SlideShare une entreprise Scribd logo
1  sur  46
University of Zagreb
Faculty of Electrical Engineering and Computing
Analysis of Signal Propagation in
Optical Fiber Based on
Finite - Difference Method
Sonja Zentner Pilinsky
Doctoral Thesis, Zagreb, 2003
2
Contents:
1. Introduction
2. Pulse propagation in optical fiber
3. Numerical model and its accuracy
4. Selected simulation results
5. Conclusions
3
1. Introduction
♦Motivation and goal
♦What we model
♦How we model
♦Additional devices needed
4
Motivation
- need for accurate program with all effects included:
new sophisticated optical links
upgrade of existing fiber links
- expensive experiments
why to model optical link
- linear fiber communications at the edge (bit rates, capacity)
- optical transmission very sensitive to:
dispersion (cromatic, polarization mode)
loss
nonlinear effects
noise
5
Goal - to model modern optical links
dispersion map
6
What we model
Nonlinear Schrödinger equation (NLSE)
0
2
2 2
ω=ω
 β
β =  
ω 
d
d
nonlinear coeff.
describing SPM
fiber loss in dB/km
time
1
1
gv
β =
distance along fiber
optical pulse
complex envelope
2 0ω
γ =
eff
n
cA
7
How we model
- FDM → Cranck - Nicholson
- pseudospectral → SSFM
- testing accuracy on canonical problems
- comparison with OptiSystem 2.0.
Models for additional devices
- EDFA model (G, ASE noise)
- Optical filter model (transfer function)
8
2. Pulse propagation in optical fiber
♦Propagation equation
♦Fiber loss
♦Group velocity dispersion
♦Self - phase modulation
♦Polarization dispersion
9
Maxwell equations
0
f
t
t
∂
∇ × = −
∂
∂
∇ × = +
∂
∇ ⋅ = ρ
∇ ⋅ =
f
B
E
D
H J
D
B
0
0
= ε +
= µ +
D E P
B H M
Optical fiber:
-no sources Jf ,ρf = 0
-nonmag.mat M = 0
( ) ( )
( ) ( )1
0, ,L t t t t dt
∝
−∝
′ ′ ′= ε χ − ⋅∫P r E r
( ) ( )
( ) ( ) ( ) ( )3
0 1 2 3 1 2 3 1 2 3, , , , , ,NL ijklt t t t t t t t t t dt dt dt
∝ ∝ ∝
−∝ −∝ −∝
= ε χ − − −∫ ∫ ∫P r E r E r E r
10
Assumption and approximation:
( ) ( ) 2
/∇ ∇ ⋅ = ∇ ⋅∇ε ε << ∇E E E
( ) 2 2
∇ × ∇ × = ∇ ∇ ⋅ − ∇ ≈ −∇E E E E
WGA ∆ ≈ (ncore – ncladding)/ ncore << 1
- the EM field maintains its polarization along the fiber
- Weakly guiding approximation
11
- PNL is treated as a small perturbation to PL
- nonlinear effects: Kerr and Raman (neglected for T0 > 1ps)
instantaneous
response
( )
( ) ( )
( ) ( ) ( )3 3
1 2 3 1 2 3, ,ijkl t t t t t t t t t t t tχ − − − = χ δ − δ − δ −
- SVEA - slowly varying envelope approximation
- envelope is slowly varying in z and t
- removes backscattered part of the envelope
( )0 , 1 L NLk
c
ω
= ε ω = + ε + ε
( ) ( ) ( )
( )
23
0
3
, , , ,
4
NL NL NLP t E t E t= ε ε ε = χr r r
12
( )
( )
( )
2
2
32 0 0
4
,
2 3
,
8
,
I
xxxx eff
eff eff
F x y dxdy
n k Z
A
A n cA
F x y dxdy
∝ ∝
−∝ −∝
∝ ∝
−∝ −∝
 
 
ω  γ = = χ =
∫ ∫
∫ ∫
Propagation equation for pulse complex envelope:
SVEA assumption: ° ( ) ( ) ° ( ) 0
0 0, , , ej z
E F x y A z β
ω − ω = ω − ωr
HE11 mode ( )
( )
( ) ( )
0
0
,
,
,
a
J a
F x y a
J a e a
−γ ρ−
 κρ ρ ≤

= 
κ ρ ≥
ρ
13
- α [dB/km]=-10log-α[1/km]
- absorption (intrinsic and extrinsic)
- scattering - linear: Rayleigh and Mie
- nonlinear: Raman and Brillouin
Fiber loss:
14
- caused by material and waveguide dispersion
- mathematically described by
( ) ( ) ( ) ( ) ( )
2 3
0 1 0 2 0 3 0
1 1
..
2 3!
.
ω
β ω = ω = β +β ω− ω + β ω− ω + β ω− ω +n
c
1
1 ps
km
g
g
n
c v
 
β = =  
 
( ) ( )
0 0
2 23 2
0
2 2 2 2
ps
2
d n d n
c d c d kmω=ω λ=λ
ω λ  ω λ
β ≈ ≈  
ω π λ  
( ) ( )
0 0
2 3 3
3 02 3
1 ps
3
km
d n d n
c d dω=ω ω=ω
 ω ω  
 β = + ω  
ω ω    
2
0
2
D
T
L =
β
3
0
3
D
T
L′ =
β
Group velocity
dispersion:
15
( ) ( )
2
2
2,
2
I
E
n E n n
Z
ω = ω +Kerr effect
SPM
XPM
FWM
2 0 2 0 1
Wkm
I I
eff eff
n k n
A cA
ω  
γ = =  
 
SPM without dispersion:
2
00
,
1
,
z
NL
NL
U j
e U U
z L
A
U L
PP
−α∂
=
∂
= =
γ
Self Phase
Modulation:
( ) ( ) ( )0 2
2 2 I
n z n I t z
π π 
Φ = ω + Φ + ω ⋅ 
λ λ 
( ) ( ) ( )
( ) ( )
,
2
, 0,
1
, 0, ,
NLi z T
z
eff
NL eff
NL
U z T U T e
z e
z T U T z
L
Φ
−α
=
−
Φ = =
α
16
Polarization mode dispersion
- caused by circular asymmetries in the fiber
- locally birefringence
2
x y
x y
n
c c
n n
ω ω π
∆β = β − β = − = ∆
λ 1 1
2
B
x y
L
n
λ π
= =
∆ β − β
- measure of pulse splitting in biref. fiber - DGD
g
L d n d n
L L
v d c c d
∆β ∆ ω ∆ 
∆τ = = = + 
∆ ω ω 
17
2
22
2 2
2
2 2
2 2
2
2 2 2 3
2
2 2 2 3
x x x
x x y x
y y y
y y x y
A A Aj
A j A A A
z t t
A A Aj
A j A A A
z t t
∂ ∂ ∂∆β α  
+ + β + = γ +  
∂ ∂ ∂  

∂ ∂ ∂∆β α   − + β + = γ +  ∂ ∂ ∂  
PMD (cont.)
- alternative method for linear optical element
( ) ( )
( ) ( )
,out in
a b
b a∗ ∗
 ω ω
= ⋅ =  
 − ω ω 
J A J A
0
00
2 2
0 0 0
1
x
y
j
xx
j
y y
x y
a eE
EE a e
E E E
φ
φ
  
= =        
= +
J
DGD ( ) ( ) ( )
2 2
2 a b′ ′∆τ ω = ω + ω a’(ω) ≈ [a(ω+∆ω) – a(ω)] / ∆ω
- globally - birefringence combined with random
polarization mode coupling:
18
3. Numerical model and its accuracy
♦FDM or SSFM ?
♦Accuracy check and comparison with
OptiSystem 2.0
♦EDFA model and filter model
19
- FDMs: Crank - Nicholson scheme
- pseudospectral method: SSFM
Nonlinear PDE modeling:
Criterion for selected FDM model:
- accuracy
- stability
20
- solving numerical scheme to prescribed initial values
and boundary conditions
- errors: modeling, truncation, round-off
FDM steps
- dividing solution region into a grid of nodes
- PDE → finite difference equivalent (numerical stability!!)
21
Derivative Finite difference approximation Type Error
1i i
t
+ψ −ψ
∆
FD O(∆t)
1i i
t
+ψ −ψ
∆
BD O(∆t)
1 1
2
i i
t
+ −ψ −ψ
∆
CD O(∆t2
)
2 14 3
2
i i i
t
+ +−ψ + ψ − ψ
∆
FD O(∆t2
)
1 23 4
2
i i i
t
− −ψ − ψ +ψ
∆
BD O(∆t2
)
t
′ψ
2 1 1 28 8
12
i i i i
t
+ + − −−ψ + ψ − ψ +ψ
∆
CD O(∆t4
)
( )
2 1
2
2i i i
t
+ +ψ − ψ +ψ
∆
FD O(∆t2
)
( )
1 2
2
2i i i
t
− −ψ − ψ +ψ
∆
BD O(∆t2
)
( )
2 1
2
2i i i
t
+ −ψ − ψ + ψ
∆
CD O(∆t2
)
tt
′′ψ
( )
2 1 1 2
2
16 30 16i i i i i
t
+ + − −−ψ + ψ − ψ + ψ −ψ
∆
CD O(∆t4
)
Accuracy
22
2
2
.
A A
const
z t
∂ ∂
=
∂ ∂
First order (Euler)
( )
1 1
1
2
2
. i i
n n nn n
ii i
const
z t
+ −
+
ψ − ψ + ψψ − ψ
=
∆ ∆
- one step, explicit, unstable
( ) ( )
11 1 11 1
1 1 11
2 2
2 2.
2
i i i i
n n n n n nn n
i ii i const
z t t
+ − + −
+ + ++  ψ − ψ + ψ ψ − ψ + ψψ − ψ
= + 
∆ ∆ ∆  
Crank-Nicholson
- one step, implicit, accurate (1 in z, 2 in t), uncond. stable
( )
1 1
1 1
2
2
.
2
i i
n n nn n
ii i
const
z t
+ −
+ −
ψ − ψ + ψψ − ψ
=
∆ ∆
Leapfrog
- two step, explicit, accurate (2 in z, 2 in t), always unstable
Dufort-Frankel
( )
1 1
1 11 1
2
.
2
i i
n n n nn n
i ii i
const
z t
+ −
+ −+ − ψ − ψ − ψ + ψψ − ψ
=
∆ ∆
- two step, explicit, accurate (2 in z, 2 in t), uncond. stable
Various FDM schemes for eq.
23
Accuracy
1. comparison with analytic solutions for simple problems
2. Comparison with simulations obtained by OptiSystem 2.0
( )
( ) ( )
1
1 1
NM
NM ex
i i
i
NM NM
NM NM ex ex
i i i i
i i
AKC a jb
∗
=
∗ ∗
= =
ψ ψ
= = +
ψ ψ ⋅ ψ ψ
∑
∑ ∑
1
1 NMAX
ex ZMAX
i i
i
ER
NMAX =
= ψ − ψ∑
2
1
1 NM
ex NM
i i
i
SER
NM =
= ψ − ψ∑
Mean error Mean square error
Correlation coefficient
( )
2 2
arg
AKC a b
b
AKC arctg
a
= +
=
Measure of accuracy:
24
M E A N T I M E E R R O R = 2 . 7 1 8 7 0 2 5 7 4 3 9 6 3 5 9 E - 0 0 5
S Q U A R E M T E = 3 . 1 8 8 2 5 1 6 8 9 5 9 1 3 0 2 E - 0 0 9
A U T O C O R R E L A T I O N = 0 . 9 9 9 9 9 7 6 1 3 9 7 3 6 2 8 - j 1 . 3 3 4 9 1 6 9 4 5 0 6 8 7 2 8 E - 0 0 5
| A K C | = 0 . 9 9 9 9 9 7 6 1 4 0 6 2 7 2 9 a r g ( A K C ) = - 7 . 6 4 8 5 2 8 9 4 4 4 3 0 9 6 7 E - 0 0 4
Gaussian pulse
( )
2
2
02
00,
T
T
A T A e
−
=
( ) ( )
2
0
2
0 220
0 2
0 2
,
T
T j zT
A z T A e
T j z
−
− β
=
− β
Analytic solution:
Input pulse:
FDM:
ER = 1.77E-004
SER = 1.36E-007
1-|AKC| = 3.8E-005
arg (AKC)= 7E-004°
SSFM:
ER = 1.88E-004
SER = 1.56E-007
1-|AKC| = 4.4E-005
arg (AKC)= 2.75E-003°
0
0.0005
0.001
0.0015
0.002
0.0025
0.003
1
26
51
76
101
126
151
176
201
226
251
276
301
326
351
376
401
426
451
476
501
number of points in time window
pulsepower[W]
analytic solution
OptiSystem
FiberProp
Input
pulse
fiber
A0 = 0.01 W1/2
α= 0
T0 = 40 ps D = 16 ps/kmnm
λ0 = 1550 nm γ = 0
25
Hyperbolic secant pulse:
2
2
2 2
2 2
A j A
A j A A
z T
∂ ∂ α
+ β + = γ
∂ ∂
2
2 0 0
0 20
, , , D
D NL
PTLA z T
U N
L T LP
γ
= ξ = τ = = =
β
2
22
2 2
sgn
2
U j U
jN U U
∂ ∂
+ β =
∂ξ ∂τ
( ) ( )0, sechu Nτ = τ ( ) ( ) 2
, sech
j
u e
ξ
ξ τ = τ
input pulse analytic solution
input pulse fiber
P0 = 22.6 mW α= 0
T0 = 2.7 ps β2 = -0.243 ps2
/km
λ0 = 1552 nm γ= 1.475 W-1
km-1
-0.0004
-0.0003
-0.0002
-0.0001
0
0.0001
0.0002
0.0003
0.0004
0.0005
0 100 200 300 400 500
number of points in time window
analyticvalue-computersimul.
FiberProp
OptiSystem
normalization:
26
-3.00E-03
-2.00E-03
-1.00E-03
0.00E+00
1.00E-03
2.00E-03
3.00E-03
4.00E-03
0 100 200 300 400 500 600
number of points in time window
analyticsolution-progr.simulation
OptiSystem
FiberProp
Second order soliton pulse: input pulse
analytic solution
( ) ( )0, sechu Nτ = τ
( )
( ) ( )
( ) ( ) ( )
4
2
2cosh 3 6cosh
, 2
cosh 4 4cosh 2 3cos 4
j
j T T e
U T e
T T
ξξ
+
ξ =
+ + ξ
input pulse fiber
P0 = 90.4 mW α= 0
T0 = 2.7 ps β2 = -0.243 ps2
/km
λ0 = 1552 nm γ= 1.475 W-1
km-1
2
0
0
22 2
D
T
z L
π π
= =
β
L = 2z0 = 94.25 km
27
-8.00E-03
-6.00E-03
-4.00E-03
-2.00E-03
0.00E+00
2.00E-03
4.00E-03
6.00E-03
8.00E-03
0 100 200 300 400 500
number of points in time window
analyticalsolution-progr.simulation
OptiSystem
FiberProp
Third order soliton pulse: input pulse
analytic
solution
( ) ( )0, sechu Nτ = τ
L = 5z0 = 235.67 km
( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
4
2
12 8 8 16
2cosh 8 32cosh 2 36cosh 4 16cosh 6
, 3
cosh 9 9cosh 7 64cosh 3 36cosh
20cosh 4 80cosh 2 5 45 20
36cosh 5 cos 4 20cosh 3 cos 12 90cosh cos 8
j
j
j j j j
T T T T e
U T e
T T T T
T T e e e e
T T T
ξξ
ξ −− ξ ξ ξ
 + + + + ξ =
+ + + +
 + + + + 
ξ + ξ + ξ
N = 3
P0 = 203.4 mW
28
4th order soliton pulse - NO analytic solution:
N = 4
P0 = 361.56 mW
L = 2z0 = 94.25 km
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481
number of points in time window
pulsepower[W]
FiberProp
OptiSystem
29
EDFA model
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
1
26
51
76
101
126
151
176
201
226
251
276
301
326
351
376
401
426
451
476
501
number of points in time window
opticalpower[W]
FiberProp
OptiSystem
FIBER:
α = 0.1 dB/km
β2 = -0.243 ps2
/km
γ = 1.475 1/Wkm
INPUT PULSE:
N = 1
P0 = 32.54 mW
T0 = 2.7 ps
λ0 = 1552 nm
EDFA: ∆λ = 30 nm
λ0 = 1552 nm
G = 4.98 dB
nsp = 1.23
30
Filter model
( )
2
0
1 2
1
2
f f
B
 
− − 
 
( )0
1
1 cos
2
f f
B
 π 
+ −  
  
( ) ( )
2
0
2
exp ln 2 f f
B
   
− −  
   
( )
2
0
1
2
1 f f
B
 
+ −  
Parabolic – shape characteristic
Cosine – shape characteristic
Lorentzian – shape characteristic
Gaussian – shape characteristic
Fabry-Perot
filter !!!
31
B
B S
ω 0 f r e q u e n c y
f i l t e r t r a n s f e r f u n c t i o n
s o l i t o n s p e c t r u m
Why are filters used in nonlinear optical links?
• compensation of Gordon-Haus effect
• filtering at the receivers end
Filter model (cont.)
32
4. Selected simulation results
♦FiberProp and its abilities
♦High bit rates soliton systems
♦Gordon-Haus effect and its compensation
♦Dispersion-compensated and
dispersion-managed systems
♦Polarization dispersion
♦Dispersion compensated system
33
Simple FiberProp scheme:
34
fiber param. EDFA param. input pulse
α= 0.1 dB/km ∆λ= 30 nm P0 = 31.48 mW
β2 = -0.243 ps2
/km G = 2.497 dB T0 = 1.543 ps
γ= 3.28 W-1
km-1
nsp = 1.5 λ0 = 1550 nm
40 Gb/s soliton transmission
PRBS
01111010
La = 25 km
L = 500 km
35
80 Gb/s soliton transmission
fiber param. EDFA param. input pulse
α= 0 ∆λ= 30 nm P0 = 38 mW
β2 = -0.243 ps2
/km G = 2.497 dB T0 = 1.543 ps
γ= 3.28 W-1
km-1
nsp = 1.5 λ0 = 1550 nm
PRBS
0011110011100110
La = 25 km
L = 350 km
36
0
0.005
0.01
0.015
0.02
0.025
0.03
1
20
39
58
77
96
115
134
153
172
191
210
229
248
267
286
305
324
343
362
381
400
419
438
457
476
495
number of grid points
power[W]
fiber param. EDFA param. input pulse
α= 0.1 dB/km ∆λ= 30 nm P0 = 14.83 mW
β2 = -0.243 ps2
/km λ0 = 1550 nm T0 = 5 ps
γ= 1.475 W-1
km-1
G = 5 dB N = 1.5
La = 50 km nsp = 2.2 λ0 = 1552 nm
L = 2500 km
tW = 1.5 T0
max 2972.59 kmTL ≤
Gordon-Haus transmission distance limitation:
1 a
a
L
L
Q
e−α⋅
α ⋅
=
−
22
2 c
D
π
= − β
λ
37
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
1
20
39
58
77
96
115
134
153
172
191
210
229
248
267
286
305
324
343
362
381
400
419
438
457
476
495
number of grid points
power[W]
Inserted Fabry-Perot filter
before receiver:
( )
2
0
1
2
1 f f
B
 
+ −  
f0 = 193.414 THz
(λ0 = 1550 nm)
B = 100 GHz
Gordon-Haus transmission distance limitation (cont.):
38
0
0.005
0.01
0.015
0.02
0.025
0.03
1
23
45
67
89
111
133
155
177
199
221
243
265
287
309
331
353
375
397
419
441
463
485
507
number of grid points
power[W]
L = 4000 km
tW = 3 T0 → Ltmax = 4718.7 km
( )
2
3
max
2
0,1372
1
FWHM w eff a
T
sp
T t A L Q
L
n n Dh G
≤
−
Gordon-Haus transmission distance limitation (cont.):
39
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
0.018
1
20
39
58
77
96
115
134
153
172
191
210
229
248
267
286
305
324
343
362
381
400
419
438
457
476
495
number of grid points
power[W]
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
1
20
39
58
77
96
115
134
153
172
191
210
229
248
267
286
305
324
343
362
381
400
419
438
457
476
495
number of grid points
power[W]
Fabry - Perot filter
after each EDFA:
f0 = 193.414 THz
B = 100 GHz
f0 = 193.414 THz
B = 360 GHz
EDFA: G = 5.1081 dB
Inserted Fabry-Perot
filter before receiver:
40
Fiber parameters
Two level disp. map Four level disp.map
α[dB/km] 0.078 0.15
β1″ [ps2
/km] 0.396 0.1275
β2″ [ps2
/km] -0.294 0.051
β3″ [ps2
/km] - -0.0765
β4″ [ps2
/km] - -0.306
βave [ps2
/km] -0.064 -0.051
L1 [km] 30.00 12.5
L2 [km] 60.00 12.5
L3 [km] - 12.5
L4 [km - 12.5
γ [W-1
km-1
] 2.65 2.65
Input pulse shape
sech sech
T0 [ps] 8.56 2.7
N 1.4 1.4
q0 2.92 4.63
Amplifier parameters
La [km] 90 50
G [dB] 7 7.383
λ0 [nm] 1550 1550
∆λ[nm] 30 30
nsp 1 1
DM soliton system:
20 Gb/s
40 Gb/s PRBS
01101110
β2
LL
L2
L1
β21
β22
41
Polarization mode dispersion:
0.E+00
5.E-03
1.E-02
2.E-02
2.E-02
3.E-02
3.E-02
4.E-02
4.E-02
1
22
43
64
85
106
127
148
169
190
211
232
253
274
295
316
337
358
379
400
421
442
463
484
505
number of grid points
power[W]
Fiber param.:
α, β, γ, = 0
∆n = 4.2⋅10-5
h = 4.16 m
L = 64h = 266.24 m
input pulse: Gauss
T0 = 3 ps
P0 = 40 mW
λ0 = 1550 nm
42
N=0.9
N=1.0
N=1.1
N=1.2
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
0 1 2 3 4 5 6 7
soliton periods z/z0
dislocationofpulsest/T0
Fiber parameters:
α = 0
β = -20 ps2
/km
γ = 1.475 1/Wkm
∆n = 4.2⋅10-5
input pulse:
lin. pol. at
45° at fiber axes
T0 = 5 ps
λ0 = 1550 nm
Polarization mode dispersion:
soliton prop. in birefringent fiber:
2
0
0
2
7 7 7
2 2
D
T
L z L
π π
= = =
β
430 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0
5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
Polarization mode dispersion -interaction compensation:
0 .0 0 1 0 . 0 0 2 0 .0 0 3 0 . 0 0 4 0 . 0 0
tim e [p s ]
0 .0 0
1 0 .0 0
2 0 .0 0
3 0 .0 0
4 0 .0 0
5 0 .0 0
6 0 .0 0
7 0 .0 0
8 0 .0 0
distance[km]
L = 85.76 km
Fiber:
α = 0
β2 = -20 ps2
/km
γ = 1.3 1/Wkm
Input pulse:
N = 1
P0 = 32.54 mW
T0 = 2 ps
λ0 = 1552 nm
q 0 = 4
L = 51.46 km
44
Dispersion comp. system:
0 . 0 0 2 0 0 . 0 0 4 0 0 . 0 0 6 0 0 . 0 0
0 . 0 0
5 0 0 . 0 0
1 0 0 0 . 0 0
1 5 0 0 . 0 0
2 0 0 0 . 0 0
( )
2
0
1
2
00,
m
T
T
A T A e
 
−  
 
= Super Gauss (m=3)
T0 = 50 ps
P0 = 0.66 mW
λ0 = 1557.6 nm
FIBER PARAMETERS:
L1 = 89.8 km L2 = 16.2 km
L1 = 23⋅(L1 + L2) = 2438 km
α1 = 0.05231 1/km α2 = 0.13 1/km
β21 = -22.23 ps/km β22 = 119.48 ps/km
γ1 = γ2 = 1.35 1/Wkm
EDFA:
∆λ = 10 nm
λ0 = 1557.6 nm
G = 9.8 dB
nsp = 2.78
FABRY-PEROT FILTER:
f0 = 192.6 THz
B = 370 GHz
45
Conclusions:
♦The derivation of optical pulse propagation equation is given
in details. All important effects influencing pulse propagation
in optical fiber are analyzed: fiber loss, cromatic dispersion,
polarization mode dispersion, nonlinear effects (especially
self-phase modulation)
♦Several numerical models are analyzed and the most
accurate one chosen for propagation equation modeling.
The accuracy is tested on simple canonical problems and
later on compared with commercially available software.
♦EDFA model strictly in time domain is developed, with
special attention given to ASE noise model. EDFA model and
optical filter model are included in computer program
FiberProp
46
♦ The new approach to Gordon-Haus limitation derivation is
given. Timing jitter due to Gordon-Haus effect and its
suppression was analyzed with the FiberProp computer
program.
♦ Numerous examples of soliton and dispersion-managed
soliton transmission systems are analyzed and guidelines
for their design are given.
Conclusions (cont.):

Contenu connexe

Tendances

6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loopsSolo Hermelin
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析Simen Li
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineeringmanish katara
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisSimen Li
 
MOSFET Simulation (16FEB2012) in PDF
MOSFET Simulation (16FEB2012) in PDFMOSFET Simulation (16FEB2012) in PDF
MOSFET Simulation (16FEB2012) in PDFTsuyoshi Horigome
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Simen Li
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma ediciónSohar Carr
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisSimen Li
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
MOSFET Simulation (16FEB2012)
MOSFET Simulation (16FEB2012)MOSFET Simulation (16FEB2012)
MOSFET Simulation (16FEB2012)Tsuyoshi Horigome
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
Concept of-complex-frequency
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequencyVishal Thakur
 
Solution of simplified neutron diffusion equation by FDM
Solution of simplified neutron diffusion equation by FDMSolution of simplified neutron diffusion equation by FDM
Solution of simplified neutron diffusion equation by FDMSyeilendra Pramuditya
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutionskhemraj298
 

Tendances (20)

Ee gate-2011
Ee gate-2011 Ee gate-2011
Ee gate-2011
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
MOSFET Simulation (16FEB2012) in PDF
MOSFET Simulation (16FEB2012) in PDFMOSFET Simulation (16FEB2012) in PDF
MOSFET Simulation (16FEB2012) in PDF
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
Capitulo 2, 7ma edición
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
Finite Difference Method
Finite Difference MethodFinite Difference Method
Finite Difference Method
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
Ee gate'14-paper-01
Ee gate'14-paper-01Ee gate'14-paper-01
Ee gate'14-paper-01
 
MOSFET Simulation (16FEB2012)
MOSFET Simulation (16FEB2012)MOSFET Simulation (16FEB2012)
MOSFET Simulation (16FEB2012)
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
Concept of-complex-frequency
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequency
 
Solution of simplified neutron diffusion equation by FDM
Solution of simplified neutron diffusion equation by FDMSolution of simplified neutron diffusion equation by FDM
Solution of simplified neutron diffusion equation by FDM
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
 

En vedette

Dispersion-Management-of-Optical-Fiber-Presented-by-Titas-Sarker
Dispersion-Management-of-Optical-Fiber-Presented-by-Titas-SarkerDispersion-Management-of-Optical-Fiber-Presented-by-Titas-Sarker
Dispersion-Management-of-Optical-Fiber-Presented-by-Titas-SarkerTitas Sarker
 
ppt on dispersion
ppt on dispersionppt on dispersion
ppt on dispersionAvni Jain
 
Fiber optic and light propagation
Fiber optic and light propagationFiber optic and light propagation
Fiber optic and light propagationmakhfudzah
 
Dispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber CommunicationDispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber CommunicationAmit Raikar
 
application of fibre optics in communication
application of fibre optics in communicationapplication of fibre optics in communication
application of fibre optics in communicationRimmi07
 
Presentation about Fiber Optics
Presentation about Fiber OpticsPresentation about Fiber Optics
Presentation about Fiber OpticsAbidullah Zarghoon
 
02 optical fiber-waveguides
02 optical fiber-waveguides02 optical fiber-waveguides
02 optical fiber-waveguidesMuhammad Saad
 
Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction systemrahulohlan14
 

En vedette (11)

Dispersion-Management-of-Optical-Fiber-Presented-by-Titas-Sarker
Dispersion-Management-of-Optical-Fiber-Presented-by-Titas-SarkerDispersion-Management-of-Optical-Fiber-Presented-by-Titas-Sarker
Dispersion-Management-of-Optical-Fiber-Presented-by-Titas-Sarker
 
optical fiber
optical fiberoptical fiber
optical fiber
 
ppt on dispersion
ppt on dispersionppt on dispersion
ppt on dispersion
 
Fiber optic and light propagation
Fiber optic and light propagationFiber optic and light propagation
Fiber optic and light propagation
 
Dispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber CommunicationDispersion Compensation Techniques for Optical Fiber Communication
Dispersion Compensation Techniques for Optical Fiber Communication
 
Losses in optical fiber
Losses in optical fiberLosses in optical fiber
Losses in optical fiber
 
application of fibre optics in communication
application of fibre optics in communicationapplication of fibre optics in communication
application of fibre optics in communication
 
Presentation about Fiber Optics
Presentation about Fiber OpticsPresentation about Fiber Optics
Presentation about Fiber Optics
 
OPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPTOPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPT
 
02 optical fiber-waveguides
02 optical fiber-waveguides02 optical fiber-waveguides
02 optical fiber-waveguides
 
Optical fiber communiction system
Optical fiber communiction systemOptical fiber communiction system
Optical fiber communiction system
 

Similaire à Ph ddefence

Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Shizuoka Inst. Science and Tech.
 
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...Pioneer Natural Resources
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介Simen Li
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structuresHaHoangJR
 
First order active rc sections hw1
First order active rc sections hw1First order active rc sections hw1
First order active rc sections hw1Hoopeer Hoopeer
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Asynchronous Differential Distributed Space-Time Coding
Asynchronous Differential Distributed Space-Time CodingAsynchronous Differential Distributed Space-Time Coding
Asynchronous Differential Distributed Space-Time Codingmravendi
 
Measures of dispersion - united world school of business
Measures of dispersion -  united world school of businessMeasures of dispersion -  united world school of business
Measures of dispersion - united world school of businessUnitedworld School Of Business
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systemsHouw Liong The
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 

Similaire à Ph ddefence (20)

Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
 
Filter design1
Filter design1Filter design1
Filter design1
 
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
DSP 2
DSP 2DSP 2
DSP 2
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
DSP.ppt
DSP.pptDSP.ppt
DSP.ppt
 
First order active rc sections hw1
First order active rc sections hw1First order active rc sections hw1
First order active rc sections hw1
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Asynchronous Differential Distributed Space-Time Coding
Asynchronous Differential Distributed Space-Time CodingAsynchronous Differential Distributed Space-Time Coding
Asynchronous Differential Distributed Space-Time Coding
 
Measures of dispersion - united world school of business
Measures of dispersion -  united world school of businessMeasures of dispersion -  united world school of business
Measures of dispersion - united world school of business
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Dispersion
DispersionDispersion
Dispersion
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 

Dernier

Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 

Dernier (20)

Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 

Ph ddefence

  • 1. University of Zagreb Faculty of Electrical Engineering and Computing Analysis of Signal Propagation in Optical Fiber Based on Finite - Difference Method Sonja Zentner Pilinsky Doctoral Thesis, Zagreb, 2003
  • 2. 2 Contents: 1. Introduction 2. Pulse propagation in optical fiber 3. Numerical model and its accuracy 4. Selected simulation results 5. Conclusions
  • 3. 3 1. Introduction ♦Motivation and goal ♦What we model ♦How we model ♦Additional devices needed
  • 4. 4 Motivation - need for accurate program with all effects included: new sophisticated optical links upgrade of existing fiber links - expensive experiments why to model optical link - linear fiber communications at the edge (bit rates, capacity) - optical transmission very sensitive to: dispersion (cromatic, polarization mode) loss nonlinear effects noise
  • 5. 5 Goal - to model modern optical links dispersion map
  • 6. 6 What we model Nonlinear Schrödinger equation (NLSE) 0 2 2 2 ω=ω  β β =   ω  d d nonlinear coeff. describing SPM fiber loss in dB/km time 1 1 gv β = distance along fiber optical pulse complex envelope 2 0ω γ = eff n cA
  • 7. 7 How we model - FDM → Cranck - Nicholson - pseudospectral → SSFM - testing accuracy on canonical problems - comparison with OptiSystem 2.0. Models for additional devices - EDFA model (G, ASE noise) - Optical filter model (transfer function)
  • 8. 8 2. Pulse propagation in optical fiber ♦Propagation equation ♦Fiber loss ♦Group velocity dispersion ♦Self - phase modulation ♦Polarization dispersion
  • 9. 9 Maxwell equations 0 f t t ∂ ∇ × = − ∂ ∂ ∇ × = + ∂ ∇ ⋅ = ρ ∇ ⋅ = f B E D H J D B 0 0 = ε + = µ + D E P B H M Optical fiber: -no sources Jf ,ρf = 0 -nonmag.mat M = 0 ( ) ( ) ( ) ( )1 0, ,L t t t t dt ∝ −∝ ′ ′ ′= ε χ − ⋅∫P r E r ( ) ( ) ( ) ( ) ( ) ( )3 0 1 2 3 1 2 3 1 2 3, , , , , ,NL ijklt t t t t t t t t t dt dt dt ∝ ∝ ∝ −∝ −∝ −∝ = ε χ − − −∫ ∫ ∫P r E r E r E r
  • 10. 10 Assumption and approximation: ( ) ( ) 2 /∇ ∇ ⋅ = ∇ ⋅∇ε ε << ∇E E E ( ) 2 2 ∇ × ∇ × = ∇ ∇ ⋅ − ∇ ≈ −∇E E E E WGA ∆ ≈ (ncore – ncladding)/ ncore << 1 - the EM field maintains its polarization along the fiber - Weakly guiding approximation
  • 11. 11 - PNL is treated as a small perturbation to PL - nonlinear effects: Kerr and Raman (neglected for T0 > 1ps) instantaneous response ( ) ( ) ( ) ( ) ( ) ( )3 3 1 2 3 1 2 3, ,ijkl t t t t t t t t t t t tχ − − − = χ δ − δ − δ − - SVEA - slowly varying envelope approximation - envelope is slowly varying in z and t - removes backscattered part of the envelope ( )0 , 1 L NLk c ω = ε ω = + ε + ε ( ) ( ) ( ) ( ) 23 0 3 , , , , 4 NL NL NLP t E t E t= ε ε ε = χr r r
  • 12. 12 ( ) ( ) ( ) 2 2 32 0 0 4 , 2 3 , 8 , I xxxx eff eff eff F x y dxdy n k Z A A n cA F x y dxdy ∝ ∝ −∝ −∝ ∝ ∝ −∝ −∝     ω  γ = = χ = ∫ ∫ ∫ ∫ Propagation equation for pulse complex envelope: SVEA assumption: ° ( ) ( ) ° ( ) 0 0 0, , , ej z E F x y A z β ω − ω = ω − ωr HE11 mode ( ) ( ) ( ) ( ) 0 0 , , , a J a F x y a J a e a −γ ρ−  κρ ρ ≤  =  κ ρ ≥ ρ
  • 13. 13 - α [dB/km]=-10log-α[1/km] - absorption (intrinsic and extrinsic) - scattering - linear: Rayleigh and Mie - nonlinear: Raman and Brillouin Fiber loss:
  • 14. 14 - caused by material and waveguide dispersion - mathematically described by ( ) ( ) ( ) ( ) ( ) 2 3 0 1 0 2 0 3 0 1 1 .. 2 3! . ω β ω = ω = β +β ω− ω + β ω− ω + β ω− ω +n c 1 1 ps km g g n c v   β = =     ( ) ( ) 0 0 2 23 2 0 2 2 2 2 ps 2 d n d n c d c d kmω=ω λ=λ ω λ  ω λ β ≈ ≈   ω π λ   ( ) ( ) 0 0 2 3 3 3 02 3 1 ps 3 km d n d n c d dω=ω ω=ω  ω ω    β = + ω   ω ω     2 0 2 D T L = β 3 0 3 D T L′ = β Group velocity dispersion:
  • 15. 15 ( ) ( ) 2 2 2, 2 I E n E n n Z ω = ω +Kerr effect SPM XPM FWM 2 0 2 0 1 Wkm I I eff eff n k n A cA ω   γ = =     SPM without dispersion: 2 00 , 1 , z NL NL U j e U U z L A U L PP −α∂ = ∂ = = γ Self Phase Modulation: ( ) ( ) ( )0 2 2 2 I n z n I t z π π  Φ = ω + Φ + ω ⋅  λ λ  ( ) ( ) ( ) ( ) ( ) , 2 , 0, 1 , 0, , NLi z T z eff NL eff NL U z T U T e z e z T U T z L Φ −α = − Φ = = α
  • 16. 16 Polarization mode dispersion - caused by circular asymmetries in the fiber - locally birefringence 2 x y x y n c c n n ω ω π ∆β = β − β = − = ∆ λ 1 1 2 B x y L n λ π = = ∆ β − β - measure of pulse splitting in biref. fiber - DGD g L d n d n L L v d c c d ∆β ∆ ω ∆  ∆τ = = = +  ∆ ω ω 
  • 17. 17 2 22 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 x x x x x y x y y y y y x y A A Aj A j A A A z t t A A Aj A j A A A z t t ∂ ∂ ∂∆β α   + + β + = γ +   ∂ ∂ ∂    ∂ ∂ ∂∆β α   − + β + = γ +  ∂ ∂ ∂   PMD (cont.) - alternative method for linear optical element ( ) ( ) ( ) ( ) ,out in a b b a∗ ∗  ω ω = ⋅ =    − ω ω  J A J A 0 00 2 2 0 0 0 1 x y j xx j y y x y a eE EE a e E E E φ φ    = =         = + J DGD ( ) ( ) ( ) 2 2 2 a b′ ′∆τ ω = ω + ω a’(ω) ≈ [a(ω+∆ω) – a(ω)] / ∆ω - globally - birefringence combined with random polarization mode coupling:
  • 18. 18 3. Numerical model and its accuracy ♦FDM or SSFM ? ♦Accuracy check and comparison with OptiSystem 2.0 ♦EDFA model and filter model
  • 19. 19 - FDMs: Crank - Nicholson scheme - pseudospectral method: SSFM Nonlinear PDE modeling: Criterion for selected FDM model: - accuracy - stability
  • 20. 20 - solving numerical scheme to prescribed initial values and boundary conditions - errors: modeling, truncation, round-off FDM steps - dividing solution region into a grid of nodes - PDE → finite difference equivalent (numerical stability!!)
  • 21. 21 Derivative Finite difference approximation Type Error 1i i t +ψ −ψ ∆ FD O(∆t) 1i i t +ψ −ψ ∆ BD O(∆t) 1 1 2 i i t + −ψ −ψ ∆ CD O(∆t2 ) 2 14 3 2 i i i t + +−ψ + ψ − ψ ∆ FD O(∆t2 ) 1 23 4 2 i i i t − −ψ − ψ +ψ ∆ BD O(∆t2 ) t ′ψ 2 1 1 28 8 12 i i i i t + + − −−ψ + ψ − ψ +ψ ∆ CD O(∆t4 ) ( ) 2 1 2 2i i i t + +ψ − ψ +ψ ∆ FD O(∆t2 ) ( ) 1 2 2 2i i i t − −ψ − ψ +ψ ∆ BD O(∆t2 ) ( ) 2 1 2 2i i i t + −ψ − ψ + ψ ∆ CD O(∆t2 ) tt ′′ψ ( ) 2 1 1 2 2 16 30 16i i i i i t + + − −−ψ + ψ − ψ + ψ −ψ ∆ CD O(∆t4 ) Accuracy
  • 22. 22 2 2 . A A const z t ∂ ∂ = ∂ ∂ First order (Euler) ( ) 1 1 1 2 2 . i i n n nn n ii i const z t + − + ψ − ψ + ψψ − ψ = ∆ ∆ - one step, explicit, unstable ( ) ( ) 11 1 11 1 1 1 11 2 2 2 2. 2 i i i i n n n n n nn n i ii i const z t t + − + − + + ++  ψ − ψ + ψ ψ − ψ + ψψ − ψ = +  ∆ ∆ ∆   Crank-Nicholson - one step, implicit, accurate (1 in z, 2 in t), uncond. stable ( ) 1 1 1 1 2 2 . 2 i i n n nn n ii i const z t + − + − ψ − ψ + ψψ − ψ = ∆ ∆ Leapfrog - two step, explicit, accurate (2 in z, 2 in t), always unstable Dufort-Frankel ( ) 1 1 1 11 1 2 . 2 i i n n n nn n i ii i const z t + − + −+ − ψ − ψ − ψ + ψψ − ψ = ∆ ∆ - two step, explicit, accurate (2 in z, 2 in t), uncond. stable Various FDM schemes for eq.
  • 23. 23 Accuracy 1. comparison with analytic solutions for simple problems 2. Comparison with simulations obtained by OptiSystem 2.0 ( ) ( ) ( ) 1 1 1 NM NM ex i i i NM NM NM NM ex ex i i i i i i AKC a jb ∗ = ∗ ∗ = = ψ ψ = = + ψ ψ ⋅ ψ ψ ∑ ∑ ∑ 1 1 NMAX ex ZMAX i i i ER NMAX = = ψ − ψ∑ 2 1 1 NM ex NM i i i SER NM = = ψ − ψ∑ Mean error Mean square error Correlation coefficient ( ) 2 2 arg AKC a b b AKC arctg a = + = Measure of accuracy:
  • 24. 24 M E A N T I M E E R R O R = 2 . 7 1 8 7 0 2 5 7 4 3 9 6 3 5 9 E - 0 0 5 S Q U A R E M T E = 3 . 1 8 8 2 5 1 6 8 9 5 9 1 3 0 2 E - 0 0 9 A U T O C O R R E L A T I O N = 0 . 9 9 9 9 9 7 6 1 3 9 7 3 6 2 8 - j 1 . 3 3 4 9 1 6 9 4 5 0 6 8 7 2 8 E - 0 0 5 | A K C | = 0 . 9 9 9 9 9 7 6 1 4 0 6 2 7 2 9 a r g ( A K C ) = - 7 . 6 4 8 5 2 8 9 4 4 4 3 0 9 6 7 E - 0 0 4 Gaussian pulse ( ) 2 2 02 00, T T A T A e − = ( ) ( ) 2 0 2 0 220 0 2 0 2 , T T j zT A z T A e T j z − − β = − β Analytic solution: Input pulse: FDM: ER = 1.77E-004 SER = 1.36E-007 1-|AKC| = 3.8E-005 arg (AKC)= 7E-004° SSFM: ER = 1.88E-004 SER = 1.56E-007 1-|AKC| = 4.4E-005 arg (AKC)= 2.75E-003° 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 number of points in time window pulsepower[W] analytic solution OptiSystem FiberProp Input pulse fiber A0 = 0.01 W1/2 α= 0 T0 = 40 ps D = 16 ps/kmnm λ0 = 1550 nm γ = 0
  • 25. 25 Hyperbolic secant pulse: 2 2 2 2 2 2 A j A A j A A z T ∂ ∂ α + β + = γ ∂ ∂ 2 2 0 0 0 20 , , , D D NL PTLA z T U N L T LP γ = ξ = τ = = = β 2 22 2 2 sgn 2 U j U jN U U ∂ ∂ + β = ∂ξ ∂τ ( ) ( )0, sechu Nτ = τ ( ) ( ) 2 , sech j u e ξ ξ τ = τ input pulse analytic solution input pulse fiber P0 = 22.6 mW α= 0 T0 = 2.7 ps β2 = -0.243 ps2 /km λ0 = 1552 nm γ= 1.475 W-1 km-1 -0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004 0.0005 0 100 200 300 400 500 number of points in time window analyticvalue-computersimul. FiberProp OptiSystem normalization:
  • 26. 26 -3.00E-03 -2.00E-03 -1.00E-03 0.00E+00 1.00E-03 2.00E-03 3.00E-03 4.00E-03 0 100 200 300 400 500 600 number of points in time window analyticsolution-progr.simulation OptiSystem FiberProp Second order soliton pulse: input pulse analytic solution ( ) ( )0, sechu Nτ = τ ( ) ( ) ( ) ( ) ( ) ( ) 4 2 2cosh 3 6cosh , 2 cosh 4 4cosh 2 3cos 4 j j T T e U T e T T ξξ + ξ = + + ξ input pulse fiber P0 = 90.4 mW α= 0 T0 = 2.7 ps β2 = -0.243 ps2 /km λ0 = 1552 nm γ= 1.475 W-1 km-1 2 0 0 22 2 D T z L π π = = β L = 2z0 = 94.25 km
  • 27. 27 -8.00E-03 -6.00E-03 -4.00E-03 -2.00E-03 0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03 0 100 200 300 400 500 number of points in time window analyticalsolution-progr.simulation OptiSystem FiberProp Third order soliton pulse: input pulse analytic solution ( ) ( )0, sechu Nτ = τ L = 5z0 = 235.67 km ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 2 12 8 8 16 2cosh 8 32cosh 2 36cosh 4 16cosh 6 , 3 cosh 9 9cosh 7 64cosh 3 36cosh 20cosh 4 80cosh 2 5 45 20 36cosh 5 cos 4 20cosh 3 cos 12 90cosh cos 8 j j j j j j T T T T e U T e T T T T T T e e e e T T T ξξ ξ −− ξ ξ ξ  + + + + ξ = + + + +  + + + +  ξ + ξ + ξ N = 3 P0 = 203.4 mW
  • 28. 28 4th order soliton pulse - NO analytic solution: N = 4 P0 = 361.56 mW L = 2z0 = 94.25 km 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481 number of points in time window pulsepower[W] FiberProp OptiSystem
  • 29. 29 EDFA model 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476 501 number of points in time window opticalpower[W] FiberProp OptiSystem FIBER: α = 0.1 dB/km β2 = -0.243 ps2 /km γ = 1.475 1/Wkm INPUT PULSE: N = 1 P0 = 32.54 mW T0 = 2.7 ps λ0 = 1552 nm EDFA: ∆λ = 30 nm λ0 = 1552 nm G = 4.98 dB nsp = 1.23
  • 30. 30 Filter model ( ) 2 0 1 2 1 2 f f B   − −    ( )0 1 1 cos 2 f f B  π  + −      ( ) ( ) 2 0 2 exp ln 2 f f B     − −       ( ) 2 0 1 2 1 f f B   + −   Parabolic – shape characteristic Cosine – shape characteristic Lorentzian – shape characteristic Gaussian – shape characteristic Fabry-Perot filter !!!
  • 31. 31 B B S ω 0 f r e q u e n c y f i l t e r t r a n s f e r f u n c t i o n s o l i t o n s p e c t r u m Why are filters used in nonlinear optical links? • compensation of Gordon-Haus effect • filtering at the receivers end Filter model (cont.)
  • 32. 32 4. Selected simulation results ♦FiberProp and its abilities ♦High bit rates soliton systems ♦Gordon-Haus effect and its compensation ♦Dispersion-compensated and dispersion-managed systems ♦Polarization dispersion ♦Dispersion compensated system
  • 34. 34 fiber param. EDFA param. input pulse α= 0.1 dB/km ∆λ= 30 nm P0 = 31.48 mW β2 = -0.243 ps2 /km G = 2.497 dB T0 = 1.543 ps γ= 3.28 W-1 km-1 nsp = 1.5 λ0 = 1550 nm 40 Gb/s soliton transmission PRBS 01111010 La = 25 km L = 500 km
  • 35. 35 80 Gb/s soliton transmission fiber param. EDFA param. input pulse α= 0 ∆λ= 30 nm P0 = 38 mW β2 = -0.243 ps2 /km G = 2.497 dB T0 = 1.543 ps γ= 3.28 W-1 km-1 nsp = 1.5 λ0 = 1550 nm PRBS 0011110011100110 La = 25 km L = 350 km
  • 36. 36 0 0.005 0.01 0.015 0.02 0.025 0.03 1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343 362 381 400 419 438 457 476 495 number of grid points power[W] fiber param. EDFA param. input pulse α= 0.1 dB/km ∆λ= 30 nm P0 = 14.83 mW β2 = -0.243 ps2 /km λ0 = 1550 nm T0 = 5 ps γ= 1.475 W-1 km-1 G = 5 dB N = 1.5 La = 50 km nsp = 2.2 λ0 = 1552 nm L = 2500 km tW = 1.5 T0 max 2972.59 kmTL ≤ Gordon-Haus transmission distance limitation: 1 a a L L Q e−α⋅ α ⋅ = − 22 2 c D π = − β λ
  • 37. 37 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343 362 381 400 419 438 457 476 495 number of grid points power[W] Inserted Fabry-Perot filter before receiver: ( ) 2 0 1 2 1 f f B   + −   f0 = 193.414 THz (λ0 = 1550 nm) B = 100 GHz Gordon-Haus transmission distance limitation (cont.):
  • 38. 38 0 0.005 0.01 0.015 0.02 0.025 0.03 1 23 45 67 89 111 133 155 177 199 221 243 265 287 309 331 353 375 397 419 441 463 485 507 number of grid points power[W] L = 4000 km tW = 3 T0 → Ltmax = 4718.7 km ( ) 2 3 max 2 0,1372 1 FWHM w eff a T sp T t A L Q L n n Dh G ≤ − Gordon-Haus transmission distance limitation (cont.):
  • 39. 39 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343 362 381 400 419 438 457 476 495 number of grid points power[W] 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343 362 381 400 419 438 457 476 495 number of grid points power[W] Fabry - Perot filter after each EDFA: f0 = 193.414 THz B = 100 GHz f0 = 193.414 THz B = 360 GHz EDFA: G = 5.1081 dB Inserted Fabry-Perot filter before receiver:
  • 40. 40 Fiber parameters Two level disp. map Four level disp.map α[dB/km] 0.078 0.15 β1″ [ps2 /km] 0.396 0.1275 β2″ [ps2 /km] -0.294 0.051 β3″ [ps2 /km] - -0.0765 β4″ [ps2 /km] - -0.306 βave [ps2 /km] -0.064 -0.051 L1 [km] 30.00 12.5 L2 [km] 60.00 12.5 L3 [km] - 12.5 L4 [km - 12.5 γ [W-1 km-1 ] 2.65 2.65 Input pulse shape sech sech T0 [ps] 8.56 2.7 N 1.4 1.4 q0 2.92 4.63 Amplifier parameters La [km] 90 50 G [dB] 7 7.383 λ0 [nm] 1550 1550 ∆λ[nm] 30 30 nsp 1 1 DM soliton system: 20 Gb/s 40 Gb/s PRBS 01101110 β2 LL L2 L1 β21 β22
  • 41. 41 Polarization mode dispersion: 0.E+00 5.E-03 1.E-02 2.E-02 2.E-02 3.E-02 3.E-02 4.E-02 4.E-02 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 379 400 421 442 463 484 505 number of grid points power[W] Fiber param.: α, β, γ, = 0 ∆n = 4.2⋅10-5 h = 4.16 m L = 64h = 266.24 m input pulse: Gauss T0 = 3 ps P0 = 40 mW λ0 = 1550 nm
  • 42. 42 N=0.9 N=1.0 N=1.1 N=1.2 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4 5 6 7 soliton periods z/z0 dislocationofpulsest/T0 Fiber parameters: α = 0 β = -20 ps2 /km γ = 1.475 1/Wkm ∆n = 4.2⋅10-5 input pulse: lin. pol. at 45° at fiber axes T0 = 5 ps λ0 = 1550 nm Polarization mode dispersion: soliton prop. in birefringent fiber: 2 0 0 2 7 7 7 2 2 D T L z L π π = = = β
  • 43. 430 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 Polarization mode dispersion -interaction compensation: 0 .0 0 1 0 . 0 0 2 0 .0 0 3 0 . 0 0 4 0 . 0 0 tim e [p s ] 0 .0 0 1 0 .0 0 2 0 .0 0 3 0 .0 0 4 0 .0 0 5 0 .0 0 6 0 .0 0 7 0 .0 0 8 0 .0 0 distance[km] L = 85.76 km Fiber: α = 0 β2 = -20 ps2 /km γ = 1.3 1/Wkm Input pulse: N = 1 P0 = 32.54 mW T0 = 2 ps λ0 = 1552 nm q 0 = 4 L = 51.46 km
  • 44. 44 Dispersion comp. system: 0 . 0 0 2 0 0 . 0 0 4 0 0 . 0 0 6 0 0 . 0 0 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 2 0 0 0 . 0 0 ( ) 2 0 1 2 00, m T T A T A e   −     = Super Gauss (m=3) T0 = 50 ps P0 = 0.66 mW λ0 = 1557.6 nm FIBER PARAMETERS: L1 = 89.8 km L2 = 16.2 km L1 = 23⋅(L1 + L2) = 2438 km α1 = 0.05231 1/km α2 = 0.13 1/km β21 = -22.23 ps/km β22 = 119.48 ps/km γ1 = γ2 = 1.35 1/Wkm EDFA: ∆λ = 10 nm λ0 = 1557.6 nm G = 9.8 dB nsp = 2.78 FABRY-PEROT FILTER: f0 = 192.6 THz B = 370 GHz
  • 45. 45 Conclusions: ♦The derivation of optical pulse propagation equation is given in details. All important effects influencing pulse propagation in optical fiber are analyzed: fiber loss, cromatic dispersion, polarization mode dispersion, nonlinear effects (especially self-phase modulation) ♦Several numerical models are analyzed and the most accurate one chosen for propagation equation modeling. The accuracy is tested on simple canonical problems and later on compared with commercially available software. ♦EDFA model strictly in time domain is developed, with special attention given to ASE noise model. EDFA model and optical filter model are included in computer program FiberProp
  • 46. 46 ♦ The new approach to Gordon-Haus limitation derivation is given. Timing jitter due to Gordon-Haus effect and its suppression was analyzed with the FiberProp computer program. ♦ Numerous examples of soliton and dispersion-managed soliton transmission systems are analyzed and guidelines for their design are given. Conclusions (cont.):