SlideShare une entreprise Scribd logo
1  sur  12
The Rational Zero Theorem
The Rational Zero Theorem gives a list of possible rational zeros of a
polynomial function. Equivalently, the theorem gives all possible rational
roots of a polynomial equation. Not every number in the list will be a zero of
the function, but every rational zero of the polynomial function will appear
somewhere in the list.

The Rational Zero Theorem

p
If f (x) = anx + an-1x +…+ a1x + a0 has integer coefficients and (where
q
n
n-1
1
0
p
is reduced) is a rational zero, then p is a factor of the constant term
q
n
n

n-1
n-1

a0 and q is a factor of the leading coefficient an.
0
n
EXAMPLE: Using the Rational Zero Theorem
List all possible rational zeros of f (x) = 15x3 + 14x2 − 3x – 2.
Solution

The constant term is –2 and the leading coefficient is 15.
Factors of the constant term, − 2
Factors of the leading coefficient, 15
±1, ± 2
=
±1, ± 3, ± 5, ± 15

Possible rational zeros =

= ±1, ± 2,

2
± 1, ± 3,
3

2
± 1, ± 5,
5

1
2
± 15 , ± 15

Divide
±1
and ± 2
by ± 1.

Divide
±1
and ± 2
by ± 3.

Divide
±1
and ± 2
by ± 5.

Divide
±1
and ± 2
by ± 15.

There are 16 possible rational zeros. The actual solution set to f (x) = 15x3 +
14x2 − 3x – 2 = 0 is {-1, −1/3, 2/5}, which contains 3 of the 16 possible solutions.
EXAMPLE:
Solve:

Solving a Polynomial Equation

x4 − 6x2 − 8x + 24 = 0.

Solution Because we are given an equation, we will use the word "roots,"
rather than "zeros," in the solution process. We begin by listing all possible
rational roots.

Factors of the constant term, 24
Factors of the leading coefficient, 1
±1, ± 2 ± 3, ± 4, ± 6, ± 8, ± 12, ± 24
=
±1
= ±1, ± 2 ± 3, ± 4, ± 6, ± 8, ± 12, ± 24

Possible rational zeros =
EXAMPLE:
Solve:

Solving a Polynomial Equation

x4 − 6x2 − 8x + 24 = 0.

Solution The graph of f (x) = x4 − 6x2 − 8x + 24 is shown the figure below.
Because the x-intercept is 2, we will test 2 by synthetic division and show that
it is a root of the given equation.
2

1
1

0 −6 −8 24
2
4 −4 −24
2 −2 −12 0
The zero remainder
indicates that 2 is a root
of x4 − 6x2 − 8x + 24 = 0.

x-intercept: 2
EXAMPLE:
Solve:

Solving a Polynomial Equation

x4 − 6x2 − 8x + 24 = 0.

Solution

Now we can rewrite the given equation in factored form.
x4 − 6x2 + 8x + 24 = 0
(x – 2)(x3 + 2x2 − 2x − 12) = 0

x–2=0

or

x3 + 2x2 − 2x − 12 = 0

This is the given equation.
This is the result obtained from the
synthetic division.
Set each factor equal to zero.

Now we must continue by factoring x3 + 2x2 - 2x - 12 = 0
EXAMPLE:
Solve:

Solving a Polynomial Equation

x4 − 6x2 − 8x + 24 = 0.

Solution Because the graph turns around at 2, this means that 2 is a root of
even multiplicity. Thus, 2 must also be a root of x3 + 2x2 − 2x − 12 = 0.
These are the coefficients
of x3 + 2x2 − 2x − 12 = 0.

2

1
1

x-intercept: 2

2
2
4

−2 −12
8
12
6
0
The zero remainder
indicates that 2 is a root
of x3 + 2x2 − 2x − 12 = 0.
EXAMPLE:
Solve:
Solution

Solving a Polynomial Equation

x4 − 6x2 − 8x + 24 = 0.
Now we can solve the original equation as follows.
x4 − 6x2 + 8x + 24 = 0

This is the given equation.

(x – 2)(x3 + 2x2 − 2x − 12) = 0
(x – 2)(x – 2)(x2 + 4x + 6) = 0
x–2=0
x=2

or

This was obtained from the first
synthetic division.
This was obtained from the second
synthetic division.

x–2=0
x=2

or

x2 + 4x + 6 = 0

Set each factor equal to zero.

x2 + 4x + 6 = 0

Solve.
EXAMPLE:
Solve:
Solution

Solving a Polynomial Equation

x4 − 6x2 − 8x + 24 = 0.
We can use the quadratic formula to solve x2 + 4x + 6 = 0.

−b ± b 2 − 4ac
x=
2a
−4 ± 42 − 4 ( 1) ( 6 )
=
2 ( 1)
− 4 ± −8
=
2
−4 ± 2i 2
=
2
= −2 ± i 2

We use the quadratic formula because x2 + 4x + 6
= 0 cannot be factored.
Let a = 1, b = 4, and c = 6.
Multiply and subtract under the radical.
−8 =

4(2)(−1) = 2i 2

Simplify.

The solution set of the original equation is {2, −2 − i 2, −2 + ii 2 }.
Properties of Polynomial Equations
1. If a polynomial equation is of degree n, then counting multiple roots
separately, the equation has n roots.
2. If a + bi is a root of a polynomial equation (b ≠ 0), then the non-real
complex number a − bi is also a root. Non-real complex roots, if
they exist, occur in conjugate pairs.
Descartes' Rule of Signs
n
n−1
2
…
If f (x) = anxn + an−1xn−1 + … + a2x2 + a1x + a0 be a polynomial with real
n
n−1
2
1
0
coefficients.
1. The number of positive real zeros of f is either equal to the number
of sign changes of f (x) or is less than that number by an even integer.
If there is only one variation in sign, there is exactly one positive real
zero.
2. The number of negative real zeros of f is either equal to the number
of sign changes of f (−x) or is less than that number by an even
integer. If f (−x) has only one variation in sign, then f has exactly one
negative real zero.
EXAMPLE:

Using Descartes’ Rule of Signs

Determine the possible number of positive and negative real zeros of
f (x) = x3 + 2x2 + 5x + 4.
Solution
1. To find possibilities for positive real zeros, count the number of sign
changes in the equation for f (x). Because all the terms are positive, there
are no variations in sign. Thus, there are no positive real zeros.
2. To find possibilities for negative real zeros, count the number of sign
changes in the equation for f (−x). We obtain this equation by replacing x
with −x in the given function.
f (x) = x3 + 2x2 + 5x + 4
Replace x with −x.

f (−x) = (−x)3 + 2(−x)2 + 5(−x) + 4
= −x3 + 2x2 − 5x + 4

This is the given polynomial function.
EXAMPLE:

Using Descartes’ Rule of Signs

Determine the possible number of positive and negative real zeros of
f (x) = x3 + 2x2 + 5x + 4.
Solution
Now count the sign changes.
f (−x) = −x3 + 2x2 − 5x + 4
1

2

3

There are three variations in sign.
# of negative real zeros of f is either equal to 3, or is less than this number by
an even integer.
This means that there are either 3 negative real zeros
or 3 − 2 = 1 negative real zero.

Contenu connexe

Tendances

2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubesjennoga08
 
Adding and subtracting polynomials
Adding and subtracting polynomialsAdding and subtracting polynomials
Adding and subtracting polynomialsholmsted
 
Integers: Addition and Subtraction
Integers: Addition and SubtractionIntegers: Addition and Subtraction
Integers: Addition and SubtractionCarlo Luna
 
Factoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFactoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFree Math Powerpoints
 
Operations with rational numbers
Operations with rational numbersOperations with rational numbers
Operations with rational numbersKelly Scallion
 
Rational Root Theorem
Rational Root TheoremRational Root Theorem
Rational Root Theoremcmorgancavo
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremJohn Rome Aranas
 
Addition and subtraction of rational expression
Addition and subtraction of rational expressionAddition and subtraction of rational expression
Addition and subtraction of rational expressionMartinGeraldine
 
Zero and Negative Exponents
Zero and Negative ExponentsZero and Negative Exponents
Zero and Negative ExponentsPassy World
 
Contant, Variable and Algebraic Expressions
Contant, Variable and Algebraic ExpressionsContant, Variable and Algebraic Expressions
Contant, Variable and Algebraic Expressionsabby cruz
 
Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide ShareKristen T
 
Factoring Cubes
Factoring CubesFactoring Cubes
Factoring Cubesswartzje
 
nature of the roots and discriminant
nature of the roots and discriminantnature of the roots and discriminant
nature of the roots and discriminantmaricel mas
 
Multiplying & dividing rational algebraic expressions
Multiplying & dividing rational algebraic expressionsMultiplying & dividing rational algebraic expressions
Multiplying & dividing rational algebraic expressionsmyla gambalan
 
Solving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringSolving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringFree Math Powerpoints
 
Graphs of polynomial functions
Graphs of polynomial functionsGraphs of polynomial functions
Graphs of polynomial functionsCarlos Erepol
 
Factoring the greatest common monomial factor
Factoring the greatest common monomial factorFactoring the greatest common monomial factor
Factoring the greatest common monomial factorNara Cocarelli
 
Rational exponents and radicals
Rational exponents and radicals Rational exponents and radicals
Rational exponents and radicals mooca76
 

Tendances (20)

2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes2/27/12 Special Factoring - Sum & Difference of Two Cubes
2/27/12 Special Factoring - Sum & Difference of Two Cubes
 
Adding and subtracting polynomials
Adding and subtracting polynomialsAdding and subtracting polynomials
Adding and subtracting polynomials
 
Integers: Addition and Subtraction
Integers: Addition and SubtractionIntegers: Addition and Subtraction
Integers: Addition and Subtraction
 
Factoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFactoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two Cubes
 
Operations with rational numbers
Operations with rational numbersOperations with rational numbers
Operations with rational numbers
 
Rational Root Theorem
Rational Root TheoremRational Root Theorem
Rational Root Theorem
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theorem
 
Addition and subtraction of rational expression
Addition and subtraction of rational expressionAddition and subtraction of rational expression
Addition and subtraction of rational expression
 
Zero and Negative Exponents
Zero and Negative ExponentsZero and Negative Exponents
Zero and Negative Exponents
 
Contant, Variable and Algebraic Expressions
Contant, Variable and Algebraic ExpressionsContant, Variable and Algebraic Expressions
Contant, Variable and Algebraic Expressions
 
Direct Variation
Direct VariationDirect Variation
Direct Variation
 
Dividing Polynomials Slide Share
Dividing Polynomials Slide ShareDividing Polynomials Slide Share
Dividing Polynomials Slide Share
 
Factoring Cubes
Factoring CubesFactoring Cubes
Factoring Cubes
 
nature of the roots and discriminant
nature of the roots and discriminantnature of the roots and discriminant
nature of the roots and discriminant
 
Multiplying & dividing rational algebraic expressions
Multiplying & dividing rational algebraic expressionsMultiplying & dividing rational algebraic expressions
Multiplying & dividing rational algebraic expressions
 
Factoring by grouping
Factoring by groupingFactoring by grouping
Factoring by grouping
 
Solving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringSolving Quadratic Equations by Factoring
Solving Quadratic Equations by Factoring
 
Graphs of polynomial functions
Graphs of polynomial functionsGraphs of polynomial functions
Graphs of polynomial functions
 
Factoring the greatest common monomial factor
Factoring the greatest common monomial factorFactoring the greatest common monomial factor
Factoring the greatest common monomial factor
 
Rational exponents and radicals
Rational exponents and radicals Rational exponents and radicals
Rational exponents and radicals
 

En vedette

Polynomial operations (1)
Polynomial operations (1)Polynomial operations (1)
Polynomial operations (1)swartzje
 
AP Calculus Slides November 29, 2007
AP Calculus Slides November 29, 2007AP Calculus Slides November 29, 2007
AP Calculus Slides November 29, 2007Darren Kuropatwa
 
The parent functions
The parent functionsThe parent functions
The parent functionsNorthside ISD
 
7.6 solving logarithmic equations
7.6 solving logarithmic equations7.6 solving logarithmic equations
7.6 solving logarithmic equationsswartzje
 
6.4 solve quadratic equations by completing the square
6.4 solve quadratic equations by completing the square6.4 solve quadratic equations by completing the square
6.4 solve quadratic equations by completing the squareJessica Garcia
 
Notes solving polynomial equations
Notes   solving polynomial equationsNotes   solving polynomial equations
Notes solving polynomial equationsLori Rapp
 
3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphssilvia
 
Math10 teaching guide unit 3
Math10 teaching guide  unit 3Math10 teaching guide  unit 3
Math10 teaching guide unit 3Ronalyn Concordia
 

En vedette (9)

Polynomial operations (1)
Polynomial operations (1)Polynomial operations (1)
Polynomial operations (1)
 
AP Calculus Slides November 29, 2007
AP Calculus Slides November 29, 2007AP Calculus Slides November 29, 2007
AP Calculus Slides November 29, 2007
 
The parent functions
The parent functionsThe parent functions
The parent functions
 
7.6 solving logarithmic equations
7.6 solving logarithmic equations7.6 solving logarithmic equations
7.6 solving logarithmic equations
 
6.4 solve quadratic equations by completing the square
6.4 solve quadratic equations by completing the square6.4 solve quadratic equations by completing the square
6.4 solve quadratic equations by completing the square
 
Notes solving polynomial equations
Notes   solving polynomial equationsNotes   solving polynomial equations
Notes solving polynomial equations
 
3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs3 2 Polynomial Functions And Their Graphs
3 2 Polynomial Functions And Their Graphs
 
Embedded System Basics
Embedded System BasicsEmbedded System Basics
Embedded System Basics
 
Math10 teaching guide unit 3
Math10 teaching guide  unit 3Math10 teaching guide  unit 3
Math10 teaching guide unit 3
 

Similaire à The Rational Zero Theorem and Solving Polynomial Equations

Similaire à The Rational Zero Theorem and Solving Polynomial Equations (20)

Solving Quadratic Equations by Factoring
Solving Quadratic Equations by FactoringSolving Quadratic Equations by Factoring
Solving Quadratic Equations by Factoring
 
Algebra
AlgebraAlgebra
Algebra
 
Zeros of p(x)
Zeros of p(x)Zeros of p(x)
Zeros of p(x)
 
6.2 solve quadratic equations by graphing
6.2 solve quadratic equations by graphing6.2 solve quadratic equations by graphing
6.2 solve quadratic equations by graphing
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
10.4
10.410.4
10.4
 
Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1
 
Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1Mc ty-cubicequations-2009-1
Mc ty-cubicequations-2009-1
 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Maths Project Quadratic Equations
Maths Project Quadratic EquationsMaths Project Quadratic Equations
Maths Project Quadratic Equations
 
Factoring
FactoringFactoring
Factoring
 
Solving quadratics by graphing
Solving quadratics by graphingSolving quadratics by graphing
Solving quadratics by graphing
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
2 5 zeros of poly fn
2 5 zeros of poly fn2 5 zeros of poly fn
2 5 zeros of poly fn
 
Bonus math project
Bonus math projectBonus math project
Bonus math project
 
polynomials_.pdf
polynomials_.pdfpolynomials_.pdf
polynomials_.pdf
 
Chapter 2
Chapter  2Chapter  2
Chapter 2
 
Advance algebra
Advance algebraAdvance algebra
Advance algebra
 
Ch 2
Ch 2Ch 2
Ch 2
 

Plus de swartzje

Algebra 1 - EOC Practice Test
Algebra 1 - EOC Practice TestAlgebra 1 - EOC Practice Test
Algebra 1 - EOC Practice Testswartzje
 
Swartz Factoring
Swartz FactoringSwartz Factoring
Swartz Factoringswartzje
 
POLYNOMIAL NOTES Day #2
POLYNOMIAL NOTES Day #2POLYNOMIAL NOTES Day #2
POLYNOMIAL NOTES Day #2swartzje
 
POLYNOMIALS - Add Subtract Multiply
POLYNOMIALS - Add Subtract MultiplyPOLYNOMIALS - Add Subtract Multiply
POLYNOMIALS - Add Subtract Multiplyswartzje
 
Polynomials Introduction
Polynomials IntroductionPolynomials Introduction
Polynomials Introductionswartzje
 
Sig Figs and Accuracy
Sig Figs and AccuracySig Figs and Accuracy
Sig Figs and Accuracyswartzje
 
Solving Systems - Elimination NOTES
Solving Systems - Elimination NOTESSolving Systems - Elimination NOTES
Solving Systems - Elimination NOTESswartzje
 
Solving Systems by Substitution
Solving Systems by SubstitutionSolving Systems by Substitution
Solving Systems by Substitutionswartzje
 
Literal Equations Wed. 9/9 notes
Literal Equations Wed. 9/9 notesLiteral Equations Wed. 9/9 notes
Literal Equations Wed. 9/9 notesswartzje
 
Solving Linear Equations with Notes
Solving Linear Equations with NotesSolving Linear Equations with Notes
Solving Linear Equations with Notesswartzje
 
4 1 15 notes
4 1 15 notes4 1 15 notes
4 1 15 notesswartzje
 
16.6 Quadratic Formula & Discriminant
16.6 Quadratic Formula & Discriminant16.6 Quadratic Formula & Discriminant
16.6 Quadratic Formula & Discriminantswartzje
 
16.4 solving quadratics by completing the square
16.4 solving quadratics by completing the square16.4 solving quadratics by completing the square
16.4 solving quadratics by completing the squareswartzje
 
16.2 Solving by Factoring
16.2 Solving by Factoring16.2 Solving by Factoring
16.2 Solving by Factoringswartzje
 
16.1 Solving Quadratics by square roots
16.1 Solving Quadratics by square roots16.1 Solving Quadratics by square roots
16.1 Solving Quadratics by square rootsswartzje
 
Factoring 15.3 and 15.4 Grouping and Trial and Error
Factoring 15.3 and 15.4 Grouping and Trial and ErrorFactoring 15.3 and 15.4 Grouping and Trial and Error
Factoring 15.3 and 15.4 Grouping and Trial and Errorswartzje
 
15.2 factoring x2+bx+c
15.2 factoring x2+bx+c15.2 factoring x2+bx+c
15.2 factoring x2+bx+cswartzje
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Groupingswartzje
 
Multiplying special binomials
Multiplying special binomialsMultiplying special binomials
Multiplying special binomialsswartzje
 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomialsswartzje
 

Plus de swartzje (20)

Algebra 1 - EOC Practice Test
Algebra 1 - EOC Practice TestAlgebra 1 - EOC Practice Test
Algebra 1 - EOC Practice Test
 
Swartz Factoring
Swartz FactoringSwartz Factoring
Swartz Factoring
 
POLYNOMIAL NOTES Day #2
POLYNOMIAL NOTES Day #2POLYNOMIAL NOTES Day #2
POLYNOMIAL NOTES Day #2
 
POLYNOMIALS - Add Subtract Multiply
POLYNOMIALS - Add Subtract MultiplyPOLYNOMIALS - Add Subtract Multiply
POLYNOMIALS - Add Subtract Multiply
 
Polynomials Introduction
Polynomials IntroductionPolynomials Introduction
Polynomials Introduction
 
Sig Figs and Accuracy
Sig Figs and AccuracySig Figs and Accuracy
Sig Figs and Accuracy
 
Solving Systems - Elimination NOTES
Solving Systems - Elimination NOTESSolving Systems - Elimination NOTES
Solving Systems - Elimination NOTES
 
Solving Systems by Substitution
Solving Systems by SubstitutionSolving Systems by Substitution
Solving Systems by Substitution
 
Literal Equations Wed. 9/9 notes
Literal Equations Wed. 9/9 notesLiteral Equations Wed. 9/9 notes
Literal Equations Wed. 9/9 notes
 
Solving Linear Equations with Notes
Solving Linear Equations with NotesSolving Linear Equations with Notes
Solving Linear Equations with Notes
 
4 1 15 notes
4 1 15 notes4 1 15 notes
4 1 15 notes
 
16.6 Quadratic Formula & Discriminant
16.6 Quadratic Formula & Discriminant16.6 Quadratic Formula & Discriminant
16.6 Quadratic Formula & Discriminant
 
16.4 solving quadratics by completing the square
16.4 solving quadratics by completing the square16.4 solving quadratics by completing the square
16.4 solving quadratics by completing the square
 
16.2 Solving by Factoring
16.2 Solving by Factoring16.2 Solving by Factoring
16.2 Solving by Factoring
 
16.1 Solving Quadratics by square roots
16.1 Solving Quadratics by square roots16.1 Solving Quadratics by square roots
16.1 Solving Quadratics by square roots
 
Factoring 15.3 and 15.4 Grouping and Trial and Error
Factoring 15.3 and 15.4 Grouping and Trial and ErrorFactoring 15.3 and 15.4 Grouping and Trial and Error
Factoring 15.3 and 15.4 Grouping and Trial and Error
 
15.2 factoring x2+bx+c
15.2 factoring x2+bx+c15.2 factoring x2+bx+c
15.2 factoring x2+bx+c
 
Factoring GCF and Grouping
Factoring GCF and GroupingFactoring GCF and Grouping
Factoring GCF and Grouping
 
Multiplying special binomials
Multiplying special binomialsMultiplying special binomials
Multiplying special binomials
 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomials
 

Dernier

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 

Dernier (20)

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 

The Rational Zero Theorem and Solving Polynomial Equations

  • 1. The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all possible rational roots of a polynomial equation. Not every number in the list will be a zero of the function, but every rational zero of the polynomial function will appear somewhere in the list. The Rational Zero Theorem p If f (x) = anx + an-1x +…+ a1x + a0 has integer coefficients and (where q n n-1 1 0 p is reduced) is a rational zero, then p is a factor of the constant term q n n n-1 n-1 a0 and q is a factor of the leading coefficient an. 0 n
  • 2. EXAMPLE: Using the Rational Zero Theorem List all possible rational zeros of f (x) = 15x3 + 14x2 − 3x – 2. Solution The constant term is –2 and the leading coefficient is 15. Factors of the constant term, − 2 Factors of the leading coefficient, 15 ±1, ± 2 = ±1, ± 3, ± 5, ± 15 Possible rational zeros = = ±1, ± 2, 2 ± 1, ± 3, 3 2 ± 1, ± 5, 5 1 2 ± 15 , ± 15 Divide ±1 and ± 2 by ± 1. Divide ±1 and ± 2 by ± 3. Divide ±1 and ± 2 by ± 5. Divide ±1 and ± 2 by ± 15. There are 16 possible rational zeros. The actual solution set to f (x) = 15x3 + 14x2 − 3x – 2 = 0 is {-1, −1/3, 2/5}, which contains 3 of the 16 possible solutions.
  • 3. EXAMPLE: Solve: Solving a Polynomial Equation x4 − 6x2 − 8x + 24 = 0. Solution Because we are given an equation, we will use the word "roots," rather than "zeros," in the solution process. We begin by listing all possible rational roots. Factors of the constant term, 24 Factors of the leading coefficient, 1 ±1, ± 2 ± 3, ± 4, ± 6, ± 8, ± 12, ± 24 = ±1 = ±1, ± 2 ± 3, ± 4, ± 6, ± 8, ± 12, ± 24 Possible rational zeros =
  • 4. EXAMPLE: Solve: Solving a Polynomial Equation x4 − 6x2 − 8x + 24 = 0. Solution The graph of f (x) = x4 − 6x2 − 8x + 24 is shown the figure below. Because the x-intercept is 2, we will test 2 by synthetic division and show that it is a root of the given equation. 2 1 1 0 −6 −8 24 2 4 −4 −24 2 −2 −12 0 The zero remainder indicates that 2 is a root of x4 − 6x2 − 8x + 24 = 0. x-intercept: 2
  • 5. EXAMPLE: Solve: Solving a Polynomial Equation x4 − 6x2 − 8x + 24 = 0. Solution Now we can rewrite the given equation in factored form. x4 − 6x2 + 8x + 24 = 0 (x – 2)(x3 + 2x2 − 2x − 12) = 0 x–2=0 or x3 + 2x2 − 2x − 12 = 0 This is the given equation. This is the result obtained from the synthetic division. Set each factor equal to zero. Now we must continue by factoring x3 + 2x2 - 2x - 12 = 0
  • 6. EXAMPLE: Solve: Solving a Polynomial Equation x4 − 6x2 − 8x + 24 = 0. Solution Because the graph turns around at 2, this means that 2 is a root of even multiplicity. Thus, 2 must also be a root of x3 + 2x2 − 2x − 12 = 0. These are the coefficients of x3 + 2x2 − 2x − 12 = 0. 2 1 1 x-intercept: 2 2 2 4 −2 −12 8 12 6 0 The zero remainder indicates that 2 is a root of x3 + 2x2 − 2x − 12 = 0.
  • 7. EXAMPLE: Solve: Solution Solving a Polynomial Equation x4 − 6x2 − 8x + 24 = 0. Now we can solve the original equation as follows. x4 − 6x2 + 8x + 24 = 0 This is the given equation. (x – 2)(x3 + 2x2 − 2x − 12) = 0 (x – 2)(x – 2)(x2 + 4x + 6) = 0 x–2=0 x=2 or This was obtained from the first synthetic division. This was obtained from the second synthetic division. x–2=0 x=2 or x2 + 4x + 6 = 0 Set each factor equal to zero. x2 + 4x + 6 = 0 Solve.
  • 8. EXAMPLE: Solve: Solution Solving a Polynomial Equation x4 − 6x2 − 8x + 24 = 0. We can use the quadratic formula to solve x2 + 4x + 6 = 0. −b ± b 2 − 4ac x= 2a −4 ± 42 − 4 ( 1) ( 6 ) = 2 ( 1) − 4 ± −8 = 2 −4 ± 2i 2 = 2 = −2 ± i 2 We use the quadratic formula because x2 + 4x + 6 = 0 cannot be factored. Let a = 1, b = 4, and c = 6. Multiply and subtract under the radical. −8 = 4(2)(−1) = 2i 2 Simplify. The solution set of the original equation is {2, −2 − i 2, −2 + ii 2 }.
  • 9. Properties of Polynomial Equations 1. If a polynomial equation is of degree n, then counting multiple roots separately, the equation has n roots. 2. If a + bi is a root of a polynomial equation (b ≠ 0), then the non-real complex number a − bi is also a root. Non-real complex roots, if they exist, occur in conjugate pairs.
  • 10. Descartes' Rule of Signs n n−1 2 … If f (x) = anxn + an−1xn−1 + … + a2x2 + a1x + a0 be a polynomial with real n n−1 2 1 0 coefficients. 1. The number of positive real zeros of f is either equal to the number of sign changes of f (x) or is less than that number by an even integer. If there is only one variation in sign, there is exactly one positive real zero. 2. The number of negative real zeros of f is either equal to the number of sign changes of f (−x) or is less than that number by an even integer. If f (−x) has only one variation in sign, then f has exactly one negative real zero.
  • 11. EXAMPLE: Using Descartes’ Rule of Signs Determine the possible number of positive and negative real zeros of f (x) = x3 + 2x2 + 5x + 4. Solution 1. To find possibilities for positive real zeros, count the number of sign changes in the equation for f (x). Because all the terms are positive, there are no variations in sign. Thus, there are no positive real zeros. 2. To find possibilities for negative real zeros, count the number of sign changes in the equation for f (−x). We obtain this equation by replacing x with −x in the given function. f (x) = x3 + 2x2 + 5x + 4 Replace x with −x. f (−x) = (−x)3 + 2(−x)2 + 5(−x) + 4 = −x3 + 2x2 − 5x + 4 This is the given polynomial function.
  • 12. EXAMPLE: Using Descartes’ Rule of Signs Determine the possible number of positive and negative real zeros of f (x) = x3 + 2x2 + 5x + 4. Solution Now count the sign changes. f (−x) = −x3 + 2x2 − 5x + 4 1 2 3 There are three variations in sign. # of negative real zeros of f is either equal to 3, or is less than this number by an even integer. This means that there are either 3 negative real zeros or 3 − 2 = 1 negative real zero.