SlideShare une entreprise Scribd logo
1  sur  45
Télécharger pour lire hors ligne
Stud.	
  Techn.	
  Nora	
  Marie	
  Lundevall	
  Arnet	
  

Evaluation	
  of	
  technical	
  challenges	
  
and	
  need	
  for	
  standardization	
  for	
  
LNG	
  bunkering
	
  

	
  
Trondheim,	
  June	
  10,	
  2013	
  
	
  

NTNU	
  
Norwegian	
  University	
  of	
  	
  
Science	
  and	
  Technology	
  
Faculty	
  of	
  Engineering	
  Science	
  and	
  Technology	
  
Department	
  of	
  Energy	
  and	
  Process	
  Engineering	
  

Project	
  thesis	
  

	
  

Source:	
  Swedish	
  Marine	
  Technology	
  Forum	
  

	
  

	
  
Preface	
  
This	
  project	
  report	
  is	
  written	
  as	
  a	
  part	
  of	
  the	
  five	
  year	
  Master	
  Degree	
  Program	
  I	
  attend	
  at	
  the	
  
Department	
  of	
  Energy	
  and	
  Process	
  Engineering	
  at	
  Norwegian	
  University	
  of	
  Science	
  and	
  Technology	
  
(NTNU).	
  First	
  of	
  all	
  I	
  wish	
  to	
  express	
  my	
  gratitude	
  to	
  my	
  supervisor	
  Reidar	
  Kristoffersen.	
  During	
  the	
  
semester	
  he	
  has	
  given	
  me	
  academic	
  guidance	
  on	
  report	
  matters	
  and	
  great	
  freedom	
  in	
  choosing	
  a	
  
topic	
  of	
  interest.	
  	
  
	
  
The	
  project	
  report	
  consists	
  of	
  a	
  literature	
  review	
  regarding	
  LNG	
  bunkering.	
  The	
  topic	
  is	
  current	
  and	
  
much	
  of	
  the	
  information	
  is	
  gathered	
  from	
  publications	
  made	
  within	
  the	
  last	
  five	
  years	
  and	
  from	
  direct	
  
communication	
  with	
  people	
  in	
  the	
  industry.	
  The	
  list	
  of	
  people	
  who	
  have	
  contributed	
  and	
  whom	
  I	
  wish	
  
to	
  thank	
  is	
  therefore	
  extensive.	
  	
  
	
  
The	
  report	
  is	
  written	
  in	
  cooperation	
  with	
  Det	
  Norske	
  Veritas	
  (DNV).	
  Lars	
  Petter	
  Blikom,	
  Segment	
  
Director	
  for	
  Natural	
  Gas,	
  DNV,	
  has	
  been	
  my	
  industrial	
  supervisor.	
  I	
  would	
  like	
  to	
  thank	
  Mr.	
  Blikom	
  for	
  
providing	
  me	
  with	
  assistance	
  on	
  the	
  topic	
  and	
  valuable	
  insight	
  form	
  the	
  industry.	
  His	
  support	
  and	
  
encouragement	
  throughout	
  the	
  process	
  has	
  been	
  highly	
  appreciated.	
  I	
  also	
  wish	
  to	
  thank	
  the	
  natural	
  
gas	
  team	
  at	
  DNV,	
  Erik	
  Skramstad	
  and	
  Katrine	
  Lie	
  Strøm	
  for	
  their	
  help	
  on	
  technical	
  matters.	
  	
  
	
  
Individuals	
  who	
  contributed	
  with	
  insight,	
  relevant	
  material,	
  outlining	
  and	
  establishing	
  the	
  basis	
  of	
  the	
  
project	
  report	
  include;	
  Per	
  Magne	
  Einang	
  and	
  Dag	
  Stenersen	
  (MARINTEK/SINTEF),	
  Øystein	
  Bruno	
  
Larsen	
  (BW	
  Offshore),	
  Ernst	
  Meyer	
  and	
  Henning	
  Mohn	
  (DNV),	
  Rolv	
  Stokkmo	
  (Liquiline),	
  Øystein	
  
Klaussen	
  (Gassteknikk)	
  and	
  Jens	
  Kålstad	
  (Kongsberg).	
  	
  
	
  
	
  
Nora	
  Marie	
  Lundevall	
  Arnet

	
  
	
  

I	
  
Abstract	
  
The	
  shipping	
  industry	
  is	
  searching	
  for	
  cleaner	
  solutions	
  to	
  comply	
  with	
  upcoming	
  regulations	
  on	
  
emissions.	
  A	
  favorable	
  solution	
  is	
  to	
  use	
  Liquefied	
  Natural	
  Gas	
  (LNG)	
  as	
  bunker	
  fuel,	
  on	
  ferries	
  and	
  
other	
  smaller	
  vessel	
  travelling	
  set	
  routes.	
  Implementation	
  of	
  innovative	
  solutions	
  in	
  the	
  large-­‐scale	
  
LNG	
  distribution	
  has	
  been	
  successful,	
  but	
  the	
  industry	
  is	
  now	
  requiring	
  solutions	
  for	
  the	
  small-­‐scale	
  
LNG	
  distribution	
  networks.	
  An	
  expansion	
  of	
  small-­‐scale	
  LNG	
  infrastructure	
  holds	
  a	
  great	
  potential	
  for	
  
cost	
  effective	
  fuel	
  for	
  the	
  industry.	
  	
  
	
  
Several	
  LNG	
  bunkering	
  solutions	
  exist	
  today	
  and	
  new	
  projects	
  are	
  announced	
  frequently,	
  but	
  detailed	
  
descriptions	
  are	
  rarely	
  published	
  due	
  to	
  the	
  intense	
  competition	
  in	
  the	
  emerging	
  market.	
  The	
  industry	
  
is	
  also	
  faced	
  with	
  lack	
  of	
  standardization	
  within	
  certain	
  areas	
  of	
  the	
  bunkering	
  process.	
  Leaving	
  
procedures	
  open	
  to	
  discretion	
  and	
  a	
  potentially	
  higher	
  risk	
  of	
  failure.	
  	
  
	
  
This	
  project	
  report	
  aims	
  to	
  evaluate	
  essential	
  aspects	
  relevant	
  to	
  the	
  emerging	
  LNG	
  bunkering	
  market	
  
focusing	
  on	
  technical	
  challenges	
  and	
  need	
  for	
  standardization.	
  It	
  will	
  include	
  an	
  overview	
  of	
  LNG	
  
safety	
  aspects,	
  a	
  technical	
  step-­‐by-­‐step	
  approach	
  to	
  LNG	
  bunkering	
  and	
  essential	
  equipment	
  used,	
  
assessment	
  of	
  current	
  standards,	
  and	
  finally	
  a	
  discussion	
  of	
  critical	
  areas	
  for	
  LNG	
  bunkering	
  to	
  
compete	
  with	
  current	
  solutions.	
  	
  
	
  

	
  
	
  

II	
  
Content	
  
1	
  Introduction	
  ..........................................................................................................................................	
  1	
  
1.1	
  Motivation	
  ......................................................................................................................................	
  1	
  
1.1.1	
  Bunkering	
  ................................................................................................................................	
  1	
  
1.1.2	
  New	
  Projects	
  ...........................................................................................................................	
  1	
  
1.1.3	
  The	
  Drive	
  .................................................................................................................................	
  2	
  
1.2	
  Underlying	
  Hypothesis	
  ...................................................................................................................	
  3	
  
1.3	
  Main	
  Goal	
  of	
  the	
  Report	
  .................................................................................................................	
  3	
  
1.4	
  Scope	
  of	
  the	
  Report	
  
........................................................................................................................	
  3	
  
2	
  LNG	
  ........................................................................................................................................................	
  4	
  
2.1	
  LNG	
  characteristics	
  .........................................................................................................................	
  4	
  
2.2	
  LNG	
  Chain	
  .......................................................................................................................................	
  4	
  
2.2.1	
  Gas	
  Field	
  (Reservoir)	
  
................................................................................................................	
  4	
  
2.2.2	
  Liquefaction	
  Terminal:	
  Onshore	
  Processes	
  .............................................................................	
  4	
  
2.2.3	
  Marine	
  Transport	
  ....................................................................................................................	
  4	
  
2.2.4	
  Receiving	
  Terminal	
  ..................................................................................................................	
  4	
  
2.3	
  LNG	
  Safety	
  Issues	
  ...........................................................................................................................	
  5	
  
3	
  LNG	
  Advantages	
  ....................................................................................................................................	
  6	
  
3.1	
  Environmental	
  advantages	
  .............................................................................................................	
  6	
  
3.1.1	
  Alternative	
  Energy	
  Sources	
  .....................................................................................................	
  6	
  
3.1.2	
  Emission	
  Control	
  
......................................................................................................................	
  6	
  
3.1.3	
  Emissions	
  Requirements	
  .........................................................................................................	
  7	
  
3.1.4	
  Natural	
  Gas	
  -­‐	
  The	
  Solution	
  
.......................................................................................................	
  7	
  
3.2	
  Economical	
  Advantages	
  
..................................................................................................................	
  8	
  
3.2.1	
  Investment	
  Costs	
  .....................................................................................................................	
  8	
  
3.2.2	
  Infrastructure	
  ..........................................................................................................................	
  8	
  
3.2.3	
  Marine	
  Fuel	
  Costs	
  ....................................................................................................................	
  9	
  
4	
  Bunkering	
  ............................................................................................................................................	
  10	
  
4.1	
  LNG	
  Bunkering	
  Definition	
  .............................................................................................................	
  10	
  
4.1.1	
  Engines	
  ..................................................................................................................................	
  10	
  
4.2	
  LNG	
  Bunkering	
  Scenarios	
  .............................................................................................................	
  10	
  
4.3	
  LNG	
  Bunkering	
  Procedure	
  ............................................................................................................	
  11	
  
4.3.1	
  Step	
  1	
  –	
  Initial	
  Precooling	
  1	
  ...................................................................................................	
  12	
  
4.3.2	
  Step	
  2-­‐	
  Initial	
  Precooling	
  2	
  
.....................................................................................................	
  13	
  
4.3.3	
  Step	
  3	
  –	
  Connection	
  of	
  Bunker	
  Hose	
  .....................................................................................	
  13	
  
4.3.4	
  Step	
  4	
  -­‐	
  Inerting	
  the	
  Connected	
  System	
  ................................................................................	
  14	
  
4.3.5	
  Step	
  5	
  –	
  Purging	
  the	
  Connected	
  System	
  ...............................................................................	
  14	
  
4.3.6	
  Step	
  6	
  –	
  Filling	
  Sequence	
  .......................................................................................................	
  15	
  
4.3.7	
  Step	
  7	
  –	
  Liquid	
  Line	
  Stripping	
  ................................................................................................	
  16	
  
4.3.8	
  Step	
  8	
  –	
  Liquid	
  Line	
  Inerting	
  ..................................................................................................	
  16	
  
4.3.9	
  Step	
  9	
  –	
  Disconnection	
  ..........................................................................................................	
  16	
  
4.4	
  Equipment	
  ....................................................................................................................................	
  17	
  
4.4.1	
  Tanks	
  .....................................................................................................................................	
  17	
  
4.4.2	
  Valves	
  ....................................................................................................................................	
  18	
  
4.4.3	
  Hose	
  
.......................................................................................................................................	
  18	
  
4.4.4	
  Loading	
  arms	
  .........................................................................................................................	
  18	
  
4.4.5	
  Pipes	
  ......................................................................................................................................	
  18	
  
4.4.6	
  Pump	
  .....................................................................................................................................	
  18	
  
4.4.7	
  Emergency	
  Shutdown	
  Systems	
  (ESD)	
  ....................................................................................	
  19	
  
4.4.8	
  Emergency	
  Release	
  Systems	
  (ERS)	
  ........................................................................................	
  19	
  
4.4.9	
  Emergency	
  Release	
  Couplers	
  (ERC)	
  .......................................................................................	
  19	
  
4.4.10	
  Control	
  and	
  Monitoring	
  Systems	
  
.........................................................................................	
  19	
  
	
  
	
   III	
  
	
  
5	
  Regulations	
  ..........................................................................................................................................	
  20	
  
5.1	
  Standardization	
  Bodies	
  
.................................................................................................................	
  20	
  
5.1.1	
  International	
  Maritime	
  Organization	
  (IMO)	
  ..........................................................................	
  20	
  
5.1.2	
  International	
  Organization	
  for	
  Standardization	
  (ISO)	
  
............................................................	
  20	
  
5.1.3	
  Society	
  of	
  International	
  Gas	
  Tanker	
  &	
  Terminal	
  Operators	
  (SIGTTO)	
  ...................................	
  20	
  
5.1.4	
  Oil	
  Companies	
  International	
  Marine	
  Forum	
  (OCIMF)	
  ...........................................................	
  20	
  
5.1.5	
  European	
  Committee	
  for	
  Standardization	
  (CEN)	
  ..................................................................	
  21	
  
5.2	
  International	
  Rules	
  and	
  Guidelines	
  ..............................................................................................	
  21	
  
5.2.1	
  IMO	
  International	
  Gas	
  Code	
  (IGC)	
  .........................................................................................	
  21	
  
5.2.2	
  IMO	
  International	
  Gas	
  Fuel	
  Interim	
  Guidelines	
  (MSC.285(86))	
  .............................................	
  21	
  
5.2.3	
  SIGGTO:	
  Guidelines	
  for	
  LNG	
  transfer	
  and	
  Port	
  Operation	
   ....................................................	
  21	
  
5.2.4	
  OCIMF:	
  Guidelines	
  for	
  Oil	
  transfers,	
  Ship-­‐to-­‐Ship	
  oil	
  bunkering	
  procedures	
  ........................	
  21	
  
5.2.5	
  CEN	
  –	
  European	
  Standard	
  .....................................................................................................	
  21	
  
5.2.6	
  Local	
  regulations	
  and	
  authorities	
  ..........................................................................................	
  22	
  
5.3	
  The	
  ISO	
  Standard	
  –	
  ISO/TC	
  67/WG	
  10/PT1	
  ..................................................................................	
  22	
  
5.4	
  Foreseen	
  Governance	
  of	
  LNG	
  Bunkering	
  Operations	
  
...................................................................	
  23	
  
6	
  On	
  Site	
  .................................................................................................................................................	
  24	
  
6.1	
  Best	
  Practice	
  .................................................................................................................................	
  24	
  
6.2	
  Bunkering	
  Area	
  .............................................................................................................................	
  24	
  
6.3	
  Purging	
  .........................................................................................................................................	
  24	
  
6.3.1	
  Zero	
  Emission	
  Solutions	
  ........................................................................................................	
  24	
  
6.3.2	
  Pressure	
  Testing	
  ....................................................................................................................	
  25	
  
6.4	
  Filling	
  Sequence	
  -­‐	
  Tank	
  Pressure	
  and	
  Temperature	
  .....................................................................	
  25	
  
6.4	
  1	
  Standard	
  Quality	
  –	
  Explanation	
  of	
  the	
  Term	
  .........................................................................	
  25	
  
7	
  Discussion	
  ............................................................................................................................................	
  26	
  
7.1	
  Standards	
  -­‐	
  Current	
  Situation	
  .......................................................................................................	
  26	
  
7.1.1	
  Bunkering	
  vs.	
  Large-­‐Scale	
  Transfers	
  ......................................................................................	
  26	
  
7.1.2	
  LNG	
  vs.	
  Conventional	
  Fuels	
  ...................................................................................................	
  26	
  
7.1.3	
  Port	
  rules	
  ...............................................................................................................................	
  26	
  
7.1.4	
  Bunkering	
  scenarios	
  ..............................................................................................................	
  27	
  
7.2	
  ISO/TC	
  67/WG	
  10	
  .........................................................................................................................	
  27	
  
7.2.1	
  Lacking	
  elements	
  ...................................................................................................................	
  27	
  
7.2.2	
  Implementation	
  .....................................................................................................................	
  27	
  
7.2.3	
  Equipment	
  .............................................................................................................................	
  28	
  
7.3	
  Passengers	
  ....................................................................................................................................	
  28	
  
7.4	
  Safety	
  Zones	
  .................................................................................................................................	
  28	
  
8	
  Conclusion	
  ...........................................................................................................................................	
  30	
  
Appendix	
  A	
  .............................................................................................................................................	
  31	
  
Appendix	
  B	
  .............................................................................................................................................	
  32	
  
Appendix	
  C	
  .............................................................................................................................................	
  33	
  
Standardization	
  bodies	
  
.......................................................................................................................	
  33	
  
International	
  Maritime	
  Organisation	
  (IMO)	
  ...................................................................................	
  33	
  
International	
  Organisation	
  for	
  Standardisation	
  (ISO)	
  
.....................................................................	
  33	
  
International	
  Electrotechnical	
  Commission	
  (IEC)	
  ...........................................................................	
  33	
  
Society	
  of	
  International	
  Gas	
  Tanker	
  &	
  Terminal	
  Operators	
  (SIGTTO)	
  ............................................	
  34	
  
Oil	
  Companies	
  International	
  Marine	
  Forum	
  (OCIMF)	
  ....................................................................	
  34	
  
European	
  Committee	
  for	
  Standardisation	
  (CEN)	
  ...........................................................................	
  34	
  
Reference	
  list	
  .........................................................................................................................................	
  36	
  
	
  
	
  

	
   IV	
  
	
  
List	
  of	
  Figures	
  
Figure	
  1:	
  The	
  LNG	
  fuelled	
  fleet	
  .................................................................................................................	
  2	
  
Figure	
  2:	
  The	
  Large	
  Scale	
  LNG	
  Chain	
  ........................................................................................................	
  4	
  
Figure	
  3:	
  Explosion/Flammability	
  Curve	
  ...................................................................................................	
  5	
  
Figure	
  4:	
  ECA	
  zones	
  ..................................................................................................................................	
  6	
  
Figure	
  5:	
  Fuel	
  Emissions,	
  for	
  a	
  typical	
  existing	
  ship	
  
..................................................................................	
  7	
  
Figure	
  6:	
  Lifecycle	
  economics	
  for	
  a	
  typical	
  ship	
  .......................................................................................	
  9	
  
Figure	
  7:	
  Overall	
  Bunkering	
  Layout	
  ........................................................................................................	
  11	
  
Figure	
  8:	
  Bunkering	
  Procedure	
  Step	
  1	
  ....................................................................................................	
  12	
  
Figure	
  9:	
  Bunkering	
  Procedure	
  Step	
  2	
  ....................................................................................................	
  13	
  
Figure	
  10:	
  Bunkering	
  Procedure	
  Step	
  4	
  ..................................................................................................	
  14	
  
Figure	
  11:	
  Bunkering	
  Procedure	
  Step	
  5	
  ..................................................................................................	
  14	
  
Figure	
  12:	
  Bunkering	
  Procedure	
  Step	
  6	
  -­‐	
  Bottom	
  Filling	
  ........................................................................	
  15	
  
Figure	
  13:	
  Bunkering	
  Procedure	
  Step	
  6	
  -­‐	
  Top	
  Filling	
  (Spray)	
  ..................................................................	
  15	
  
Figure	
  14:	
  Bunkering	
  Procedure	
  Step	
  7	
  ..................................................................................................	
  16	
  
Figure	
  15:	
  IMO	
  Type-­‐C	
  Tank,	
  CRYO	
  AB	
  ...................................................................................................	
  17	
  
Figure	
  16:	
  Dry	
  Break	
  Coupling	
  (Mann	
  Teknik	
  AB)	
  ..................................................................................	
  19	
  
Figure	
  17:	
  Foreseen	
  governance	
  of	
  LNG	
  bunkering	
  operations	
  .............................................................	
  23	
  
	
  

	
  
	
  

V	
  
List	
  of	
  Abbreviations	
  
NG	
  –	
  Natural	
  Gas	
  
LNG	
  –Liquefied	
  Natural	
  Gas	
  
LEL	
  –	
  Lower	
  Explosion	
  Level	
  
UEL	
  –	
  Upper	
  Explosion	
  Level	
  
HFO	
  –	
  Heavy	
  Fuel	
  Oil	
  
MDO	
  –	
  Marine	
  Diesel	
  Oil	
  	
  
MGO	
  –	
  Marine	
  Gas	
  Oil	
  
mmbtu	
  -­‐	
  million	
  British	
  thermal	
  units	
  
ECA	
  –	
  Emission	
  Control	
  Area	
  
IEA	
  –	
  International	
  Energy	
  Agency	
  
TTS	
  –	
  Truck-­‐to-­‐Ship	
  
STS	
  –	
  Ship-­‐to-­‐Ship	
  
PTS	
  –	
  Terminal	
  (Pipeline)-­‐to-­‐Ship	
  	
  
ERC	
  –	
  Emergency	
  Quick	
  Release	
  Connector/Couplers	
  
ESD	
  –	
  Emergency	
  Shutdown	
  Systems	
  	
  
ERS	
  –	
  Emergency	
  Release	
  Systems	
  
IMO	
  –	
  International	
  Maritime	
  Organization	
  
ISO	
  –	
  International	
  Organization	
  for	
  Standardization	
  
SIGTTO	
  –	
  Society	
  of	
  International	
  Gas	
  Tanker	
  &	
  Terminal	
  Operators	
  
OCIMF	
  –	
  Oil	
  Companies	
  International	
  Marine	
  Forum	
  
CEN	
  –	
  European	
  Committee	
  for	
  Standardization	
  
NMD	
  –	
  Norwegian	
  Maritime	
  Directorate	
  
EU	
  –	
  European	
  Union	
  
IGC	
  –	
  IMO	
  International	
  Gas	
  Code	
  
IGF	
  –	
  IMO	
  International	
  Gas	
  Fuel	
  Interim	
  Guidelines	
  
	
  
Sorted	
  after	
  order	
  of	
  appearance	
  in	
  the	
  document.	
  	
  
	
  
	
  

	
   VI	
  
	
  
1	
  Introduction	
  
1.1	
  Motivation	
  
“The	
  LNG	
  industry	
  is	
  the	
  fastest	
  growing	
  segment	
  of	
  the	
  energy	
  industry	
  around	
  the	
  world.”	
  Global	
  oil	
  
is	
  growing	
  about	
  0.9%	
  per	
  annum,	
  global	
  gas	
  at	
  2%,	
  while	
  Liquefied	
  Natural	
  Gas	
  (LNG)	
  has	
  been	
  
1
growing	
  at	
  a	
  comparatively	
  soaring	
  4.5%. 	
  
	
  
The	
  International	
  Energy	
  Agency	
  projects	
  the	
  natural	
  gas	
  used	
  to	
  account	
  for	
  more	
  than	
  25%	
  of	
  the	
  
world	
  energy	
  demand	
  (amounting	
  to	
  a	
  50%	
  increase)	
  by	
  2035,	
  making	
  it	
  the	
  fastest	
  growing	
  primary	
  
energy	
  source	
  of	
  the	
  world.	
  For	
  LNG,	
  a	
  9%	
  share	
  in	
  the	
  global	
  gas	
  supply	
  was	
  estimated	
  for	
  2010;	
  by	
  
2
2030	
  it	
  is	
  projected	
  to	
  account	
  for	
  15%. 	
  “Lloyd’s	
  Register	
  believes	
  LNG	
  could	
  account	
  for	
  up	
  to	
  9%	
  of	
  
3
total	
  bunker	
  fuel	
  demand	
  by	
  2025.”	
   	
  
1.1.1	
  Bunkering	
  
4
Small-­‐scale	
  distribution	
  and	
  bunkering	
  of	
  LNG	
  has	
  been	
  booming	
  as	
  well. 	
  LNG	
  was	
  created	
  as	
  a	
  way	
  
to	
  transport	
  natural	
  gas	
  in	
  a	
  more	
  economical	
  way	
  over	
  long	
  distances,	
  as	
  it	
  is	
  reduced	
  to	
  
th
approximately	
  1/600 	
  in	
  volume	
  through	
  liquefaction.	
  Transportation	
  and	
  handling	
  of	
  LNG	
  as	
  cargo	
  
on	
  both	
  land	
  and	
  sea	
  have	
  been	
  proven	
  for	
  many	
  decades.	
  With	
  new	
  emission	
  regulations	
  the	
  
potential	
  applications	
  for	
  LNG	
  is	
  expanding.	
  Among	
  these	
  applications	
  is	
  use	
  of	
  LNG	
  as	
  marine	
  fuel.	
  
Particularly	
  attractive	
  for	
  marine	
  vessels	
  travelling	
  set	
  routes	
  such	
  as	
  tug	
  boats,	
  ferries,	
  and	
  support	
  
vessels.	
  LNG	
  as	
  main	
  propulsion	
  fuel	
  is	
  no	
  longer	
  a	
  new	
  invention	
  and	
  the	
  technology	
  is	
  already	
  
5
6
classified	
  as	
  proven. 	
  The	
  first	
  LNG	
  fueled	
  ship	
  in	
  the	
  world	
  (Glutra)	
  was	
  launched	
  in	
  Norway,	
  in	
  2001. 	
  	
  
	
  
The	
  transportation	
  sector	
  being	
  the	
  single-­‐biggest	
  contributor	
  to	
  oil	
  demand	
  in	
  many	
  countries	
  
7
around	
  the	
  world,	
  is	
  always	
  looking	
  for	
  ways	
  to	
  cut	
  costs. 	
  Vessels	
  running	
  on	
  LNG	
  instead	
  of	
  oil	
  are	
  
8
already	
  saving	
  25%	
  on	
  fuels	
  costs	
  in	
  certain	
  markets. 	
  Norway	
  is	
  currently	
  operating	
  38	
  gas-­‐fuelled	
  
ships.	
  Based	
  on	
  intrinsic	
  advantages	
  LNG	
  has	
  as	
  a	
  fuel,	
  it	
  can	
  and	
  will	
  probably	
  be	
  adopted	
  on	
  an	
  
international	
  basis.	
  In	
  response	
  to	
  increasing	
  demand,	
  construction	
  of	
  LNG	
  bunkering	
  infrastructure	
  is	
  
9
under	
  development. 	
  	
  
	
  
Development	
  of	
  a	
  worldwide	
  LNG	
  supply	
  chain	
  based	
  on	
  ship-­‐to-­‐ship	
  or	
  shore-­‐to-­‐ship	
  bunkering	
  is	
  of	
  
10
paramount	
  importance	
  for	
  LNG	
  to	
  become	
  a	
  real	
  alternative	
  to	
  heavy	
  fuel	
  oil. 	
  The	
  bunkering	
  
solutions	
  most	
  widely	
  used	
  today	
  are	
  truck	
  and	
  terminal	
  supply.	
  Both	
  solutions	
  are	
  considered	
  less	
  
feasible	
  as	
  trucks	
  provide	
  small	
  volumes	
  and	
  terminals	
  have	
  high	
  operational	
  cost.	
  Bunkering	
  from	
  
vessel/barge,	
  on	
  the	
  other	
  hand,	
  is	
  much	
  more	
  flexible	
  with	
  respect	
  to	
  covering	
  several	
  sizes	
  and	
  
locations	
  that	
  in	
  turn	
  lowers	
  both	
  cost	
  and	
  time	
  spent	
  on	
  bunkering.	
  	
  
1.1.2	
  New	
  Projects	
  
11
	
  “New	
  LNG	
  projects	
  and	
  applications	
  are	
  being	
  announced	
  daily	
  around	
  the	
  world.“	
   	
  
• In	
  Europe,	
  the	
  commission	
  has	
  set	
  aside	
  €2.1bn	
  to	
  equip	
  139	
  seaports	
  and	
  inland	
  ports	
  –	
  
about	
  10	
  per	
  cent	
  of	
  all	
  ports	
  –	
  with	
  LNG	
  bunker	
  stations	
  by	
  2025.	
  The	
  plan	
  forms	
  part	
  of	
  the	
  
12
new	
  EU	
  strategy	
  for	
  clean	
  fuels. 	
  
13
• Singapore:	
  developed	
  and	
  opened	
  an	
  open-­‐access,	
  multi-­‐user	
  import	
  terminal. 	
  	
  
• In	
  Norway,	
  Skangass	
  in	
  cooperation	
  with	
  Gassnor	
  in	
  Risavika	
  Stavanger	
  is	
  establishing	
  a	
  
bunker	
  terminal.	
  	
  
• “Washington	
  State	
  Ferries	
  (WSF)	
  is	
  exploring	
  an	
  option	
  to	
  use	
  liquefied	
  natural	
  gas	
  (LNG)	
  as	
  a	
  
14
source	
  of	
  fuel	
  for	
  propulsion.” 	
  
	
  
	
  

1	
  
There	
  are	
  LNG	
  passenger	
  vessels	
  currently	
  under	
  construction	
  or	
  in	
  design	
  for	
  service	
  in	
  
Argentina,	
  Uruguay,	
  Finland,	
  and	
  Sweden.	
  
• The	
  M/S	
  Viking	
  Grace	
  was	
  launched	
  some	
  months	
  ago	
  and	
  is	
  the	
  world’s	
  first	
  large	
  passenger	
  
15
vessel	
  to	
  be	
  powered	
  by	
  liquefied	
  natural	
  gas	
  (LNG) 	
  
• Break-­‐bulk	
  terminal	
  in	
  Rotterdam.	
  	
  
16
• Port	
  of	
  Antwerp,	
  creating	
  a	
  LNG	
  bunker	
  vessel. 	
  	
  
• “LNG	
  bunkering	
  Ship	
  to	
  Ship”	
  report	
  carried	
  out	
  by	
  Swedish	
  Marine	
  Technology	
  Forum	
  in	
  
cooperation	
  with	
  Det	
  Norske	
  Veritas	
  (DNV)	
  and	
  others.	
  The	
  document	
  is	
  a	
  procedural	
  
description	
  of	
  how	
  LNG	
  bunkering	
  between	
  two	
  ships	
  should	
  be	
  done	
  based	
  on	
  a	
  real	
  life	
  
17
example. 	
  	
  
Currently	
  there	
  are	
  74	
  confirmed	
  LNG	
  fuelled	
  ships	
  contracted.	
  The	
  following	
  figure	
  includes	
  
developments	
  in	
  the	
  fleet	
  and	
  future	
  expansions	
  plans	
  for	
  the	
  next	
  three	
  years.	
  	
  
	
  
•

	
  

18

Figure	
  1:	
  The	
  LNG	
  fuelled	
  fleet 	
  

	
  
1.1.3	
  The	
  Drive	
  	
  
The	
  reason	
  for	
  this	
  strong	
  increase	
  and	
  interest	
  in	
  LNG	
  as	
  a	
  marine	
  fuel	
  is	
  based	
  on	
  two	
  main	
  factors:	
  
1. The	
  Marine	
  Environmental	
  Protection	
  Committee	
  part	
  of	
  International	
  Maritime	
  
Organization	
  (IMO)	
  is	
  introducing	
  emission	
  controls,	
  constraining	
  the	
  extent	
  of	
  exhaust	
  gas	
  
19
emission.	
  This	
  is	
  forcing	
  the	
  industry	
  to	
  rethink	
  its	
  fueling	
  options. 	
  	
  
2. The	
  availability	
  of	
  natural	
  gas	
  has	
  increased	
  due	
  to	
  large	
  offshore	
  discoveries	
  and	
  
unconventional	
  gas	
  finds	
  in	
  the	
  US	
  (shale	
  gas),	
  creating	
  lower	
  prices	
  on	
  natural	
  gas	
  compared	
  
to	
  conventional	
  fuels.	
  This	
  creates	
  a	
  drive	
  in	
  the	
  industry,	
  as	
  consumers	
  are	
  able	
  to	
  obtain	
  
commercial	
  saving	
  against	
  alternative	
  fuels.	
  

	
  
	
  

2	
  
1.2	
  Underlying	
  Hypothesis	
  
The	
  industry	
  will	
  continue	
  to	
  introduce	
  technological	
  innovations	
  and	
  infrastructure	
  needed	
  to	
  supply	
  
the	
  expanding	
  LNG	
  bunkering	
  market	
  as	
  long	
  as	
  there	
  is	
  a	
  cost	
  benefit	
  to	
  use	
  LNG	
  compared	
  to	
  
alternative	
  fuels.	
  Over	
  the	
  last	
  decades	
  the	
  focus	
  in	
  the	
  market	
  has	
  been	
  on	
  technical	
  and	
  commercial	
  
issues,	
  but	
  now	
  that	
  the	
  technical	
  solutions	
  are	
  in	
  place	
  and	
  markets	
  are	
  growing	
  the	
  industry	
  is	
  
20
taking	
  a	
  closer	
  look	
  at	
  strategic	
  and	
  regulatory	
  matters. 	
  	
  
	
  
As	
  LNG	
  marine	
  fuel	
  becomes	
  more	
  common,	
  regulations	
  and	
  standards	
  need	
  to	
  be	
  implemented	
  
alongside	
  technical	
  and	
  procedural	
  developments.	
  Standards	
  are	
  necessary	
  as	
  it	
  ensures	
  a	
  level	
  of	
  
safety	
  and	
  create	
  common	
  grounds	
  for	
  the	
  operators,	
  again	
  making	
  it	
  easier	
  for	
  the	
  LNG	
  industry	
  to	
  
expand.	
  	
  
	
  
There	
  are	
  several	
  bodies	
  that	
  cover	
  various	
  aspects	
  of	
  currently	
  incomplete	
  legislation	
  for	
  the	
  
industry.	
  One	
  of	
  the	
  regulatory	
  frameworks	
  is	
  the	
  upcoming	
  ISO/TC	
  67/WG	
  10	
  Technical	
  Report	
  
(which	
  DNV	
  is	
  leading).	
  The	
  technical	
  report	
  will	
  be	
  a	
  high	
  level	
  document	
  scheduled	
  for	
  completion	
  in	
  
2014.	
  “The	
  objective	
  of	
  the	
  ISO	
  TC	
  67	
  WG	
  10	
  is	
  the	
  development	
  of	
  international	
  guidelines	
  for	
  
bunkering	
  of	
  gas-­‐fuelled	
  vessels	
  focusing	
  on	
  requirements	
  for	
  the	
  LNG	
  transfer	
  system,	
  the	
  personnel	
  
21
involved	
  and	
  the	
  related	
  risk	
  of	
  the	
  whole	
  LNG	
  bunkering	
  process.” 	
  
	
  
Within	
  this	
  definition	
  there	
  are	
  several	
  questions	
  raised	
  as	
  to	
  what	
  it	
  should	
  cover	
  and	
  what	
  it	
  needs	
  
to	
  cover	
  to	
  be	
  an	
  effective	
  “tool”	
  in	
  future	
  bunkering	
  expansion	
  and	
  to	
  answer	
  the	
  industry’s	
  current	
  
demand	
  for	
  standardization.	
  Currently	
  it	
  is	
  the	
  opinion	
  of	
  the	
  industry	
  that	
  comprehensive	
  
international	
  standards	
  cannot	
  be	
  created,	
  as	
  the	
  experience	
  of	
  bunkering	
  LNG	
  is	
  too	
  limited.	
  
Nonetheless,	
  with	
  increased	
  use	
  there	
  will	
  be	
  a	
  need	
  for	
  international	
  standardization	
  and	
  guidelines.	
  
	
  

1.3	
  Main	
  Goal	
  of	
  the	
  Report	
  
The	
  topic	
  of	
  the	
  report	
  will	
  be	
  an	
  evaluation	
  of	
  LNG	
  bunkering	
  solutions,	
  with	
  main	
  focus	
  on	
  
identifying	
  technical	
  challenges,	
  and	
  to	
  identify	
  potential	
  areas	
  for	
  industry’s	
  standardization.	
  	
  	
  
	
  

1.4	
  Scope	
  of	
  the	
  Report	
  
The	
  report	
  will	
  cover	
  LNG	
  characteristics,	
  safety	
  aspects	
  and	
  the	
  current	
  state	
  of	
  technology	
  for	
  
bunkering	
  of	
  LNG.	
  Present	
  a	
  technical	
  step-­‐by-­‐step	
  overview	
  over	
  the	
  bunkering	
  procedure	
  and	
  
essential	
  equipment	
  used.	
  It	
  will	
  further	
  discuss	
  problem	
  areas,	
  safety	
  issues	
  and	
  areas	
  where	
  
standards	
  could	
  be	
  useful	
  to	
  promote	
  more	
  widespread	
  use.	
  	
  
The	
  report	
  is	
  limited	
  by	
  the	
  available	
  technologies	
  comprising	
  a	
  discharging	
  unit	
  to	
  receiving	
  ship	
  for	
  
transferring	
  LNG.	
  There	
  are	
  many	
  actors	
  in	
  the	
  industry	
  but	
  the	
  experience	
  is	
  limited	
  and	
  the	
  
solutions	
  are	
  proprietary.	
  	
  

	
  

3	
  
2	
  LNG	
  
2.1	
  LNG	
  characteristics	
  	
  
Liquefied	
  Natural	
  Gas	
  (LNG)	
  is	
  Natural	
  Gas	
  (NG)	
  cooled	
  to	
  about	
  -­‐162°C	
  (-­‐260°F)	
  at	
  atmospheric	
  
pressure.	
  It	
  is	
  a	
  condensed	
  mixture	
  of	
  methane	
  (CH4)	
  approximately	
  85-­‐96mol%	
  and	
  a	
  small	
  
percentage	
  of	
  heavier	
  hydrocarbons.	
  LNG	
  is	
  clear,	
  colorless,	
  odorless,	
  non-­‐corrosive	
  and	
  non-­‐toxic.	
  In	
  
liquid	
  form	
  it	
  is	
  approximately	
  45%	
  the	
  density	
  of	
  water	
  and	
  as	
  vapor	
  it	
  is	
  approximately	
  50%	
  density	
  
of	
  air	
  and	
  will	
  rise	
  under	
  normal	
  atmospheric	
  conditions.	
  LNG	
  is	
  called	
  a	
  cryogenic	
  liquid	
  –	
  defined	
  as	
  
substances	
  that	
  liquefies	
  at	
  a	
  temperature	
  below	
  -­‐73°C	
  (-­‐100°F)	
  at	
  atmospheric	
  pressure.	
  The	
  process	
  
th
of	
  liquefaction	
  reduces	
  the	
  volume	
  to	
  1/600 	
  of	
  its	
  original	
  volume,	
  providing	
  efficient	
  storage	
  and	
  
	
  22
transport. 	
  	
  
	
  

2.2	
  LNG	
  Chain	
  

	
  

23

Figure	
  2:	
  The	
  Large	
  Scale	
  LNG	
  Chain 	
  

2.2.1	
  Gas	
  Field	
  (Reservoir)	
  
The	
  Chain	
  starts	
  with	
  gas	
  production. Raw	
  NG	
  comes	
  from	
  three	
  types	
  of	
  wells:	
  oil	
  wells	
  (associated	
  
gas),	
  gas	
  wells,	
  and	
  condensate	
  wells	
  (both	
  non-­‐associated	
  gas).	
  NG	
  is	
  a	
  mixture	
  of	
  hydrocarbons.	
  It	
  
consists	
  mostly	
  of	
  methane,	
  but	
  also	
  heavier	
  hydrocarbons:	
  ethane,	
  propane,	
  butane,	
  and	
  pentanes.	
  
In	
  addition,	
  raw	
  NG	
  contains	
  water	
  vapor,	
  hydrogen	
  sulfide,	
  carbon	
  dioxide,	
  helium,	
  nitrogen,	
  and	
  
24
other	
  compounds. 	
  NG	
  quality	
  will	
  vary	
  depending	
  on	
  its	
  composition.	
  A	
  full	
  composition	
  example	
  of	
  
NG	
  can	
  be	
  found	
  in	
  Appendix	
  A.	
  
2.2.2	
  Liquefaction	
  Terminal:	
  Onshore	
  Processes	
  
The	
  rich	
  gas	
  from	
  the	
  reservoirs	
  is	
  purified	
  to	
  increase	
  its	
  methane	
  content.	
  The	
  pre-­‐treatment	
  
includes	
  removal	
  of	
  condensate,	
  carbon	
  dioxide	
  (CO2),	
  mercury,	
  sulfur	
  (H2S),	
  and	
  water	
  (through	
  
dehydration).	
  After	
  pre-­‐treatment	
  the	
  natural	
  gas	
  is	
  now	
  classified	
  as	
  dry/lean	
  gas.	
  This	
  gas	
  if	
  further	
  
25
refrigerated	
  and	
  eventually	
  liquefied	
  and	
  stored. 	
  	
  
2.2.3	
  Marine	
  Transport	
  
Large-­‐scale	
  LNG	
  is	
  shipped	
  from	
  the	
  liquefaction	
  terminal	
  to	
  the	
  receiving	
  terminal	
  by	
  LNG	
  carriers,	
  
3
today	
  the	
  normal	
  capacity	
  range	
  for	
  carriers	
  is	
  145,000-­‐180,000m .	
  	
  
2.2.4	
  Receiving	
  Terminal	
  
At	
  the	
  receiving	
  terminal	
  LNG	
  is	
  stored	
  in	
  large	
  cryogenic	
  tanks.	
  The	
  liquid	
  is	
  re-­‐gasified/vaporized	
  and	
  
transported	
  to	
  local	
  market	
  via	
  the	
  gas	
  grid.	
  In	
  some	
  markets	
  a	
  portion	
  of	
  the	
  LNG	
  is	
  broken	
  into	
  
smaller	
  cargoes	
  and	
  distributed	
  in	
  smaller	
  scale	
  by	
  rail,	
  road	
  or	
  smaller	
  LNG	
  vessels.	
  Small-­‐scale	
  
	
  

4	
  
distributions	
  can	
  also	
  originate	
  from	
  small-­‐scale	
  liquefaction	
  plants;	
  this	
  is	
  current	
  practice	
  in	
  Norway	
  
and	
  the	
  US.	
  	
  The	
  small-­‐scale	
  distribution	
  scenarios	
  are	
  the	
  focus	
  of	
  this	
  project	
  report.	
  	
  
	
  

2.3	
  LNG	
  Safety	
  Issues	
  
In	
  its	
  liquid	
  form	
  LNG	
  cannot	
  explode	
  and	
  it	
  is	
  not	
  flammable.	
  Hazards	
  arise	
  when	
  LNG	
  returns	
  to	
  its	
  
gaseous	
  state	
  through	
  an	
  uncontrolled	
  release.	
  The	
  release	
  can	
  as	
  an	
  example	
  be	
  caused	
  by	
  a	
  tank	
  
rupture	
  due	
  to	
  external	
  impact,	
  leaks	
  from	
  flanges	
  in	
  the	
  pipework	
  or	
  a	
  pipe	
  break,	
  etc.	
  	
  
	
  
The	
  hazards	
  can	
  be	
  divided	
  into	
  two	
  categories:	
  
1. Cryogenic	
  effects	
  from	
  LNG	
  
Exposure	
  to	
  a	
  liquid	
  at	
  -­‐163°C	
  will	
  cause	
  humans	
  to	
  freeze	
  and	
  steel	
  equipment	
  to	
  become	
  
brittle.	
  Brittle	
  steel	
  can	
  break	
  and	
  cause	
  additional	
  secondary	
  failures.	
  	
  
	
  
2. Fire	
  and	
  explosion	
  
Once	
  the	
  LNG	
  has	
  leaked,	
  it	
  will	
  form	
  a	
  pool	
  of	
  liquid	
  LNG.	
  This	
  pool	
  will	
  start	
  to	
  evaporate	
  
and	
  form	
  a	
  cloud	
  of	
  gas,	
  primarily	
  consisting	
  of	
  methane.	
  This	
  gas	
  will	
  start	
  mixing	
  with	
  air	
  
(with	
  a	
  20.9%	
  oxygen	
  ratio)	
  and	
  once	
  it	
  reaches	
  a	
  mixture	
  between	
  5-­‐15%	
  gas,	
  it	
  is	
  ignitable.	
  
Outside	
  the	
  critical	
  level	
  an	
  explosion	
  or	
  fire	
  will	
  not	
  occur.	
  Below	
  the	
  lower	
  explosion	
  level	
  
(LEL)	
  there	
  is	
  insufficient	
  amount	
  of	
  methane.	
  Similarly,	
  above	
  the	
  upper	
  explosion	
  level	
  
(UEL)	
  there	
  is	
  insufficient	
  amount	
  of	
  oxygen	
  present.	
  The	
  critical	
  level	
  is	
  at	
  9%	
  ratio	
  of	
  NG	
  to	
  
air.	
  	
  
	
  
Without	
  an	
  ignition	
  source,	
  the	
  gas	
  will	
  continue	
  to	
  evaporate,	
  disperse	
  at	
  ground	
  level	
  while	
  
cold,	
  start	
  to	
  warm	
  and	
  rise	
  to	
  the	
  sky	
  (as	
  methane	
  is	
  lighter	
  than	
  air)	
  and	
  thereafter	
  drift	
  
away	
  until	
  the	
  entire	
  liquid	
  pool	
  is	
  gone.	
  LNG	
  evaporates	
  quickly,	
  and	
  disperses,	
  leaving	
  no	
  
residue.	
  There	
  is	
  no	
  environmental	
  cleanup	
  needed	
  for	
  LNG	
  spills	
  on	
  water	
  or	
  land.	
  If	
  an	
  
ignition	
  source	
  is	
  present,	
  the	
  gas	
  cloud	
  could	
  ignite,	
  but	
  only	
  at	
  the	
  edges	
  where	
  the	
  
methane	
  concentration	
  is	
  within	
  the	
  aforementioned	
  range.	
  There	
  will	
  be	
  an	
  initial	
  flash,	
  not	
  
very	
  violent,	
  as	
  the	
  gas	
  cloud	
  ignites,	
  and	
  it	
  will	
  continue	
  to	
  burn	
  back	
  to	
  the	
  pool	
  as	
  a	
  flash	
  
fire.	
  The	
  gas	
  will	
  continue	
  to	
  burn	
  as	
  it	
  evaporates	
  until	
  the	
  pool	
  of	
  LNG	
  is	
  gone.	
  
	
  
For	
  an	
  explosion	
  to	
  take	
  place	
  the	
  gas	
  typically	
  needs	
  to	
  be	
  in	
  a	
  confined	
  space	
  (such	
  as	
  
inside	
  a	
  building	
  or	
  vessel),	
  reach	
  the	
  right	
  mixture	
  with	
  oxygen	
  and	
  have	
  the	
  presence	
  of	
  an	
  
ignition	
  source.	
  In	
  this	
  event,	
  there	
  could	
  be	
  an	
  explosion	
  causing	
  overpressure	
  and	
  drag	
  
26
loads	
  and	
  potential	
  damage	
  to	
  life	
  and	
  property. 	
  
	
  
	
  

27

Figure	
  3:	
  Explosion/Flammability	
  Curve 	
  

	
  

	
  
5	
  
3	
  LNG	
  Advantages	
  
For	
  the	
  shipping	
  industry,	
  as	
  in	
  all	
  other,	
  profit	
  is	
  crucial.	
  The	
  provider	
  of	
  the	
  lowest	
  voyage	
  cost	
  for	
  a	
  
particular	
  cargo	
  wins	
  the	
  customers.	
  In	
  all	
  cases	
  fuel	
  prices	
  top	
  the	
  expense	
  list	
  representing	
  50%-­‐70%	
  
28
of	
  the	
  total	
  costs	
  of	
  owning	
  and	
  operating	
  a	
  ship. 	
  For	
  LNG	
  to	
  be	
  a	
  viable	
  alternative	
  fuel	
  it	
  needs	
  to	
  
be	
  price	
  competitive.	
  To	
  understand	
  why	
  the	
  industry	
  is	
  rethinking	
  it	
  fueling	
  options	
  and	
  how	
  LNG	
  is	
  a	
  
sustainable	
  alternative,	
  this	
  chapter	
  will	
  present	
  some	
  of	
  the	
  advantages	
  of	
  LNG	
  as	
  marine	
  fuel.	
  The	
  
main	
  source	
  used	
  is	
  “Greener	
  Shipping	
  in	
  the	
  Baltic	
  Sea”	
  DNV	
  Report,	
  June	
  2010.	
  

3.1	
  Environmental	
  advantages	
  	
  	
  
3.1.1	
  Alternative	
  Energy	
  Sources	
  
Through	
  technological	
  developments	
  and	
  innovations	
  the	
  world	
  today	
  has	
  a	
  wide	
  range	
  of	
  alternative	
  
energy	
  sources,	
  besides	
  its	
  hydrocarbon-­‐based	
  sources.	
  Examples	
  are	
  wind,	
  solar,	
  biomass,	
  nuclear,	
  
and	
  hydro	
  electric.	
  For	
  the	
  shipping	
  industry	
  though,	
  most	
  of	
  these	
  alternative	
  do	
  not	
  apply:	
  	
  
• Electric:	
  entire	
  cargo	
  area	
  would	
  have	
  to	
  be	
  filled	
  with	
  batteries	
  
• Biomass:	
  would	
  have	
  to	
  empty	
  the	
  world	
  of	
  organic	
  material	
  
• Solar:	
  not	
  enough	
  surface	
  area	
  for	
  the	
  number	
  of	
  panels	
  needed	
  
• Wind:	
  there	
  is	
  not	
  enough	
  stability	
  in	
  the	
  vessels	
  to	
  carry	
  the	
  turbines	
  on	
  deck.	
  Another	
  type	
  
of	
  wind	
  source	
  used	
  in	
  the	
  past	
  is	
  sailing,	
  but	
  with	
  respect	
  to	
  increased	
  travel	
  time	
  this	
  is	
  not	
  
an	
  option.	
  	
  
The	
  shipping	
  industry	
  needs	
  to	
  remain	
  or	
  further	
  increase	
  its	
  efficiency	
  and	
  consequently	
  has	
  no	
  
29
carbon	
  neutral	
  alternatives	
  at	
  their	
  disposal. 	
  	
  
3.1.2	
  Emission	
  Control	
  
Heavy	
  Fuel	
  Oil	
  (HFO),	
  Marine	
  Diesel	
  Oil	
  (MDO)	
  and	
  Marine	
  Gas	
  Oil	
  (MGO)	
  are	
  all	
  current	
  conventional	
  
bunkering	
  fuels.	
  Ship	
  based	
  fuel	
  is	
  a	
  large	
  part	
  oil	
  consumption	
  and	
  all	
  these	
  fuels	
  are	
  high	
  on	
  
emission	
  rates.	
  If	
  carbon	
  neutral	
  options	
  are	
  out	
  of	
  the	
  question	
  how	
  will	
  the	
  shipping	
  industry	
  meet	
  
future	
  emission	
  regulations	
  dictated	
  by	
  international	
  authorities?	
  In	
  2015,	
  the	
  allowed	
  SOx	
  emissions	
  
from	
  ships	
  sailing	
  within	
  the	
  Emission	
  Control	
  Area	
  (ECA)	
  will	
  be	
  reduced.	
  	
  These	
  standards	
  of	
  
emissions	
  are	
  already	
  adopted	
  on	
  a	
  case-­‐by-­‐case	
  basis	
  in	
  European	
  inland	
  waterways	
  and	
  ports,	
  by	
  
certification	
  from	
  the	
  relevant	
  Classification	
  Societies.	
  Further,	
  in	
  2016,	
  the	
  International	
  Maritime	
  
30
Organization	
  (IMO)	
  will	
  put	
  the	
  new	
  Tier	
  III	
  levels	
  of	
  NOx	
  emissions	
  into	
  force. 	
  These	
  regulations	
  will	
  
impose	
  taxes	
  on	
  emission,	
  which	
  will	
  increase	
  the	
  cost	
  of	
  using	
  conventional	
  fuels.	
  	
  
	
  

31

Figure	
  4:	
  ECA	
  zones 	
  

	
  

	
  
6	
  
3.1.3	
  Emissions	
  Requirements	
  
ECA	
  requirements:	
  
• Maximum	
  level	
  of	
  sulphur	
  in	
  fuel,	
  all	
  ships:	
  
o 1,0%	
  by	
  July	
  1,	
  2010	
  
o 0,1%	
  by	
  January	
  1,	
  2015	
  
• Nitrogen	
  emission	
  for	
  new	
  buildings:	
  
o 20%	
  reduction	
  in	
  NOx	
  emission	
  by	
  2011	
  (Tier	
  II)	
  
o 80%	
  reduction	
  in	
  NOx	
  emission	
  from	
  2016	
  (Tier	
  III)	
  
EU	
  fuel	
  requirements	
  now:	
  
• 0,1%	
  sulphur	
  in	
  ports	
  and	
  inland	
  waterways	
  
Global	
  requirements:	
  
32
• 2020/2025:	
  sulphur	
  levels	
  less	
  than	
  0.5%	
  (date	
  TBD	
  pending	
  2018	
  review) 	
  
3.1.4	
  Natural	
  Gas	
  -­‐	
  The	
  Solution	
  
Based	
  on	
  a	
  review	
  of	
  existing	
  marine	
  engine	
  technology	
  and	
  expected	
  technology	
  development,	
  ship	
  
33
owners	
  currently	
  have	
  three	
  choices	
  if	
  they	
  wish	
  to	
  continue	
  sailing	
  in	
  ECAs	
  from	
  2015. 	
  	
  
• Switch	
  to	
  low	
  sulphur	
  fuel	
  –	
  minor	
  modifications	
  to	
  present	
  MGO	
  and	
  MDO	
  systems,	
  but	
  
availability	
  is	
  already	
  limited	
  	
  
• Install	
  an	
  exhaust	
  gas	
  scrubber	
  –	
  expensive	
  option	
  	
  
• Switch	
  to	
  LNG	
  fuel	
  –	
  will	
  comply	
  with	
  upcoming	
  regulations	
  and	
  to	
  contribute	
  to	
  global	
  
emission	
  reductions,	
  natural	
  gas	
  is	
  a	
  viable	
  option.	
  	
  
Reductions	
  in	
  emissions	
  form	
  using	
  LNG	
  as	
  a	
  fuel	
  
• CO2	
  and	
  GHG	
  20-­‐25%	
  
• SOx	
  and	
  particulates	
  approximately	
  100%	
  
• NOx	
  85-­‐90%	
  
	
  

34

Figure	
  5:	
  Fuel	
  Emissions,	
  for	
  a	
  typical	
  existing	
  ship 	
  

	
  

	
  

7	
  
3.2	
  Economical	
  Advantages	
  
“The	
  marine	
  fuel	
  oil	
  market	
  is	
  a	
  large	
  global	
  market	
  supplying	
  about	
  300	
  million	
  tons	
  of	
  fuel	
  oil	
  
35
annually,	
  and	
  the	
  price	
  developments	
  are	
  generally	
  following	
  that	
  of	
  crude	
  oil.” 	
  Marine	
  fuels	
  on	
  
long-­‐term	
  contracts	
  have	
  trading	
  prices	
  of	
  14-­‐15USD/mmbtu	
  (million	
  British	
  thermal	
  units)	
  for	
  LNG	
  
36
and	
  107-­‐116USD/barrel	
  for	
  crude	
  oil.	
  (Ref:	
  International	
  Energy	
  Agency	
  (IEA)) 	
  The	
  prices	
  are	
  
measured	
  in	
  different	
  units	
  as	
  the	
  substance	
  is	
  different,	
  but	
  if	
  a	
  conversion	
  is	
  made	
  directly	
  1	
  barrel	
  
is	
  approximately	
  equal	
  to	
  5.55mmbtu.	
  This	
  means	
  that	
  crude	
  oil	
  prices	
  lie	
  in	
  the	
  range	
  from	
  19-­‐
21USD/mmbtu.	
  	
  
	
  
The	
  LNG	
  price	
  is	
  based	
  on	
  large-­‐scale	
  sales,	
  not	
  distribution	
  in	
  the	
  small-­‐scale.	
  The	
  global	
  natural	
  gas	
  
market	
  is	
  today	
  not	
  set	
  up	
  to	
  supply	
  LNG	
  in	
  small	
  quantities	
  to	
  consumers	
  such	
  as	
  ferries.	
  There	
  are	
  
currently	
  no	
  functioning	
  markets	
  for	
  this,	
  and	
  no	
  reference	
  prices	
  consequently	
  exist.	
  There	
  are	
  many	
  
small-­‐scale	
  LNG	
  developments	
  across	
  the	
  world,	
  but	
  contract	
  structures	
  and	
  prices	
  for	
  LNG	
  as	
  a	
  
37
marine	
  fuel	
  is	
  uncertain	
  as	
  of	
  today. 	
  
3.2.1	
  Investment	
  Costs	
  
A	
  switch	
  to	
  LNG	
  marine	
  fuel	
  necessitates	
  expenses	
  on	
  several	
  levels:	
  equipment	
  adaptation,	
  
establishing	
  bonds	
  with	
  new	
  suppliers,	
  possibly	
  planning	
  new	
  shipment	
  routes	
  as	
  LNG	
  will	
  only	
  be	
  
provided	
  in	
  certain	
  areas	
  and	
  training	
  of	
  personnel.	
  The	
  investment	
  cost	
  will	
  vary	
  significantly	
  
between	
  ship	
  types	
  and	
  must	
  be	
  assessed	
  from	
  case	
  to	
  case.	
  Nevertheless,	
  the	
  added	
  investment	
  cost	
  
of	
  choosing	
  LNG	
  fuel	
  for	
  new	
  ships	
  is	
  expected	
  to	
  decrease	
  in	
  the	
  future.	
  The	
  rate	
  and	
  extent	
  of	
  this	
  
increment	
  will	
  largely	
  depend	
  on	
  the	
  number	
  of	
  LNG	
  fuelled	
  ships	
  being	
  contracted	
  (economies	
  of	
  
38
scale). 	
  Higher	
  volume	
  of	
  ships	
  running	
  on	
  LNG	
  will	
  create	
  the	
  motive	
  for	
  building	
  the	
  infrastructure	
  
needed	
  to	
  support	
  small-­‐scale	
  supply,	
  which	
  in	
  turn	
  will	
  reduce	
  the	
  present	
  day	
  costs.	
  	
  
	
  
Ships	
  operating	
  in	
  the	
  Baltic	
  Sea	
  have	
  a	
  fairly	
  even	
  age	
  distribution	
  from	
  new	
  to	
  40	
  years	
  old.	
  The	
  
replacement	
  of	
  old	
  vessels	
  is	
  continuous,	
  and	
  it	
  takes	
  about	
  10	
  years	
  to	
  replace	
  25%	
  of	
  the	
  sailing	
  
39
fleet. 	
  	
  
3.2.2	
  Infrastructure	
  
If	
  distribution	
  and	
  process	
  costs	
  could	
  be	
  brought	
  down	
  to	
  similar	
  levels	
  as	
  for	
  oil	
  by	
  economics	
  of	
  
scale,	
  the	
  current	
  fuel	
  prices	
  indicates	
  a	
  great	
  economic	
  potential	
  for	
  LNG.	
  The	
  infrastructure	
  for	
  LNG	
  
bunkering	
  today,	
  however,	
  does	
  not	
  allow	
  for	
  the	
  LNG	
  prices	
  to	
  remain	
  at	
  this	
  level.	
  As	
  soon	
  as	
  LNG	
  is	
  
broken	
  into	
  smaller	
  volumes	
  and	
  distributed	
  further	
  through	
  the	
  small-­‐scale	
  chain	
  prices	
  increase	
  
drastically.	
  Small-­‐scale	
  liquefaction	
  and	
  distribution	
  expenses	
  are	
  the	
  main	
  contributors	
  to	
  this	
  price	
  
increase.	
  The	
  potential	
  savings	
  for	
  the	
  ship-­‐owner	
  would	
  then	
  be	
  eliminated.	
  In	
  order	
  to	
  bring	
  down	
  
the	
  price	
  of	
  LNG	
  for	
  bunkering,	
  it	
  must	
  be	
  bought	
  from	
  full-­‐scale	
  liquefaction	
  plants	
  and	
  efficient	
  
40
distribution	
  chain	
  must	
  be	
  established. 	
  	
  
	
  
The	
  industry	
  is	
  already	
  well	
  aware	
  of	
  these	
  issues	
  and	
  is	
  searching	
  for	
  effective	
  solutions.	
  Trough	
  the	
  
EU	
  initiative	
  to	
  establish	
  139	
  ports	
  (as	
  mentioned	
  in	
  chapter	
  1),	
  LNG	
  will	
  be	
  accessible	
  and	
  a	
  ship	
  will	
  
not	
  have	
  to	
  limit	
  its	
  routes	
  to	
  specific	
  bunkering	
  areas.	
  Similar	
  initiatives	
  are	
  taken	
  all	
  over	
  the	
  world.	
  
To	
  remove	
  the	
  cost	
  of	
  establishing	
  small-­‐scale	
  liquefaction	
  terminals,	
  bunkering	
  from	
  vessel	
  barge	
  is	
  a	
  
maintainable	
  alternative.	
  Ship-­‐to-­‐ship	
  transfer	
  is	
  the	
  scenario	
  with	
  the	
  best	
  projections,	
  both	
  with	
  
respect	
  to	
  flexibility	
  in	
  bunkering	
  location	
  and	
  range	
  in	
  volume	
  supply.	
  The	
  various	
  bunkering	
  
scenarios	
  will	
  be	
  discussed	
  in	
  the	
  next	
  chapter	
  ‘4	
  Bunkering’.	
  

	
  

8	
  
3.2.3	
  Marine	
  Fuel	
  Costs	
  
Every	
  ship	
  requires	
  individual	
  calculations	
  with	
  respect	
  to	
  travelling	
  time	
  and	
  distance,	
  fuel	
  
consumption	
  and	
  production	
  costs.	
  Overall	
  it	
  is	
  estimated	
  that	
  ships	
  with	
  an	
  economical	
  life	
  of	
  15	
  
years	
  or	
  more	
  will	
  economically	
  benefit	
  from	
  using	
  LNG	
  as	
  a	
  fuel.	
  The	
  advantage	
  is	
  greater	
  with	
  
increasing	
  fuel	
  consumption.	
  The	
  example	
  calculation	
  represents	
  a	
  typical	
  Baltic	
  Sea	
  cargo	
  ship	
  of	
  
41
approximately	
  2,700	
  gross	
  tons,	
  3,300	
  kW	
  main	
  engine	
  and	
  5,250	
  yearly	
  sailing	
  hours. 	
  	
  

Figure	
  6:	
  Lifecycle	
  economics	
  for	
  a	
  typical	
  ship	
  

	
  

The	
  engine	
  size	
  and	
  consumption	
  levels	
  in	
  this	
  example	
  are	
  modest.	
  Still,	
  it	
  is	
  clear	
  that	
  MDO	
  is	
  the	
  
most	
  expensive	
  option	
  and	
  LNG	
  is	
  found	
  to	
  be	
  a	
  superior	
  alternative.	
  The	
  results	
  are	
  favorable	
  to	
  such	
  
an	
  extent	
  that	
  it	
  is	
  even	
  reasoned	
  to	
  be	
  profitable	
  without	
  ECA	
  requirements.	
  	
  
	
  

	
  

9	
  
4	
  Bunkering	
  	
  
This	
  chapter	
  will	
  define	
  LNG	
  bunkering,	
  present	
  the	
  various	
  bunkering	
  scenarios,	
  provide	
  a	
  detailed	
  
technical	
  description	
  of	
  the	
  bunkering	
  procedure,	
  and	
  present	
  approved	
  equipment.	
  	
  
	
  

4.1	
  LNG	
  Bunkering	
  Definition	
  
“The	
  definition	
  of	
  LNG	
  bunkering	
  is	
  the	
  small-­‐scale	
  transfer	
  of	
  LNG	
  to	
  vessels	
  requiring	
  LNG	
  as	
  a	
  fuel	
  
for	
  use	
  within	
  gas	
  or	
  dual	
  fuelled	
  engines.	
  LNG	
  bunkering	
  takes	
  place	
  within	
  ports	
  or	
  other	
  sheltered	
  
42
locations	
  at	
  the	
  base	
  case.” 	
  Bunkering	
  should	
  not	
  be	
  considered	
  in	
  the	
  same	
  context	
  as	
  large	
  scale,	
  
commercial	
  transfer	
  of	
  cargo	
  between	
  ocean-­‐going	
  LNG	
  carriers.	
  This	
  larger	
  operation,	
  where	
  
3
volumes	
  are	
  typically	
  above	
  100,000m 	
  is	
  covered	
  separately	
  under	
  preceding	
  technical	
  releases	
  and	
  
43
standards. 	
  
4.1.1	
  Engines	
  
The	
  ship	
  owners	
  have	
  two	
  options	
  with	
  regards	
  to	
  engine	
  design:	
  dual	
  fuel	
  engines	
  or	
  LNG	
  lean	
  burn	
  
mono	
  fuel	
  engines.	
  Dual	
  fuel	
  engines	
  run	
  on	
  both	
  LNG	
  and	
  conventional	
  fuels	
  from	
  separate	
  tanks.	
  It	
  
is	
  a	
  flexible	
  solution	
  for	
  varying	
  availability	
  in	
  LNG.	
  In	
  LNG	
  mode	
  these	
  engines	
  only	
  consume	
  a	
  minor	
  
44
fraction	
  of	
  conventional	
  fuel. 	
  Bunkering	
  procedure	
  for	
  dual	
  fuel	
  engines	
  is	
  a	
  process	
  that	
  can	
  take	
  
place	
  simultaneously	
  for	
  both	
  fuels.	
  The	
  procedure	
  described	
  below	
  is	
  however	
  limited	
  to	
  the	
  LNG	
  
transfer	
  system.	
  	
  
	
  

4.2	
  LNG	
  Bunkering	
  Scenarios	
  
Truck-­‐to-­‐Ship	
  (TTS):	
  micro	
  bunkering,	
  discharging	
  unit	
  is	
  a	
  LNG	
  road	
  tanker	
  size	
  
3
approximately	
  50-­‐100m .	
  
• Ship-­‐to-­‐Ship	
  transfer	
  (STS):	
  discharging	
  unit	
  is	
  a	
  bunker	
  vessel	
  or	
  barge	
  with	
  size	
  200-­‐
3
10,000m .	
  
• Terminal	
  (Pipeline)-­‐to-­‐Ship	
  (PTS):	
  satellite	
  terminal	
  bunkering	
  serves	
  as	
  the	
  discharging	
  unit	
  
3
and	
  supply	
  sizes	
  are	
  approximately	
  100-­‐10,000m .	
  	
  
PTS	
  and	
  TTS	
  are	
  the	
  most	
  established	
  bunkering	
  scenarios	
  per	
  today	
  and	
  they	
  are	
  both	
  classified	
  as	
  
onshore	
  supply.	
  STS	
  will	
  also	
  take	
  place	
  while	
  the	
  receiving	
  unit	
  is	
  at	
  dock	
  or	
  in	
  a	
  port	
  environment,	
  
but	
  both	
  units	
  involved	
  in	
  the	
  transfer	
  are	
  seaborne	
  and	
  the	
  transfer	
  is	
  therefore	
  classified	
  as	
  
offshore.	
  Use	
  of	
  STS	
  makes	
  the	
  bunkering	
  location	
  more	
  flexible	
  than	
  PTS	
  and	
  it	
  can	
  supply	
  higher	
  
volumes	
  than	
  TTS.	
  Developments	
  within	
  this	
  scenario	
  are	
  the	
  most	
  feasible	
  and	
  are	
  therefore	
  
45
essential	
  in	
  making	
  LNG	
  competitive	
  against	
  other	
  marine	
  fuels,	
  especially	
  for	
  larger	
  ships.
•

	
  

10	
  
4.3	
  LNG	
  Bunkering	
  Procedure	
  
Time	
  efficiency	
  and	
  safety	
  are	
  elements	
  of	
  paramount	
  importance	
  when	
  it	
  comes	
  to	
  the	
  bunkering	
  
procedure.	
  Developing	
  a	
  suitable	
  procedure	
  is	
  fundamental	
  in	
  obtaining	
  these	
  facets.	
  The	
  industry	
  is	
  
currently	
  developing	
  solutions	
  to	
  achieve	
  similar	
  duration	
  of	
  bunkering	
  operations	
  for	
  LNG	
  as	
  for	
  
conventional	
  fuels.	
  	
  
	
  
As	
  LNG	
  bunkering	
  is	
  evolving,	
  technology	
  improvements	
  and	
  innovations	
  are	
  added	
  continually.	
  The	
  
process,	
  being	
  relatively	
  new,	
  is	
  not	
  yet	
  regulated	
  or	
  standardized	
  (will	
  be	
  discussed	
  further	
  under	
  
section	
  ‘5	
  Regulations’)	
  and	
  therefore	
  there	
  are	
  several	
  elements	
  that	
  could	
  vary	
  for	
  each	
  individual	
  
bunkering	
  case.	
  Nevertheless,	
  this	
  section	
  aims	
  to	
  provide	
  a	
  description	
  suited	
  for	
  various	
  needs	
  and	
  
different	
  bunkering	
  scenarios.	
  Variations	
  in	
  bunkering	
  procedure	
  depending	
  on	
  scenario	
  will	
  be	
  
mentioned.	
  	
  
	
  
In	
  this	
  section	
  of	
  the	
  report	
  there	
  will	
  be	
  no	
  elaborations	
  on	
  general	
  principles,	
  conditions,	
  
requirements,	
  safety	
  aspects	
  and	
  communication	
  related	
  to	
  the	
  process.	
  The	
  same	
  applies	
  to	
  details	
  
exclusively	
  relating	
  to	
  bunkering	
  of	
  fuels	
  other	
  than	
  LNG,	
  in	
  the	
  case	
  of	
  dual	
  fuel	
  engines.	
  The	
  focus	
  
will	
  be	
  on	
  the	
  technical	
  aspects	
  of	
  the	
  procedure	
  and	
  the	
  equipment	
  used.	
  	
  
	
  
The	
  main	
  source	
  for	
  this	
  part	
  of	
  the	
  report	
  is	
  the	
  short	
  film	
  “Step	
  by	
  step	
  Bunkering	
  by	
  DNV”.	
  
Additional	
  details	
  have	
  been	
  acquired	
  from	
  discussions	
  with	
  individuals	
  from	
  the	
  industry	
  (se	
  preface	
  
for	
  names)	
  and	
  the	
  report	
  ‘LNG	
  ship	
  to	
  ship	
  bunkering	
  procedure’	
  by	
  the	
  Swedish	
  Marine	
  Technology	
  
Forum	
  et	
  al.	
  	
  
	
  

	
  

46

Figure	
  7:	
  Overall	
  Bunkering	
  Layout 	
  

The	
  diagram	
  is	
  schematic	
  not	
  to	
  scale,	
  especially	
  when	
  it	
  comes	
  to	
  pipe	
  length.	
  	
  
Initially	
  all	
  valves	
  are	
  closed	
  as	
  shown	
  in	
  the	
  diagram.	
  The	
  transfer	
  hose	
  is	
  not	
  connected	
  until	
  step	
  
three	
  but	
  included	
  in	
  this	
  diagram.	
  The	
  first	
  step	
  takes	
  place	
  during	
  ship	
  mooring,	
  or	
  in	
  the	
  case	
  of	
  
ship-­‐to-­‐ship	
  transfer	
  during	
  the	
  bunker	
  vessels	
  mooring	
  up	
  against	
  the	
  receiving	
  ship.	
  Discharging	
  unit	
  
can	
  be	
  either:	
  terminal,	
  truck	
  or	
  bunker	
  vessel/barge.	
  Variations	
  in	
  design	
  and	
  layout	
  can	
  take	
  place,	
  
but	
  overall	
  this	
  is	
  a	
  representative	
  example	
  of	
  a	
  layout	
  and	
  it	
  gives	
  a	
  good	
  basis	
  for	
  explaining	
  the	
  
bunkering	
  procedure.	
  	
  

	
  

11	
  
4.3.1	
  Step	
  1	
  –	
  Initial	
  Precooling	
  1	
  
Filling	
  lines	
  are	
  precooled	
  during	
  mooring.	
  Valves	
  V2,	
  V5,	
  V8	
  and	
  V9	
  are	
  opened.	
  The	
  system	
  needs	
  to	
  
be	
  cooled	
  down	
  slowly,	
  otherwise	
  one	
  part	
  will	
  contract	
  and	
  another	
  not.	
  Improper	
  cooling	
  could	
  also	
  
lead	
  to	
  pipe	
  cracking.	
  The	
  precooling	
  sequence	
  depends	
  on	
  cargo	
  pump,	
  design	
  of	
  the	
  discharging	
  
47
unit	
  and	
  size	
  of	
  installation. 	
  The	
  cold	
  LNG	
  (blue)	
  exits	
  tank	
  1	
  form	
  the	
  bottom,	
  and	
  slowly	
  “pushes”	
  
the	
  warmer	
  NG	
  (red)	
  in	
  the	
  pipes	
  into	
  the	
  top	
  of	
  tank	
  1.	
  	
  
	
  

Figure	
  8:	
  Bunkering	
  Procedure	
  Step	
  1	
  

	
  

During	
  this	
  stage	
  both	
  units	
  must	
  check	
  temperature	
  and	
  pressure	
  of	
  their	
  respective	
  LNG	
  tanks.	
  
Within	
  the	
  tank,	
  temperature	
  is	
  directly	
  correlated	
  with	
  pressure.	
  If	
  the	
  temperature	
  of	
  the	
  receiving	
  
tank	
  is	
  significantly	
  higher	
  than	
  the	
  discharging	
  (classified	
  as	
  a	
  “warm”	
  tank),	
  there	
  will	
  be	
  an	
  initial	
  
vaporization	
  when	
  starting	
  to	
  transfer	
  LNG.	
  As	
  the	
  pressure	
  of	
  the	
  tank	
  might	
  be	
  too	
  high	
  for	
  the	
  LNG	
  
transfer	
  to	
  be	
  initiated.	
  This	
  will	
  increase	
  the	
  tank	
  pressure	
  and	
  can	
  trigger	
  the	
  pressure	
  relief	
  valve	
  to	
  
open	
  if	
  the	
  pressure	
  exceeds	
  the	
  set	
  limit.	
  The	
  pressure	
  of	
  both	
  tanks	
  must	
  be	
  reduced	
  prior	
  to	
  the	
  
48
bunkering	
  in	
  case	
  of	
  a	
  high	
  receiving	
  tank	
  temperature.	
   	
  When	
  the	
  levels	
  in	
  the	
  receiving	
  tank	
  are	
  
low,	
  the	
  rate	
  of	
  evaporation	
  and	
  heat	
  ingress	
  to	
  the	
  tank	
  increases,	
  causing	
  a	
  higher-­‐pressure	
  build-­‐
up.	
  	
  
	
  
The	
  transfer	
  of	
  LNG	
  requires	
  a	
  certain	
  pressure	
  difference,	
  which	
  generally	
  is	
  determined	
  by	
  the	
  cargo	
  
pump	
  capacity	
  and	
  the	
  pressure	
  in	
  the	
  receiving	
  tank.	
  The	
  larger	
  the	
  pressure	
  difference,	
  the	
  more	
  
3
efficient	
  the	
  transfer.	
  For	
  TTS	
  bunkering	
  with	
  capacities	
  of	
  50	
  m /h,	
  a	
  typical	
  cargo	
  pump	
  can	
  deliver	
  
at	
  around	
  4	
  barg.	
  In	
  a	
  warm	
  tank,	
  the	
  pressure	
  may	
  be	
  as	
  high	
  as	
  5	
  barg.	
  To	
  be	
  able	
  to	
  conduct	
  the	
  
transfer	
  you	
  need	
  a	
  lower	
  pressure	
  in	
  the	
  receiving	
  tank	
  than	
  what	
  is	
  delivered	
  by	
  the	
  pump.	
  	
  

	
  

12	
  
4.3.2	
  Step	
  2-­‐	
  Initial	
  Precooling	
  2	
  
The	
  fixed	
  speed	
  cargo	
  pump	
  at	
  the	
  discharging	
  unit	
  also	
  requires	
  precooling.	
  Valves	
  in	
  step	
  1	
  remain	
  
opened	
  and	
  additionally	
  valves	
  V3,	
  V4	
  and	
  V6	
  are	
  opened.	
  For	
  transfers	
  where	
  the	
  pressure	
  
difference	
  between	
  the	
  discharging	
  and	
  receiving	
  unit	
  is	
  greater	
  than	
  2barg,	
  tank	
  1	
  pressure	
  will	
  be	
  
49
utilized	
  as	
  a	
  driving	
  force.	
  This	
  makes	
  the	
  cargo	
  pump	
  redundant. 	
  	
  
	
  

Figure	
  9:	
  Bunkering	
  Procedure	
  Step	
  2	
  

	
  

	
  
4.3.3	
  Step	
  3	
  –	
  Connection	
  of	
  Bunker	
  Hose	
  
All	
  previously	
  opened	
  valves	
  are	
  now	
  closed.	
  Dedicated	
  discharging	
  units	
  may	
  be	
  fitted	
  with	
  
specialized	
  hose	
  handling	
  equipment	
  (i.e.	
  hose	
  crane)	
  or	
  loading	
  arms,	
  to	
  deliver	
  the	
  bunker	
  hose	
  to	
  
the	
  receiving	
  ship.	
  The	
  hose	
  is	
  connected	
  to	
  the	
  manifold.	
  Each	
  manifold	
  are	
  to	
  be	
  earthed	
  and	
  the	
  
receiving	
  ship	
  shall	
  be	
  equipped	
  with	
  an	
  insulating	
  flange	
  near	
  the	
  coupling	
  to	
  prevent	
  a	
  possible	
  
50
ignition	
  source	
  due	
  to	
  electrostatic	
  build-­‐up. 	
  One	
  or	
  two	
  flexible	
  hoses	
  will	
  be	
  connected	
  between	
  
the	
  units	
  –	
  one	
  liquid	
  filling	
  hose	
  and	
  one	
  vapor	
  return	
  hose	
  if	
  needed.	
  For	
  smaller	
  transfers	
  with	
  
3
capacities	
  range	
  of	
  around	
  50-­‐200m /h,	
  and	
  where	
  the	
  receiving	
  tank	
  is	
  an	
  IMO	
  type	
  C	
  tank	
  with	
  the	
  
possibility	
  of	
  sequential	
  filling,	
  a	
  vapor-­‐return	
  hose	
  will	
  generally	
  not	
  be	
  needed.	
  For	
  larger	
  transfer	
  
rates	
  a	
  vapor	
  return	
  line	
  may	
  be	
  used	
  in	
  order	
  to	
  decrease	
  the	
  time	
  of	
  the	
  bunkering.	
  Still,	
  it	
  is	
  the	
  
pressure	
  regulating	
  capability	
  of	
  the	
  receiving	
  tank	
  that	
  determines	
  whether	
  a	
  vapor	
  return	
  line	
  is	
  
required	
  or	
  not.	
  This	
  step	
  will	
  visually	
  look	
  like	
  the	
  initial	
  drawing	
  of	
  the	
  entire	
  system	
  (Figure	
  7).	
  

	
  

13	
  
4.3.4	
  Step	
  4	
  -­‐	
  Inerting	
  the	
  Connected	
  System	
  
Inert	
  gas,	
  nitrogen	
  (green),	
  is	
  used	
  to	
  remove	
  moisture	
  and	
  oxygen	
  (below	
  4%)	
  from	
  tank	
  2	
  and	
  
associated	
  piping.	
  Inerting	
  is	
  accomplished	
  by	
  sequential	
  pressurization	
  and	
  depressurization	
  of	
  the	
  
system	
  with	
  nitrogen.	
  Presence	
  of	
  moisture	
  in	
  the	
  tanks	
  or	
  pipes	
  will	
  create	
  hydrates,	
  which	
  is	
  a	
  form	
  
51
of	
  ice	
  lumps	
  that	
  will	
  be	
  difficult	
  to	
  remove	
  from	
  the	
  system. 	
  Oxygen	
  in	
  the	
  system	
  is	
  a	
  risk	
  as	
  
explained	
  in	
  section	
  ‘2	
  LNG’.	
  Valves	
  opened:	
  V10,	
  V11,	
  V12	
  and	
  V16.	
  
	
  

Figure	
  10:	
  Bunkering	
  Procedure	
  Step	
  4	
  

	
  

4.3.5	
  Step	
  5	
  –	
  Purging	
  the	
  Connected	
  System	
  
The	
  remaining	
  system	
  is	
  purged	
  with	
  NG	
  (until	
  it	
  reaches	
  97-­‐98%	
  ratio),	
  to	
  remove	
  remaining	
  nitrogen	
  
according	
  to	
  engine	
  specifications.	
  Valve	
  V16	
  is	
  closed	
  prior	
  to	
  purging.	
  Valve	
  V15	
  is	
  opened,	
  natural	
  
gas	
  is	
  now	
  moving	
  out	
  from	
  the	
  receiving	
  tank.	
  Venting	
  trace	
  amount	
  of	
  methane	
  through	
  the	
  mast	
  
(vent	
  2)	
  is	
  current	
  practice.	
  Valve	
  V10	
  should	
  be	
  closed	
  quickly	
  after	
  the	
  pipes	
  have	
  been	
  cleaned	
  so	
  
as	
  not	
  to	
  let	
  too	
  much	
  methane	
  escape	
  to	
  the	
  surroundings	
  through	
  the	
  vent.	
  The	
  industry	
  is	
  now	
  
52
looking	
  for	
  zero	
  emission	
  solutions. 	
  	
  
	
  

Figure	
  11:	
  Bunkering	
  Procedure	
  Step	
  5	
  

	
  

	
  

14	
  
4.3.6	
  Step	
  6	
  –	
  Filling	
  Sequence	
  	
  
For	
  the	
  filling	
  sequence	
  both	
  bottom	
  filling	
  and	
  top	
  filling	
  (the	
  shower/spray)	
  can	
  be	
  used.	
  For	
  top	
  
filling	
  valve	
  V15	
  remains	
  open,	
  for	
  bottom	
  filling	
  it	
  is	
  closed	
  and	
  valve	
  V13	
  is	
  opened.	
  To	
  start	
  the	
  
transfer	
  from	
  tank	
  1	
  to	
  tank	
  2	
  valves	
  V3,	
  V4,	
  V7,	
  V8,	
  V11	
  and	
  V12	
  also	
  have	
  to	
  be	
  opened.	
  Common	
  
practice	
  is	
  to	
  start	
  with	
  top	
  filling	
  as	
  this	
  will	
  reduce	
  the	
  pressure	
  in	
  the	
  fuel	
  tank	
  (tank	
  2),	
  and	
  then	
  
move	
  over	
  to	
  bottom	
  filling	
  when	
  a	
  satisfying	
  pressure	
  is	
  achieved.	
  A	
  high	
  pressure	
  in	
  the	
  receiving	
  
tank	
  will	
  make	
  it	
  harder	
  for	
  the	
  LNG	
  transfer	
  to	
  take	
  place	
  and	
  the	
  pump	
  would	
  have	
  to	
  work	
  harder.	
  
An	
  example	
  of	
  a	
  tank	
  filling	
  sequence	
  and	
  associated	
  acceptable	
  levels	
  is	
  given	
  in	
  section	
  6.4.	
  

	
  

Figure	
  12:	
  Bunkering	
  Procedure	
  Step	
  6	
  -­‐	
  Bottom	
  Filling	
  

Figure	
  13:	
  Bunkering	
  Procedure	
  Step	
  6	
  -­‐	
  Top	
  Filling	
  (Spray)	
  

	
  

3

Transfer	
  speed	
  range	
  from	
  100-­‐1000m /h	
  depending	
  on	
  scenario,	
  tanks	
  and	
  equipment,	
  and	
  whether	
  
bottom	
  or	
  top	
  filling	
  is	
  used.	
  Bottom	
  filling	
  can	
  take	
  much	
  higher	
  volumes	
  than	
  top	
  filling.	
  Bottom	
  
filling	
  is	
  therefore	
  preferred	
  with	
  respect	
  to	
  time,	
  but	
  it	
  is	
  important	
  that	
  the	
  tank	
  pressure	
  allows	
  for	
  
this	
  to	
  take	
  place.	
  Sequential	
  filling	
  i.e.	
  alterations	
  between	
  top	
  and	
  bottom	
  filling	
  during	
  the	
  transfer	
  
is	
  also	
  standard	
  practice,	
  to	
  control	
  the	
  pressure	
  in	
  the	
  receiving	
  tank.	
  	
  
	
  
This	
  rate	
  can	
  be	
  withheld	
  during	
  the	
  transfer	
  until	
  agreed	
  amount	
  is	
  reached.	
  The	
  transfer	
  is	
  to	
  be	
  
monitored	
  on	
  both	
  ships	
  with	
  regards	
  to	
  system	
  pressure,	
  tank	
  volume	
  and	
  equipment	
  behavior.	
  This	
  
53
procedure	
  is	
  to	
  be	
  performed	
  for	
  each	
  tank	
  regardless	
  of	
  fuel	
  type. 	
  Maximum	
  level	
  for	
  filling	
  the	
  
LNG	
  tanks	
  is	
  98%	
  of	
  total	
  volume	
  according	
  to	
  class	
  rules,	
  but	
  is	
  normally	
  lower	
  for	
  system	
  design	
  
reasons.	
  
	
  

15	
  
4.3.7	
  Step	
  7	
  –	
  Liquid	
  Line	
  Stripping	
  
The	
  liquid	
  that	
  remains	
  in	
  the	
  bunker	
  hoses,	
  after	
  the	
  pump	
  has	
  stopped,	
  must	
  be	
  drained	
  before	
  
disconnection.	
  Valves	
  V3,	
  V4	
  and	
  V11	
  on	
  discharging	
  unit	
  is	
  closed,	
  while	
  valve	
  V6	
  is	
  opened.	
  This	
  
valve	
  links	
  to	
  the	
  top	
  of	
  the	
  fuel	
  tank	
  (tank	
  2).	
  This	
  process	
  creates	
  a	
  pressure	
  build-­‐up	
  due	
  to	
  a	
  rise	
  in	
  
temperature	
  in	
  the	
  remaining	
  liquid	
  left	
  in	
  the	
  pipes	
  and	
  hose.	
  LNG	
  residuals	
  in	
  these	
  areas	
  are	
  forced	
  
into	
  both	
  tanks.	
  Subsequent	
  opening	
  and	
  closing	
  of	
  the	
  shipside	
  valve	
  V12,	
  pushes	
  the	
  remaining	
  LNG	
  
54
into	
  the	
  receiving	
  ships	
  tanks. 	
  	
  

Figure	
  14:	
  Bunkering	
  Procedure	
  Step	
  7	
  

	
  

4.3.8	
  Step	
  8	
  –	
  Liquid	
  Line	
  Inerting	
  	
  
Remaining	
  natural	
  gas	
  in	
  liquid	
  line	
  is	
  removed	
  by	
  inerting	
  gas	
  (nitrogen)	
  for	
  safety	
  reasons.	
  Valves	
  V6,	
  
V7,	
  V8	
  and	
  V15	
  are	
  closed,	
  while	
  V10,	
  V11,	
  V12	
  and	
  V16	
  are	
  opened.	
  Venting	
  trace	
  amount	
  of	
  
methane	
  through	
  the	
  mast	
  is	
  current	
  practice.	
  The	
  industry	
  is	
  now	
  looking	
  for	
  zero	
  emission	
  
55
solutions. 	
  	
  

	
  
4.3.9	
  Step	
  9	
  –	
  Disconnection	
  
Upon	
  confirmation	
  of	
  transferred	
  amount	
  and	
  quality,	
  the	
  vessel	
  may	
  commence	
  disconnection	
  of	
  
56
the	
  transfer	
  hose,	
  unmooring	
  and	
  departure. 	
  	
  
	
  
Bunkering	
  time	
  will	
  vary	
  depending	
  on	
  bunkering	
  scenario,	
  transfer	
  rates,	
  system	
  and	
  equipment	
  
57
design,	
  capacities,	
  and	
  the	
  use	
  of	
  vapor	
  return. 	
  For	
  an	
  example	
  of	
  time	
  spent	
  see	
  Appendix	
  B.	
  	
  
	
  

16	
  
4.4	
  Equipment	
  
This	
  section	
  will	
  cover	
  some	
  of	
  the	
  essential	
  equipment	
  used	
  in	
  the	
  transferring	
  process.	
  Information	
  
from	
  this	
  part	
  is	
  obtained	
  from	
  the	
  following	
  sources:	
  M.	
  Esdaile	
  and	
  D.	
  Melton,	
  Shell	
  Shipping,	
  LNG	
  
Bunkering	
  Installation	
  Guidelines	
  SST02167,	
  2012	
  and	
  LNG	
  ship	
  to	
  ship	
  bunkering	
  procedure,	
  Swedish	
  
Marine	
  Technology	
  Forum	
  and	
  DNV	
  Class	
  rules.	
  	
  
4.4.1	
  Tanks	
  

58

Figure	
  15:	
  IMO	
  Type-­‐C	
  Tank,	
  CRYO	
  AB 	
  

	
  

4.4.1.1	
  Storage	
  Tank	
  –	
  Discharging	
  Unit	
  
All	
  tank	
  types	
  -­‐	
  A,	
  B,	
  C	
  and	
  membrane	
  tanks	
  are	
  approved	
  for	
  LNG	
  cargo.	
  There	
  are	
  major	
  differences	
  
in	
  usage	
  and	
  regulations	
  between	
  tanks	
  A	
  and	
  B	
  vs.	
  C.	
  If	
  tanks	
  A	
  and	
  B	
  are	
  to	
  be	
  used	
  it	
  is	
  seen	
  as	
  an	
  
exception	
  and	
  several	
  risk	
  analysis	
  would	
  have	
  to	
  be	
  completed	
  for	
  each	
  individual	
  case,	
  to	
  document	
  
its	
  safety.	
  The	
  tanks	
  are	
  categorized	
  correspondingly:	
  	
  
• Atmospheric	
  tanks:	
  Typically	
  atmospheric	
  tanks	
  would	
  be	
  IMO	
  type	
  A	
  and	
  B	
  tanks	
  or	
  
membrane	
  tanks	
  and	
  have	
  a	
  design	
  pressure	
  below	
  0.7	
  barg.	
  The	
  atmospheric	
  tanks	
  cannot	
  
be	
  pressurized	
  and	
  it	
  is	
  therefore	
  necessary	
  with	
  additional	
  equipment	
  for	
  pressure	
  control	
  
and	
  deep-­‐well	
  pumps	
  to	
  ensure	
  sufficient	
  LNG	
  flow	
  to	
  the	
  engines.	
  In	
  order	
  to	
  operate	
  and	
  
empty	
  the	
  tank	
  in	
  case	
  of	
  pump	
  breakdown,	
  redundancy	
  of	
  the	
  deep-­‐well	
  pumps	
  is	
  
necessary.	
  The	
  main	
  advantage	
  with	
  an	
  atmospheric	
  tanks	
  is	
  its’	
  high	
  volume	
  utilization,	
  due	
  
59
to	
  the	
  prismatic	
  shape. 	
  	
  
• Pressure	
  tanks:	
  Tanks	
  with	
  pressure	
  above	
  0.7	
  barg	
  are	
  normally	
  type	
  C	
  tanks.	
  These	
  tanks	
  
are	
  made	
  after	
  recognized	
  pressure	
  vessel	
  standards	
  given	
  in	
  the	
  IGC	
  Code.	
  There	
  are	
  several	
  
designs	
  available;	
  cylindrical	
  tanks	
  with	
  or	
  without	
  vacuum	
  insulation,	
  or	
  bi-­‐lobe	
  tanks.	
  All	
  
60
LNG	
  fuelled	
  ships	
  today	
  have	
  vacuum	
  insulated	
  IMO	
  type	
  C	
  tanks. 	
  
4.4.1.2	
  Fuel	
  Tank	
  –	
  Receiving	
  Ship	
  
For	
  the	
  LNG	
  fuel	
  tank,	
  several	
  containment	
  systems	
  are	
  feasible,	
  with	
  many	
  new	
  tank	
  designs	
  under	
  
development.	
  These	
  tanks	
  are	
  made	
  after	
  recognized	
  pressure	
  vessel	
  standards	
  given	
  in	
  the	
  IGC	
  Code.	
  
The	
  tanks	
  are	
  cylindrical,	
  pressurized,	
  double	
  skinned	
  tank	
  systems	
  including	
  a	
  venting	
  system	
  for	
  
discharging	
  excess	
  vapor.	
  These	
  features	
  are	
  crucial	
  in	
  vapor	
  management	
  and	
  maintaining	
  low	
  
61
temperatures. 	
  	
  
	
  
Type	
  C	
  tanks	
  have	
  a	
  maximum	
  operating	
  pressure	
  of	
  about	
  10	
  barg	
  and	
  are	
  approved	
  by	
  several	
  class	
  
3 62
societies	
  as	
  fuel	
  tanks.	
  The	
  size	
  of	
  the	
  tank	
  will	
  vary	
  but	
  the	
  size	
  range	
  today	
  is	
  40-­‐250m . 	
  The	
  tanks	
  
are	
  equipped	
  with	
  both	
  bottom	
  filling	
  and	
  top	
  spray	
  features.	
  Through	
  spraying	
  sub	
  cooled	
  LNG	
  into	
  
the	
  vapor	
  space	
  (gas	
  pillow)	
  of	
  the	
  tank	
  the	
  cold	
  liquid	
  will	
  condense	
  the	
  vapor	
  and	
  reduce	
  the	
  tank’s	
  
pressure.	
  This	
  process	
  eliminates	
  the	
  need	
  for	
  a	
  vent	
  return	
  in	
  the	
  tank.	
  This	
  function	
  of	
  the	
  tank	
  
63
could	
  create	
  a	
  100%	
  fill	
  situation. 	
  To	
  comply	
  with	
  the	
  issue	
  of	
  overfilling,	
  the	
  tank	
  has	
  a	
  high-­‐level	
  
switch,	
  which	
  will	
  activate	
  an	
  alarm.	
  This	
  will	
  automatically	
  shut	
  down	
  the	
  transfer	
  system	
  as	
  it	
  is	
  
directly	
  linked	
  to	
  the	
  vessel’s	
  ESD	
  system.	
  As	
  previously	
  stated,	
  tanks	
  for	
  liquid	
  gas	
  should	
  not	
  be	
  filled	
  
to	
  more	
  than	
  98%	
  full	
  at	
  the	
  reference	
  temperature,	
  where	
  the	
  reference	
  temperature	
  is	
  as	
  defined	
  
in	
  the	
  IGC	
  Code,	
  paragraph	
  15.1.4.	
  Means	
  of	
  measuring	
  the	
  liquid	
  level,	
  both	
  volume	
  and	
  height,	
  
	
  

17	
  
within	
  the	
  tank	
  are	
  to	
  be	
  provided	
  and	
  installed	
  in	
  such	
  a	
  way	
  as	
  to	
  be	
  compliant.	
  The	
  preferred	
  
means	
  of	
  level	
  measurement	
  is	
  a	
  radar	
  type	
  tank	
  measurement	
  system,	
  or	
  similar	
  technology,	
  which	
  
64
is	
  also	
  able	
  to	
  measure	
  corresponding	
  pressures	
  and	
  temperatures	
  within	
  the	
  tank. 	
  
	
  
The	
  benefits	
  of	
  using	
  Type-­‐C	
  tanks	
  are	
  standard	
  tanks	
  with	
  long	
  experience,	
  high	
  bunkering	
  rates,	
  
easy	
  installation,	
  and	
  the	
  ability	
  the	
  handle	
  pressure	
  build-­‐up	
  in	
  cases	
  of	
  zero	
  consumption.	
  The	
  
65
disadvantages	
  are	
  space	
  requirements	
  due	
  to	
  its	
  cylindrical	
  shape. 	
  	
  	
  
4.4.2	
  Valves	
  
The	
  valves	
  used	
  are	
  manifold	
  trip	
  valves	
  that	
  can	
  handle	
  both	
  liquid	
  and	
  vapor	
  transfers,	
  and	
  need	
  to	
  
comply	
  with	
  regulations	
  set	
  in	
  EN1474.	
  	
  A	
  manually	
  operated	
  stop	
  valve	
  and	
  a	
  remote	
  operated	
  shut	
  
down	
  valve	
  in-­‐series,	
  or	
  a	
  combined	
  valve,	
  should	
  be	
  fitted	
  in	
  every	
  bunkering	
  line	
  on	
  both	
  units	
  
66
(discharging	
  and	
  receiving).	
  The	
  valves	
  should	
  be	
  controlled	
  from	
  the	
  control	
  room	
  of	
  both	
  units. 	
  	
  
4.4.3	
  Hose	
  
The	
  flexible	
  cryogenic	
  hose(s)	
  with	
  a	
  single	
  wall	
  construction	
  are	
  used.	
  Insulation	
  should	
  be	
  applied	
  to	
  
the	
  hose	
  for	
  safety	
  reasons	
  but	
  should	
  not	
  limit	
  the	
  flexibility	
  of	
  the	
  hose.	
  The	
  hoses	
  are	
  connected	
  
67
via	
  electrical	
  insulated	
  flanges	
  made	
  of	
  steel,	
  an	
  emergency	
  quick	
  release	
  connector	
  (ERC). 	
  
68
Maximum	
  velocities:	
  vapor	
  30m/s	
  and	
  liquid	
  7-­‐10m/s. 	
  Minimum	
  requirements	
  for	
  hoses	
  are	
  defined	
  
by	
  the	
  international	
  standards:	
  EN	
  1472-­‐2	
  and	
  IGC	
  chapter	
  5.7/IMO	
  document	
  MSC.285(86).	
  	
  
Approved	
  bunker	
  hoses:	
  EN	
  12434,	
  BS	
  4089,	
  EN	
  1474	
  part	
  1	
  LNG	
  Transfer	
  arms	
  (being	
  revised	
  as	
  an	
  
ISO),	
  EN	
  1474	
  part	
  2	
  LNG	
  Hoses.	
  
4.4.4	
  Loading	
  arms	
  
Loading	
  arms	
  will	
  be	
  subjected	
  to	
  the	
  requirements	
  of	
  the	
  new	
  ISO	
  LNG	
  bunkering	
  standard.	
  They	
  
shall	
  be	
  designed	
  in	
  accordance	
  with	
  ISO	
  /	
  DIS	
  28460	
  and	
  EN	
  1474-­‐1,	
  Section	
  4,	
  Design	
  of	
  the	
  arms.	
  
Weight,	
  size	
  and	
  handling	
  of	
  the	
  equipment	
  classified	
  as	
  cryogenic	
  will	
  affect	
  the	
  safety	
  assessment	
  of	
  
the	
  given	
  operation.	
  
	
  
The	
  equipment	
  used	
  during	
  TTS	
  today	
  does	
  not	
  include	
  loading	
  arms.	
  Hose	
  dimension	
  will	
  for	
  such	
  
operations	
  be	
  around	
  4	
  inches.	
  	
  For	
  STS	
  operations	
  the	
  dimensions	
  would	
  be	
  considerably	
  higher,	
  10	
  
inches	
  or	
  more.	
  In	
  addition	
  to	
  that	
  you	
  have	
  torque	
  by	
  relative	
  movement	
  of	
  the	
  ship	
  in	
  relation	
  to	
  
each	
  other,	
  making	
  the	
  need	
  for	
  loading	
  arms	
  necessary	
  to	
  ensure	
  that	
  the	
  hose	
  does	
  not	
  come	
  into	
  
69
contact	
  with	
  water	
  or	
  the	
  steel	
  deck. 	
  PTS	
  will	
  also	
  use	
  hoses	
  larger	
  than	
  TTS.	
  Additionally	
  the	
  
installation	
  is	
  fixed	
  which	
  makes	
  the	
  option	
  to	
  use	
  loading	
  arms	
  even	
  more	
  favorable	
  as	
  it	
  secures	
  
equipment	
  and	
  strengthens	
  safety	
  elements.	
  	
  
4.4.5	
  Pipes	
  
Main	
  piping	
  systems	
  in	
  both	
  units	
  are:	
  liquid	
  bunker	
  line,	
  gas	
  return	
  line	
  and	
  nitrogen	
  supply	
  system.	
  
The	
  pipelines	
  are	
  equipped	
  with	
  several	
  flow	
  meters	
  to	
  measure:	
  volume	
  delivered,	
  pressure	
  and	
  
temperature	
  for	
  monitoring	
  of	
  the	
  operation.	
  Pipes	
  containing	
  LNG	
  or	
  associated	
  vapor	
  shall	
  be	
  
double	
  walled	
  pipe	
  configurations	
  in	
  stainless	
  steel	
  with	
  perlite	
  filling	
  under	
  a	
  permanent	
  vacuum.	
  	
  
Pipe	
  work	
  should	
  be	
  fully	
  compliant	
  with	
  IGC	
  Code,	
  Section	
  6.2.	
  	
  
4.4.6	
  Pump	
  
The	
  pump	
  is	
  designed	
  for	
  handling	
  cryogenic	
  material.	
  It	
  is	
  theoretically	
  possible	
  to	
  transfer	
  between	
  
tanks	
  in	
  the	
  presence	
  of	
  a	
  delta	
  pressure	
  of	
  2	
  barg	
  or	
  more.	
  	
  Seeing	
  as	
  the	
  pressure	
  difference	
  could	
  
be	
  hard	
  to	
  control	
  and	
  maintain,	
  it	
  may	
  be	
  difficult	
  to	
  transmit	
  without	
  a	
  pump.	
  A	
  frequency	
  
controlled	
  drive	
  for	
  the	
  pump,	
  which	
  will	
  allow	
  pump	
  speed	
  to	
  be	
  regulated	
  and	
  the	
  transmission	
  rate	
  
70
accordingly	
  with	
  respect	
  to	
  pressure	
  and	
  temperature	
  is	
  recommended. 	
  The	
  time	
  it	
  takes	
  to	
  refuel	
  is	
  
	
  

18	
  
critical	
  for	
  the	
  receiving	
  ship.	
  In	
  other	
  words,	
  if	
  you	
  want	
  to	
  optimize	
  the	
  transmission	
  rate	
  to	
  
optimize	
  the	
  time	
  of	
  bunkering	
  a	
  variable	
  speed	
  pump	
  will	
  make	
  it	
  easier	
  to	
  achieve.	
  
4.4.7	
  Emergency	
  Shutdown	
  Systems	
  (ESD)	
  
“The	
  primary	
  function	
  of	
  the	
  ESD	
  system	
  is	
  to	
  stop	
  liquid	
  and	
  vapor	
  transfer	
  in	
  the	
  event	
  of	
  an	
  unsafe	
  
71
condition	
  and	
  bring	
  the	
  LNG	
  transfer	
  system	
  to	
  a	
  safe,	
  static	
  condition.” 	
  LNG	
  vessels	
  commonly	
  refer	
  
to	
  the	
  emergency	
  shutdown	
  system	
  (ESD)	
  as	
  ESD1	
  and	
  the	
  emergency	
  release	
  system	
  (ERS)	
  as	
  ESD2.	
  	
  
4.4.8	
  Emergency	
  Release	
  Systems	
  (ERS)	
  	
  
To	
  comply	
  with	
  the	
  necessary	
  release	
  requirements,	
  an	
  ERS	
  is	
  usually	
  substituted	
  by	
  a	
  break	
  away	
  
coupling	
  known	
  as	
  an	
  emergency	
  release	
  coupler	
  (ERC).	
  	
  
4.4.9	
  Emergency	
  Release	
  Couplers	
  (ERC)	
  
The	
  ERC	
  unit	
  is	
  to	
  be	
  fitted	
  at	
  the	
  receiving	
  units	
  manifold	
  between	
  the	
  flexible	
  hose	
  and	
  the	
  flange	
  
connection	
  of	
  the	
  receiver.	
  The	
  ERC	
  is	
  to	
  incorporate	
  integral	
  automatic	
  valves	
  that	
  will	
  close	
  when	
  
separated,	
  either	
  by	
  nature	
  of	
  its	
  design	
  or	
  by	
  remote	
  motorized	
  operation.	
  Its	
  function	
  is	
  to	
  prevent	
  
release	
  of	
  liquid	
  or	
  vapor	
  to	
  the	
  surroundings	
  through	
  rapid	
  closure.	
  Under	
  excessive	
  tension	
  it	
  serves	
  
as	
  a	
  weak	
  link	
  providing	
  automated	
  release	
  to	
  avoid	
  the	
  hose	
  from	
  breaking.	
  It	
  allows	
  for	
  quick	
  
connection	
  and	
  disconnection.	
  The	
  system	
  design	
  must	
  take	
  into	
  account	
  possible	
  ice	
  build-­‐up	
  and	
  its	
  
72
effects	
  on	
  operation. 	
  This	
  would	
  generally	
  be	
  a	
  requirement	
  for	
  all	
  types	
  of	
  equipment	
  in	
  contact	
  
with	
  cryogenic	
  material.	
  	
  

Figure	
  16:	
  Dry	
  Break	
  Coupling	
  (Mann	
  Teknik	
  AB)	
  

4.4.10	
  Control	
  and	
  Monitoring	
  Systems	
  
Control	
  and	
  Monitoring	
  Systems	
  need	
  to	
  comply	
  with	
  the	
  IMO	
  document	
  MSC	
  285(86).	
  All	
  
installations	
  need	
  to	
  be	
  equipped	
  with	
  control	
  monitoring	
  and	
  safety	
  systems.	
  The	
  most	
  essential	
  
monitoring	
  system	
  is	
  gas	
  detection.	
  The	
  areas	
  that	
  are	
  critical	
  for	
  supervision	
  are	
  areas	
  where	
  
unintended	
  release	
  of	
  gas	
  can	
  occur	
  such	
  as	
  manifold	
  areas,	
  double	
  walled	
  pipes	
  and	
  enclosed	
  areas	
  
73
containing	
  pipe	
  work	
  associated	
  with	
  the	
  bunkering	
  operation. 	
  	
  
	
  
The	
  control	
  and	
  monitoring	
  system	
  should	
  be	
  directly	
  linked	
  to	
  the	
  ESD.	
  The	
  individual	
  shutdown	
  
initiators	
  will	
  vary	
  for	
  each	
  installation.	
  Minimum	
  control	
  and	
  monitoring	
  requirements,	
  on	
  both	
  
distributing	
  and	
  receiving	
  units,	
  are:	
  
1. Position	
  (open/closed)	
  and	
  high-­‐pressure	
  detector	
  in	
  all	
  bunker	
  manifold	
  valves.	
  
2. Operation	
  of	
  any	
  manual	
  emergency	
  stop	
  push	
  button,	
  
3. ‘Out	
  of	
  range’	
  sensing	
  on	
  the	
  fixed	
  loading	
  arm,	
  
4. Gas	
  detection	
  (above	
  40%	
  LEL),	
  
5. Fire	
  detection,	
  
6. High-­‐pressure	
  and	
  high-­‐level	
  detectors	
  in	
  receiving	
  LNG	
  tank,	
  
7. High/low-­‐pressure	
  and	
  high-­‐level	
  detectors	
  in	
  distributing	
  LNG	
  storage	
  tank.	
  
	
  

19	
  
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering
LNG fuelled ships bunkering

Contenu connexe

Tendances

Le 03 Natural Gas (NG) Transportation and Distribution
Le 03 Natural Gas (NG) Transportation and DistributionLe 03 Natural Gas (NG) Transportation and Distribution
Le 03 Natural Gas (NG) Transportation and DistributionNsulangi Paul
 
Global LNG bunkering infrastructure
Global LNG bunkering infrastructureGlobal LNG bunkering infrastructure
Global LNG bunkering infrastructureGeorge Teriakidis
 
Static equipment in oil and gas industry
Static equipment in oil and gas industryStatic equipment in oil and gas industry
Static equipment in oil and gas industryBaher El-Shaikh, CRE
 
Oil 101 - Introduction to Supply and Trading
Oil 101 - Introduction to Supply and TradingOil 101 - Introduction to Supply and Trading
Oil 101 - Introduction to Supply and TradingEKT Interactive
 
OIL & LIQUEFIED GAS: TANKER OPERATIONS
OIL & LIQUEFIED GAS: TANKER OPERATIONSOIL & LIQUEFIED GAS: TANKER OPERATIONS
OIL & LIQUEFIED GAS: TANKER OPERATIONSEaswaran Kanason
 
Marine Diesel Engine.
Marine Diesel Engine.Marine Diesel Engine.
Marine Diesel Engine.ely ramos
 
Natural gas processing: Production of LPG
Natural gas processing: Production of LPG Natural gas processing: Production of LPG
Natural gas processing: Production of LPG Asma-ul Husna
 
NATURAL GAS DEHYDRATION
NATURAL GAS DEHYDRATION NATURAL GAS DEHYDRATION
NATURAL GAS DEHYDRATION Ahmed Shoman
 
Study 2: Front-End Engineering Design and Project Definition
Study 2: Front-End Engineering Design and Project DefinitionStudy 2: Front-End Engineering Design and Project Definition
Study 2: Front-End Engineering Design and Project DefinitionGerard B. Hawkins
 
Lng regasification asit
Lng regasification asitLng regasification asit
Lng regasification asitAsit Meher
 
Gas entec ppt for_gis 2016_distribution
Gas entec ppt for_gis 2016_distributionGas entec ppt for_gis 2016_distribution
Gas entec ppt for_gis 2016_distributionBrandon Shin
 
Lng Integrated Model
Lng Integrated ModelLng Integrated Model
Lng Integrated Modelpaoloboi
 
Oil & gas sector presentation
Oil & gas sector presentationOil & gas sector presentation
Oil & gas sector presentationInfraline Energy
 
Marine engineering department
Marine engineering department Marine engineering department
Marine engineering department twahiru
 
Final Report-City Gas Distribution (CGD) _Daxit Akbari
Final Report-City Gas Distribution (CGD) _Daxit AkbariFinal Report-City Gas Distribution (CGD) _Daxit Akbari
Final Report-City Gas Distribution (CGD) _Daxit AkbariDAXIT AKBARI 🇮🇳
 
LNG Markets, Pricing, Trading & Risk Management
LNG Markets, Pricing, Trading & Risk Management LNG Markets, Pricing, Trading & Risk Management
LNG Markets, Pricing, Trading & Risk Management petroEDGE
 
oil and gas - P&ID symbols .pdf
oil and gas - P&ID symbols .pdfoil and gas - P&ID symbols .pdf
oil and gas - P&ID symbols .pdfnelsonhuatay
 

Tendances (20)

Le 03 Natural Gas (NG) Transportation and Distribution
Le 03 Natural Gas (NG) Transportation and DistributionLe 03 Natural Gas (NG) Transportation and Distribution
Le 03 Natural Gas (NG) Transportation and Distribution
 
LNG
LNGLNG
LNG
 
Global LNG bunkering infrastructure
Global LNG bunkering infrastructureGlobal LNG bunkering infrastructure
Global LNG bunkering infrastructure
 
Static equipment in oil and gas industry
Static equipment in oil and gas industryStatic equipment in oil and gas industry
Static equipment in oil and gas industry
 
Lecture 9 natural gas processes
Lecture 9 natural gas processesLecture 9 natural gas processes
Lecture 9 natural gas processes
 
Oil 101 - Introduction to Supply and Trading
Oil 101 - Introduction to Supply and TradingOil 101 - Introduction to Supply and Trading
Oil 101 - Introduction to Supply and Trading
 
OIL & LIQUEFIED GAS: TANKER OPERATIONS
OIL & LIQUEFIED GAS: TANKER OPERATIONSOIL & LIQUEFIED GAS: TANKER OPERATIONS
OIL & LIQUEFIED GAS: TANKER OPERATIONS
 
Marine Diesel Engine.
Marine Diesel Engine.Marine Diesel Engine.
Marine Diesel Engine.
 
Natural gas processing: Production of LPG
Natural gas processing: Production of LPG Natural gas processing: Production of LPG
Natural gas processing: Production of LPG
 
NATURAL GAS DEHYDRATION
NATURAL GAS DEHYDRATION NATURAL GAS DEHYDRATION
NATURAL GAS DEHYDRATION
 
Study 2: Front-End Engineering Design and Project Definition
Study 2: Front-End Engineering Design and Project DefinitionStudy 2: Front-End Engineering Design and Project Definition
Study 2: Front-End Engineering Design and Project Definition
 
Lng regasification asit
Lng regasification asitLng regasification asit
Lng regasification asit
 
Gas entec ppt for_gis 2016_distribution
Gas entec ppt for_gis 2016_distributionGas entec ppt for_gis 2016_distribution
Gas entec ppt for_gis 2016_distribution
 
Lng Integrated Model
Lng Integrated ModelLng Integrated Model
Lng Integrated Model
 
Oil & gas sector presentation
Oil & gas sector presentationOil & gas sector presentation
Oil & gas sector presentation
 
Marine engineering department
Marine engineering department Marine engineering department
Marine engineering department
 
Final Report-City Gas Distribution (CGD) _Daxit Akbari
Final Report-City Gas Distribution (CGD) _Daxit AkbariFinal Report-City Gas Distribution (CGD) _Daxit Akbari
Final Report-City Gas Distribution (CGD) _Daxit Akbari
 
LNG
LNGLNG
LNG
 
LNG Markets, Pricing, Trading & Risk Management
LNG Markets, Pricing, Trading & Risk Management LNG Markets, Pricing, Trading & Risk Management
LNG Markets, Pricing, Trading & Risk Management
 
oil and gas - P&ID symbols .pdf
oil and gas - P&ID symbols .pdfoil and gas - P&ID symbols .pdf
oil and gas - P&ID symbols .pdf
 

En vedette

US (MARAD) LNG Bunkering Study 2014
US (MARAD) LNG Bunkering Study 2014US (MARAD) LNG Bunkering Study 2014
US (MARAD) LNG Bunkering Study 2014George Teriakidis
 
GE Small Scale Lng solutions
GE Small Scale  Lng solutionsGE Small Scale  Lng solutions
GE Small Scale Lng solutionsAndy Varoshiotis
 
LNG Effect on Ship Design
LNG Effect on Ship DesignLNG Effect on Ship Design
LNG Effect on Ship DesignStephanie Camay
 
Lng bunkering china status report January 2016
Lng bunkering china status report January 2016Lng bunkering china status report January 2016
Lng bunkering china status report January 2016Dan-Hermann Thue
 
alternative fuel for marine engines
alternative fuel for marine enginesalternative fuel for marine engines
alternative fuel for marine enginesDelwin CK
 
Seagas LNG Bunkering Viking Grace
Seagas LNG Bunkering Viking GraceSeagas LNG Bunkering Viking Grace
Seagas LNG Bunkering Viking GraceJohn Hatley PE
 
Asia Days 2013 - Market opportunities for small LNG distribution
Asia Days 2013 - Market opportunities for small LNG distributionAsia Days 2013 - Market opportunities for small LNG distribution
Asia Days 2013 - Market opportunities for small LNG distributionInnovation Norway
 
The Future Of Lng As Fuel, Technical And Infrastructure Aspects And Considera...
The Future Of Lng As Fuel, Technical And Infrastructure Aspects And Considera...The Future Of Lng As Fuel, Technical And Infrastructure Aspects And Considera...
The Future Of Lng As Fuel, Technical And Infrastructure Aspects And Considera...George Teriakidis
 
Small scale lng
Small scale lngSmall scale lng
Small scale lngfeikojager
 
Emsa --final-report-bunkering-lng op-06_2012_b[1]
Emsa --final-report-bunkering-lng op-06_2012_b[1]Emsa --final-report-bunkering-lng op-06_2012_b[1]
Emsa --final-report-bunkering-lng op-06_2012_b[1]George Teriakidis
 
DNV GL emsa report on LNG bunkering
DNV GL emsa report on LNG bunkeringDNV GL emsa report on LNG bunkering
DNV GL emsa report on LNG bunkeringGeorge Teriakidis
 
Trb maritime lng fuel ver. 2.0
Trb maritime lng fuel  ver. 2.0Trb maritime lng fuel  ver. 2.0
Trb maritime lng fuel ver. 2.0Stephanie Camay
 
LNG Net Back & Logistics FS
LNG Net Back & Logistics FSLNG Net Back & Logistics FS
LNG Net Back & Logistics FSnoelgamboaylopez
 
How Smart Grid overlaps with Energy Efficiency
How Smart Grid overlaps with Energy EfficiencyHow Smart Grid overlaps with Energy Efficiency
How Smart Grid overlaps with Energy EfficiencyJim Thayer
 
Vessel efficiency compeition case study andrew flockhart cmal
Vessel efficiency compeition case study   andrew flockhart  cmalVessel efficiency compeition case study   andrew flockhart  cmal
Vessel efficiency compeition case study andrew flockhart cmalKTN
 
Engie env portfolio presentation-230516
Engie   env   portfolio presentation-230516Engie   env   portfolio presentation-230516
Engie env portfolio presentation-230516🚀Yan Thoinet
 
Brown Bag (Roy) - EEDI for LNG Tankers
Brown Bag (Roy) - EEDI for LNG TankersBrown Bag (Roy) - EEDI for LNG Tankers
Brown Bag (Roy) - EEDI for LNG TankersBiswajoy Roy
 

En vedette (20)

US (MARAD) LNG Bunkering Study 2014
US (MARAD) LNG Bunkering Study 2014US (MARAD) LNG Bunkering Study 2014
US (MARAD) LNG Bunkering Study 2014
 
GE Small Scale Lng solutions
GE Small Scale  Lng solutionsGE Small Scale  Lng solutions
GE Small Scale Lng solutions
 
4 study of_small_scale_lng_carrier
4 study of_small_scale_lng_carrier4 study of_small_scale_lng_carrier
4 study of_small_scale_lng_carrier
 
LNG Effect on Ship Design
LNG Effect on Ship DesignLNG Effect on Ship Design
LNG Effect on Ship Design
 
LNG as Fuel magazine
LNG as Fuel magazineLNG as Fuel magazine
LNG as Fuel magazine
 
Lng bunkering china status report January 2016
Lng bunkering china status report January 2016Lng bunkering china status report January 2016
Lng bunkering china status report January 2016
 
alternative fuel for marine engines
alternative fuel for marine enginesalternative fuel for marine engines
alternative fuel for marine engines
 
Seagas LNG Bunkering Viking Grace
Seagas LNG Bunkering Viking GraceSeagas LNG Bunkering Viking Grace
Seagas LNG Bunkering Viking Grace
 
Asia Days 2013 - Market opportunities for small LNG distribution
Asia Days 2013 - Market opportunities for small LNG distributionAsia Days 2013 - Market opportunities for small LNG distribution
Asia Days 2013 - Market opportunities for small LNG distribution
 
The Future Of Lng As Fuel, Technical And Infrastructure Aspects And Considera...
The Future Of Lng As Fuel, Technical And Infrastructure Aspects And Considera...The Future Of Lng As Fuel, Technical And Infrastructure Aspects And Considera...
The Future Of Lng As Fuel, Technical And Infrastructure Aspects And Considera...
 
Battery powered ships
Battery powered shipsBattery powered ships
Battery powered ships
 
Small scale lng
Small scale lngSmall scale lng
Small scale lng
 
Emsa --final-report-bunkering-lng op-06_2012_b[1]
Emsa --final-report-bunkering-lng op-06_2012_b[1]Emsa --final-report-bunkering-lng op-06_2012_b[1]
Emsa --final-report-bunkering-lng op-06_2012_b[1]
 
DNV GL emsa report on LNG bunkering
DNV GL emsa report on LNG bunkeringDNV GL emsa report on LNG bunkering
DNV GL emsa report on LNG bunkering
 
Trb maritime lng fuel ver. 2.0
Trb maritime lng fuel  ver. 2.0Trb maritime lng fuel  ver. 2.0
Trb maritime lng fuel ver. 2.0
 
LNG Net Back & Logistics FS
LNG Net Back & Logistics FSLNG Net Back & Logistics FS
LNG Net Back & Logistics FS
 
How Smart Grid overlaps with Energy Efficiency
How Smart Grid overlaps with Energy EfficiencyHow Smart Grid overlaps with Energy Efficiency
How Smart Grid overlaps with Energy Efficiency
 
Vessel efficiency compeition case study andrew flockhart cmal
Vessel efficiency compeition case study   andrew flockhart  cmalVessel efficiency compeition case study   andrew flockhart  cmal
Vessel efficiency compeition case study andrew flockhart cmal
 
Engie env portfolio presentation-230516
Engie   env   portfolio presentation-230516Engie   env   portfolio presentation-230516
Engie env portfolio presentation-230516
 
Brown Bag (Roy) - EEDI for LNG Tankers
Brown Bag (Roy) - EEDI for LNG TankersBrown Bag (Roy) - EEDI for LNG Tankers
Brown Bag (Roy) - EEDI for LNG Tankers
 

Similaire à LNG fuelled ships bunkering

magzine 02_post.pdf
magzine 02_post.pdfmagzine 02_post.pdf
magzine 02_post.pdfNKIF
 
Magzine 02 post
Magzine 02 postMagzine 02 post
Magzine 02 postNKIF
 
magzine 02_post.pdf
magzine 02_post.pdfmagzine 02_post.pdf
magzine 02_post.pdfNKIF
 
PD190 LNG Fundamentals
PD190 LNG FundamentalsPD190 LNG Fundamentals
PD190 LNG FundamentalspetroEDGE
 
Nuclear technologies cluster results and perspectives 2014
Nuclear technologies cluster results and perspectives 2014Nuclear technologies cluster results and perspectives 2014
Nuclear technologies cluster results and perspectives 2014The Skolkovo Foundation
 
AntennaExtra_1_june10
AntennaExtra_1_june10AntennaExtra_1_june10
AntennaExtra_1_june10Peter Rudling
 
Offshore and onshore pipeline confereance
Offshore and onshore pipeline confereanceOffshore and onshore pipeline confereance
Offshore and onshore pipeline confereancePrakash Thapa (TA-1)
 
Outlook on LNG Bunkering Facilities in China Inland Waterways and Ports
Outlook on LNG Bunkering Facilities in China Inland Waterways and PortsOutlook on LNG Bunkering Facilities in China Inland Waterways and Ports
Outlook on LNG Bunkering Facilities in China Inland Waterways and PortsDan-Hermann Thue
 
Water Conscious Mining.pdf
Water Conscious Mining.pdfWater Conscious Mining.pdf
Water Conscious Mining.pdfjmpardal1
 
Automatic Construction of Nanotechnology Ontology
Automatic Construction of Nanotechnology OntologyAutomatic Construction of Nanotechnology Ontology
Automatic Construction of Nanotechnology OntologyAxel Peter MUSTAD
 
Exhaust Analysis of Rapeseed Oil Microturbine - Tom Gaca 2004
Exhaust Analysis of Rapeseed Oil Microturbine - Tom Gaca 2004Exhaust Analysis of Rapeseed Oil Microturbine - Tom Gaca 2004
Exhaust Analysis of Rapeseed Oil Microturbine - Tom Gaca 2004Tom Gaca
 
3rd lng bunkering 2015 web
3rd lng bunkering 2015 web3rd lng bunkering 2015 web
3rd lng bunkering 2015 webRuoh Yi Tham
 
Courses attended with description
Courses attended with descriptionCourses attended with description
Courses attended with descriptionDanilo Ortelli
 
Subsea Technological Challenges in Offshore Wind Report 2.0
Subsea Technological Challenges in Offshore Wind Report 2.0Subsea Technological Challenges in Offshore Wind Report 2.0
Subsea Technological Challenges in Offshore Wind Report 2.0Jamie McCallum
 
Case study-lessons-learnt-methodology-and-plan-research
Case study-lessons-learnt-methodology-and-plan-researchCase study-lessons-learnt-methodology-and-plan-research
Case study-lessons-learnt-methodology-and-plan-researchrs6491
 
Research & development in oil & gas industry
Research & development in oil & gas industryResearch & development in oil & gas industry
Research & development in oil & gas industryraghunathan janarthanan
 
CV-Madjid Karimirad-March-2016
CV-Madjid Karimirad-March-2016CV-Madjid Karimirad-March-2016
CV-Madjid Karimirad-March-2016Madjid Karimirad
 

Similaire à LNG fuelled ships bunkering (20)

magzine 02_post.pdf
magzine 02_post.pdfmagzine 02_post.pdf
magzine 02_post.pdf
 
Magzine 02 post
Magzine 02 postMagzine 02 post
Magzine 02 post
 
magzine 02_post.pdf
magzine 02_post.pdfmagzine 02_post.pdf
magzine 02_post.pdf
 
PD190 LNG Fundamentals
PD190 LNG FundamentalsPD190 LNG Fundamentals
PD190 LNG Fundamentals
 
Nuclear technologies cluster results and perspectives 2014
Nuclear technologies cluster results and perspectives 2014Nuclear technologies cluster results and perspectives 2014
Nuclear technologies cluster results and perspectives 2014
 
AntennaExtra_1_june10
AntennaExtra_1_june10AntennaExtra_1_june10
AntennaExtra_1_june10
 
Offshore RCM
Offshore RCMOffshore RCM
Offshore RCM
 
bwr-tt102es
bwr-tt102esbwr-tt102es
bwr-tt102es
 
Offshore and onshore pipeline confereance
Offshore and onshore pipeline confereanceOffshore and onshore pipeline confereance
Offshore and onshore pipeline confereance
 
Outlook on LNG Bunkering Facilities in China Inland Waterways and Ports
Outlook on LNG Bunkering Facilities in China Inland Waterways and PortsOutlook on LNG Bunkering Facilities in China Inland Waterways and Ports
Outlook on LNG Bunkering Facilities in China Inland Waterways and Ports
 
Water Conscious Mining.pdf
Water Conscious Mining.pdfWater Conscious Mining.pdf
Water Conscious Mining.pdf
 
3rd LNG Marine Fuel Forum 2017
3rd LNG Marine Fuel Forum 2017 3rd LNG Marine Fuel Forum 2017
3rd LNG Marine Fuel Forum 2017
 
Automatic Construction of Nanotechnology Ontology
Automatic Construction of Nanotechnology OntologyAutomatic Construction of Nanotechnology Ontology
Automatic Construction of Nanotechnology Ontology
 
Exhaust Analysis of Rapeseed Oil Microturbine - Tom Gaca 2004
Exhaust Analysis of Rapeseed Oil Microturbine - Tom Gaca 2004Exhaust Analysis of Rapeseed Oil Microturbine - Tom Gaca 2004
Exhaust Analysis of Rapeseed Oil Microturbine - Tom Gaca 2004
 
3rd lng bunkering 2015 web
3rd lng bunkering 2015 web3rd lng bunkering 2015 web
3rd lng bunkering 2015 web
 
Courses attended with description
Courses attended with descriptionCourses attended with description
Courses attended with description
 
Subsea Technological Challenges in Offshore Wind Report 2.0
Subsea Technological Challenges in Offshore Wind Report 2.0Subsea Technological Challenges in Offshore Wind Report 2.0
Subsea Technological Challenges in Offshore Wind Report 2.0
 
Case study-lessons-learnt-methodology-and-plan-research
Case study-lessons-learnt-methodology-and-plan-researchCase study-lessons-learnt-methodology-and-plan-research
Case study-lessons-learnt-methodology-and-plan-research
 
Research & development in oil & gas industry
Research & development in oil & gas industryResearch & development in oil & gas industry
Research & development in oil & gas industry
 
CV-Madjid Karimirad-March-2016
CV-Madjid Karimirad-March-2016CV-Madjid Karimirad-March-2016
CV-Madjid Karimirad-March-2016
 

Plus de George Teriakidis

DNV GL Trend Report - June 2015
DNV GL Trend Report - June 2015DNV GL Trend Report - June 2015
DNV GL Trend Report - June 2015George Teriakidis
 
What new on the regulatory agenda
What new on the regulatory agendaWhat new on the regulatory agenda
What new on the regulatory agendaGeorge Teriakidis
 
Structural rules bulk and tanker
Structural rules bulk and tankerStructural rules bulk and tanker
Structural rules bulk and tankerGeorge Teriakidis
 
DNV GL Energy Management Study 2015
DNV GL Energy Management Study 2015DNV GL Energy Management Study 2015
DNV GL Energy Management Study 2015George Teriakidis
 
DNV GL Trend Report Feb 2015
DNV GL Trend Report Feb 2015DNV GL Trend Report Feb 2015
DNV GL Trend Report Feb 2015George Teriakidis
 
LNG fuelled ships recent development 2014 02
LNG fuelled ships recent development 2014 02LNG fuelled ships recent development 2014 02
LNG fuelled ships recent development 2014 02George Teriakidis
 
The future mix of alternative marine fuels
The future mix of alternative marine fuelsThe future mix of alternative marine fuels
The future mix of alternative marine fuelsGeorge Teriakidis
 
Assessments Of Measures To Reduce Future Co2 Emissions From Shipping
Assessments Of Measures To Reduce Future Co2 Emissions From ShippingAssessments Of Measures To Reduce Future Co2 Emissions From Shipping
Assessments Of Measures To Reduce Future Co2 Emissions From ShippingGeorge Teriakidis
 
Shipping Across The Arctic Ocean Position Paper
Shipping Across The Arctic Ocean Position PaperShipping Across The Arctic Ocean Position Paper
Shipping Across The Arctic Ocean Position PaperGeorge Teriakidis
 
Pathways To Low Carbon Power Generation Abatement Potential Towards 2020
Pathways To Low Carbon Power Generation   Abatement Potential Towards 2020Pathways To Low Carbon Power Generation   Abatement Potential Towards 2020
Pathways To Low Carbon Power Generation Abatement Potential Towards 2020George Teriakidis
 

Plus de George Teriakidis (16)

Tanker Update 01 2015
Tanker Update 01 2015Tanker Update 01 2015
Tanker Update 01 2015
 
Bulk carrier update
Bulk carrier updateBulk carrier update
Bulk carrier update
 
DNV GL Trend Report - June 2015
DNV GL Trend Report - June 2015DNV GL Trend Report - June 2015
DNV GL Trend Report - June 2015
 
What new on the regulatory agenda
What new on the regulatory agendaWhat new on the regulatory agenda
What new on the regulatory agenda
 
Structural rules bulk and tanker
Structural rules bulk and tankerStructural rules bulk and tanker
Structural rules bulk and tanker
 
DNV GL Specification Review
DNV GL Specification ReviewDNV GL Specification Review
DNV GL Specification Review
 
DNV GL Energy Management Study 2015
DNV GL Energy Management Study 2015DNV GL Energy Management Study 2015
DNV GL Energy Management Study 2015
 
DNV GL Trend Report Feb 2015
DNV GL Trend Report Feb 2015DNV GL Trend Report Feb 2015
DNV GL Trend Report Feb 2015
 
LNG fuelled ships recent development 2014 02
LNG fuelled ships recent development 2014 02LNG fuelled ships recent development 2014 02
LNG fuelled ships recent development 2014 02
 
The future mix of alternative marine fuels
The future mix of alternative marine fuelsThe future mix of alternative marine fuels
The future mix of alternative marine fuels
 
DNV Liquified Gas Terminal
DNV Liquified Gas TerminalDNV Liquified Gas Terminal
DNV Liquified Gas Terminal
 
20120911 Shipping 2020
20120911 Shipping 202020120911 Shipping 2020
20120911 Shipping 2020
 
Assessments Of Measures To Reduce Future Co2 Emissions From Shipping
Assessments Of Measures To Reduce Future Co2 Emissions From ShippingAssessments Of Measures To Reduce Future Co2 Emissions From Shipping
Assessments Of Measures To Reduce Future Co2 Emissions From Shipping
 
Shipping In The North Pole
Shipping In The North PoleShipping In The North Pole
Shipping In The North Pole
 
Shipping Across The Arctic Ocean Position Paper
Shipping Across The Arctic Ocean Position PaperShipping Across The Arctic Ocean Position Paper
Shipping Across The Arctic Ocean Position Paper
 
Pathways To Low Carbon Power Generation Abatement Potential Towards 2020
Pathways To Low Carbon Power Generation   Abatement Potential Towards 2020Pathways To Low Carbon Power Generation   Abatement Potential Towards 2020
Pathways To Low Carbon Power Generation Abatement Potential Towards 2020
 

Dernier

1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers referencessuser2c065e
 
Introducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsIntroducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsKnowledgeSeed
 
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxThe-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxmbikashkanyari
 
digital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingdigital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingrajputmeenakshi733
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Supercharge Your eCommerce Stores-acowebs
Supercharge Your eCommerce Stores-acowebsSupercharge Your eCommerce Stores-acowebs
Supercharge Your eCommerce Stores-acowebsGOKUL JS
 
BAILMENT & PLEDGE business law notes.pptx
BAILMENT & PLEDGE business law notes.pptxBAILMENT & PLEDGE business law notes.pptx
BAILMENT & PLEDGE business law notes.pptxran17april2001
 
Healthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterHealthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterJamesConcepcion7
 
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...SOFTTECHHUB
 
Appkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxAppkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxappkodes
 
Jewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreJewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreNZSG
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...ssuserf63bd7
 
20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdfChris Skinner
 
Unveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesUnveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesDoe Paoro
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03DallasHaselhorst
 
Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Americas Got Grants
 
Darshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfDarshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfShashank Mehta
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersPeter Horsten
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxRakhi Bazaar
 

Dernier (20)

1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Excvation Safety for safety officers reference
Excvation Safety for safety officers referenceExcvation Safety for safety officers reference
Excvation Safety for safety officers reference
 
Introducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsIntroducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applications
 
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxThe-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
 
digital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingdigital marketing , introduction of digital marketing
digital marketing , introduction of digital marketing
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Supercharge Your eCommerce Stores-acowebs
Supercharge Your eCommerce Stores-acowebsSupercharge Your eCommerce Stores-acowebs
Supercharge Your eCommerce Stores-acowebs
 
BAILMENT & PLEDGE business law notes.pptx
BAILMENT & PLEDGE business law notes.pptxBAILMENT & PLEDGE business law notes.pptx
BAILMENT & PLEDGE business law notes.pptx
 
Healthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterHealthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare Newsletter
 
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
 
Appkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptxAppkodes Tinder Clone Script with Customisable Solutions.pptx
Appkodes Tinder Clone Script with Customisable Solutions.pptx
 
Jewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreJewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource Centre
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
 
20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf
 
Unveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesUnveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic Experiences
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03
 
Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...
 
Darshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfDarshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdf
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exporters
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
 

LNG fuelled ships bunkering

  • 1. Stud.  Techn.  Nora  Marie  Lundevall  Arnet   Evaluation  of  technical  challenges   and  need  for  standardization  for   LNG  bunkering     Trondheim,  June  10,  2013     NTNU   Norwegian  University  of     Science  and  Technology   Faculty  of  Engineering  Science  and  Technology   Department  of  Energy  and  Process  Engineering   Project  thesis     Source:  Swedish  Marine  Technology  Forum      
  • 2. Preface   This  project  report  is  written  as  a  part  of  the  five  year  Master  Degree  Program  I  attend  at  the   Department  of  Energy  and  Process  Engineering  at  Norwegian  University  of  Science  and  Technology   (NTNU).  First  of  all  I  wish  to  express  my  gratitude  to  my  supervisor  Reidar  Kristoffersen.  During  the   semester  he  has  given  me  academic  guidance  on  report  matters  and  great  freedom  in  choosing  a   topic  of  interest.       The  project  report  consists  of  a  literature  review  regarding  LNG  bunkering.  The  topic  is  current  and   much  of  the  information  is  gathered  from  publications  made  within  the  last  five  years  and  from  direct   communication  with  people  in  the  industry.  The  list  of  people  who  have  contributed  and  whom  I  wish   to  thank  is  therefore  extensive.       The  report  is  written  in  cooperation  with  Det  Norske  Veritas  (DNV).  Lars  Petter  Blikom,  Segment   Director  for  Natural  Gas,  DNV,  has  been  my  industrial  supervisor.  I  would  like  to  thank  Mr.  Blikom  for   providing  me  with  assistance  on  the  topic  and  valuable  insight  form  the  industry.  His  support  and   encouragement  throughout  the  process  has  been  highly  appreciated.  I  also  wish  to  thank  the  natural   gas  team  at  DNV,  Erik  Skramstad  and  Katrine  Lie  Strøm  for  their  help  on  technical  matters.       Individuals  who  contributed  with  insight,  relevant  material,  outlining  and  establishing  the  basis  of  the   project  report  include;  Per  Magne  Einang  and  Dag  Stenersen  (MARINTEK/SINTEF),  Øystein  Bruno   Larsen  (BW  Offshore),  Ernst  Meyer  and  Henning  Mohn  (DNV),  Rolv  Stokkmo  (Liquiline),  Øystein   Klaussen  (Gassteknikk)  and  Jens  Kålstad  (Kongsberg).         Nora  Marie  Lundevall  Arnet     I  
  • 3. Abstract   The  shipping  industry  is  searching  for  cleaner  solutions  to  comply  with  upcoming  regulations  on   emissions.  A  favorable  solution  is  to  use  Liquefied  Natural  Gas  (LNG)  as  bunker  fuel,  on  ferries  and   other  smaller  vessel  travelling  set  routes.  Implementation  of  innovative  solutions  in  the  large-­‐scale   LNG  distribution  has  been  successful,  but  the  industry  is  now  requiring  solutions  for  the  small-­‐scale   LNG  distribution  networks.  An  expansion  of  small-­‐scale  LNG  infrastructure  holds  a  great  potential  for   cost  effective  fuel  for  the  industry.       Several  LNG  bunkering  solutions  exist  today  and  new  projects  are  announced  frequently,  but  detailed   descriptions  are  rarely  published  due  to  the  intense  competition  in  the  emerging  market.  The  industry   is  also  faced  with  lack  of  standardization  within  certain  areas  of  the  bunkering  process.  Leaving   procedures  open  to  discretion  and  a  potentially  higher  risk  of  failure.       This  project  report  aims  to  evaluate  essential  aspects  relevant  to  the  emerging  LNG  bunkering  market   focusing  on  technical  challenges  and  need  for  standardization.  It  will  include  an  overview  of  LNG   safety  aspects,  a  technical  step-­‐by-­‐step  approach  to  LNG  bunkering  and  essential  equipment  used,   assessment  of  current  standards,  and  finally  a  discussion  of  critical  areas  for  LNG  bunkering  to   compete  with  current  solutions.           II  
  • 4. Content   1  Introduction  ..........................................................................................................................................  1   1.1  Motivation  ......................................................................................................................................  1   1.1.1  Bunkering  ................................................................................................................................  1   1.1.2  New  Projects  ...........................................................................................................................  1   1.1.3  The  Drive  .................................................................................................................................  2   1.2  Underlying  Hypothesis  ...................................................................................................................  3   1.3  Main  Goal  of  the  Report  .................................................................................................................  3   1.4  Scope  of  the  Report   ........................................................................................................................  3   2  LNG  ........................................................................................................................................................  4   2.1  LNG  characteristics  .........................................................................................................................  4   2.2  LNG  Chain  .......................................................................................................................................  4   2.2.1  Gas  Field  (Reservoir)   ................................................................................................................  4   2.2.2  Liquefaction  Terminal:  Onshore  Processes  .............................................................................  4   2.2.3  Marine  Transport  ....................................................................................................................  4   2.2.4  Receiving  Terminal  ..................................................................................................................  4   2.3  LNG  Safety  Issues  ...........................................................................................................................  5   3  LNG  Advantages  ....................................................................................................................................  6   3.1  Environmental  advantages  .............................................................................................................  6   3.1.1  Alternative  Energy  Sources  .....................................................................................................  6   3.1.2  Emission  Control   ......................................................................................................................  6   3.1.3  Emissions  Requirements  .........................................................................................................  7   3.1.4  Natural  Gas  -­‐  The  Solution   .......................................................................................................  7   3.2  Economical  Advantages   ..................................................................................................................  8   3.2.1  Investment  Costs  .....................................................................................................................  8   3.2.2  Infrastructure  ..........................................................................................................................  8   3.2.3  Marine  Fuel  Costs  ....................................................................................................................  9   4  Bunkering  ............................................................................................................................................  10   4.1  LNG  Bunkering  Definition  .............................................................................................................  10   4.1.1  Engines  ..................................................................................................................................  10   4.2  LNG  Bunkering  Scenarios  .............................................................................................................  10   4.3  LNG  Bunkering  Procedure  ............................................................................................................  11   4.3.1  Step  1  –  Initial  Precooling  1  ...................................................................................................  12   4.3.2  Step  2-­‐  Initial  Precooling  2   .....................................................................................................  13   4.3.3  Step  3  –  Connection  of  Bunker  Hose  .....................................................................................  13   4.3.4  Step  4  -­‐  Inerting  the  Connected  System  ................................................................................  14   4.3.5  Step  5  –  Purging  the  Connected  System  ...............................................................................  14   4.3.6  Step  6  –  Filling  Sequence  .......................................................................................................  15   4.3.7  Step  7  –  Liquid  Line  Stripping  ................................................................................................  16   4.3.8  Step  8  –  Liquid  Line  Inerting  ..................................................................................................  16   4.3.9  Step  9  –  Disconnection  ..........................................................................................................  16   4.4  Equipment  ....................................................................................................................................  17   4.4.1  Tanks  .....................................................................................................................................  17   4.4.2  Valves  ....................................................................................................................................  18   4.4.3  Hose   .......................................................................................................................................  18   4.4.4  Loading  arms  .........................................................................................................................  18   4.4.5  Pipes  ......................................................................................................................................  18   4.4.6  Pump  .....................................................................................................................................  18   4.4.7  Emergency  Shutdown  Systems  (ESD)  ....................................................................................  19   4.4.8  Emergency  Release  Systems  (ERS)  ........................................................................................  19   4.4.9  Emergency  Release  Couplers  (ERC)  .......................................................................................  19   4.4.10  Control  and  Monitoring  Systems   .........................................................................................  19       III    
  • 5. 5  Regulations  ..........................................................................................................................................  20   5.1  Standardization  Bodies   .................................................................................................................  20   5.1.1  International  Maritime  Organization  (IMO)  ..........................................................................  20   5.1.2  International  Organization  for  Standardization  (ISO)   ............................................................  20   5.1.3  Society  of  International  Gas  Tanker  &  Terminal  Operators  (SIGTTO)  ...................................  20   5.1.4  Oil  Companies  International  Marine  Forum  (OCIMF)  ...........................................................  20   5.1.5  European  Committee  for  Standardization  (CEN)  ..................................................................  21   5.2  International  Rules  and  Guidelines  ..............................................................................................  21   5.2.1  IMO  International  Gas  Code  (IGC)  .........................................................................................  21   5.2.2  IMO  International  Gas  Fuel  Interim  Guidelines  (MSC.285(86))  .............................................  21   5.2.3  SIGGTO:  Guidelines  for  LNG  transfer  and  Port  Operation   ....................................................  21   5.2.4  OCIMF:  Guidelines  for  Oil  transfers,  Ship-­‐to-­‐Ship  oil  bunkering  procedures  ........................  21   5.2.5  CEN  –  European  Standard  .....................................................................................................  21   5.2.6  Local  regulations  and  authorities  ..........................................................................................  22   5.3  The  ISO  Standard  –  ISO/TC  67/WG  10/PT1  ..................................................................................  22   5.4  Foreseen  Governance  of  LNG  Bunkering  Operations   ...................................................................  23   6  On  Site  .................................................................................................................................................  24   6.1  Best  Practice  .................................................................................................................................  24   6.2  Bunkering  Area  .............................................................................................................................  24   6.3  Purging  .........................................................................................................................................  24   6.3.1  Zero  Emission  Solutions  ........................................................................................................  24   6.3.2  Pressure  Testing  ....................................................................................................................  25   6.4  Filling  Sequence  -­‐  Tank  Pressure  and  Temperature  .....................................................................  25   6.4  1  Standard  Quality  –  Explanation  of  the  Term  .........................................................................  25   7  Discussion  ............................................................................................................................................  26   7.1  Standards  -­‐  Current  Situation  .......................................................................................................  26   7.1.1  Bunkering  vs.  Large-­‐Scale  Transfers  ......................................................................................  26   7.1.2  LNG  vs.  Conventional  Fuels  ...................................................................................................  26   7.1.3  Port  rules  ...............................................................................................................................  26   7.1.4  Bunkering  scenarios  ..............................................................................................................  27   7.2  ISO/TC  67/WG  10  .........................................................................................................................  27   7.2.1  Lacking  elements  ...................................................................................................................  27   7.2.2  Implementation  .....................................................................................................................  27   7.2.3  Equipment  .............................................................................................................................  28   7.3  Passengers  ....................................................................................................................................  28   7.4  Safety  Zones  .................................................................................................................................  28   8  Conclusion  ...........................................................................................................................................  30   Appendix  A  .............................................................................................................................................  31   Appendix  B  .............................................................................................................................................  32   Appendix  C  .............................................................................................................................................  33   Standardization  bodies   .......................................................................................................................  33   International  Maritime  Organisation  (IMO)  ...................................................................................  33   International  Organisation  for  Standardisation  (ISO)   .....................................................................  33   International  Electrotechnical  Commission  (IEC)  ...........................................................................  33   Society  of  International  Gas  Tanker  &  Terminal  Operators  (SIGTTO)  ............................................  34   Oil  Companies  International  Marine  Forum  (OCIMF)  ....................................................................  34   European  Committee  for  Standardisation  (CEN)  ...........................................................................  34   Reference  list  .........................................................................................................................................  36         IV    
  • 6. List  of  Figures   Figure  1:  The  LNG  fuelled  fleet  .................................................................................................................  2   Figure  2:  The  Large  Scale  LNG  Chain  ........................................................................................................  4   Figure  3:  Explosion/Flammability  Curve  ...................................................................................................  5   Figure  4:  ECA  zones  ..................................................................................................................................  6   Figure  5:  Fuel  Emissions,  for  a  typical  existing  ship   ..................................................................................  7   Figure  6:  Lifecycle  economics  for  a  typical  ship  .......................................................................................  9   Figure  7:  Overall  Bunkering  Layout  ........................................................................................................  11   Figure  8:  Bunkering  Procedure  Step  1  ....................................................................................................  12   Figure  9:  Bunkering  Procedure  Step  2  ....................................................................................................  13   Figure  10:  Bunkering  Procedure  Step  4  ..................................................................................................  14   Figure  11:  Bunkering  Procedure  Step  5  ..................................................................................................  14   Figure  12:  Bunkering  Procedure  Step  6  -­‐  Bottom  Filling  ........................................................................  15   Figure  13:  Bunkering  Procedure  Step  6  -­‐  Top  Filling  (Spray)  ..................................................................  15   Figure  14:  Bunkering  Procedure  Step  7  ..................................................................................................  16   Figure  15:  IMO  Type-­‐C  Tank,  CRYO  AB  ...................................................................................................  17   Figure  16:  Dry  Break  Coupling  (Mann  Teknik  AB)  ..................................................................................  19   Figure  17:  Foreseen  governance  of  LNG  bunkering  operations  .............................................................  23         V  
  • 7. List  of  Abbreviations   NG  –  Natural  Gas   LNG  –Liquefied  Natural  Gas   LEL  –  Lower  Explosion  Level   UEL  –  Upper  Explosion  Level   HFO  –  Heavy  Fuel  Oil   MDO  –  Marine  Diesel  Oil     MGO  –  Marine  Gas  Oil   mmbtu  -­‐  million  British  thermal  units   ECA  –  Emission  Control  Area   IEA  –  International  Energy  Agency   TTS  –  Truck-­‐to-­‐Ship   STS  –  Ship-­‐to-­‐Ship   PTS  –  Terminal  (Pipeline)-­‐to-­‐Ship     ERC  –  Emergency  Quick  Release  Connector/Couplers   ESD  –  Emergency  Shutdown  Systems     ERS  –  Emergency  Release  Systems   IMO  –  International  Maritime  Organization   ISO  –  International  Organization  for  Standardization   SIGTTO  –  Society  of  International  Gas  Tanker  &  Terminal  Operators   OCIMF  –  Oil  Companies  International  Marine  Forum   CEN  –  European  Committee  for  Standardization   NMD  –  Norwegian  Maritime  Directorate   EU  –  European  Union   IGC  –  IMO  International  Gas  Code   IGF  –  IMO  International  Gas  Fuel  Interim  Guidelines     Sorted  after  order  of  appearance  in  the  document.           VI    
  • 8. 1  Introduction   1.1  Motivation   “The  LNG  industry  is  the  fastest  growing  segment  of  the  energy  industry  around  the  world.”  Global  oil   is  growing  about  0.9%  per  annum,  global  gas  at  2%,  while  Liquefied  Natural  Gas  (LNG)  has  been   1 growing  at  a  comparatively  soaring  4.5%.     The  International  Energy  Agency  projects  the  natural  gas  used  to  account  for  more  than  25%  of  the   world  energy  demand  (amounting  to  a  50%  increase)  by  2035,  making  it  the  fastest  growing  primary   energy  source  of  the  world.  For  LNG,  a  9%  share  in  the  global  gas  supply  was  estimated  for  2010;  by   2 2030  it  is  projected  to  account  for  15%.  “Lloyd’s  Register  believes  LNG  could  account  for  up  to  9%  of   3 total  bunker  fuel  demand  by  2025.”     1.1.1  Bunkering   4 Small-­‐scale  distribution  and  bunkering  of  LNG  has  been  booming  as  well.  LNG  was  created  as  a  way   to  transport  natural  gas  in  a  more  economical  way  over  long  distances,  as  it  is  reduced  to   th approximately  1/600  in  volume  through  liquefaction.  Transportation  and  handling  of  LNG  as  cargo   on  both  land  and  sea  have  been  proven  for  many  decades.  With  new  emission  regulations  the   potential  applications  for  LNG  is  expanding.  Among  these  applications  is  use  of  LNG  as  marine  fuel.   Particularly  attractive  for  marine  vessels  travelling  set  routes  such  as  tug  boats,  ferries,  and  support   vessels.  LNG  as  main  propulsion  fuel  is  no  longer  a  new  invention  and  the  technology  is  already   5 6 classified  as  proven.  The  first  LNG  fueled  ship  in  the  world  (Glutra)  was  launched  in  Norway,  in  2001.       The  transportation  sector  being  the  single-­‐biggest  contributor  to  oil  demand  in  many  countries   7 around  the  world,  is  always  looking  for  ways  to  cut  costs.  Vessels  running  on  LNG  instead  of  oil  are   8 already  saving  25%  on  fuels  costs  in  certain  markets.  Norway  is  currently  operating  38  gas-­‐fuelled   ships.  Based  on  intrinsic  advantages  LNG  has  as  a  fuel,  it  can  and  will  probably  be  adopted  on  an   international  basis.  In  response  to  increasing  demand,  construction  of  LNG  bunkering  infrastructure  is   9 under  development.       Development  of  a  worldwide  LNG  supply  chain  based  on  ship-­‐to-­‐ship  or  shore-­‐to-­‐ship  bunkering  is  of   10 paramount  importance  for  LNG  to  become  a  real  alternative  to  heavy  fuel  oil.  The  bunkering   solutions  most  widely  used  today  are  truck  and  terminal  supply.  Both  solutions  are  considered  less   feasible  as  trucks  provide  small  volumes  and  terminals  have  high  operational  cost.  Bunkering  from   vessel/barge,  on  the  other  hand,  is  much  more  flexible  with  respect  to  covering  several  sizes  and   locations  that  in  turn  lowers  both  cost  and  time  spent  on  bunkering.     1.1.2  New  Projects   11  “New  LNG  projects  and  applications  are  being  announced  daily  around  the  world.“     • In  Europe,  the  commission  has  set  aside  €2.1bn  to  equip  139  seaports  and  inland  ports  –   about  10  per  cent  of  all  ports  –  with  LNG  bunker  stations  by  2025.  The  plan  forms  part  of  the   12 new  EU  strategy  for  clean  fuels.   13 • Singapore:  developed  and  opened  an  open-­‐access,  multi-­‐user  import  terminal.     • In  Norway,  Skangass  in  cooperation  with  Gassnor  in  Risavika  Stavanger  is  establishing  a   bunker  terminal.     • “Washington  State  Ferries  (WSF)  is  exploring  an  option  to  use  liquefied  natural  gas  (LNG)  as  a   14 source  of  fuel  for  propulsion.”       1  
  • 9. There  are  LNG  passenger  vessels  currently  under  construction  or  in  design  for  service  in   Argentina,  Uruguay,  Finland,  and  Sweden.   • The  M/S  Viking  Grace  was  launched  some  months  ago  and  is  the  world’s  first  large  passenger   15 vessel  to  be  powered  by  liquefied  natural  gas  (LNG)   • Break-­‐bulk  terminal  in  Rotterdam.     16 • Port  of  Antwerp,  creating  a  LNG  bunker  vessel.     • “LNG  bunkering  Ship  to  Ship”  report  carried  out  by  Swedish  Marine  Technology  Forum  in   cooperation  with  Det  Norske  Veritas  (DNV)  and  others.  The  document  is  a  procedural   description  of  how  LNG  bunkering  between  two  ships  should  be  done  based  on  a  real  life   17 example.     Currently  there  are  74  confirmed  LNG  fuelled  ships  contracted.  The  following  figure  includes   developments  in  the  fleet  and  future  expansions  plans  for  the  next  three  years.       •   18 Figure  1:  The  LNG  fuelled  fleet     1.1.3  The  Drive     The  reason  for  this  strong  increase  and  interest  in  LNG  as  a  marine  fuel  is  based  on  two  main  factors:   1. The  Marine  Environmental  Protection  Committee  part  of  International  Maritime   Organization  (IMO)  is  introducing  emission  controls,  constraining  the  extent  of  exhaust  gas   19 emission.  This  is  forcing  the  industry  to  rethink  its  fueling  options.     2. The  availability  of  natural  gas  has  increased  due  to  large  offshore  discoveries  and   unconventional  gas  finds  in  the  US  (shale  gas),  creating  lower  prices  on  natural  gas  compared   to  conventional  fuels.  This  creates  a  drive  in  the  industry,  as  consumers  are  able  to  obtain   commercial  saving  against  alternative  fuels.       2  
  • 10. 1.2  Underlying  Hypothesis   The  industry  will  continue  to  introduce  technological  innovations  and  infrastructure  needed  to  supply   the  expanding  LNG  bunkering  market  as  long  as  there  is  a  cost  benefit  to  use  LNG  compared  to   alternative  fuels.  Over  the  last  decades  the  focus  in  the  market  has  been  on  technical  and  commercial   issues,  but  now  that  the  technical  solutions  are  in  place  and  markets  are  growing  the  industry  is   20 taking  a  closer  look  at  strategic  and  regulatory  matters.       As  LNG  marine  fuel  becomes  more  common,  regulations  and  standards  need  to  be  implemented   alongside  technical  and  procedural  developments.  Standards  are  necessary  as  it  ensures  a  level  of   safety  and  create  common  grounds  for  the  operators,  again  making  it  easier  for  the  LNG  industry  to   expand.       There  are  several  bodies  that  cover  various  aspects  of  currently  incomplete  legislation  for  the   industry.  One  of  the  regulatory  frameworks  is  the  upcoming  ISO/TC  67/WG  10  Technical  Report   (which  DNV  is  leading).  The  technical  report  will  be  a  high  level  document  scheduled  for  completion  in   2014.  “The  objective  of  the  ISO  TC  67  WG  10  is  the  development  of  international  guidelines  for   bunkering  of  gas-­‐fuelled  vessels  focusing  on  requirements  for  the  LNG  transfer  system,  the  personnel   21 involved  and  the  related  risk  of  the  whole  LNG  bunkering  process.”     Within  this  definition  there  are  several  questions  raised  as  to  what  it  should  cover  and  what  it  needs   to  cover  to  be  an  effective  “tool”  in  future  bunkering  expansion  and  to  answer  the  industry’s  current   demand  for  standardization.  Currently  it  is  the  opinion  of  the  industry  that  comprehensive   international  standards  cannot  be  created,  as  the  experience  of  bunkering  LNG  is  too  limited.   Nonetheless,  with  increased  use  there  will  be  a  need  for  international  standardization  and  guidelines.     1.3  Main  Goal  of  the  Report   The  topic  of  the  report  will  be  an  evaluation  of  LNG  bunkering  solutions,  with  main  focus  on   identifying  technical  challenges,  and  to  identify  potential  areas  for  industry’s  standardization.         1.4  Scope  of  the  Report   The  report  will  cover  LNG  characteristics,  safety  aspects  and  the  current  state  of  technology  for   bunkering  of  LNG.  Present  a  technical  step-­‐by-­‐step  overview  over  the  bunkering  procedure  and   essential  equipment  used.  It  will  further  discuss  problem  areas,  safety  issues  and  areas  where   standards  could  be  useful  to  promote  more  widespread  use.     The  report  is  limited  by  the  available  technologies  comprising  a  discharging  unit  to  receiving  ship  for   transferring  LNG.  There  are  many  actors  in  the  industry  but  the  experience  is  limited  and  the   solutions  are  proprietary.       3  
  • 11. 2  LNG   2.1  LNG  characteristics     Liquefied  Natural  Gas  (LNG)  is  Natural  Gas  (NG)  cooled  to  about  -­‐162°C  (-­‐260°F)  at  atmospheric   pressure.  It  is  a  condensed  mixture  of  methane  (CH4)  approximately  85-­‐96mol%  and  a  small   percentage  of  heavier  hydrocarbons.  LNG  is  clear,  colorless,  odorless,  non-­‐corrosive  and  non-­‐toxic.  In   liquid  form  it  is  approximately  45%  the  density  of  water  and  as  vapor  it  is  approximately  50%  density   of  air  and  will  rise  under  normal  atmospheric  conditions.  LNG  is  called  a  cryogenic  liquid  –  defined  as   substances  that  liquefies  at  a  temperature  below  -­‐73°C  (-­‐100°F)  at  atmospheric  pressure.  The  process   th of  liquefaction  reduces  the  volume  to  1/600  of  its  original  volume,  providing  efficient  storage  and    22 transport.       2.2  LNG  Chain     23 Figure  2:  The  Large  Scale  LNG  Chain   2.2.1  Gas  Field  (Reservoir)   The  Chain  starts  with  gas  production. Raw  NG  comes  from  three  types  of  wells:  oil  wells  (associated   gas),  gas  wells,  and  condensate  wells  (both  non-­‐associated  gas).  NG  is  a  mixture  of  hydrocarbons.  It   consists  mostly  of  methane,  but  also  heavier  hydrocarbons:  ethane,  propane,  butane,  and  pentanes.   In  addition,  raw  NG  contains  water  vapor,  hydrogen  sulfide,  carbon  dioxide,  helium,  nitrogen,  and   24 other  compounds.  NG  quality  will  vary  depending  on  its  composition.  A  full  composition  example  of   NG  can  be  found  in  Appendix  A.   2.2.2  Liquefaction  Terminal:  Onshore  Processes   The  rich  gas  from  the  reservoirs  is  purified  to  increase  its  methane  content.  The  pre-­‐treatment   includes  removal  of  condensate,  carbon  dioxide  (CO2),  mercury,  sulfur  (H2S),  and  water  (through   dehydration).  After  pre-­‐treatment  the  natural  gas  is  now  classified  as  dry/lean  gas.  This  gas  if  further   25 refrigerated  and  eventually  liquefied  and  stored.     2.2.3  Marine  Transport   Large-­‐scale  LNG  is  shipped  from  the  liquefaction  terminal  to  the  receiving  terminal  by  LNG  carriers,   3 today  the  normal  capacity  range  for  carriers  is  145,000-­‐180,000m .     2.2.4  Receiving  Terminal   At  the  receiving  terminal  LNG  is  stored  in  large  cryogenic  tanks.  The  liquid  is  re-­‐gasified/vaporized  and   transported  to  local  market  via  the  gas  grid.  In  some  markets  a  portion  of  the  LNG  is  broken  into   smaller  cargoes  and  distributed  in  smaller  scale  by  rail,  road  or  smaller  LNG  vessels.  Small-­‐scale     4  
  • 12. distributions  can  also  originate  from  small-­‐scale  liquefaction  plants;  this  is  current  practice  in  Norway   and  the  US.    The  small-­‐scale  distribution  scenarios  are  the  focus  of  this  project  report.       2.3  LNG  Safety  Issues   In  its  liquid  form  LNG  cannot  explode  and  it  is  not  flammable.  Hazards  arise  when  LNG  returns  to  its   gaseous  state  through  an  uncontrolled  release.  The  release  can  as  an  example  be  caused  by  a  tank   rupture  due  to  external  impact,  leaks  from  flanges  in  the  pipework  or  a  pipe  break,  etc.       The  hazards  can  be  divided  into  two  categories:   1. Cryogenic  effects  from  LNG   Exposure  to  a  liquid  at  -­‐163°C  will  cause  humans  to  freeze  and  steel  equipment  to  become   brittle.  Brittle  steel  can  break  and  cause  additional  secondary  failures.       2. Fire  and  explosion   Once  the  LNG  has  leaked,  it  will  form  a  pool  of  liquid  LNG.  This  pool  will  start  to  evaporate   and  form  a  cloud  of  gas,  primarily  consisting  of  methane.  This  gas  will  start  mixing  with  air   (with  a  20.9%  oxygen  ratio)  and  once  it  reaches  a  mixture  between  5-­‐15%  gas,  it  is  ignitable.   Outside  the  critical  level  an  explosion  or  fire  will  not  occur.  Below  the  lower  explosion  level   (LEL)  there  is  insufficient  amount  of  methane.  Similarly,  above  the  upper  explosion  level   (UEL)  there  is  insufficient  amount  of  oxygen  present.  The  critical  level  is  at  9%  ratio  of  NG  to   air.       Without  an  ignition  source,  the  gas  will  continue  to  evaporate,  disperse  at  ground  level  while   cold,  start  to  warm  and  rise  to  the  sky  (as  methane  is  lighter  than  air)  and  thereafter  drift   away  until  the  entire  liquid  pool  is  gone.  LNG  evaporates  quickly,  and  disperses,  leaving  no   residue.  There  is  no  environmental  cleanup  needed  for  LNG  spills  on  water  or  land.  If  an   ignition  source  is  present,  the  gas  cloud  could  ignite,  but  only  at  the  edges  where  the   methane  concentration  is  within  the  aforementioned  range.  There  will  be  an  initial  flash,  not   very  violent,  as  the  gas  cloud  ignites,  and  it  will  continue  to  burn  back  to  the  pool  as  a  flash   fire.  The  gas  will  continue  to  burn  as  it  evaporates  until  the  pool  of  LNG  is  gone.     For  an  explosion  to  take  place  the  gas  typically  needs  to  be  in  a  confined  space  (such  as   inside  a  building  or  vessel),  reach  the  right  mixture  with  oxygen  and  have  the  presence  of  an   ignition  source.  In  this  event,  there  could  be  an  explosion  causing  overpressure  and  drag   26 loads  and  potential  damage  to  life  and  property.       27 Figure  3:  Explosion/Flammability  Curve       5  
  • 13. 3  LNG  Advantages   For  the  shipping  industry,  as  in  all  other,  profit  is  crucial.  The  provider  of  the  lowest  voyage  cost  for  a   particular  cargo  wins  the  customers.  In  all  cases  fuel  prices  top  the  expense  list  representing  50%-­‐70%   28 of  the  total  costs  of  owning  and  operating  a  ship.  For  LNG  to  be  a  viable  alternative  fuel  it  needs  to   be  price  competitive.  To  understand  why  the  industry  is  rethinking  it  fueling  options  and  how  LNG  is  a   sustainable  alternative,  this  chapter  will  present  some  of  the  advantages  of  LNG  as  marine  fuel.  The   main  source  used  is  “Greener  Shipping  in  the  Baltic  Sea”  DNV  Report,  June  2010.   3.1  Environmental  advantages       3.1.1  Alternative  Energy  Sources   Through  technological  developments  and  innovations  the  world  today  has  a  wide  range  of  alternative   energy  sources,  besides  its  hydrocarbon-­‐based  sources.  Examples  are  wind,  solar,  biomass,  nuclear,   and  hydro  electric.  For  the  shipping  industry  though,  most  of  these  alternative  do  not  apply:     • Electric:  entire  cargo  area  would  have  to  be  filled  with  batteries   • Biomass:  would  have  to  empty  the  world  of  organic  material   • Solar:  not  enough  surface  area  for  the  number  of  panels  needed   • Wind:  there  is  not  enough  stability  in  the  vessels  to  carry  the  turbines  on  deck.  Another  type   of  wind  source  used  in  the  past  is  sailing,  but  with  respect  to  increased  travel  time  this  is  not   an  option.     The  shipping  industry  needs  to  remain  or  further  increase  its  efficiency  and  consequently  has  no   29 carbon  neutral  alternatives  at  their  disposal.     3.1.2  Emission  Control   Heavy  Fuel  Oil  (HFO),  Marine  Diesel  Oil  (MDO)  and  Marine  Gas  Oil  (MGO)  are  all  current  conventional   bunkering  fuels.  Ship  based  fuel  is  a  large  part  oil  consumption  and  all  these  fuels  are  high  on   emission  rates.  If  carbon  neutral  options  are  out  of  the  question  how  will  the  shipping  industry  meet   future  emission  regulations  dictated  by  international  authorities?  In  2015,  the  allowed  SOx  emissions   from  ships  sailing  within  the  Emission  Control  Area  (ECA)  will  be  reduced.    These  standards  of   emissions  are  already  adopted  on  a  case-­‐by-­‐case  basis  in  European  inland  waterways  and  ports,  by   certification  from  the  relevant  Classification  Societies.  Further,  in  2016,  the  International  Maritime   30 Organization  (IMO)  will  put  the  new  Tier  III  levels  of  NOx  emissions  into  force.  These  regulations  will   impose  taxes  on  emission,  which  will  increase  the  cost  of  using  conventional  fuels.       31 Figure  4:  ECA  zones       6  
  • 14. 3.1.3  Emissions  Requirements   ECA  requirements:   • Maximum  level  of  sulphur  in  fuel,  all  ships:   o 1,0%  by  July  1,  2010   o 0,1%  by  January  1,  2015   • Nitrogen  emission  for  new  buildings:   o 20%  reduction  in  NOx  emission  by  2011  (Tier  II)   o 80%  reduction  in  NOx  emission  from  2016  (Tier  III)   EU  fuel  requirements  now:   • 0,1%  sulphur  in  ports  and  inland  waterways   Global  requirements:   32 • 2020/2025:  sulphur  levels  less  than  0.5%  (date  TBD  pending  2018  review)   3.1.4  Natural  Gas  -­‐  The  Solution   Based  on  a  review  of  existing  marine  engine  technology  and  expected  technology  development,  ship   33 owners  currently  have  three  choices  if  they  wish  to  continue  sailing  in  ECAs  from  2015.     • Switch  to  low  sulphur  fuel  –  minor  modifications  to  present  MGO  and  MDO  systems,  but   availability  is  already  limited     • Install  an  exhaust  gas  scrubber  –  expensive  option     • Switch  to  LNG  fuel  –  will  comply  with  upcoming  regulations  and  to  contribute  to  global   emission  reductions,  natural  gas  is  a  viable  option.     Reductions  in  emissions  form  using  LNG  as  a  fuel   • CO2  and  GHG  20-­‐25%   • SOx  and  particulates  approximately  100%   • NOx  85-­‐90%     34 Figure  5:  Fuel  Emissions,  for  a  typical  existing  ship       7  
  • 15. 3.2  Economical  Advantages   “The  marine  fuel  oil  market  is  a  large  global  market  supplying  about  300  million  tons  of  fuel  oil   35 annually,  and  the  price  developments  are  generally  following  that  of  crude  oil.”  Marine  fuels  on   long-­‐term  contracts  have  trading  prices  of  14-­‐15USD/mmbtu  (million  British  thermal  units)  for  LNG   36 and  107-­‐116USD/barrel  for  crude  oil.  (Ref:  International  Energy  Agency  (IEA))  The  prices  are   measured  in  different  units  as  the  substance  is  different,  but  if  a  conversion  is  made  directly  1  barrel   is  approximately  equal  to  5.55mmbtu.  This  means  that  crude  oil  prices  lie  in  the  range  from  19-­‐ 21USD/mmbtu.       The  LNG  price  is  based  on  large-­‐scale  sales,  not  distribution  in  the  small-­‐scale.  The  global  natural  gas   market  is  today  not  set  up  to  supply  LNG  in  small  quantities  to  consumers  such  as  ferries.  There  are   currently  no  functioning  markets  for  this,  and  no  reference  prices  consequently  exist.  There  are  many   small-­‐scale  LNG  developments  across  the  world,  but  contract  structures  and  prices  for  LNG  as  a   37 marine  fuel  is  uncertain  as  of  today.   3.2.1  Investment  Costs   A  switch  to  LNG  marine  fuel  necessitates  expenses  on  several  levels:  equipment  adaptation,   establishing  bonds  with  new  suppliers,  possibly  planning  new  shipment  routes  as  LNG  will  only  be   provided  in  certain  areas  and  training  of  personnel.  The  investment  cost  will  vary  significantly   between  ship  types  and  must  be  assessed  from  case  to  case.  Nevertheless,  the  added  investment  cost   of  choosing  LNG  fuel  for  new  ships  is  expected  to  decrease  in  the  future.  The  rate  and  extent  of  this   increment  will  largely  depend  on  the  number  of  LNG  fuelled  ships  being  contracted  (economies  of   38 scale).  Higher  volume  of  ships  running  on  LNG  will  create  the  motive  for  building  the  infrastructure   needed  to  support  small-­‐scale  supply,  which  in  turn  will  reduce  the  present  day  costs.       Ships  operating  in  the  Baltic  Sea  have  a  fairly  even  age  distribution  from  new  to  40  years  old.  The   replacement  of  old  vessels  is  continuous,  and  it  takes  about  10  years  to  replace  25%  of  the  sailing   39 fleet.     3.2.2  Infrastructure   If  distribution  and  process  costs  could  be  brought  down  to  similar  levels  as  for  oil  by  economics  of   scale,  the  current  fuel  prices  indicates  a  great  economic  potential  for  LNG.  The  infrastructure  for  LNG   bunkering  today,  however,  does  not  allow  for  the  LNG  prices  to  remain  at  this  level.  As  soon  as  LNG  is   broken  into  smaller  volumes  and  distributed  further  through  the  small-­‐scale  chain  prices  increase   drastically.  Small-­‐scale  liquefaction  and  distribution  expenses  are  the  main  contributors  to  this  price   increase.  The  potential  savings  for  the  ship-­‐owner  would  then  be  eliminated.  In  order  to  bring  down   the  price  of  LNG  for  bunkering,  it  must  be  bought  from  full-­‐scale  liquefaction  plants  and  efficient   40 distribution  chain  must  be  established.       The  industry  is  already  well  aware  of  these  issues  and  is  searching  for  effective  solutions.  Trough  the   EU  initiative  to  establish  139  ports  (as  mentioned  in  chapter  1),  LNG  will  be  accessible  and  a  ship  will   not  have  to  limit  its  routes  to  specific  bunkering  areas.  Similar  initiatives  are  taken  all  over  the  world.   To  remove  the  cost  of  establishing  small-­‐scale  liquefaction  terminals,  bunkering  from  vessel  barge  is  a   maintainable  alternative.  Ship-­‐to-­‐ship  transfer  is  the  scenario  with  the  best  projections,  both  with   respect  to  flexibility  in  bunkering  location  and  range  in  volume  supply.  The  various  bunkering   scenarios  will  be  discussed  in  the  next  chapter  ‘4  Bunkering’.     8  
  • 16. 3.2.3  Marine  Fuel  Costs   Every  ship  requires  individual  calculations  with  respect  to  travelling  time  and  distance,  fuel   consumption  and  production  costs.  Overall  it  is  estimated  that  ships  with  an  economical  life  of  15   years  or  more  will  economically  benefit  from  using  LNG  as  a  fuel.  The  advantage  is  greater  with   increasing  fuel  consumption.  The  example  calculation  represents  a  typical  Baltic  Sea  cargo  ship  of   41 approximately  2,700  gross  tons,  3,300  kW  main  engine  and  5,250  yearly  sailing  hours.     Figure  6:  Lifecycle  economics  for  a  typical  ship     The  engine  size  and  consumption  levels  in  this  example  are  modest.  Still,  it  is  clear  that  MDO  is  the   most  expensive  option  and  LNG  is  found  to  be  a  superior  alternative.  The  results  are  favorable  to  such   an  extent  that  it  is  even  reasoned  to  be  profitable  without  ECA  requirements.         9  
  • 17. 4  Bunkering     This  chapter  will  define  LNG  bunkering,  present  the  various  bunkering  scenarios,  provide  a  detailed   technical  description  of  the  bunkering  procedure,  and  present  approved  equipment.       4.1  LNG  Bunkering  Definition   “The  definition  of  LNG  bunkering  is  the  small-­‐scale  transfer  of  LNG  to  vessels  requiring  LNG  as  a  fuel   for  use  within  gas  or  dual  fuelled  engines.  LNG  bunkering  takes  place  within  ports  or  other  sheltered   42 locations  at  the  base  case.”  Bunkering  should  not  be  considered  in  the  same  context  as  large  scale,   commercial  transfer  of  cargo  between  ocean-­‐going  LNG  carriers.  This  larger  operation,  where   3 volumes  are  typically  above  100,000m  is  covered  separately  under  preceding  technical  releases  and   43 standards.   4.1.1  Engines   The  ship  owners  have  two  options  with  regards  to  engine  design:  dual  fuel  engines  or  LNG  lean  burn   mono  fuel  engines.  Dual  fuel  engines  run  on  both  LNG  and  conventional  fuels  from  separate  tanks.  It   is  a  flexible  solution  for  varying  availability  in  LNG.  In  LNG  mode  these  engines  only  consume  a  minor   44 fraction  of  conventional  fuel.  Bunkering  procedure  for  dual  fuel  engines  is  a  process  that  can  take   place  simultaneously  for  both  fuels.  The  procedure  described  below  is  however  limited  to  the  LNG   transfer  system.       4.2  LNG  Bunkering  Scenarios   Truck-­‐to-­‐Ship  (TTS):  micro  bunkering,  discharging  unit  is  a  LNG  road  tanker  size   3 approximately  50-­‐100m .   • Ship-­‐to-­‐Ship  transfer  (STS):  discharging  unit  is  a  bunker  vessel  or  barge  with  size  200-­‐ 3 10,000m .   • Terminal  (Pipeline)-­‐to-­‐Ship  (PTS):  satellite  terminal  bunkering  serves  as  the  discharging  unit   3 and  supply  sizes  are  approximately  100-­‐10,000m .     PTS  and  TTS  are  the  most  established  bunkering  scenarios  per  today  and  they  are  both  classified  as   onshore  supply.  STS  will  also  take  place  while  the  receiving  unit  is  at  dock  or  in  a  port  environment,   but  both  units  involved  in  the  transfer  are  seaborne  and  the  transfer  is  therefore  classified  as   offshore.  Use  of  STS  makes  the  bunkering  location  more  flexible  than  PTS  and  it  can  supply  higher   volumes  than  TTS.  Developments  within  this  scenario  are  the  most  feasible  and  are  therefore   45 essential  in  making  LNG  competitive  against  other  marine  fuels,  especially  for  larger  ships. •   10  
  • 18. 4.3  LNG  Bunkering  Procedure   Time  efficiency  and  safety  are  elements  of  paramount  importance  when  it  comes  to  the  bunkering   procedure.  Developing  a  suitable  procedure  is  fundamental  in  obtaining  these  facets.  The  industry  is   currently  developing  solutions  to  achieve  similar  duration  of  bunkering  operations  for  LNG  as  for   conventional  fuels.       As  LNG  bunkering  is  evolving,  technology  improvements  and  innovations  are  added  continually.  The   process,  being  relatively  new,  is  not  yet  regulated  or  standardized  (will  be  discussed  further  under   section  ‘5  Regulations’)  and  therefore  there  are  several  elements  that  could  vary  for  each  individual   bunkering  case.  Nevertheless,  this  section  aims  to  provide  a  description  suited  for  various  needs  and   different  bunkering  scenarios.  Variations  in  bunkering  procedure  depending  on  scenario  will  be   mentioned.       In  this  section  of  the  report  there  will  be  no  elaborations  on  general  principles,  conditions,   requirements,  safety  aspects  and  communication  related  to  the  process.  The  same  applies  to  details   exclusively  relating  to  bunkering  of  fuels  other  than  LNG,  in  the  case  of  dual  fuel  engines.  The  focus   will  be  on  the  technical  aspects  of  the  procedure  and  the  equipment  used.       The  main  source  for  this  part  of  the  report  is  the  short  film  “Step  by  step  Bunkering  by  DNV”.   Additional  details  have  been  acquired  from  discussions  with  individuals  from  the  industry  (se  preface   for  names)  and  the  report  ‘LNG  ship  to  ship  bunkering  procedure’  by  the  Swedish  Marine  Technology   Forum  et  al.         46 Figure  7:  Overall  Bunkering  Layout   The  diagram  is  schematic  not  to  scale,  especially  when  it  comes  to  pipe  length.     Initially  all  valves  are  closed  as  shown  in  the  diagram.  The  transfer  hose  is  not  connected  until  step   three  but  included  in  this  diagram.  The  first  step  takes  place  during  ship  mooring,  or  in  the  case  of   ship-­‐to-­‐ship  transfer  during  the  bunker  vessels  mooring  up  against  the  receiving  ship.  Discharging  unit   can  be  either:  terminal,  truck  or  bunker  vessel/barge.  Variations  in  design  and  layout  can  take  place,   but  overall  this  is  a  representative  example  of  a  layout  and  it  gives  a  good  basis  for  explaining  the   bunkering  procedure.       11  
  • 19. 4.3.1  Step  1  –  Initial  Precooling  1   Filling  lines  are  precooled  during  mooring.  Valves  V2,  V5,  V8  and  V9  are  opened.  The  system  needs  to   be  cooled  down  slowly,  otherwise  one  part  will  contract  and  another  not.  Improper  cooling  could  also   lead  to  pipe  cracking.  The  precooling  sequence  depends  on  cargo  pump,  design  of  the  discharging   47 unit  and  size  of  installation.  The  cold  LNG  (blue)  exits  tank  1  form  the  bottom,  and  slowly  “pushes”   the  warmer  NG  (red)  in  the  pipes  into  the  top  of  tank  1.       Figure  8:  Bunkering  Procedure  Step  1     During  this  stage  both  units  must  check  temperature  and  pressure  of  their  respective  LNG  tanks.   Within  the  tank,  temperature  is  directly  correlated  with  pressure.  If  the  temperature  of  the  receiving   tank  is  significantly  higher  than  the  discharging  (classified  as  a  “warm”  tank),  there  will  be  an  initial   vaporization  when  starting  to  transfer  LNG.  As  the  pressure  of  the  tank  might  be  too  high  for  the  LNG   transfer  to  be  initiated.  This  will  increase  the  tank  pressure  and  can  trigger  the  pressure  relief  valve  to   open  if  the  pressure  exceeds  the  set  limit.  The  pressure  of  both  tanks  must  be  reduced  prior  to  the   48 bunkering  in  case  of  a  high  receiving  tank  temperature.    When  the  levels  in  the  receiving  tank  are   low,  the  rate  of  evaporation  and  heat  ingress  to  the  tank  increases,  causing  a  higher-­‐pressure  build-­‐ up.       The  transfer  of  LNG  requires  a  certain  pressure  difference,  which  generally  is  determined  by  the  cargo   pump  capacity  and  the  pressure  in  the  receiving  tank.  The  larger  the  pressure  difference,  the  more   3 efficient  the  transfer.  For  TTS  bunkering  with  capacities  of  50  m /h,  a  typical  cargo  pump  can  deliver   at  around  4  barg.  In  a  warm  tank,  the  pressure  may  be  as  high  as  5  barg.  To  be  able  to  conduct  the   transfer  you  need  a  lower  pressure  in  the  receiving  tank  than  what  is  delivered  by  the  pump.       12  
  • 20. 4.3.2  Step  2-­‐  Initial  Precooling  2   The  fixed  speed  cargo  pump  at  the  discharging  unit  also  requires  precooling.  Valves  in  step  1  remain   opened  and  additionally  valves  V3,  V4  and  V6  are  opened.  For  transfers  where  the  pressure   difference  between  the  discharging  and  receiving  unit  is  greater  than  2barg,  tank  1  pressure  will  be   49 utilized  as  a  driving  force.  This  makes  the  cargo  pump  redundant.       Figure  9:  Bunkering  Procedure  Step  2       4.3.3  Step  3  –  Connection  of  Bunker  Hose   All  previously  opened  valves  are  now  closed.  Dedicated  discharging  units  may  be  fitted  with   specialized  hose  handling  equipment  (i.e.  hose  crane)  or  loading  arms,  to  deliver  the  bunker  hose  to   the  receiving  ship.  The  hose  is  connected  to  the  manifold.  Each  manifold  are  to  be  earthed  and  the   receiving  ship  shall  be  equipped  with  an  insulating  flange  near  the  coupling  to  prevent  a  possible   50 ignition  source  due  to  electrostatic  build-­‐up.  One  or  two  flexible  hoses  will  be  connected  between   the  units  –  one  liquid  filling  hose  and  one  vapor  return  hose  if  needed.  For  smaller  transfers  with   3 capacities  range  of  around  50-­‐200m /h,  and  where  the  receiving  tank  is  an  IMO  type  C  tank  with  the   possibility  of  sequential  filling,  a  vapor-­‐return  hose  will  generally  not  be  needed.  For  larger  transfer   rates  a  vapor  return  line  may  be  used  in  order  to  decrease  the  time  of  the  bunkering.  Still,  it  is  the   pressure  regulating  capability  of  the  receiving  tank  that  determines  whether  a  vapor  return  line  is   required  or  not.  This  step  will  visually  look  like  the  initial  drawing  of  the  entire  system  (Figure  7).     13  
  • 21. 4.3.4  Step  4  -­‐  Inerting  the  Connected  System   Inert  gas,  nitrogen  (green),  is  used  to  remove  moisture  and  oxygen  (below  4%)  from  tank  2  and   associated  piping.  Inerting  is  accomplished  by  sequential  pressurization  and  depressurization  of  the   system  with  nitrogen.  Presence  of  moisture  in  the  tanks  or  pipes  will  create  hydrates,  which  is  a  form   51 of  ice  lumps  that  will  be  difficult  to  remove  from  the  system.  Oxygen  in  the  system  is  a  risk  as   explained  in  section  ‘2  LNG’.  Valves  opened:  V10,  V11,  V12  and  V16.     Figure  10:  Bunkering  Procedure  Step  4     4.3.5  Step  5  –  Purging  the  Connected  System   The  remaining  system  is  purged  with  NG  (until  it  reaches  97-­‐98%  ratio),  to  remove  remaining  nitrogen   according  to  engine  specifications.  Valve  V16  is  closed  prior  to  purging.  Valve  V15  is  opened,  natural   gas  is  now  moving  out  from  the  receiving  tank.  Venting  trace  amount  of  methane  through  the  mast   (vent  2)  is  current  practice.  Valve  V10  should  be  closed  quickly  after  the  pipes  have  been  cleaned  so   as  not  to  let  too  much  methane  escape  to  the  surroundings  through  the  vent.  The  industry  is  now   52 looking  for  zero  emission  solutions.       Figure  11:  Bunkering  Procedure  Step  5       14  
  • 22. 4.3.6  Step  6  –  Filling  Sequence     For  the  filling  sequence  both  bottom  filling  and  top  filling  (the  shower/spray)  can  be  used.  For  top   filling  valve  V15  remains  open,  for  bottom  filling  it  is  closed  and  valve  V13  is  opened.  To  start  the   transfer  from  tank  1  to  tank  2  valves  V3,  V4,  V7,  V8,  V11  and  V12  also  have  to  be  opened.  Common   practice  is  to  start  with  top  filling  as  this  will  reduce  the  pressure  in  the  fuel  tank  (tank  2),  and  then   move  over  to  bottom  filling  when  a  satisfying  pressure  is  achieved.  A  high  pressure  in  the  receiving   tank  will  make  it  harder  for  the  LNG  transfer  to  take  place  and  the  pump  would  have  to  work  harder.   An  example  of  a  tank  filling  sequence  and  associated  acceptable  levels  is  given  in  section  6.4.     Figure  12:  Bunkering  Procedure  Step  6  -­‐  Bottom  Filling   Figure  13:  Bunkering  Procedure  Step  6  -­‐  Top  Filling  (Spray)     3 Transfer  speed  range  from  100-­‐1000m /h  depending  on  scenario,  tanks  and  equipment,  and  whether   bottom  or  top  filling  is  used.  Bottom  filling  can  take  much  higher  volumes  than  top  filling.  Bottom   filling  is  therefore  preferred  with  respect  to  time,  but  it  is  important  that  the  tank  pressure  allows  for   this  to  take  place.  Sequential  filling  i.e.  alterations  between  top  and  bottom  filling  during  the  transfer   is  also  standard  practice,  to  control  the  pressure  in  the  receiving  tank.       This  rate  can  be  withheld  during  the  transfer  until  agreed  amount  is  reached.  The  transfer  is  to  be   monitored  on  both  ships  with  regards  to  system  pressure,  tank  volume  and  equipment  behavior.  This   53 procedure  is  to  be  performed  for  each  tank  regardless  of  fuel  type.  Maximum  level  for  filling  the   LNG  tanks  is  98%  of  total  volume  according  to  class  rules,  but  is  normally  lower  for  system  design   reasons.     15  
  • 23. 4.3.7  Step  7  –  Liquid  Line  Stripping   The  liquid  that  remains  in  the  bunker  hoses,  after  the  pump  has  stopped,  must  be  drained  before   disconnection.  Valves  V3,  V4  and  V11  on  discharging  unit  is  closed,  while  valve  V6  is  opened.  This   valve  links  to  the  top  of  the  fuel  tank  (tank  2).  This  process  creates  a  pressure  build-­‐up  due  to  a  rise  in   temperature  in  the  remaining  liquid  left  in  the  pipes  and  hose.  LNG  residuals  in  these  areas  are  forced   into  both  tanks.  Subsequent  opening  and  closing  of  the  shipside  valve  V12,  pushes  the  remaining  LNG   54 into  the  receiving  ships  tanks.     Figure  14:  Bunkering  Procedure  Step  7     4.3.8  Step  8  –  Liquid  Line  Inerting     Remaining  natural  gas  in  liquid  line  is  removed  by  inerting  gas  (nitrogen)  for  safety  reasons.  Valves  V6,   V7,  V8  and  V15  are  closed,  while  V10,  V11,  V12  and  V16  are  opened.  Venting  trace  amount  of   methane  through  the  mast  is  current  practice.  The  industry  is  now  looking  for  zero  emission   55 solutions.       4.3.9  Step  9  –  Disconnection   Upon  confirmation  of  transferred  amount  and  quality,  the  vessel  may  commence  disconnection  of   56 the  transfer  hose,  unmooring  and  departure.       Bunkering  time  will  vary  depending  on  bunkering  scenario,  transfer  rates,  system  and  equipment   57 design,  capacities,  and  the  use  of  vapor  return.  For  an  example  of  time  spent  see  Appendix  B.       16  
  • 24. 4.4  Equipment   This  section  will  cover  some  of  the  essential  equipment  used  in  the  transferring  process.  Information   from  this  part  is  obtained  from  the  following  sources:  M.  Esdaile  and  D.  Melton,  Shell  Shipping,  LNG   Bunkering  Installation  Guidelines  SST02167,  2012  and  LNG  ship  to  ship  bunkering  procedure,  Swedish   Marine  Technology  Forum  and  DNV  Class  rules.     4.4.1  Tanks   58 Figure  15:  IMO  Type-­‐C  Tank,  CRYO  AB     4.4.1.1  Storage  Tank  –  Discharging  Unit   All  tank  types  -­‐  A,  B,  C  and  membrane  tanks  are  approved  for  LNG  cargo.  There  are  major  differences   in  usage  and  regulations  between  tanks  A  and  B  vs.  C.  If  tanks  A  and  B  are  to  be  used  it  is  seen  as  an   exception  and  several  risk  analysis  would  have  to  be  completed  for  each  individual  case,  to  document   its  safety.  The  tanks  are  categorized  correspondingly:     • Atmospheric  tanks:  Typically  atmospheric  tanks  would  be  IMO  type  A  and  B  tanks  or   membrane  tanks  and  have  a  design  pressure  below  0.7  barg.  The  atmospheric  tanks  cannot   be  pressurized  and  it  is  therefore  necessary  with  additional  equipment  for  pressure  control   and  deep-­‐well  pumps  to  ensure  sufficient  LNG  flow  to  the  engines.  In  order  to  operate  and   empty  the  tank  in  case  of  pump  breakdown,  redundancy  of  the  deep-­‐well  pumps  is   necessary.  The  main  advantage  with  an  atmospheric  tanks  is  its’  high  volume  utilization,  due   59 to  the  prismatic  shape.     • Pressure  tanks:  Tanks  with  pressure  above  0.7  barg  are  normally  type  C  tanks.  These  tanks   are  made  after  recognized  pressure  vessel  standards  given  in  the  IGC  Code.  There  are  several   designs  available;  cylindrical  tanks  with  or  without  vacuum  insulation,  or  bi-­‐lobe  tanks.  All   60 LNG  fuelled  ships  today  have  vacuum  insulated  IMO  type  C  tanks.   4.4.1.2  Fuel  Tank  –  Receiving  Ship   For  the  LNG  fuel  tank,  several  containment  systems  are  feasible,  with  many  new  tank  designs  under   development.  These  tanks  are  made  after  recognized  pressure  vessel  standards  given  in  the  IGC  Code.   The  tanks  are  cylindrical,  pressurized,  double  skinned  tank  systems  including  a  venting  system  for   discharging  excess  vapor.  These  features  are  crucial  in  vapor  management  and  maintaining  low   61 temperatures.       Type  C  tanks  have  a  maximum  operating  pressure  of  about  10  barg  and  are  approved  by  several  class   3 62 societies  as  fuel  tanks.  The  size  of  the  tank  will  vary  but  the  size  range  today  is  40-­‐250m .  The  tanks   are  equipped  with  both  bottom  filling  and  top  spray  features.  Through  spraying  sub  cooled  LNG  into   the  vapor  space  (gas  pillow)  of  the  tank  the  cold  liquid  will  condense  the  vapor  and  reduce  the  tank’s   pressure.  This  process  eliminates  the  need  for  a  vent  return  in  the  tank.  This  function  of  the  tank   63 could  create  a  100%  fill  situation.  To  comply  with  the  issue  of  overfilling,  the  tank  has  a  high-­‐level   switch,  which  will  activate  an  alarm.  This  will  automatically  shut  down  the  transfer  system  as  it  is   directly  linked  to  the  vessel’s  ESD  system.  As  previously  stated,  tanks  for  liquid  gas  should  not  be  filled   to  more  than  98%  full  at  the  reference  temperature,  where  the  reference  temperature  is  as  defined   in  the  IGC  Code,  paragraph  15.1.4.  Means  of  measuring  the  liquid  level,  both  volume  and  height,     17  
  • 25. within  the  tank  are  to  be  provided  and  installed  in  such  a  way  as  to  be  compliant.  The  preferred   means  of  level  measurement  is  a  radar  type  tank  measurement  system,  or  similar  technology,  which   64 is  also  able  to  measure  corresponding  pressures  and  temperatures  within  the  tank.     The  benefits  of  using  Type-­‐C  tanks  are  standard  tanks  with  long  experience,  high  bunkering  rates,   easy  installation,  and  the  ability  the  handle  pressure  build-­‐up  in  cases  of  zero  consumption.  The   65 disadvantages  are  space  requirements  due  to  its  cylindrical  shape.       4.4.2  Valves   The  valves  used  are  manifold  trip  valves  that  can  handle  both  liquid  and  vapor  transfers,  and  need  to   comply  with  regulations  set  in  EN1474.    A  manually  operated  stop  valve  and  a  remote  operated  shut   down  valve  in-­‐series,  or  a  combined  valve,  should  be  fitted  in  every  bunkering  line  on  both  units   66 (discharging  and  receiving).  The  valves  should  be  controlled  from  the  control  room  of  both  units.     4.4.3  Hose   The  flexible  cryogenic  hose(s)  with  a  single  wall  construction  are  used.  Insulation  should  be  applied  to   the  hose  for  safety  reasons  but  should  not  limit  the  flexibility  of  the  hose.  The  hoses  are  connected   67 via  electrical  insulated  flanges  made  of  steel,  an  emergency  quick  release  connector  (ERC).   68 Maximum  velocities:  vapor  30m/s  and  liquid  7-­‐10m/s.  Minimum  requirements  for  hoses  are  defined   by  the  international  standards:  EN  1472-­‐2  and  IGC  chapter  5.7/IMO  document  MSC.285(86).     Approved  bunker  hoses:  EN  12434,  BS  4089,  EN  1474  part  1  LNG  Transfer  arms  (being  revised  as  an   ISO),  EN  1474  part  2  LNG  Hoses.   4.4.4  Loading  arms   Loading  arms  will  be  subjected  to  the  requirements  of  the  new  ISO  LNG  bunkering  standard.  They   shall  be  designed  in  accordance  with  ISO  /  DIS  28460  and  EN  1474-­‐1,  Section  4,  Design  of  the  arms.   Weight,  size  and  handling  of  the  equipment  classified  as  cryogenic  will  affect  the  safety  assessment  of   the  given  operation.     The  equipment  used  during  TTS  today  does  not  include  loading  arms.  Hose  dimension  will  for  such   operations  be  around  4  inches.    For  STS  operations  the  dimensions  would  be  considerably  higher,  10   inches  or  more.  In  addition  to  that  you  have  torque  by  relative  movement  of  the  ship  in  relation  to   each  other,  making  the  need  for  loading  arms  necessary  to  ensure  that  the  hose  does  not  come  into   69 contact  with  water  or  the  steel  deck.  PTS  will  also  use  hoses  larger  than  TTS.  Additionally  the   installation  is  fixed  which  makes  the  option  to  use  loading  arms  even  more  favorable  as  it  secures   equipment  and  strengthens  safety  elements.     4.4.5  Pipes   Main  piping  systems  in  both  units  are:  liquid  bunker  line,  gas  return  line  and  nitrogen  supply  system.   The  pipelines  are  equipped  with  several  flow  meters  to  measure:  volume  delivered,  pressure  and   temperature  for  monitoring  of  the  operation.  Pipes  containing  LNG  or  associated  vapor  shall  be   double  walled  pipe  configurations  in  stainless  steel  with  perlite  filling  under  a  permanent  vacuum.     Pipe  work  should  be  fully  compliant  with  IGC  Code,  Section  6.2.     4.4.6  Pump   The  pump  is  designed  for  handling  cryogenic  material.  It  is  theoretically  possible  to  transfer  between   tanks  in  the  presence  of  a  delta  pressure  of  2  barg  or  more.    Seeing  as  the  pressure  difference  could   be  hard  to  control  and  maintain,  it  may  be  difficult  to  transmit  without  a  pump.  A  frequency   controlled  drive  for  the  pump,  which  will  allow  pump  speed  to  be  regulated  and  the  transmission  rate   70 accordingly  with  respect  to  pressure  and  temperature  is  recommended.  The  time  it  takes  to  refuel  is     18  
  • 26. critical  for  the  receiving  ship.  In  other  words,  if  you  want  to  optimize  the  transmission  rate  to   optimize  the  time  of  bunkering  a  variable  speed  pump  will  make  it  easier  to  achieve.   4.4.7  Emergency  Shutdown  Systems  (ESD)   “The  primary  function  of  the  ESD  system  is  to  stop  liquid  and  vapor  transfer  in  the  event  of  an  unsafe   71 condition  and  bring  the  LNG  transfer  system  to  a  safe,  static  condition.”  LNG  vessels  commonly  refer   to  the  emergency  shutdown  system  (ESD)  as  ESD1  and  the  emergency  release  system  (ERS)  as  ESD2.     4.4.8  Emergency  Release  Systems  (ERS)     To  comply  with  the  necessary  release  requirements,  an  ERS  is  usually  substituted  by  a  break  away   coupling  known  as  an  emergency  release  coupler  (ERC).     4.4.9  Emergency  Release  Couplers  (ERC)   The  ERC  unit  is  to  be  fitted  at  the  receiving  units  manifold  between  the  flexible  hose  and  the  flange   connection  of  the  receiver.  The  ERC  is  to  incorporate  integral  automatic  valves  that  will  close  when   separated,  either  by  nature  of  its  design  or  by  remote  motorized  operation.  Its  function  is  to  prevent   release  of  liquid  or  vapor  to  the  surroundings  through  rapid  closure.  Under  excessive  tension  it  serves   as  a  weak  link  providing  automated  release  to  avoid  the  hose  from  breaking.  It  allows  for  quick   connection  and  disconnection.  The  system  design  must  take  into  account  possible  ice  build-­‐up  and  its   72 effects  on  operation.  This  would  generally  be  a  requirement  for  all  types  of  equipment  in  contact   with  cryogenic  material.     Figure  16:  Dry  Break  Coupling  (Mann  Teknik  AB)   4.4.10  Control  and  Monitoring  Systems   Control  and  Monitoring  Systems  need  to  comply  with  the  IMO  document  MSC  285(86).  All   installations  need  to  be  equipped  with  control  monitoring  and  safety  systems.  The  most  essential   monitoring  system  is  gas  detection.  The  areas  that  are  critical  for  supervision  are  areas  where   unintended  release  of  gas  can  occur  such  as  manifold  areas,  double  walled  pipes  and  enclosed  areas   73 containing  pipe  work  associated  with  the  bunkering  operation.       The  control  and  monitoring  system  should  be  directly  linked  to  the  ESD.  The  individual  shutdown   initiators  will  vary  for  each  installation.  Minimum  control  and  monitoring  requirements,  on  both   distributing  and  receiving  units,  are:   1. Position  (open/closed)  and  high-­‐pressure  detector  in  all  bunker  manifold  valves.   2. Operation  of  any  manual  emergency  stop  push  button,   3. ‘Out  of  range’  sensing  on  the  fixed  loading  arm,   4. Gas  detection  (above  40%  LEL),   5. Fire  detection,   6. High-­‐pressure  and  high-­‐level  detectors  in  receiving  LNG  tank,   7. High/low-­‐pressure  and  high-­‐level  detectors  in  distributing  LNG  storage  tank.     19