SlideShare une entreprise Scribd logo
1  sur  12
Topic 4 – Oscillations and Waves
4.2 Damped and Forced Harmonic Motion
Damped
● In SHM there is only the one restoring force
acting in the line of the displacement.
● In damped harmonic motion (DHM) an
additional damping force acts in the opposite
direction to the velocity of the object to
dissipate energy and stop the vibrations.
Damping Forces
● The damping force acts so as to cause the amplitude of the
vibrations to decay naturally dissipating energy.
● The general equation of this decay is A=A0
e-ˠt
● Here ˠ is a damping factor.
● The system can be under-damped
● This means the system can make more than one full oscillation
before it comes to a stop.
● The system can be over-damped
● The system comes to a stop before it completes one oscillation
● The system can be critically-damped
● The system completes exactly one oscillation before stopping.
Damping Forces
Damping Forces (beyond Syllabus)
● The general equations governing the motion of
a damped harmonic oscillation are:
x=x0 e
−γ t
cos(ωt+ ϕ)
v=−x0(γ e
−γ t
cos(ωt+ ϕ)+ ωe
−γ t
sin(ωt+ ϕ))
a=−x0 (−γ2
e−γ t
cos(ωt+ ϕ)+ ω2
e− γt
cos(ωt+ ϕ))
Natural Frequency
● The frequency with which a system oscillates if
it is started and allowed to move freely is called
its natural frequency.
● Simple harmonic motion occurs at the natural
frequency.
● Often, extra energy is imparted into the system
each oscillation by another external periodic
force.
● This is like a child pushing a swing to keep it going.
● Such a system is said to be a forced harmonic
oscillator.
Forced Harmonic Motion
● The equation for forced harmonic motion (with
some damping) would be:
● Here the first part of the equation is the normal
SHM equation with natural frequency ω0
and
amplitude x0
● The second part of the equation is due to the
forcing (driving) force of magnitude F and
driving frequency ω
x=x0e
− γt
cos(ω0t)+
F
mω
2
cos(ωt)
Forced Harmonic Motion and Resonance
● As the driving frequency of the system
approaches the natural frequency of the
system, the amplitude of the system increases
dramatically.
● The force adds energy to each swing making
the amplitude continue to increase and
increase.
● When the two frequencies are identical, then
the system is said to be at resonance.
Resonance
● The state in which the frequency of the
externally applied periodic force equals the
natural frequency of the system is called
resonance.
● This causes oscillations with large amplitudes.
● Damping causes the maximum amplitude to be
limited.
Resonance
-5 0
1 9 5 0
3 9 5 0
5 9 5 0
7 9 5 0
9 9 5 0
1 1 9 5 0
1 3 9 5 0
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
MaximumAmplitude
D r iv in g F r e q u e n c y
V e r y L ig h t d a m p in g
L ig h t d a m p in g
M e d iu m D a m p in g
H e a v y D a m p in g
Dangerous Resonance
● Resonance can be
disastrous
● If a bridge happens to
have a natural frequency
that is in the range of the
frequencies that can be
generated by the wind
then the bridge can
oscillate.
● The bridge can then
vibrate it can collapse!
● This is resonance at its
worst!!!
Useful Resonance
● Resonance can be useful.
● A radio is tuned by causing a quartz crystal to
resonate at a particular frequency.
● Wind instruments rely on the resonance of a
vibrating air column to make an audible sound.
– Because of the sharp spike on the frequency response
curve, other frequencies are cancelled out and not heard.

Contenu connexe

Tendances

Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Dr.Pankaj Khirade
 
Wave particle duality of light- A changing Notion in Science
Wave particle duality of light- A changing Notion in ScienceWave particle duality of light- A changing Notion in Science
Wave particle duality of light- A changing Notion in ScienceSubhankar Roy
 
Fundamenals of magnetism and applications
Fundamenals of magnetism and applicationsFundamenals of magnetism and applications
Fundamenals of magnetism and applicationsPraveen Vaidya
 
Magnetics.ppt [compatibility mode]
Magnetics.ppt [compatibility mode]Magnetics.ppt [compatibility mode]
Magnetics.ppt [compatibility mode]avocado1111
 
AP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 PowerpointAP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 PowerpointMrreynon
 
Topic 5 longitudinal wave
Topic 5 longitudinal waveTopic 5 longitudinal wave
Topic 5 longitudinal waveGabriel O'Brien
 
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)Pooja M
 
C24 quantization-of-light
C24 quantization-of-lightC24 quantization-of-light
C24 quantization-of-lightInnocentia Buys
 
Dual nature of radiation & matter
Dual nature of radiation & matterDual nature of radiation & matter
Dual nature of radiation & matterCHETAN D. GANDATE
 

Tendances (20)

Magnetism
MagnetismMagnetism
Magnetism
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 
Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2Schrodinger equation and its applications: Chapter 2
Schrodinger equation and its applications: Chapter 2
 
Wave particle duality of light- A changing Notion in Science
Wave particle duality of light- A changing Notion in ScienceWave particle duality of light- A changing Notion in Science
Wave particle duality of light- A changing Notion in Science
 
Centripetal Force
Centripetal ForceCentripetal Force
Centripetal Force
 
Classical Mechanics-MSc
Classical Mechanics-MScClassical Mechanics-MSc
Classical Mechanics-MSc
 
Fundamenals of magnetism and applications
Fundamenals of magnetism and applicationsFundamenals of magnetism and applications
Fundamenals of magnetism and applications
 
Magnetics.ppt [compatibility mode]
Magnetics.ppt [compatibility mode]Magnetics.ppt [compatibility mode]
Magnetics.ppt [compatibility mode]
 
AP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 PowerpointAP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 Powerpoint
 
Photon
PhotonPhoton
Photon
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 
Feynman diagrams
Feynman diagramsFeynman diagrams
Feynman diagrams
 
Topic 5 longitudinal wave
Topic 5 longitudinal waveTopic 5 longitudinal wave
Topic 5 longitudinal wave
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
 
Simple Harmonic Motion
Simple Harmonic MotionSimple Harmonic Motion
Simple Harmonic Motion
 
C24 quantization-of-light
C24 quantization-of-lightC24 quantization-of-light
C24 quantization-of-light
 
Magnetism
MagnetismMagnetism
Magnetism
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
Dual nature of radiation & matter
Dual nature of radiation & matterDual nature of radiation & matter
Dual nature of radiation & matter
 

En vedette

Topic 3 forced oscillator
Topic 3 forced oscillatorTopic 3 forced oscillator
Topic 3 forced oscillatorGabriel O'Brien
 
6.2 Damped and forced oscillations
6.2 Damped and forced oscillations6.2 Damped and forced oscillations
6.2 Damped and forced oscillationsPaul Burgess
 
The fundemental of electronics ebook
The fundemental of electronics ebookThe fundemental of electronics ebook
The fundemental of electronics ebookLe Thanh Nhan
 
Programacion en C++ para Ciencia e Ingeniería
Programacion en C++ para Ciencia e IngenieríaProgramacion en C++ para Ciencia e Ingeniería
Programacion en C++ para Ciencia e IngenieríaStorti Mario
 
Vibration Energy Harvesting - Between theory and reality
Vibration Energy Harvesting - Between theory and realityVibration Energy Harvesting - Between theory and reality
Vibration Energy Harvesting - Between theory and realityKarim El-Rayes
 
Vibration and frequency measuring instruments
Vibration and frequency measuring instrumentsVibration and frequency measuring instruments
Vibration and frequency measuring instrumentsPrashant thakur
 
Air pulse fruit harvester
Air pulse fruit harvesterAir pulse fruit harvester
Air pulse fruit harvesterStorti Mario
 
Week 13 vibration measurements
Week 13   vibration measurementsWeek 13   vibration measurements
Week 13 vibration measurementsdankerzgatak
 
Build your own electronics lab
Build your own electronics labBuild your own electronics lab
Build your own electronics labKarim El-Rayes
 
Vibration measuring instrument - Vibrometer
Vibration measuring instrument - VibrometerVibration measuring instrument - Vibrometer
Vibration measuring instrument - VibrometerVenkatesh Tadivalasa
 
Vibration and damping
Vibration and dampingVibration and damping
Vibration and dampingDivya Lattoo
 
Theory of-metal-cutting
Theory of-metal-cuttingTheory of-metal-cutting
Theory of-metal-cuttingGaurav Gunjan
 
Theory of metal cutting-module II
Theory of metal cutting-module IITheory of metal cutting-module II
Theory of metal cutting-module IIDr. Rejeesh C R
 
Mechanics of metal cutting
Mechanics of metal cuttingMechanics of metal cutting
Mechanics of metal cuttingmanoj18biet
 
Speed, Velocity And Acceleration
Speed, Velocity And AccelerationSpeed, Velocity And Acceleration
Speed, Velocity And Accelerationsaviourbest
 
Mechanical Vibrations all slides
Mechanical Vibrations all slidesMechanical Vibrations all slides
Mechanical Vibrations all slidesEbrahim Hanash
 

En vedette (20)

Tuned mass damper
Tuned mass damperTuned mass damper
Tuned mass damper
 
Topic 3 forced oscillator
Topic 3 forced oscillatorTopic 3 forced oscillator
Topic 3 forced oscillator
 
6.2 Damped and forced oscillations
6.2 Damped and forced oscillations6.2 Damped and forced oscillations
6.2 Damped and forced oscillations
 
The fundemental of electronics ebook
The fundemental of electronics ebookThe fundemental of electronics ebook
The fundemental of electronics ebook
 
Programacion en C++ para Ciencia e Ingeniería
Programacion en C++ para Ciencia e IngenieríaProgramacion en C++ para Ciencia e Ingeniería
Programacion en C++ para Ciencia e Ingeniería
 
Vibration Energy Harvesting - Between theory and reality
Vibration Energy Harvesting - Between theory and realityVibration Energy Harvesting - Between theory and reality
Vibration Energy Harvesting - Between theory and reality
 
Vibration and frequency measuring instruments
Vibration and frequency measuring instrumentsVibration and frequency measuring instruments
Vibration and frequency measuring instruments
 
Air pulse fruit harvester
Air pulse fruit harvesterAir pulse fruit harvester
Air pulse fruit harvester
 
Week 13 vibration measurements
Week 13   vibration measurementsWeek 13   vibration measurements
Week 13 vibration measurements
 
Build your own electronics lab
Build your own electronics labBuild your own electronics lab
Build your own electronics lab
 
Vibration measuring instrument - Vibrometer
Vibration measuring instrument - VibrometerVibration measuring instrument - Vibrometer
Vibration measuring instrument - Vibrometer
 
Merchant's circle
Merchant's circleMerchant's circle
Merchant's circle
 
Vibration and damping
Vibration and dampingVibration and damping
Vibration and damping
 
Theory of-metal-cutting
Theory of-metal-cuttingTheory of-metal-cutting
Theory of-metal-cutting
 
Theory of metal cutting-module II
Theory of metal cutting-module IITheory of metal cutting-module II
Theory of metal cutting-module II
 
Mechanics of metal cutting
Mechanics of metal cuttingMechanics of metal cutting
Mechanics of metal cutting
 
Speed,velocity,acceleration
Speed,velocity,accelerationSpeed,velocity,acceleration
Speed,velocity,acceleration
 
Vibration measuring instruments
Vibration measuring instrumentsVibration measuring instruments
Vibration measuring instruments
 
Speed, Velocity And Acceleration
Speed, Velocity And AccelerationSpeed, Velocity And Acceleration
Speed, Velocity And Acceleration
 
Mechanical Vibrations all slides
Mechanical Vibrations all slidesMechanical Vibrations all slides
Mechanical Vibrations all slides
 

Similaire à 4.2 damped harmonic motion

Driven Harmonic Oscillators - resonance
Driven Harmonic Oscillators - resonanceDriven Harmonic Oscillators - resonance
Driven Harmonic Oscillators - resonanceKate MacDonald
 
Force Damped Vibrations
Force Damped VibrationsForce Damped Vibrations
Force Damped VibrationsManthan Kanani
 
Introduction to mechanical vibration
Introduction to mechanical vibrationIntroduction to mechanical vibration
Introduction to mechanical vibrationDinesh Panchal
 
DAMPED VIBRATIONS and RESONANCE.pptx
DAMPED VIBRATIONS and RESONANCE.pptxDAMPED VIBRATIONS and RESONANCE.pptx
DAMPED VIBRATIONS and RESONANCE.pptxSamirsinh Parmar
 
Oscillations summary
Oscillations summaryOscillations summary
Oscillations summaryTL Lee
 
Free and Forced vibrations classical
Free and Forced vibrations classicalFree and Forced vibrations classical
Free and Forced vibrations classicalAbrar Chaudhary
 
Ch 01, Introduction to Mechanical Vibrations ppt.pdf
Ch 01, Introduction to Mechanical Vibrations ppt.pdfCh 01, Introduction to Mechanical Vibrations ppt.pdf
Ch 01, Introduction to Mechanical Vibrations ppt.pdfAtalelewZeru
 
YF15e_CH14_ADA_PPT_LectureOutline (1).pptx
YF15e_CH14_ADA_PPT_LectureOutline (1).pptxYF15e_CH14_ADA_PPT_LectureOutline (1).pptx
YF15e_CH14_ADA_PPT_LectureOutline (1).pptxJayashiry
 
Vibration analysis unit1
Vibration analysis unit1Vibration analysis unit1
Vibration analysis unit1Dibyendu De
 
Undamped Free Vibration
Undamped Free VibrationUndamped Free Vibration
Undamped Free VibrationUrvish Patel
 
Oscillatory motions By Dipraj Roy ,BU
Oscillatory motions By Dipraj Roy ,BUOscillatory motions By Dipraj Roy ,BU
Oscillatory motions By Dipraj Roy ,BUDiprajRoy2
 

Similaire à 4.2 damped harmonic motion (20)

Driven Harmonic Oscillators - resonance
Driven Harmonic Oscillators - resonanceDriven Harmonic Oscillators - resonance
Driven Harmonic Oscillators - resonance
 
Class21preclass.pptx
Class21preclass.pptxClass21preclass.pptx
Class21preclass.pptx
 
Force Damped Vibrations
Force Damped VibrationsForce Damped Vibrations
Force Damped Vibrations
 
Introduction to mechanical vibration
Introduction to mechanical vibrationIntroduction to mechanical vibration
Introduction to mechanical vibration
 
DAMPED VIBRATIONS and RESONANCE.pptx
DAMPED VIBRATIONS and RESONANCE.pptxDAMPED VIBRATIONS and RESONANCE.pptx
DAMPED VIBRATIONS and RESONANCE.pptx
 
Fourth unittheory
Fourth unittheoryFourth unittheory
Fourth unittheory
 
Vibration and its control
Vibration and its controlVibration and its control
Vibration and its control
 
Oscillations summary
Oscillations summaryOscillations summary
Oscillations summary
 
Mechanical_vibration_basics_and_single_d.pptx
Mechanical_vibration_basics_and_single_d.pptxMechanical_vibration_basics_and_single_d.pptx
Mechanical_vibration_basics_and_single_d.pptx
 
Free and Forced vibrations classical
Free and Forced vibrations classicalFree and Forced vibrations classical
Free and Forced vibrations classical
 
Ch 01, Introduction to Mechanical Vibrations ppt.pdf
Ch 01, Introduction to Mechanical Vibrations ppt.pdfCh 01, Introduction to Mechanical Vibrations ppt.pdf
Ch 01, Introduction to Mechanical Vibrations ppt.pdf
 
YF15e_CH14_ADA_PPT_LectureOutline (1).pptx
YF15e_CH14_ADA_PPT_LectureOutline (1).pptxYF15e_CH14_ADA_PPT_LectureOutline (1).pptx
YF15e_CH14_ADA_PPT_LectureOutline (1).pptx
 
Vibration analysis unit1
Vibration analysis unit1Vibration analysis unit1
Vibration analysis unit1
 
Vibration.pdf
Vibration.pdfVibration.pdf
Vibration.pdf
 
Vibrations
Vibrations Vibrations
Vibrations
 
ANGULAR MOMENTUM Kopal yadav
ANGULAR MOMENTUM Kopal yadavANGULAR MOMENTUM Kopal yadav
ANGULAR MOMENTUM Kopal yadav
 
Unit 3 Free vibration
Unit 3 Free vibrationUnit 3 Free vibration
Unit 3 Free vibration
 
Vibration analysis
Vibration analysisVibration analysis
Vibration analysis
 
Undamped Free Vibration
Undamped Free VibrationUndamped Free Vibration
Undamped Free Vibration
 
Oscillatory motions By Dipraj Roy ,BU
Oscillatory motions By Dipraj Roy ,BUOscillatory motions By Dipraj Roy ,BU
Oscillatory motions By Dipraj Roy ,BU
 

Plus de JohnPaul Kennedy

Plus de JohnPaul Kennedy (20)

Differentiation in the classroom.
Differentiation in the classroom.Differentiation in the classroom.
Differentiation in the classroom.
 
3.1.2 using the motor effect
3.1.2   using the motor effect3.1.2   using the motor effect
3.1.2 using the motor effect
 
3.4.1 ac motors
3.4.1   ac motors3.4.1   ac motors
3.4.1 ac motors
 
3.3.1 generators
3.3.1   generators3.3.1   generators
3.3.1 generators
 
3.2.1 electomagnetic induction
3.2.1   electomagnetic induction3.2.1   electomagnetic induction
3.2.1 electomagnetic induction
 
3.1.1 the motor effect
3.1.1   the motor effect3.1.1   the motor effect
3.1.1 the motor effect
 
3.3.2 transformers
3.3.2   transformers3.3.2   transformers
3.3.2 transformers
 
1.5.1 einstein and relativity
1.5.1   einstein and relativity1.5.1   einstein and relativity
1.5.1 einstein and relativity
 
1.1.1 gravitational fields
1.1.1   gravitational fields1.1.1   gravitational fields
1.1.1 gravitational fields
 
1.2.1 projectile motion
1.2.1   projectile motion1.2.1   projectile motion
1.2.1 projectile motion
 
1.3.1 newton cannons and satellites
1.3.1   newton cannons and satellites1.3.1   newton cannons and satellites
1.3.1 newton cannons and satellites
 
1.4.1 gravity again
1.4.1   gravity again1.4.1   gravity again
1.4.1 gravity again
 
4.4 wave properties
4.4 wave properties4.4 wave properties
4.4 wave properties
 
4.3 waves
4.3 waves4.3 waves
4.3 waves
 
3.3 the ideal gas
3.3 the ideal gas3.3 the ideal gas
3.3 the ideal gas
 
3.2 thermal properties of matter
3.2 thermal properties of matter3.2 thermal properties of matter
3.2 thermal properties of matter
 
3.1 thermal concepts
3.1 thermal concepts3.1 thermal concepts
3.1 thermal concepts
 
2.4 circular motion
2.4   circular motion2.4   circular motion
2.4 circular motion
 
2.1 linear motion
2.1   linear motion2.1   linear motion
2.1 linear motion
 
2.3 work energy and power
2.3   work energy and power2.3   work energy and power
2.3 work energy and power
 

Dernier

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 

Dernier (20)

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 

4.2 damped harmonic motion

  • 1. Topic 4 – Oscillations and Waves 4.2 Damped and Forced Harmonic Motion
  • 2. Damped ● In SHM there is only the one restoring force acting in the line of the displacement. ● In damped harmonic motion (DHM) an additional damping force acts in the opposite direction to the velocity of the object to dissipate energy and stop the vibrations.
  • 3. Damping Forces ● The damping force acts so as to cause the amplitude of the vibrations to decay naturally dissipating energy. ● The general equation of this decay is A=A0 e-ˠt ● Here ˠ is a damping factor. ● The system can be under-damped ● This means the system can make more than one full oscillation before it comes to a stop. ● The system can be over-damped ● The system comes to a stop before it completes one oscillation ● The system can be critically-damped ● The system completes exactly one oscillation before stopping.
  • 5. Damping Forces (beyond Syllabus) ● The general equations governing the motion of a damped harmonic oscillation are: x=x0 e −γ t cos(ωt+ ϕ) v=−x0(γ e −γ t cos(ωt+ ϕ)+ ωe −γ t sin(ωt+ ϕ)) a=−x0 (−γ2 e−γ t cos(ωt+ ϕ)+ ω2 e− γt cos(ωt+ ϕ))
  • 6. Natural Frequency ● The frequency with which a system oscillates if it is started and allowed to move freely is called its natural frequency. ● Simple harmonic motion occurs at the natural frequency. ● Often, extra energy is imparted into the system each oscillation by another external periodic force. ● This is like a child pushing a swing to keep it going. ● Such a system is said to be a forced harmonic oscillator.
  • 7. Forced Harmonic Motion ● The equation for forced harmonic motion (with some damping) would be: ● Here the first part of the equation is the normal SHM equation with natural frequency ω0 and amplitude x0 ● The second part of the equation is due to the forcing (driving) force of magnitude F and driving frequency ω x=x0e − γt cos(ω0t)+ F mω 2 cos(ωt)
  • 8. Forced Harmonic Motion and Resonance ● As the driving frequency of the system approaches the natural frequency of the system, the amplitude of the system increases dramatically. ● The force adds energy to each swing making the amplitude continue to increase and increase. ● When the two frequencies are identical, then the system is said to be at resonance.
  • 9. Resonance ● The state in which the frequency of the externally applied periodic force equals the natural frequency of the system is called resonance. ● This causes oscillations with large amplitudes. ● Damping causes the maximum amplitude to be limited.
  • 10. Resonance -5 0 1 9 5 0 3 9 5 0 5 9 5 0 7 9 5 0 9 9 5 0 1 1 9 5 0 1 3 9 5 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 MaximumAmplitude D r iv in g F r e q u e n c y V e r y L ig h t d a m p in g L ig h t d a m p in g M e d iu m D a m p in g H e a v y D a m p in g
  • 11. Dangerous Resonance ● Resonance can be disastrous ● If a bridge happens to have a natural frequency that is in the range of the frequencies that can be generated by the wind then the bridge can oscillate. ● The bridge can then vibrate it can collapse! ● This is resonance at its worst!!!
  • 12. Useful Resonance ● Resonance can be useful. ● A radio is tuned by causing a quartz crystal to resonate at a particular frequency. ● Wind instruments rely on the resonance of a vibrating air column to make an audible sound. – Because of the sharp spike on the frequency response curve, other frequencies are cancelled out and not heard.