SlideShare une entreprise Scribd logo
1  sur  12
Department of Civil Engineering                                                            NPIC




                               A.           m:aRTIssRmab;karviPaKeRKOgbgÁúM
                          (Matrix algebra for structural Analysis)

A >!> niymn½y nigRbePTm:aRTIs (basic definitions and types of matrices)
        edaysarPaBcaM)ac;énkMuBüÚT½r dUcenHkarGnuvtþm:aRTIssRmab;karviPaKeRKOgbgÁúMmanlkçN³
TUlMTUlay. m:aRTIspþl;nUvmeFüa)ayd¾smRsbsRmab;karviPaKenH edaysarvamanlkçN³gayRsYl
kñúgkarsresrrUbmnþkñúgTMrg;c,as;las; ehIybnÞab;mkedaHRsaym:aRTIsedayeRbIkMuBüÚT½r. sRmab;mUl
ehtuenH visVkreRKOgbgÁúMRtUvEtyl;BIvaeGay)anc,as;.
m:aRTIs³ m:aRTIsCakartMerobelxkñúgTMrg;ctuekaNEdlamnCYredk m nigCYrQr n . elx ¬EdleKehA
faFatu¦ RtUv)antMerobenAkñúgekñób. ]TahrN_ m:aRTIs A RtUv)ansresrCa³
              ⎡ a11 a12 L a1n ⎤
              ⎢a                 ⎥
           A= ⎢ 21 a 22 L a 2 n ⎥
              ⎢           M      ⎥
              ⎢                  ⎥
              ⎣a m1 a m 2 L a mn ⎦
m:aRTIsEbbenHRtUv)aneKehAfam:aRTIs m × n . cMNaMfasnÞsSn_TImYysRmab;FatunImYy²CaTItaMgCUr
edkrbs;va ehIysnÞsSn_TIBIrCaTItaMgCYrQrrbs;va. CaTUeTA aij CaFatuEdlmanTItaMgenAkñúgCYredk
TI i nigCYrQrTI j .
m:aRTIsCYredk³ RbsinebIm:aRTIspSMeLIgEtBIFatuenAkñúgCYredkeTal eKehAvafaCam:aRTIsCYredk.
]TahrN_ m:aRTIsCYredk1 × n RtUv)aneKsresrCa
           A = [a1 a 2 L a n ]
enATIenH eKeRbIEtsnÞsSn_eTaledIm,IsMKal;Fatu edaysareKdwgfasnÞsSn_CYrQresμInwg1 eBalKW
a1 = a11 , a 2 = a12 , nigbnþbnÞab;.

m:aRTIsCYrQr³ m:aRTIsEdlmanFatuKrelIKñakñúgCYreTal eKeGayeQμaHvafam:aRTIsCYrQr.
m:aRTIsCYrQr m ×1 KW
             ⎡ a1 ⎤
             ⎢a ⎥
           A=⎢ 2⎥
             ⎢ M ⎥
             ⎢ ⎥
             ⎣a m ⎦
enATIenH Fatu a1 = a11 ,          a 2 = a 21 ,   nigbnþbnÞab;.

m:aRTIssRmab;karviPaKeRKOgbgÁúM                                                 T.Chhay   -538
mhaviTüal½ysMNg;sIuvil                                                    viTüasßanCatiBhubec©keTskm<úCa

m:aRTIskaer³ enAeBlcMnYnCYredkrbs;m:aRTIsesμInwgcMnYnCYrQr m:aRTIsenHmaneQμaHfam:aRTIskaer.
m:aRTIskaer n × n manTRmg;
              ⎡ a11 a12 L a1n ⎤
              ⎢a                  ⎥
           A= ⎢ 21 a 22 L a 2 n ⎥
              ⎢            M      ⎥
              ⎢                   ⎥
              ⎣ a n1 a n 2 L a nn ⎦
m:aRTIsGgát;RTUg³ enAeBlRKb;FatuTaMgGs;rbs;m:aRTIsesμIsUnü elIkElgEtFatutamGgát;RTUg m:aRTIs
enHmaneQμaHfam:aRTIsGgát;RTUg. ]TahrN_
             ⎡a11 0   0 ⎤
             ⎢ 0 a
           A=⎢        0 ⎥
                   22    ⎥
             ⎢ 0
             ⎣    0 a 33 ⎥
                         ⎦
m:aRTIsÉktþa³ m:aRTIsÉktþaCam:aRTIsGgát;RTUgEdlFatutamGgát;esμInwgcMnYnÉktþa. ]TahrN_
               ⎡1 0 0 ⎤
           I = ⎢0 1 0 ⎥
               ⎢      ⎥
               ⎢0 0 1 ⎥
               ⎣      ⎦
m:aRTIssIuemRTI³ m:aRTIskaermanlkçN³sIuemRTIluHRtaEt aij = a ji . ]TahrN_
               ⎡ 3 5 2⎤
           A = ⎢5 − 1 4⎥
               ⎢       ⎥
               ⎢2 4 8⎥
               ⎣       ⎦


A  >@> RbmaNviFIma:RTIs (matrix operation)
smPaBrbs;m:aRTIs³ m:aRTIs A nig B esμIKñaRbsinebIm:aRTIsTaMgBIrmanlMdab;esμIKña ehIyFatuRtUvKña
rbs;m:aRTIsTaMgBIresμIKña eBalKW aij = bij . ]TahrN_ RbsinebI
             ⎡2 6 ⎤                        ⎡2 6 ⎤
           A=⎢     ⎥                     B=⎢     ⎥
             ⎣4 − 3⎦                       ⎣4 − 3⎦
enaH A = B
plbUk nigpldkrbs;m:aRTIs³ eKGaceFVIRbmaNviFIbUk b¤dkm:aRTIseTA)anluHRtavaCam:aRTIsEdlman
lMdab;esμIKña. lT§plRtUv)anTTYlBIkarbUk nigdkFatuRtUvKña. ]TahrN_ RbsinebI
              ⎡6 7 ⎤                        ⎡− 5 8 ⎤
           A=⎢      ⎥                    B=⎢       ⎥
              ⎣2 − 1⎦                       ⎣ 1 4⎦
                 ⎡1 15⎤                         ⎡11 − 1⎤
enaH       A+ B=⎢     ⎥                  A− B = ⎢      ⎥
                 ⎣3 3 ⎦                         ⎣ 1 − 5⎦



Matrix algebra for structural analysis                                             T.Chhay   -539
Department of Civil Engineering                                                               NPIC



RbmaNviFIKuNedaysáaElr³ enAeBlm:aRTIsRtUv)anKuNedaysáaElr FatunImYy²rbs;m:aRTIsRtUv)an
KuNnwgTMhMsáaElrenH. ]TahrN_ RbsinebI
               ⎡4 1 ⎤
           A=⎢        ⎥               k = −6
               ⎣6 − 2⎦
                ⎡− 24 − 6⎤
enaH       kA = ⎢         ⎥
                ⎣ − 36 12 ⎦
RbmaNviFIKuNm:aRTIs³ eKGacKuNm:aRTIsBIr A nig B bBa©ÚlKña)anluHRtaEtvaRsbKña. lkçxNÐenH
GacbMeBj)an RbsinebIcMnYnrbs;CYrQrenAkñúgm:aRTIs A esμInwgcMnYnCYredkkñúgm:aRTIs B . ]TahrN_
RbsinebI
               ⎡a    a ⎤                           ⎡ b11 b12 b13 ⎤
           A = ⎢ 11 12 ⎥                         B=⎢             ⎥                   (A-1)
               ⎣a 21 a 22 ⎦                        ⎣b21 b22 b23 ⎦
enaHeKGackMNt; AB edaysar A manBIrCYrQr ehIy B manBIrCYredk. b:uEnþcMNaMfa eKminGackMNt;
 BA )aneT. ehtuGVI?

       RbsinebIeKKuNm:aRTIs A EdlmanlMdab; (m × n) CamYynwgm:aRTIs B EdlmanlMdab; (n × q )
eyIgnwgTTYl)anm:aRTIs C EdlmanlMdab; (m × q ) eBalKW
               A          B       =     C
           (m × n ) (n × q )          (m × q )
eKrkFaturbs;m:aRTIs C edayeRbIFatu aij rbs;m:aRTIs A nig bij rbs;m:aRTIs B dUcxageRkam
                    n
           cij =   ∑ aik bkj                                                         (A-2)
                   k =1

eKGacBnül;viFIsaRsþénrUbmnþenHeday]TahrN_samBaØxøH. eKman
                                                     ⎡ 2⎤
             ⎡ 2 4 3⎤
           A=⎢       ⎥                           B = ⎢6 ⎥
                                                     ⎢ ⎥
             ⎣− 1 6 1⎦                               ⎢7 ⎥
                                                     ⎣ ⎦
tamkarGegát eKGaceFVIRbmaNviFIKuN C = AB edaysarm:aRTIsTaMgenHCam:aRTIsRsbKña eBalKW A
manCYrQrbI ehIym:aRTIs B manCYredkbI. tamsmIkar A-1 RbmaNviFIKuNm:aRTIseFVIeGaym:aRTIs C
manCYredkBIr nigCYrQrmYy. lT§plEdlTTYl)andUcxageRkam
c11 : KuNFatuenAkñúgCYredkTImYyrbs; A CamYynwgFatuRtUvKñaenAkñúgCYrQrrbs; B ehIybUklT§pl

TaMgenaHbBa©ÚlKña eBalKW
           c11 = c1 = 2(2 ) + 4(6 ) + 3(7 ) = 49



m:aRTIssRmab;karviPaKeRKOgbgÁúM                                                    T.Chhay   -540
mhaviTüal½ysMNg;sIuvil                                                         viTüasßanCatiBhubec©keTskm<úCa

c21 : KuNFatuenAkñúgCYredkTIBIrrbs; A CamYynwgFatuRtUvKñaenAkñúgCYrQrrbs; B ehIybUklT§pl
TaMgenaHbBa©ÚlKña eBalKW
           c21 = c2 = −1(2 ) + 6(6 ) + 1(7 ) = 41
                       ⎡49⎤
dUcenH             C=⎢ ⎥
                       ⎣ 41⎦
dUc]TahrN_TIBIr eKman
               ⎡ 5 3⎤
                                           ⎡ 2 7⎤
           A = ⎢ 4 1⎥
               ⎢      ⎥                  B=⎢     ⎥
               ⎢ − 2 8⎥                    ⎣− 3 4⎦
               ⎣      ⎦
enATIenH eKGacrkplKuN C = AB edaysar A manCYrQrBIr ehiy B manCYredkBIr. m:aRTIs C nwg
manCYredkbI nigCYrQrBIr. eKGacrkFaturbs;m:aRTIs C dUcxageRkam³
c11 = 5(2 ) + 3(− 3) = 1     ¬CYredkTImYyrbs; A KuNnwgCYrQrTImYyrbs; B ¦
c12 = 5(7 ) + 3(4) = 47      ¬CYredkTImYyrbs; A KuNnwgCYrQrTIBIrrbs; B ¦
c21 = 4(2) + 1(− 3) = 5      ¬CYredkTIBIrrbs; A KuNnwgCYrQrTImYyrbs; B ¦
c22 = 4(7 ) + 1(4 ) = 32     ¬CYredkTIBIrrbs; A KuNnwgCYrQrTIBIrrbs; B ¦
c31 = −2(2) + 8(− 3) = −28   ¬CYredkTIbIrbs; A KuNnwgCYrQrTImYyrbs; B ¦
c32 = −2(7 ) + 8(4) = 18     ¬CYredkTIbIrbs; A KuNnwgCYrQrTIBIrrbs; B ¦
lT§plsRmab;RbmaNviFIKuNGnuvtþtamsmIkar A-2. dUcenH
               ⎡ 1 47 ⎤
           C = ⎢ 5 32 ⎥
               ⎢        ⎥
               ⎢− 28 18 ⎥
               ⎣        ⎦
eKk¾RtUvcMNaMplEdrfa eKminGaceFVIplKuN BA )aneT edaysarkarsresrEbbenHm:aRTIsminRsbKña.
        c,ab;xageRkamGnuvtþcMeBaHRbmaNviFIKuN
        !> CaTUeTA RbmaNviFIKuNm:aRTIsminmanlkçN³qøas;eT
                      AB ≠ BA                                                                (A-3)
          @> eKGacBnøatRbmaNviFIKuNm:aRTIs
                      A(B + C ) = AB + AC                                                    (A-4)
          #> eKGacpþúMRbmaNviFIKuNm:aRTIs
                      A(BC ) = ( AB )C                                                       (A-5)
Transposed matrix:             eKGaceFVI transposed m:aRTIsedaybþÚrCYredk nigCYrQrrbs;va. ]TahrN_
RbsinebI
Matrix algebra for structural analysis                                                  T.Chhay   -541
Department of Civil Engineering                                                                NPIC


               ⎡ a11 a12 a13 ⎤
           A = ⎢a21 a22 a23 ⎥
               ⎢             ⎥             B = [b1 b2 b3 ]
               ⎢ a31 a32 a33 ⎥
               ⎣             ⎦
                 ⎡ a11 a21 a31 ⎤               ⎡ b1 ⎤
enaH       A = ⎢ a12 a22 a32 ⎥
            T
                 ⎢             ⎥           B = ⎢b2 ⎥
                                            T
                                               ⎢ ⎥
                 ⎢ A13 A23 A33 ⎥
                 ⎣             ⎦               ⎢b3 ⎥
                                               ⎣ ⎦
cMNaMfa AB minRsbKña dUcenHeKminGaceFVIRbmaNviFIKuNm:aRTIseT. ¬ A manbICYrQr ehIy B man
CYredkmYy¦. mü:agvijeTot eKGaceFVIRbmaNviFIKuN ABT edaysarenATIenHm:aRTIsTaMgBIrRsbKña
¬ A manbICYrQr ehIy BT manbICYredk¦. xageRkamCalkçN³sRmab; transposed matrix
           ( A + B )T = AT + BT                                                      (A-6)
           (kA)T = kAT                                                               (A-7)
           ( AB )T = BT AT                                                           (A-8)
eKGacbgðajlkçN³cugeRkayeday]TahrN_. RbsinebI
             ⎡6 2 ⎤                     ⎡4 3⎤
           A=⎢     ⎥                  B=⎢   ⎥
             ⎣1 − 3⎦                    ⎣2 5⎦
bnÞab;mk tamsmIkar A-8
                                  T
           ⎛ ⎡6 2 ⎤ ⎡4 3⎤ ⎞   ⎡ 4 2⎤ ⎡6 1 ⎤
           ⎜⎢             ⎟
           ⎜ 1 − 2⎥ ⎢2 5⎥ ⎟ = ⎢3 5⎥ ⎢2 − 3⎥
           ⎝⎣     ⎦⎣    ⎦⎠    ⎣    ⎦⎣     ⎦
                             T
           ⎛ ⎡ 28 28 ⎤ ⎞   ⎡28 − 2 ⎤
           ⎜⎢        ⎥ ⎟ = ⎢28 − 12⎥
           ⎜ − 2 − 12 ⎟
           ⎝⎣        ⎦⎠    ⎣       ⎦
           ⎡28 − 2 ⎤ ⎡28 − 2 ⎤
           ⎢28 − 12⎥ = ⎢28 − 12⎥
           ⎣        ⎦ ⎣        ⎦
karEbgEckm:aRTIsCaRkum³ eKGacEbgEckm:aRTIsCam:aRTIsrgedaykarEbgEckvaCaRkum. ]TahrN_
               ⎡ a11 a12 a13 a14 ⎤
                                    ⎡A A ⎤
           A = ⎢a21 a22 a23 a24 ⎥ = ⎢ 11 12 ⎥
               ⎢                 ⎥
               ⎢ a31 a32 a33 a34 ⎥ ⎣ 21 22 ⎦
                                     A A
               ⎣                 ⎦
enATIenHm:aRTIsrgKW
           A11 = [a11 ]                    A12 = [a12 a13 a14 ]
                 ⎡a ⎤                            ⎡a    a   a ⎤
           A21 = ⎢ 21 ⎥                    A22 = ⎢ 22 23 24 ⎥
                 ⎣ a31 ⎦                         ⎣ a32 a33 a34 ⎦
c,ab;rbs;m:aRTIsGnuvtþeTAelIm:aRTIsEdlEbgEckCaRkumluHRtaEtkarEbgEckmanlkçN³RsbKña.
]TahrN_ eKGacbUk nigdkm:aRTIsrg A nig B luHRtaEtvamancMnYnCYredk nigCYrQresμIKña. dUcKña eK
GaceFVIRbmaNviFIKuNm:aRTIsluHRtaEtcMnYnCYredk nigcMnYnCYrQrRtUvKñaénm:aRTIs A nigm:aRTIs B esμIKña
m:aRTIssRmab;karviPaKeRKOgbgÁúM                                                     T.Chhay   -542
mhaviTüal½ysMNg;sIuvil                                                viTüasßanCatiBhubec©keTskm<úCa

ehIym:aRTIsrgrbs;vaesμIKña. ]TahrN_ RbsinebI
               ⎡ 4 1 − 1⎤                     ⎡ 2 − 1⎤
           A = ⎢ − 2 0 − 5⎥
               ⎢          ⎥               B = ⎢ 0 − 8⎥
                                              ⎢      ⎥
               ⎢6 3 8⎥
               ⎣          ⎦                   ⎢7 4 ⎥
                                              ⎣      ⎦
bnÞab;mk eKGaceFVIplKuN AB edaysarcMnUnCYrQrrbs; A esμInwgcMnYnCYredkrbs; B . dUcKña
m:aRTIsEdlbMEbkCaRkummanlkçN³RsbKñasRmab;RbmaNviFIKuN edaysar A RtUv)anbMEbkCa
CYrQrBIr ehIy B RtUv)anbMEbkCaCYredkBIr eBalKW
                ⎡ A A ⎤⎡ B ⎤ ⎡ A B + A B ⎤
           AB = ⎢ 11 12 ⎥ ⎢ 11 ⎥ = ⎢ 11 11 12 21 ⎥
                ⎣ A21 A22 ⎦ ⎣ B21 ⎦ ⎣ A21B11 + A22 B21 ⎦
plKuNrbs;m:aRTIsrgKW
                    ⎡ 4 1⎤ ⎡2 − 1⎤ ⎡ 8 4⎤
           A11B11 = ⎢        ⎥⎢       ⎥=⎢      ⎥
                    ⎣ − 2 0 ⎦ ⎣0 8 ⎦ ⎣ − 4 2 ⎦
                     ⎡ − 1⎤         ⎡ −7 −4 ⎤
           A12 B21 = ⎢ ⎥[7 4] = ⎢             ⎥
                     ⎣− 5⎦          ⎣− 35 − 20⎦
                            ⎡2 − 1⎤
           A21B11 = [6 3]⎢        ⎥ = [12 18]
                            ⎣0 8 ⎦
           A22 B21 = [8][7 4] = [56 32]
               ⎡ ⎡ 8 4⎤ ⎡ − 7 − 4 ⎤ ⎤ ⎡ 1          0 ⎤
dUcenH         ⎢⎢       ⎥ + ⎢− 35 − 20⎥ ⎥ = ⎢− 39 − 18⎥
           AB = ⎣− 4 2⎦ ⎣
               ⎢                      ⎦⎥ ⎢            ⎥
               ⎢
               ⎣    [12 18] + [56 32] ⎥ ⎢ 68 50 ⎥
                                        ⎦ ⎣           ⎦



A  >#> edETmINg; (Determinants)
        enAkñúgkfaxNÐbnÞab; eyIgnwgerobrab;BIrebobcRmas;m:aRTIs. edaysarRbmaNviFIenHRtUvkar
karKNnaedETmINg;rbs;m:aRTIs eyIgnwgerobrab;BIrlkçN³mUldæanrbs;edETmINg;.
        edETmINg;CakartMerobelxCaTRmg;kaeredaysßitenAkñúgr)arbBaÄr. ]TahrN_ edETmINg;
lMdab; n ¬EdlmanCYredk n nigCYrQr n ¦ KW
                   a11 a12 L a1n
                   a21 a22 L a2 n
            A=                                                                      (A-9)
                                   M
                   an1 an 2 L ann

karKNnaedETmINg;enHeFVIeGayeKTTYl)antémøCaelxeTalEdleKGackMNt;edayeRbI Laplaces’s
expansion. viFIenHeRbI determinant’s minor nig cofactor. FatunImYy² aij rbs;edETmINg;énlMdab;


Matrix algebra for structural analysis                                         T.Chhay   -543
Department of Civil Engineering                                                                  NPIC



n  man minor M ij EdlCaedETmINg;lMdab; n − 1. RbsinebI minor RtUv)anKuNeday (− 1)i + j Edl
eKehAvafa cofactor rbs; aij enaH
          Cij = (− 1)i + j M ij                                                        (A-10)

]TahrN_ eKmanedETmINg;lMdab;dI
           a11 a12 a13
           a21 a22 a23
           a31 a32 a33

cofactor    sRmab;FatuenAkñúgCYredkTImYyKW
                             a22 a23       a22 a23
          C11 = (− 1)1+1               =
                             a32 a33       a32 a33
                              a21 a23    a a
          C12 = (− 1)1+ 2             = − 21 23
                              a31 a33    a31 a33
                              a21 a22 a21 a22
           C13 = (− 1)1+ 3            =
                              a31 a32   a31 a32

Laplace’s expansion sRmab;edETmINg;lMdab; n ¬smIkar A-9¦ erobrab;fatémøCaelxEdltMNag
eGayedETmINg;esμInwgplbUkénplKuNénFatuénCYredk b¤CYrQr nig cofactor EdlRtUvKñarbs;va
eBalKW
           D = ai1Ci1 + ai 2Ci 2 + L + ainCin                      ( i = 1,2,K, n )
b¤ D = a1 jC1 j + a2 jC2 j + L + anjCnj           ( j = 1,2, K , n )         (A-11)

sRmab;karGnuvtþ eyIgeXIjfaedaysar cofactor, edETmINg; D RtUv)ankMNt;eday n edETmINg;
lMdab; n − 1. eKGackMNt;edETmINg;bnþedayrUbmnþdUcKña b:uEnþvaRtUvkMNt; (n − 1) edETmINg;lMdab;
(n − 2) nigbnþbnÞab;. dMeNIrkarénkarKNnaenHbnþrhUtdl;edETmINg;EdlRtUvkarKNnaRtUv)ankat;
bnßyrhUtdl;lMdab;BIr cMENkÉ cofactor énFatuCaFatueTalrbs; D . ]TahrN_ eKmanedETmINg;
lMdab;TIBIrxageRkam
                            3 5
                     D=
                            −1 2
eyIgGacKNna D BIFatutamCYredkxagelIbMput EdleGay
                     D = 3(− 1)1+1 (2 ) + 5(− 1)1+ 2 (− 1) = 11
b¤ edayeRbIFatuénCYrQrTIBIr eyIg)an
                     D = 5(− 1)1+ 2 (− 1) + 2(− 1)2 + 2 (3) = 11




m:aRTIssRmab;karviPaKeRKOgbgÁúM                                                       T.Chhay   -544
mhaviTüal½ysMNg;sIuvil                                                         viTüasßanCatiBhubec©keTskm<úCa

       RbesIrCagkareRbIsmIkar A-11 eKGackMNt;edETmINg;lMdab;BIredayKuNFatutamGgát;RTUg
BIxagelIEpñkxageqVgeTAeRkamEpñkxagsþaM ehIydknwgplKuNénFatuGgát;RTUgBIxagelIEpñkxagsþaM
eTAxageRkamEpñkxageqVg GnuvtþtamsBaØaRBYj


BicarNaedETmINg;lMdab;bI
                               1 3 −1
                       D = 4 2 6
                           −1 0 2

edayeRbIsmIkar A-11 eyIgGacKNna D edayeRbIFatutambeNþayCYredkxagelI eyIg)an
                                2 6                4 6                  4 2
           D = (1)(− 1)1+1          + (3)(− 1)1+ 2      + (− 1)(− 1)1+3
                                0 2                −1 2                 −1 0

               = 1(4 − 0 ) − 3(8 + 6) − 1(0 + 2 ) = −40
eKk¾GacKNna D edayeRbIFatutambeNþayCYredkTIBIr.

A  >$> cRmas;rbs;m:aRTIs (Inverse of a matrix)
          BicarNasMNMuénsmIkarlIenEG‘rbIxageRkam
           a11x1 + a12 x2 + a13 x3 = c1

           a21x1 + a22 x2 + a23 x3 = c2

           a31x1 + a32 x2 + a33 x3 = c3
EdlsresrkñúgTRmg;m:aRTIsdUcxageRkam
           ⎡ a11 a12 a13 ⎤ ⎡ x1 ⎤ ⎡ c1 ⎤
           ⎢a a          ⎥⎢ ⎥ ⎢ ⎥
           ⎢ 21 22 a23 ⎥ ⎢ x2 ⎥ = ⎢c2 ⎥                                                      (A-12)
           ⎣ a31 a32 a33 ⎥ ⎢ x3 ⎥ ⎢c3 ⎥
           ⎢             ⎦⎣ ⎦ ⎣ ⎦
b¤                     Ax = C                                                 (A-13)

eKGacedaHRsayrk x edayEck C nwg A b:uEnþvaminmanRbmaNviFIEckenAkñúgm:aRTIseT. CMnYseday
RbmaNviFIEck eKeRbIm:aRTIsRcas. cRmas;rbs;m:aRTIs A Cam:aRTIsdéTeTotEdlmanlMdab;dUcKña
ehIyeKsresrvaCanimitþsBaØa A−1 . eKmanlkçN³dUcxageRkam
                      AA−1 = A−1 A = I
Edl I Cam:aRTIsÉktþa. KuNGgÁTaMgBIrénsmIkar A-13 eday A−1 eyIgTTYl)an
Matrix algebra for structural analysis                                                  T.Chhay   -545
Department of Civil Engineering                                                         NPIC



                     AA−1x = A−1C
edaysar A−1Ax = Ix = x eyIg)an
                     x = A−1C                                                 (A-14)
luHRtaEteKGacTTYl)an A eTIbeKGacedaHRsay x .
                                  −1


       sRmab;karKNnaedayéd viFIEdleRbI A−1 EdlRtUv)anbegáIteLIgedayeRbIc,ab; Cramer. enA
TIenHeyIgmin)anerobrab;BIkarbegáItvaeT eyIgnwgbgðajEtlT§plb:ueNÑaH. cMeBaHbBaðaejnH eKGac
sresrFatuenAkñúgm:aRTIsénsmIkar A-14 Ca
                     x = A−1C
                     ⎡ x1 ⎤       ⎡C11 C21 C31 ⎤ ⎡ c1 ⎤
                     ⎢x ⎥ = 1     ⎢C C         ⎥⎢ ⎥                           (A-15)
                     ⎢ 2⎥ A       ⎢ 12 22 C32 ⎥ ⎢c2 ⎥
                     ⎢ x3 ⎥
                     ⎣ ⎦          ⎢C13 C23 C33 ⎥ ⎢c3 ⎥
                                  ⎣            ⎦⎣ ⎦
enATIenH A CaedETmINg;rbs;m:aRTIs A EdlRtUv)ankMNt;edayeRbI Laplace expansion Edlerobrab;
enAkñúgkfaxNÐ A-3. m:aRTIskaerEdlman cofactor Cij RtUv)aneKeGayeQμaHfa adjoint matrix.
edaykareRbobeFob eyIgeXIjfaeKGacTTYlm:aRTIsRcas A−1 BIm:aRTIs A edaydMbUgeKRtUvCMnYsFatu
aij eday cofactor Cij bnÞab;mkeFVI transpose m:aRTIsEdlCalT§pl ¬EdleKeFVIeGay)an adjoint

matrix¦ ehIycugeRkayedayKuN adjoint matrix CamYynwg 1 / A .

        edIm,IbgðajBIrebobedIm,ITTYl A−1 eyIgnwgBicarNadMeNaHRsayénRbB½n§smIkarlIenEG‘rxag
eRkam
                     x1 − x2 + x3 = −1
                     − x1 + x2 + x3 = −1                                      (A-16)
                     x1 + 2 x2 − 2 x3 = 5
                         ⎡ 1 −1 1 ⎤
enATIenH             A = ⎢− 1 1 1 ⎥
                         ⎢        ⎥
                         ⎢ 1 2 − 2⎥
                         ⎣        ⎦
m:aRTIs cofactor sRmab; A KW
                         ⎡ 1 1    −1 1   −1 1 ⎤
                         ⎢      −              ⎥
                         ⎢ 2 −2    1 −2   1 2 ⎥
                         ⎢ −1 1   1 1     1 −1 ⎥
                     C = ⎢−             −
                         ⎢ 2 −2   1 −2    1 2 ⎥⎥
                         ⎢ −1 1     1 1  1 −1 ⎥
                         ⎢ 1 1   −
                         ⎣         −1 1 −1 1 ⎥ ⎦
KNnaedETmINg; adjoint matrix KW

m:aRTIssRmab;karviPaKeRKOgbgÁúM                                              T.Chhay   -546
mhaviTüal½ysMNg;sIuvil                                                  viTüasßanCatiBhubec©keTskm<úCa
                          ⎡ − 4 0 − 2⎤
                      C = ⎢ − 1 − 3 − 2⎥
                         T
                          ⎢            ⎥
                          ⎢− 3 − 3 0 ⎥
                          ⎣            ⎦
                         1 −1 1
edaysar               A = − 1 1 1 = −6
                          1 2 −2

dUcenH cRmas;rbs; A KW
                                    ⎡ − 4 0 − 2⎤
                               = − ⎢ − 1 − 3 − 2⎥
                          −1      1⎢
                      A                         ⎥
                                  6
                                    ⎢− 3 − 3 0 ⎥
                                    ⎣           ⎦
dMeNaHRsayénsmIkar A-16 eyIg)an
                  ⎡ x1 ⎤      ⎡− 4 0 − 2⎤ ⎡− 1⎤
                  ⎢ x ⎥ = − 1 ⎢ − 1 − 3 − 2⎥ ⎢− 1⎥
                  ⎢ 2⎥      6⎢                ⎥⎢ ⎥
                  ⎢ x3 ⎥
                  ⎣ ⎦         ⎢− 3 − 3 0 ⎥ ⎢ 5 ⎥
                              ⎣               ⎦⎣ ⎦
           x1 = − [(− 4)(− 1) + 0(− 1) + (− 2)(5)] = 1
                 1
                 6
           x2 = − [(− 1)(− 1) + (− 3)(− 1) + (− 2)(5)] = 1
                 1
                 6
           x3 = − [(− 3)(− 1) + (− 3)(− 1) + (0)(5)] = −1
                 1
                 6
eyIgeXIjy:agc,as;fa karKNnaCaelxTamTarkarBnøatsmIkary:agEvg. sRmab;mUlehtuenH eKeRbI
kMuBüÚT½rkñúgkarviPaKeRKagedIm,IedaHRsaycRmas;rbs;m:aRTIs.

A  >%> viFI Gauss sRmab;KNnaRbB½n§smIkar
(The Gauss method for solving simultaneous equation)
        enAeBleKRtUvkaredaHRsayRbB½n§smIkarlIenEG‘reRcIn eKGaceRbIviFIkat;bnßy Gause BIeRBaH
vamanRbsiT§PaBkñúgkaredaHRsay. karGnuvtþviFIenHTamTarkaredaHRsayrkGBaØatmYykñúgcMeNam n
smIkar eBalKW x1 edayeRbIGBaØatdéTeTot x2 , x3,..., xn . CMnYssmIkarEdleKehAfa pivotal
equation eTAkñúgsmIkarEdlenAsl;Edlman n − 1 smIkarCamYynwg n − 1 GBaØat. GnuvtþRbmaNviFI

enHbnþeTotedIm,IedaHRsayRbB½n§smIkarTaMgenHedIm,Irk x2 CaGnuKmn_eTAnwgGBaØatEdlenAsl; n − 2
GBaØat x3, x4 ,..., xn begáIt)an pivotal equation TIBIr. bnÞab;mkCMnYssmIkareTAkñúgsmIkardéTeTot
EdleFVIeGayenAsl; n − 3 smIkarCamYynwg n − 3 GBaØat. GnuvtþRbmaNviFIenHsareLIgvijrhUtTal;
EtenAsl; pivotal equation mYyEdlmanGBaØatmYy EdlbnÞab;mkeyIgnwgedaHRsayrkva. bnÞab;mk
eyIgGacedaHRsayrkGBaØatdéTeTotedayCMnYsvaeTAkñúg pivotal equation. edIm,IeFVIeGaydMeNaH
Matrix algebra for structural analysis                                           T.Chhay   -547
Department of Civil Engineering                                                            NPIC



RsayenHmanlkçN³suRkit enAeBlbegáIt pivotal equation nImYy² eKRtUvEteRCIserIssmIkarEdl
manemKuNFMCageKedIm,Ikat;bnßyGBaØat. eyIgGacbgðajkaredaHRsayenHtamry³]TahrN_.
      edaHRsayRbB½n§smIkarxageRkamedayeRbIviFI Gause:
           − 2 x1 + 8 x2 + 2 x3 = 2                                              (A-17)
           2 x1 − x2 + x3 = 2                                                    (A-18)
           4 x1 − 5 x2 + 3 x3 = 4                                                (A-19)
eyIgnwgcab;epþImedaykat;bnßy x1 . emKuNEdlFMbMputrbs; x1 KWenAkñúgsmIkar A-19 dUcenHeyIgnwg
eRbIvaCa pivotal equation. edaHRsayrk x1 eyIg)an
           x1 = 1 + 1.25 x2 − 0.75 x3                                            (A-20)
edayCMnYseTAkñúgsmIkar A-17 nig A-18 nigedaysRmYl eyIg)an
          2.75 x2 + 1.75 x3 = 2                                                  (A-21)
          1.5 x2 − 0.5 x3 = 0                                                    (A-22)
bnÞab;mk eyIgkat;bnßy x2 . edayeRCIserIssmIkar A-21 sRmab; pivotal equation edaysarem-
KuN x2 mantémøFMCageKenATIenH eyIg)an
           x2 = 0.727 − 0.636 x3                                                 (A-23)
edayCMnYssmIkarenHeTAkñúgsmIkar A-22 nigedaysRmYlva eyIgTTYl)an pivotal equation cug
eRkay EdleyIgGacedaHRsayrk x3 . eyIgTTYl)an x3 = 0.75 . edayCMnYstémøenHeTAkñúg pivotal
equation A-23 eyIg)an x2 = 0.25 . cugeRkay BI pivotal equation A-20 eyIg)an x1 = 0.75 .




m:aRTIssRmab;karviPaKeRKOgbgÁúM                                                 T.Chhay   -548
mhaviTüal½ysMNg;sIuvil                                                                   viTüasßanCatiBhubec©keTskm<úCa

                                                         cMeNaT
                             2 − 3⎤                            ⎡ − 1 3 − 2⎤
A-1   RbsinebI A = ⎡6
                   ⎢
                     4
                             1 5⎥
                                         ehIy                B=⎢2 4 1 ⎥              . kMNt; AB .
                         ⎣        ⎦                            ⎢          ⎥
  ⎡ 4 − 1 0⎤                                                   ⎢0 7 5 ⎥
B=⎢        ⎥    . kMNt; A + B nig A − 2B .                     ⎣          ⎦
  ⎣2 0 8⎦
                                                             A-11 RbsinebI A = ⎡1 5⎤ . kMNt; AAT .
                                                                                 2
                                                                               ⎢ 3⎥
A-2 RbsinebI A = [6 1 3] ehIy B = [1 6 3]                                      ⎣    ⎦

bgðajfa ( A + B )T = AT + BT .                               A-12 bgðajfa A(B + C ) = AB + AC RbsinebI

                  ⎡ 3 5⎤                                                     ⎡3⎤       ⎡5⎤
A-3 RbsinebI A = ⎢      ⎥ kMNt; A + A .
                                      T                         ⎡ 2 1 6⎤
                                                              A=⎢              /
                                                                         B = ⎢ 1 ⎥ C = ⎢− 1⎥  /               .
                   −2 7
                     ⎣           ⎦                              ⎣ 4 5 3⎥
                                                                       ⎦
                                                                             ⎢ ⎥       ⎢ ⎥
                                                                             ⎢ − 6⎥
                                                                             ⎣ ⎦       ⎢2⎥
                                                                                       ⎣ ⎦
                     ⎡1⎤
A-4   RbsinebI   A = ⎢0 ⎥
                     ⎢ ⎥     ehIy B = [2        − 1 3]       A-13   bgðajfa A(BC ) = ( AB )C RbsinebI
                     ⎢5⎥
                     ⎣ ⎦                                                      ⎡3⎤
                                                                 ⎡ 2 1 6⎤
kMNt; AB .                                                   A=⎢
                                                                   4 5 3⎥
                                                                               /
                                                                          B = ⎢ 1 ⎥ C = [5
                                                                              ⎢ ⎥             /             − 1 2]     .
                                                                 ⎣      ⎦     ⎢ − 6⎥
                                                                              ⎣ ⎦
                ⎡ 6 2 2⎤                                                                 1                  3 5
           A = ⎢− 5 1 1 ⎥
      RbsinebI                        ehIy                          KNnaedETmINg;                 nig              .
                                                                                  2 5
A-5             ⎢       ⎥                                    A-14                        2                  7 1
                ⎢ 0 3 1⎥                                                          7 1
                ⎣       ⎦                                                                3                  8 6
    ⎡ − 1 3 1⎤
B = ⎢ 2 − 5 1⎥       AB  kMNt;       .                       A-15   RbsinebI A = ⎡5
                                                                                 ⎢3
                                                                                           1⎤
                                                                                          − 2⎥
                                                                                                  . kMNt; A−1 .
    ⎢         ⎥                                                                        ⎣     ⎦
    ⎢ 0 7 5⎥
    ⎣         ⎦                                                                        ⎡0 1 5 ⎤
A-6 kMNt; BA sRmab;m:aRTIséncMeNaT A-5.                      A-16   RbsinebI       A = ⎢2 5 0⎥
                                                                                       ⎢        ⎥   . kMNt; A−1 .
                                                                                       ⎢1 − 1 2 ⎥
                                                                                       ⎣        ⎦
                 ⎡ 5 7⎤            ⎡6 ⎤
A-7 RbsinebI A = ⎢      ⎥ ehIy B = ⎢7⎥
                 ⎣− 2 1 ⎦          ⎣ ⎦                       A-17  edaHRsaysmIkar − x1 + 4 x2 + x3 = 1 /
kMNt; AB .                                                   2 x1 − x2 + x3 = 2 ehIy 4 x1 − 5 x2 + 3x3 = 4
                                              ⎡3⎤
      RbsinebI     ⎡1 8 4⎤
                                     ehIy                    edayeRbIsmIkarm:aRTIs X = A−1C .
A-8              A=⎢     ⎥                  B=⎢ 2 ⎥
                                              ⎢ ⎥
                   ⎣1 2 3⎦                    ⎢ − 6⎥         A-18 edaHRsaysmIkarenAkñúgcMeNaT A-17
                                              ⎣ ⎦
kMNt; AB .                                                   edayeRbIviFI Gause.
                 ⎡2           7 3⎤                           A-19 edaHRsaysmIkar x1 − x2 + x3 = −1 /
A-9 RbsinebI A = ⎢                    ehIy
                   −2⎣        1 0⎥
                                 ⎦                           − x1 + x2 + x3 = −1 ehIy x1 + 2 x2 − 2 x3 = 5
  ⎡6⎤
B=⎢9⎥
  ⎢ ⎥        kMNt; AB .                                      edayeRbIsmIkarm:aRTIs X = A−1B .
  ⎢− 1⎥
  ⎣ ⎦                                                        A-20 edaHRsaysmIkarenAkñúgcMeNaT A-19
                       ⎡6 4 2⎤
A-10   RbsinebI    A = ⎢2 1 1 ⎥          ehIy                edayeRbIviFI Gause.
                       ⎢        ⎥
                       ⎢0 − 3 1 ⎥
                       ⎣        ⎦
Problems                                                                                          T.Chhay   -549

Contenu connexe

Tendances

Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and framesChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and archesChhay Teng
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tensionChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength designChhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
Fundamental laws 1
Fundamental laws 1Fundamental laws 1
Fundamental laws 1Pana Mann
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofChhay Teng
 

Tendances (20)

Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and frames
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
4.compression members
4.compression members4.compression members
4.compression members
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength design
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Fundamental laws 1
Fundamental laws 1Fundamental laws 1
Fundamental laws 1
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
 

En vedette

Construction general
Construction generalConstruction general
Construction generalChhay Teng
 
16. plane frame analysis using the stiffness method
16. plane frame analysis using the stiffness method16. plane frame analysis using the stiffness method
16. plane frame analysis using the stiffness methodChhay Teng
 
Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeChhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
Computer graphic
Computer graphicComputer graphic
Computer graphicChhay Teng
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 

En vedette (20)

Construction general
Construction generalConstruction general
Construction general
 
16. plane frame analysis using the stiffness method
16. plane frame analysis using the stiffness method16. plane frame analysis using the stiffness method
16. plane frame analysis using the stiffness method
 
Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Brick
BrickBrick
Brick
 
Type of road
Type of roadType of road
Type of road
 
Torsionprop
TorsionpropTorsionprop
Torsionprop
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
 
Construction plan
Construction planConstruction plan
Construction plan
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 
Euron fl
Euron flEuron fl
Euron fl
 
Euro upe
Euro upeEuro upe
Euro upe
 
Appendix
AppendixAppendix
Appendix
 
Tiling
Tiling Tiling
Tiling
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
5.beams
5.beams5.beams
5.beams
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Euro sq
Euro sqEuro sq
Euro sq
 

Similaire à A.matrix algebra for structural analysisdoc

6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structuresChhay Teng
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsChhay Teng
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence IntervalsTung Nget
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence IntervalsTung Nget
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
11e.deflection of beam the energy methode10
11e.deflection of beam the energy methode1011e.deflection of beam the energy methode10
11e.deflection of beam the energy methode10Chhay Teng
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlChhay Teng
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stressChhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 

Similaire à A.matrix algebra for structural analysisdoc (13)

6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structures
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence Intervals
 
Estimation and Confidence Intervals
Estimation and Confidence IntervalsEstimation and Confidence Intervals
Estimation and Confidence Intervals
 
fluid khmer-Chapter5
fluid khmer-Chapter5fluid khmer-Chapter5
fluid khmer-Chapter5
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
11e.deflection of beam the energy methode10
11e.deflection of beam the energy methode1011e.deflection of beam the energy methode10
11e.deflection of beam the energy methode10
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
Mechanical Engineering
Mechanical EngineeringMechanical Engineering
Mechanical Engineering
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
3.tension members
3.tension members3.tension members
3.tension members
 

Plus de Chhay Teng

Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 
11 dimension and properties table of u
11 dimension and properties table of u11 dimension and properties table of u
11 dimension and properties table of uChhay Teng
 
Construction permit (kh)
Construction permit (kh)Construction permit (kh)
Construction permit (kh)Chhay Teng
 

Plus de Chhay Teng (20)

Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 
11 dimension and properties table of u
11 dimension and properties table of u11 dimension and properties table of u
11 dimension and properties table of u
 
Construction permit (kh)
Construction permit (kh)Construction permit (kh)
Construction permit (kh)
 

A.matrix algebra for structural analysisdoc

  • 1. Department of Civil Engineering NPIC A. m:aRTIssRmab;karviPaKeRKOgbgÁúM (Matrix algebra for structural Analysis) A >!> niymn½y nigRbePTm:aRTIs (basic definitions and types of matrices) edaysarPaBcaM)ac;énkMuBüÚT½r dUcenHkarGnuvtþm:aRTIssRmab;karviPaKeRKOgbgÁúMmanlkçN³ TUlMTUlay. m:aRTIspþl;nUvmeFüa)ayd¾smRsbsRmab;karviPaKenH edaysarvamanlkçN³gayRsYl kñúgkarsresrrUbmnþkñúgTMrg;c,as;las; ehIybnÞab;mkedaHRsaym:aRTIsedayeRbIkMuBüÚT½r. sRmab;mUl ehtuenH visVkreRKOgbgÁúMRtUvEtyl;BIvaeGay)anc,as;. m:aRTIs³ m:aRTIsCakartMerobelxkñúgTMrg;ctuekaNEdlamnCYredk m nigCYrQr n . elx ¬EdleKehA faFatu¦ RtUv)antMerobenAkñúgekñób. ]TahrN_ m:aRTIs A RtUv)ansresrCa³ ⎡ a11 a12 L a1n ⎤ ⎢a ⎥ A= ⎢ 21 a 22 L a 2 n ⎥ ⎢ M ⎥ ⎢ ⎥ ⎣a m1 a m 2 L a mn ⎦ m:aRTIsEbbenHRtUv)aneKehAfam:aRTIs m × n . cMNaMfasnÞsSn_TImYysRmab;FatunImYy²CaTItaMgCUr edkrbs;va ehIysnÞsSn_TIBIrCaTItaMgCYrQrrbs;va. CaTUeTA aij CaFatuEdlmanTItaMgenAkñúgCYredk TI i nigCYrQrTI j . m:aRTIsCYredk³ RbsinebIm:aRTIspSMeLIgEtBIFatuenAkñúgCYredkeTal eKehAvafaCam:aRTIsCYredk. ]TahrN_ m:aRTIsCYredk1 × n RtUv)aneKsresrCa A = [a1 a 2 L a n ] enATIenH eKeRbIEtsnÞsSn_eTaledIm,IsMKal;Fatu edaysareKdwgfasnÞsSn_CYrQresμInwg1 eBalKW a1 = a11 , a 2 = a12 , nigbnþbnÞab;. m:aRTIsCYrQr³ m:aRTIsEdlmanFatuKrelIKñakñúgCYreTal eKeGayeQμaHvafam:aRTIsCYrQr. m:aRTIsCYrQr m ×1 KW ⎡ a1 ⎤ ⎢a ⎥ A=⎢ 2⎥ ⎢ M ⎥ ⎢ ⎥ ⎣a m ⎦ enATIenH Fatu a1 = a11 , a 2 = a 21 , nigbnþbnÞab;. m:aRTIssRmab;karviPaKeRKOgbgÁúM T.Chhay -538
  • 2. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa m:aRTIskaer³ enAeBlcMnYnCYredkrbs;m:aRTIsesμInwgcMnYnCYrQr m:aRTIsenHmaneQμaHfam:aRTIskaer. m:aRTIskaer n × n manTRmg; ⎡ a11 a12 L a1n ⎤ ⎢a ⎥ A= ⎢ 21 a 22 L a 2 n ⎥ ⎢ M ⎥ ⎢ ⎥ ⎣ a n1 a n 2 L a nn ⎦ m:aRTIsGgát;RTUg³ enAeBlRKb;FatuTaMgGs;rbs;m:aRTIsesμIsUnü elIkElgEtFatutamGgát;RTUg m:aRTIs enHmaneQμaHfam:aRTIsGgát;RTUg. ]TahrN_ ⎡a11 0 0 ⎤ ⎢ 0 a A=⎢ 0 ⎥ 22 ⎥ ⎢ 0 ⎣ 0 a 33 ⎥ ⎦ m:aRTIsÉktþa³ m:aRTIsÉktþaCam:aRTIsGgát;RTUgEdlFatutamGgát;esμInwgcMnYnÉktþa. ]TahrN_ ⎡1 0 0 ⎤ I = ⎢0 1 0 ⎥ ⎢ ⎥ ⎢0 0 1 ⎥ ⎣ ⎦ m:aRTIssIuemRTI³ m:aRTIskaermanlkçN³sIuemRTIluHRtaEt aij = a ji . ]TahrN_ ⎡ 3 5 2⎤ A = ⎢5 − 1 4⎥ ⎢ ⎥ ⎢2 4 8⎥ ⎣ ⎦ A >@> RbmaNviFIma:RTIs (matrix operation) smPaBrbs;m:aRTIs³ m:aRTIs A nig B esμIKñaRbsinebIm:aRTIsTaMgBIrmanlMdab;esμIKña ehIyFatuRtUvKña rbs;m:aRTIsTaMgBIresμIKña eBalKW aij = bij . ]TahrN_ RbsinebI ⎡2 6 ⎤ ⎡2 6 ⎤ A=⎢ ⎥ B=⎢ ⎥ ⎣4 − 3⎦ ⎣4 − 3⎦ enaH A = B plbUk nigpldkrbs;m:aRTIs³ eKGaceFVIRbmaNviFIbUk b¤dkm:aRTIseTA)anluHRtavaCam:aRTIsEdlman lMdab;esμIKña. lT§plRtUv)anTTYlBIkarbUk nigdkFatuRtUvKña. ]TahrN_ RbsinebI ⎡6 7 ⎤ ⎡− 5 8 ⎤ A=⎢ ⎥ B=⎢ ⎥ ⎣2 − 1⎦ ⎣ 1 4⎦ ⎡1 15⎤ ⎡11 − 1⎤ enaH A+ B=⎢ ⎥ A− B = ⎢ ⎥ ⎣3 3 ⎦ ⎣ 1 − 5⎦ Matrix algebra for structural analysis T.Chhay -539
  • 3. Department of Civil Engineering NPIC RbmaNviFIKuNedaysáaElr³ enAeBlm:aRTIsRtUv)anKuNedaysáaElr FatunImYy²rbs;m:aRTIsRtUv)an KuNnwgTMhMsáaElrenH. ]TahrN_ RbsinebI ⎡4 1 ⎤ A=⎢ ⎥ k = −6 ⎣6 − 2⎦ ⎡− 24 − 6⎤ enaH kA = ⎢ ⎥ ⎣ − 36 12 ⎦ RbmaNviFIKuNm:aRTIs³ eKGacKuNm:aRTIsBIr A nig B bBa©ÚlKña)anluHRtaEtvaRsbKña. lkçxNÐenH GacbMeBj)an RbsinebIcMnYnrbs;CYrQrenAkñúgm:aRTIs A esμInwgcMnYnCYredkkñúgm:aRTIs B . ]TahrN_ RbsinebI ⎡a a ⎤ ⎡ b11 b12 b13 ⎤ A = ⎢ 11 12 ⎥ B=⎢ ⎥ (A-1) ⎣a 21 a 22 ⎦ ⎣b21 b22 b23 ⎦ enaHeKGackMNt; AB edaysar A manBIrCYrQr ehIy B manBIrCYredk. b:uEnþcMNaMfa eKminGackMNt; BA )aneT. ehtuGVI? RbsinebIeKKuNm:aRTIs A EdlmanlMdab; (m × n) CamYynwgm:aRTIs B EdlmanlMdab; (n × q ) eyIgnwgTTYl)anm:aRTIs C EdlmanlMdab; (m × q ) eBalKW A B = C (m × n ) (n × q ) (m × q ) eKrkFaturbs;m:aRTIs C edayeRbIFatu aij rbs;m:aRTIs A nig bij rbs;m:aRTIs B dUcxageRkam n cij = ∑ aik bkj (A-2) k =1 eKGacBnül;viFIsaRsþénrUbmnþenHeday]TahrN_samBaØxøH. eKman ⎡ 2⎤ ⎡ 2 4 3⎤ A=⎢ ⎥ B = ⎢6 ⎥ ⎢ ⎥ ⎣− 1 6 1⎦ ⎢7 ⎥ ⎣ ⎦ tamkarGegát eKGaceFVIRbmaNviFIKuN C = AB edaysarm:aRTIsTaMgenHCam:aRTIsRsbKña eBalKW A manCYrQrbI ehIym:aRTIs B manCYredkbI. tamsmIkar A-1 RbmaNviFIKuNm:aRTIseFVIeGaym:aRTIs C manCYredkBIr nigCYrQrmYy. lT§plEdlTTYl)andUcxageRkam c11 : KuNFatuenAkñúgCYredkTImYyrbs; A CamYynwgFatuRtUvKñaenAkñúgCYrQrrbs; B ehIybUklT§pl TaMgenaHbBa©ÚlKña eBalKW c11 = c1 = 2(2 ) + 4(6 ) + 3(7 ) = 49 m:aRTIssRmab;karviPaKeRKOgbgÁúM T.Chhay -540
  • 4. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa c21 : KuNFatuenAkñúgCYredkTIBIrrbs; A CamYynwgFatuRtUvKñaenAkñúgCYrQrrbs; B ehIybUklT§pl TaMgenaHbBa©ÚlKña eBalKW c21 = c2 = −1(2 ) + 6(6 ) + 1(7 ) = 41 ⎡49⎤ dUcenH C=⎢ ⎥ ⎣ 41⎦ dUc]TahrN_TIBIr eKman ⎡ 5 3⎤ ⎡ 2 7⎤ A = ⎢ 4 1⎥ ⎢ ⎥ B=⎢ ⎥ ⎢ − 2 8⎥ ⎣− 3 4⎦ ⎣ ⎦ enATIenH eKGacrkplKuN C = AB edaysar A manCYrQrBIr ehiy B manCYredkBIr. m:aRTIs C nwg manCYredkbI nigCYrQrBIr. eKGacrkFaturbs;m:aRTIs C dUcxageRkam³ c11 = 5(2 ) + 3(− 3) = 1 ¬CYredkTImYyrbs; A KuNnwgCYrQrTImYyrbs; B ¦ c12 = 5(7 ) + 3(4) = 47 ¬CYredkTImYyrbs; A KuNnwgCYrQrTIBIrrbs; B ¦ c21 = 4(2) + 1(− 3) = 5 ¬CYredkTIBIrrbs; A KuNnwgCYrQrTImYyrbs; B ¦ c22 = 4(7 ) + 1(4 ) = 32 ¬CYredkTIBIrrbs; A KuNnwgCYrQrTIBIrrbs; B ¦ c31 = −2(2) + 8(− 3) = −28 ¬CYredkTIbIrbs; A KuNnwgCYrQrTImYyrbs; B ¦ c32 = −2(7 ) + 8(4) = 18 ¬CYredkTIbIrbs; A KuNnwgCYrQrTIBIrrbs; B ¦ lT§plsRmab;RbmaNviFIKuNGnuvtþtamsmIkar A-2. dUcenH ⎡ 1 47 ⎤ C = ⎢ 5 32 ⎥ ⎢ ⎥ ⎢− 28 18 ⎥ ⎣ ⎦ eKk¾RtUvcMNaMplEdrfa eKminGaceFVIplKuN BA )aneT edaysarkarsresrEbbenHm:aRTIsminRsbKña. c,ab;xageRkamGnuvtþcMeBaHRbmaNviFIKuN !> CaTUeTA RbmaNviFIKuNm:aRTIsminmanlkçN³qøas;eT AB ≠ BA (A-3) @> eKGacBnøatRbmaNviFIKuNm:aRTIs A(B + C ) = AB + AC (A-4) #> eKGacpþúMRbmaNviFIKuNm:aRTIs A(BC ) = ( AB )C (A-5) Transposed matrix: eKGaceFVI transposed m:aRTIsedaybþÚrCYredk nigCYrQrrbs;va. ]TahrN_ RbsinebI Matrix algebra for structural analysis T.Chhay -541
  • 5. Department of Civil Engineering NPIC ⎡ a11 a12 a13 ⎤ A = ⎢a21 a22 a23 ⎥ ⎢ ⎥ B = [b1 b2 b3 ] ⎢ a31 a32 a33 ⎥ ⎣ ⎦ ⎡ a11 a21 a31 ⎤ ⎡ b1 ⎤ enaH A = ⎢ a12 a22 a32 ⎥ T ⎢ ⎥ B = ⎢b2 ⎥ T ⎢ ⎥ ⎢ A13 A23 A33 ⎥ ⎣ ⎦ ⎢b3 ⎥ ⎣ ⎦ cMNaMfa AB minRsbKña dUcenHeKminGaceFVIRbmaNviFIKuNm:aRTIseT. ¬ A manbICYrQr ehIy B man CYredkmYy¦. mü:agvijeTot eKGaceFVIRbmaNviFIKuN ABT edaysarenATIenHm:aRTIsTaMgBIrRsbKña ¬ A manbICYrQr ehIy BT manbICYredk¦. xageRkamCalkçN³sRmab; transposed matrix ( A + B )T = AT + BT (A-6) (kA)T = kAT (A-7) ( AB )T = BT AT (A-8) eKGacbgðajlkçN³cugeRkayeday]TahrN_. RbsinebI ⎡6 2 ⎤ ⎡4 3⎤ A=⎢ ⎥ B=⎢ ⎥ ⎣1 − 3⎦ ⎣2 5⎦ bnÞab;mk tamsmIkar A-8 T ⎛ ⎡6 2 ⎤ ⎡4 3⎤ ⎞ ⎡ 4 2⎤ ⎡6 1 ⎤ ⎜⎢ ⎟ ⎜ 1 − 2⎥ ⎢2 5⎥ ⎟ = ⎢3 5⎥ ⎢2 − 3⎥ ⎝⎣ ⎦⎣ ⎦⎠ ⎣ ⎦⎣ ⎦ T ⎛ ⎡ 28 28 ⎤ ⎞ ⎡28 − 2 ⎤ ⎜⎢ ⎥ ⎟ = ⎢28 − 12⎥ ⎜ − 2 − 12 ⎟ ⎝⎣ ⎦⎠ ⎣ ⎦ ⎡28 − 2 ⎤ ⎡28 − 2 ⎤ ⎢28 − 12⎥ = ⎢28 − 12⎥ ⎣ ⎦ ⎣ ⎦ karEbgEckm:aRTIsCaRkum³ eKGacEbgEckm:aRTIsCam:aRTIsrgedaykarEbgEckvaCaRkum. ]TahrN_ ⎡ a11 a12 a13 a14 ⎤ ⎡A A ⎤ A = ⎢a21 a22 a23 a24 ⎥ = ⎢ 11 12 ⎥ ⎢ ⎥ ⎢ a31 a32 a33 a34 ⎥ ⎣ 21 22 ⎦ A A ⎣ ⎦ enATIenHm:aRTIsrgKW A11 = [a11 ] A12 = [a12 a13 a14 ] ⎡a ⎤ ⎡a a a ⎤ A21 = ⎢ 21 ⎥ A22 = ⎢ 22 23 24 ⎥ ⎣ a31 ⎦ ⎣ a32 a33 a34 ⎦ c,ab;rbs;m:aRTIsGnuvtþeTAelIm:aRTIsEdlEbgEckCaRkumluHRtaEtkarEbgEckmanlkçN³RsbKña. ]TahrN_ eKGacbUk nigdkm:aRTIsrg A nig B luHRtaEtvamancMnYnCYredk nigCYrQresμIKña. dUcKña eK GaceFVIRbmaNviFIKuNm:aRTIsluHRtaEtcMnYnCYredk nigcMnYnCYrQrRtUvKñaénm:aRTIs A nigm:aRTIs B esμIKña m:aRTIssRmab;karviPaKeRKOgbgÁúM T.Chhay -542
  • 6. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa ehIym:aRTIsrgrbs;vaesμIKña. ]TahrN_ RbsinebI ⎡ 4 1 − 1⎤ ⎡ 2 − 1⎤ A = ⎢ − 2 0 − 5⎥ ⎢ ⎥ B = ⎢ 0 − 8⎥ ⎢ ⎥ ⎢6 3 8⎥ ⎣ ⎦ ⎢7 4 ⎥ ⎣ ⎦ bnÞab;mk eKGaceFVIplKuN AB edaysarcMnUnCYrQrrbs; A esμInwgcMnYnCYredkrbs; B . dUcKña m:aRTIsEdlbMEbkCaRkummanlkçN³RsbKñasRmab;RbmaNviFIKuN edaysar A RtUv)anbMEbkCa CYrQrBIr ehIy B RtUv)anbMEbkCaCYredkBIr eBalKW ⎡ A A ⎤⎡ B ⎤ ⎡ A B + A B ⎤ AB = ⎢ 11 12 ⎥ ⎢ 11 ⎥ = ⎢ 11 11 12 21 ⎥ ⎣ A21 A22 ⎦ ⎣ B21 ⎦ ⎣ A21B11 + A22 B21 ⎦ plKuNrbs;m:aRTIsrgKW ⎡ 4 1⎤ ⎡2 − 1⎤ ⎡ 8 4⎤ A11B11 = ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎣ − 2 0 ⎦ ⎣0 8 ⎦ ⎣ − 4 2 ⎦ ⎡ − 1⎤ ⎡ −7 −4 ⎤ A12 B21 = ⎢ ⎥[7 4] = ⎢ ⎥ ⎣− 5⎦ ⎣− 35 − 20⎦ ⎡2 − 1⎤ A21B11 = [6 3]⎢ ⎥ = [12 18] ⎣0 8 ⎦ A22 B21 = [8][7 4] = [56 32] ⎡ ⎡ 8 4⎤ ⎡ − 7 − 4 ⎤ ⎤ ⎡ 1 0 ⎤ dUcenH ⎢⎢ ⎥ + ⎢− 35 − 20⎥ ⎥ = ⎢− 39 − 18⎥ AB = ⎣− 4 2⎦ ⎣ ⎢ ⎦⎥ ⎢ ⎥ ⎢ ⎣ [12 18] + [56 32] ⎥ ⎢ 68 50 ⎥ ⎦ ⎣ ⎦ A >#> edETmINg; (Determinants) enAkñúgkfaxNÐbnÞab; eyIgnwgerobrab;BIrebobcRmas;m:aRTIs. edaysarRbmaNviFIenHRtUvkar karKNnaedETmINg;rbs;m:aRTIs eyIgnwgerobrab;BIrlkçN³mUldæanrbs;edETmINg;. edETmINg;CakartMerobelxCaTRmg;kaeredaysßitenAkñúgr)arbBaÄr. ]TahrN_ edETmINg; lMdab; n ¬EdlmanCYredk n nigCYrQr n ¦ KW a11 a12 L a1n a21 a22 L a2 n A= (A-9) M an1 an 2 L ann karKNnaedETmINg;enHeFVIeGayeKTTYl)antémøCaelxeTalEdleKGackMNt;edayeRbI Laplaces’s expansion. viFIenHeRbI determinant’s minor nig cofactor. FatunImYy² aij rbs;edETmINg;énlMdab; Matrix algebra for structural analysis T.Chhay -543
  • 7. Department of Civil Engineering NPIC n man minor M ij EdlCaedETmINg;lMdab; n − 1. RbsinebI minor RtUv)anKuNeday (− 1)i + j Edl eKehAvafa cofactor rbs; aij enaH Cij = (− 1)i + j M ij (A-10) ]TahrN_ eKmanedETmINg;lMdab;dI a11 a12 a13 a21 a22 a23 a31 a32 a33 cofactor sRmab;FatuenAkñúgCYredkTImYyKW a22 a23 a22 a23 C11 = (− 1)1+1 = a32 a33 a32 a33 a21 a23 a a C12 = (− 1)1+ 2 = − 21 23 a31 a33 a31 a33 a21 a22 a21 a22 C13 = (− 1)1+ 3 = a31 a32 a31 a32 Laplace’s expansion sRmab;edETmINg;lMdab; n ¬smIkar A-9¦ erobrab;fatémøCaelxEdltMNag eGayedETmINg;esμInwgplbUkénplKuNénFatuénCYredk b¤CYrQr nig cofactor EdlRtUvKñarbs;va eBalKW D = ai1Ci1 + ai 2Ci 2 + L + ainCin ( i = 1,2,K, n ) b¤ D = a1 jC1 j + a2 jC2 j + L + anjCnj ( j = 1,2, K , n ) (A-11) sRmab;karGnuvtþ eyIgeXIjfaedaysar cofactor, edETmINg; D RtUv)ankMNt;eday n edETmINg; lMdab; n − 1. eKGackMNt;edETmINg;bnþedayrUbmnþdUcKña b:uEnþvaRtUvkMNt; (n − 1) edETmINg;lMdab; (n − 2) nigbnþbnÞab;. dMeNIrkarénkarKNnaenHbnþrhUtdl;edETmINg;EdlRtUvkarKNnaRtUv)ankat; bnßyrhUtdl;lMdab;BIr cMENkÉ cofactor énFatuCaFatueTalrbs; D . ]TahrN_ eKmanedETmINg; lMdab;TIBIrxageRkam 3 5 D= −1 2 eyIgGacKNna D BIFatutamCYredkxagelIbMput EdleGay D = 3(− 1)1+1 (2 ) + 5(− 1)1+ 2 (− 1) = 11 b¤ edayeRbIFatuénCYrQrTIBIr eyIg)an D = 5(− 1)1+ 2 (− 1) + 2(− 1)2 + 2 (3) = 11 m:aRTIssRmab;karviPaKeRKOgbgÁúM T.Chhay -544
  • 8. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa RbesIrCagkareRbIsmIkar A-11 eKGackMNt;edETmINg;lMdab;BIredayKuNFatutamGgát;RTUg BIxagelIEpñkxageqVgeTAeRkamEpñkxagsþaM ehIydknwgplKuNénFatuGgát;RTUgBIxagelIEpñkxagsþaM eTAxageRkamEpñkxageqVg GnuvtþtamsBaØaRBYj BicarNaedETmINg;lMdab;bI 1 3 −1 D = 4 2 6 −1 0 2 edayeRbIsmIkar A-11 eyIgGacKNna D edayeRbIFatutambeNþayCYredkxagelI eyIg)an 2 6 4 6 4 2 D = (1)(− 1)1+1 + (3)(− 1)1+ 2 + (− 1)(− 1)1+3 0 2 −1 2 −1 0 = 1(4 − 0 ) − 3(8 + 6) − 1(0 + 2 ) = −40 eKk¾GacKNna D edayeRbIFatutambeNþayCYredkTIBIr. A >$> cRmas;rbs;m:aRTIs (Inverse of a matrix) BicarNasMNMuénsmIkarlIenEG‘rbIxageRkam a11x1 + a12 x2 + a13 x3 = c1 a21x1 + a22 x2 + a23 x3 = c2 a31x1 + a32 x2 + a33 x3 = c3 EdlsresrkñúgTRmg;m:aRTIsdUcxageRkam ⎡ a11 a12 a13 ⎤ ⎡ x1 ⎤ ⎡ c1 ⎤ ⎢a a ⎥⎢ ⎥ ⎢ ⎥ ⎢ 21 22 a23 ⎥ ⎢ x2 ⎥ = ⎢c2 ⎥ (A-12) ⎣ a31 a32 a33 ⎥ ⎢ x3 ⎥ ⎢c3 ⎥ ⎢ ⎦⎣ ⎦ ⎣ ⎦ b¤ Ax = C (A-13) eKGacedaHRsayrk x edayEck C nwg A b:uEnþvaminmanRbmaNviFIEckenAkñúgm:aRTIseT. CMnYseday RbmaNviFIEck eKeRbIm:aRTIsRcas. cRmas;rbs;m:aRTIs A Cam:aRTIsdéTeTotEdlmanlMdab;dUcKña ehIyeKsresrvaCanimitþsBaØa A−1 . eKmanlkçN³dUcxageRkam AA−1 = A−1 A = I Edl I Cam:aRTIsÉktþa. KuNGgÁTaMgBIrénsmIkar A-13 eday A−1 eyIgTTYl)an Matrix algebra for structural analysis T.Chhay -545
  • 9. Department of Civil Engineering NPIC AA−1x = A−1C edaysar A−1Ax = Ix = x eyIg)an x = A−1C (A-14) luHRtaEteKGacTTYl)an A eTIbeKGacedaHRsay x . −1 sRmab;karKNnaedayéd viFIEdleRbI A−1 EdlRtUv)anbegáIteLIgedayeRbIc,ab; Cramer. enA TIenHeyIgmin)anerobrab;BIkarbegáItvaeT eyIgnwgbgðajEtlT§plb:ueNÑaH. cMeBaHbBaðaejnH eKGac sresrFatuenAkñúgm:aRTIsénsmIkar A-14 Ca x = A−1C ⎡ x1 ⎤ ⎡C11 C21 C31 ⎤ ⎡ c1 ⎤ ⎢x ⎥ = 1 ⎢C C ⎥⎢ ⎥ (A-15) ⎢ 2⎥ A ⎢ 12 22 C32 ⎥ ⎢c2 ⎥ ⎢ x3 ⎥ ⎣ ⎦ ⎢C13 C23 C33 ⎥ ⎢c3 ⎥ ⎣ ⎦⎣ ⎦ enATIenH A CaedETmINg;rbs;m:aRTIs A EdlRtUv)ankMNt;edayeRbI Laplace expansion Edlerobrab; enAkñúgkfaxNÐ A-3. m:aRTIskaerEdlman cofactor Cij RtUv)aneKeGayeQμaHfa adjoint matrix. edaykareRbobeFob eyIgeXIjfaeKGacTTYlm:aRTIsRcas A−1 BIm:aRTIs A edaydMbUgeKRtUvCMnYsFatu aij eday cofactor Cij bnÞab;mkeFVI transpose m:aRTIsEdlCalT§pl ¬EdleKeFVIeGay)an adjoint matrix¦ ehIycugeRkayedayKuN adjoint matrix CamYynwg 1 / A . edIm,IbgðajBIrebobedIm,ITTYl A−1 eyIgnwgBicarNadMeNaHRsayénRbB½n§smIkarlIenEG‘rxag eRkam x1 − x2 + x3 = −1 − x1 + x2 + x3 = −1 (A-16) x1 + 2 x2 − 2 x3 = 5 ⎡ 1 −1 1 ⎤ enATIenH A = ⎢− 1 1 1 ⎥ ⎢ ⎥ ⎢ 1 2 − 2⎥ ⎣ ⎦ m:aRTIs cofactor sRmab; A KW ⎡ 1 1 −1 1 −1 1 ⎤ ⎢ − ⎥ ⎢ 2 −2 1 −2 1 2 ⎥ ⎢ −1 1 1 1 1 −1 ⎥ C = ⎢− − ⎢ 2 −2 1 −2 1 2 ⎥⎥ ⎢ −1 1 1 1 1 −1 ⎥ ⎢ 1 1 − ⎣ −1 1 −1 1 ⎥ ⎦ KNnaedETmINg; adjoint matrix KW m:aRTIssRmab;karviPaKeRKOgbgÁúM T.Chhay -546
  • 10. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa ⎡ − 4 0 − 2⎤ C = ⎢ − 1 − 3 − 2⎥ T ⎢ ⎥ ⎢− 3 − 3 0 ⎥ ⎣ ⎦ 1 −1 1 edaysar A = − 1 1 1 = −6 1 2 −2 dUcenH cRmas;rbs; A KW ⎡ − 4 0 − 2⎤ = − ⎢ − 1 − 3 − 2⎥ −1 1⎢ A ⎥ 6 ⎢− 3 − 3 0 ⎥ ⎣ ⎦ dMeNaHRsayénsmIkar A-16 eyIg)an ⎡ x1 ⎤ ⎡− 4 0 − 2⎤ ⎡− 1⎤ ⎢ x ⎥ = − 1 ⎢ − 1 − 3 − 2⎥ ⎢− 1⎥ ⎢ 2⎥ 6⎢ ⎥⎢ ⎥ ⎢ x3 ⎥ ⎣ ⎦ ⎢− 3 − 3 0 ⎥ ⎢ 5 ⎥ ⎣ ⎦⎣ ⎦ x1 = − [(− 4)(− 1) + 0(− 1) + (− 2)(5)] = 1 1 6 x2 = − [(− 1)(− 1) + (− 3)(− 1) + (− 2)(5)] = 1 1 6 x3 = − [(− 3)(− 1) + (− 3)(− 1) + (0)(5)] = −1 1 6 eyIgeXIjy:agc,as;fa karKNnaCaelxTamTarkarBnøatsmIkary:agEvg. sRmab;mUlehtuenH eKeRbI kMuBüÚT½rkñúgkarviPaKeRKagedIm,IedaHRsaycRmas;rbs;m:aRTIs. A >%> viFI Gauss sRmab;KNnaRbB½n§smIkar (The Gauss method for solving simultaneous equation) enAeBleKRtUvkaredaHRsayRbB½n§smIkarlIenEG‘reRcIn eKGaceRbIviFIkat;bnßy Gause BIeRBaH vamanRbsiT§PaBkñúgkaredaHRsay. karGnuvtþviFIenHTamTarkaredaHRsayrkGBaØatmYykñúgcMeNam n smIkar eBalKW x1 edayeRbIGBaØatdéTeTot x2 , x3,..., xn . CMnYssmIkarEdleKehAfa pivotal equation eTAkñúgsmIkarEdlenAsl;Edlman n − 1 smIkarCamYynwg n − 1 GBaØat. GnuvtþRbmaNviFI enHbnþeTotedIm,IedaHRsayRbB½n§smIkarTaMgenHedIm,Irk x2 CaGnuKmn_eTAnwgGBaØatEdlenAsl; n − 2 GBaØat x3, x4 ,..., xn begáIt)an pivotal equation TIBIr. bnÞab;mkCMnYssmIkareTAkñúgsmIkardéTeTot EdleFVIeGayenAsl; n − 3 smIkarCamYynwg n − 3 GBaØat. GnuvtþRbmaNviFIenHsareLIgvijrhUtTal; EtenAsl; pivotal equation mYyEdlmanGBaØatmYy EdlbnÞab;mkeyIgnwgedaHRsayrkva. bnÞab;mk eyIgGacedaHRsayrkGBaØatdéTeTotedayCMnYsvaeTAkñúg pivotal equation. edIm,IeFVIeGaydMeNaH Matrix algebra for structural analysis T.Chhay -547
  • 11. Department of Civil Engineering NPIC RsayenHmanlkçN³suRkit enAeBlbegáIt pivotal equation nImYy² eKRtUvEteRCIserIssmIkarEdl manemKuNFMCageKedIm,Ikat;bnßyGBaØat. eyIgGacbgðajkaredaHRsayenHtamry³]TahrN_. edaHRsayRbB½n§smIkarxageRkamedayeRbIviFI Gause: − 2 x1 + 8 x2 + 2 x3 = 2 (A-17) 2 x1 − x2 + x3 = 2 (A-18) 4 x1 − 5 x2 + 3 x3 = 4 (A-19) eyIgnwgcab;epþImedaykat;bnßy x1 . emKuNEdlFMbMputrbs; x1 KWenAkñúgsmIkar A-19 dUcenHeyIgnwg eRbIvaCa pivotal equation. edaHRsayrk x1 eyIg)an x1 = 1 + 1.25 x2 − 0.75 x3 (A-20) edayCMnYseTAkñúgsmIkar A-17 nig A-18 nigedaysRmYl eyIg)an 2.75 x2 + 1.75 x3 = 2 (A-21) 1.5 x2 − 0.5 x3 = 0 (A-22) bnÞab;mk eyIgkat;bnßy x2 . edayeRCIserIssmIkar A-21 sRmab; pivotal equation edaysarem- KuN x2 mantémøFMCageKenATIenH eyIg)an x2 = 0.727 − 0.636 x3 (A-23) edayCMnYssmIkarenHeTAkñúgsmIkar A-22 nigedaysRmYlva eyIgTTYl)an pivotal equation cug eRkay EdleyIgGacedaHRsayrk x3 . eyIgTTYl)an x3 = 0.75 . edayCMnYstémøenHeTAkñúg pivotal equation A-23 eyIg)an x2 = 0.25 . cugeRkay BI pivotal equation A-20 eyIg)an x1 = 0.75 . m:aRTIssRmab;karviPaKeRKOgbgÁúM T.Chhay -548
  • 12. mhaviTüal½ysMNg;sIuvil viTüasßanCatiBhubec©keTskm<úCa cMeNaT 2 − 3⎤ ⎡ − 1 3 − 2⎤ A-1 RbsinebI A = ⎡6 ⎢ 4 1 5⎥ ehIy B=⎢2 4 1 ⎥ . kMNt; AB . ⎣ ⎦ ⎢ ⎥ ⎡ 4 − 1 0⎤ ⎢0 7 5 ⎥ B=⎢ ⎥ . kMNt; A + B nig A − 2B . ⎣ ⎦ ⎣2 0 8⎦ A-11 RbsinebI A = ⎡1 5⎤ . kMNt; AAT . 2 ⎢ 3⎥ A-2 RbsinebI A = [6 1 3] ehIy B = [1 6 3] ⎣ ⎦ bgðajfa ( A + B )T = AT + BT . A-12 bgðajfa A(B + C ) = AB + AC RbsinebI ⎡ 3 5⎤ ⎡3⎤ ⎡5⎤ A-3 RbsinebI A = ⎢ ⎥ kMNt; A + A . T ⎡ 2 1 6⎤ A=⎢ / B = ⎢ 1 ⎥ C = ⎢− 1⎥ / . −2 7 ⎣ ⎦ ⎣ 4 5 3⎥ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ − 6⎥ ⎣ ⎦ ⎢2⎥ ⎣ ⎦ ⎡1⎤ A-4 RbsinebI A = ⎢0 ⎥ ⎢ ⎥ ehIy B = [2 − 1 3] A-13 bgðajfa A(BC ) = ( AB )C RbsinebI ⎢5⎥ ⎣ ⎦ ⎡3⎤ ⎡ 2 1 6⎤ kMNt; AB . A=⎢ 4 5 3⎥ / B = ⎢ 1 ⎥ C = [5 ⎢ ⎥ / − 1 2] . ⎣ ⎦ ⎢ − 6⎥ ⎣ ⎦ ⎡ 6 2 2⎤ 1 3 5 A = ⎢− 5 1 1 ⎥ RbsinebI ehIy KNnaedETmINg; nig . 2 5 A-5 ⎢ ⎥ A-14 2 7 1 ⎢ 0 3 1⎥ 7 1 ⎣ ⎦ 3 8 6 ⎡ − 1 3 1⎤ B = ⎢ 2 − 5 1⎥ AB kMNt; . A-15 RbsinebI A = ⎡5 ⎢3 1⎤ − 2⎥ . kMNt; A−1 . ⎢ ⎥ ⎣ ⎦ ⎢ 0 7 5⎥ ⎣ ⎦ ⎡0 1 5 ⎤ A-6 kMNt; BA sRmab;m:aRTIséncMeNaT A-5. A-16 RbsinebI A = ⎢2 5 0⎥ ⎢ ⎥ . kMNt; A−1 . ⎢1 − 1 2 ⎥ ⎣ ⎦ ⎡ 5 7⎤ ⎡6 ⎤ A-7 RbsinebI A = ⎢ ⎥ ehIy B = ⎢7⎥ ⎣− 2 1 ⎦ ⎣ ⎦ A-17 edaHRsaysmIkar − x1 + 4 x2 + x3 = 1 / kMNt; AB . 2 x1 − x2 + x3 = 2 ehIy 4 x1 − 5 x2 + 3x3 = 4 ⎡3⎤ RbsinebI ⎡1 8 4⎤ ehIy edayeRbIsmIkarm:aRTIs X = A−1C . A-8 A=⎢ ⎥ B=⎢ 2 ⎥ ⎢ ⎥ ⎣1 2 3⎦ ⎢ − 6⎥ A-18 edaHRsaysmIkarenAkñúgcMeNaT A-17 ⎣ ⎦ kMNt; AB . edayeRbIviFI Gause. ⎡2 7 3⎤ A-19 edaHRsaysmIkar x1 − x2 + x3 = −1 / A-9 RbsinebI A = ⎢ ehIy −2⎣ 1 0⎥ ⎦ − x1 + x2 + x3 = −1 ehIy x1 + 2 x2 − 2 x3 = 5 ⎡6⎤ B=⎢9⎥ ⎢ ⎥ kMNt; AB . edayeRbIsmIkarm:aRTIs X = A−1B . ⎢− 1⎥ ⎣ ⎦ A-20 edaHRsaysmIkarenAkñúgcMeNaT A-19 ⎡6 4 2⎤ A-10 RbsinebI A = ⎢2 1 1 ⎥ ehIy edayeRbIviFI Gause. ⎢ ⎥ ⎢0 − 3 1 ⎥ ⎣ ⎦ Problems T.Chhay -549