and to the upper electrode. The upper and lower electrode areas are both 50 m x 50 m. The 3.0 m gap between the upper and lower parallel plate electrodes is determined by the 2.0 m thick poly layer offsets made on the electronics chip and gold bond layers of 0.5 m. Wiring lines and lower electrodes are formed on the lower poly layer. The 1523-9562-X/06/$20.00 ©2006 IEEE Jung,#I.#et#al.,#SingleICrystalISilicon#Con>nuous#Membrane#Deformable#Mirror#Array#for#Adap>ve#Op>cs.#In# Op>cal#MEMS#and#Their#Applica>ons#Conference,#2006.# 37# MEMS:#introduc>on# •  Automobile#:#système#N°1#qui#peut#profiter# des#MEMS# • #Contrôle#de#déploiement# # ##de#airbag# • #Contrôle#de#la#dynamique# #du#véhicule# • #Système#de#naviga>on…## 38# MEMS:#introduc>on# •  Téléphonie#mobile#:#applica>on#phare# © 2012• 9 2011 Copyrights © Yole Développement SA. All right reserved. …  to  Smartphones:  where  the  business  is  today. Microphone BAW filters/duplexers RF switch / variable capacitor Oscillator Micro mirror Auto focus Accelerometer Gyroscope Electronic compass Pressure sensor Micro display Proximity sensor 39# MEMS:#introduc>on# Ressources#en#ligne#:## 40#