SlideShare une entreprise Scribd logo
1  sur  47
Télécharger pour lire hors ligne
FFÍÍSSIICCAA
Quando precisar use os seguintes valores para as
constantes:
1 ton de TNT = 4,0 x 109 J.
Aceleração da gravidade g = 10 m/s2. 1 atm = 105 Pa.
Massa específica do ferro ρ = 8000 kg/m3.
Raio da Terra R = 6400 km.
Permeabilidade magnética do vácuo μ0 = 4π × 10–7 N/A2.
1 BB
Ondas acústicas são ondas de compressão, ou seja,
propagam-se em meios compressíveis. Quando uma barra
metálica é golpeada em sua extremidade, uma onda lon-
gitudinal propaga-se por ela com velocidade v = ͙ළළළළළළEa/ρ.
A grandeza E é conhecida como módulo de Young,
enquanto ρ é a massa específica e a uma constante
adimensional. Qual das alternativas é condizente à
dimensão de E?
a) J/m2 b) N/m2 c) J/s.m
d) kg.m/s2 e) dyn/cm3
Resolução
V =
LT–1 =
L2 T–2 =
[E] = ML–1T–2 = = [p]
O Módulo de Young tem a mesma equação dimen-
sional de pressão e sua unidade, no SI, é .
Ea
–––
␳
[E]
–––––
ML–3
[E]
–––––
ML–3
MLT–2
––––––
L2
N
–––
m2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
2 BB
Considere uma rampa plana, inclinada de um ângulo θ
em relação à horizontal, no início da qual encontra-se um
carrinho. Ele então recebe uma pancada que o faz subir
até uma certa distância, durante o tempo ts, descendo em
seguida até sua posição inicial.A“viagem” completa dura
um tempo total t. Sendo μ o coeficiente de atrito cinético
entre o carrinho e a rampa, a relação t/ts é igual a
a) 2
b) 1 + ͙ළළළළළළළළළළළළළළළළළළළළළළළළළළළළ(tan ␪ + μ)/͉tan ␪ – μ͉
c) 1 + ͙ළළළළළළළළළළළළළළළළළළළළළළළළළළළළ(cos ␪ + μ)/͉cos ␪ – μ͉
d) 1 + ͙ළළළළළළළළළළළළළළළළළළළළළළළළළළළළ(sen ␪ + μ)/͉cos ␪ – μ͉
e) 1 – ͙ළළළළළළළළළළළළළළළළළළළළළළළළළළළළ(tan ␪ + μ)/͉tan ␪ – μ͉
Resolução
Na subida da rampa:
1) PFD: Pt + Fat = ma1
mg sen ␪ + μ mg cos ␪ = ma1
2) V = V0 + γt
0 = V0 – a1 ts ⇒
3) = ⇒ = ⇒ ts
2 =
ts = ⇒ (1)
4) Na descida da rampa:
1) PFD: Pt – Fat = ma2
mg sen ␪ – μmg cos ␪ = ma2
a2 = g(sen ␪ – μ cos ␪)
2) ⌬s = v0t + t2
a1 = g(sen ␪ + μ cos ␪)
V0 = a1 ts
2d
––––
a1
a1 ts
–––––
2
d
–––
ts
V0 + 0
–––––––
2
⌬s
–––
⌬t
2d
ts = ––––––––––––––––
g(sen ␪ + μcos ␪)
2d
–––
a1
γ
–––
2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
d = td
2
(2)
O tempo total t é dado por:
t = ts + td
÷ ts: = 1 + (3)
: = =
Em (3):
t tg ␪ + μ
––– = 1 + ––––––––
ts tg ␪ – μ
g(sen ␪ – μ cos ␪)
––––––––––––––––
2
2d
td = ––––––––––––––––
g(sen ␪ – μcos ␪)
td
–––
ts
t
–––
ts
sen ␪ + μ cos ␪
–––––––––––––
sen ␪ – μ cos ␪
td
–––
ts
(2)
–––
(1)
tg ␪ + μ
––––––––
tg ␪ – μ
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
3 CC
Um elevador sobe verticalmente com aceleração cons-
tante e igual a a. No seu teto está preso um conjunto de
dois sistemas massa-mola acoplados em série, conforme
a figura. O primeiro tem massa m1 e constante de mola k1,
e o segundo, massa m2 e constante de mola k2. Ambas as
molas têm o mesmo comprimento natural (sem defor-
mação) ᐉ. Na condição de equilíbrio estático relativo ao
elevador, a deformação da mola de constante k1 é y, e a da
outra, x.
Pode-se então afirmar que (y – x) é
a) [(k2 – k1)m2 + k2ml](g – a)/k1k2.
b) [(k2 + k1)m2 + k2ml](g – a)/k1k2.
c) [(k2 - k1)m2 + k2m1](g + a)/k1k2.
d) [(k2 + k1)m2 + k2ml](g + a)/k1k2 – 2ᐉ.
e) [(k2 – k1)m2 + k2ml](g + a)/k1k2 + 2ᐉ.
Resolução
Como não se sabe se o movimento de subida do ele-
vador é acelerado ou retardado, não podemos concluir
qual o sentido da aceleração do elevador.
Admitindo-se que o movimento do elevador seja
acelerado, a aceleração terá sentido dirigido para
cima e a gravidade aparente dentro do elevador será:
A força deformadora da mola k1 é o peso aparente do
sistema (m1 + m2):
(m1 + m2) (g + a) = k1 . y
A força deformadora da mola k2 é o peso aparente do
bloco m2:
m2 (g + a) = k2 . x
y – x = –
m2 (g + a)
x = ––––––––––
k2
m2 (g + a)
––––––––––
k2
(m1 + m2) (g + a)
–––––––––––––––
k1
gap = g + a
(m1 + m2) (g + a)
y = ––––––––––––––––
k1
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
y – x = (g + a)
y – x = (g + a)
Nota: Se o movimento do elevador for retardado, tere-
mos a opção A.
m1 + m2 m2
΄–––––––– – ––––
΅k1 k2
(m1 k2 + m2k2 – m2k1)
–––––––––––––––––––
k1k2
[(k2 – k1) m2 + m1k2]
y – x = (g + a) –––––––––––––––––––
k1k2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
4 AA
Apoiado sobre patins numa superfície horizontal sem
atrito, um atirador dispara um projétil de massa m com
velocidade v contra um alvo a uma distância d. Antes do
disparo, a massa total do atirador e seus equipamentos é
M. Sendo vs a velocidade do som no ar e desprezando a
perda de energia em todo o processo, quanto tempo após
o disparo o atirador ouviria o ruído do impacto do projétil
no alvo?
a) b)
c) d)
e)
Resolução
1) Admitindo-se que o atirador esteja inicialmente
em repouso, temos:
→
Qf =
→
Q0
→
Qp +
→
QA =
→
0
͉
→
QA͉ = ͉
→
Qp͉ ⇒ (M – m) V1 = m v
2) Tempo t1 gasto pelo projétil para chegar ao alvo:
d = v . t1 ⇒
3) Distância d1 percorrida pelo atirador no tempo t1:
d1 = V1 . t1
d1 = . ⇒
4) Distância entre atirador e alvo no instante t1:
D = d1 + d = + d =
m d
d1 = –––––––
M – m
d
–––
v
mv
––––––––
M – m
md + Md – md
–––––––––––––––
M – m
m d
––––––––
M – m
m v
V1 = ––––––
M – m
d
t1 = –––
v
d(vs + v)(M + m)
–––––––––––––––––
v(Mvs + m(vs + v))
d(vs + v)(M – m)
–––––––––––––––––
v(Mvs – m(vs + v))
d(vs + v)(M – m)
–––––––––––––––––
v(Mvs – m(vs – v))
d(vs – v)(M + m)
–––––––––––––––––
v(Mvs + m(vs + v))
d(vs – v)(M – m)
–––––––––––––––––
v(Mvs + m(vs + v))
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
5) O som e o atirador se movimentam no mesmo
sentido e a velocidade relativa terá módulo Vrel
dado por:
Vrel = vs – v1
= vs – =
6) O tempo gasto pelo som TS para chegar ao atira-
dor é dado por:
Vrel =
TS =
TS = D .
TS = .
7) O tempo total pedido T é dado por:
T = t1 + TS
T = +
T = d
T = d
T = .
Md
–––––––––––––––
(M – m) vs – mv
d
––––
v
M 1
΄––––––––––––––– + ––
΅M vs – m (vs + v) v
M (v + vs) – m (vs + v)
΄––––––––––––––––––––
΅v(M vs – m (vs + v))
M v + M vs – mvs – mv
––––––––––––––––––––
M vs – m (vs + v)
d
––––
v
d (M – m) (vs + v)
T = ––– –––––––––––––––––
v (M vs – m (vs + v))
M d
D = –––––––
M – m
(M – m) vs – mv
–––––––––––––––
M – m
m v
–––––––
M – m
D
––––
TS
D
––––
Vrel
M – m
–––––––––––––––
(M – m) vs – mv
M – m
–––––––––––––––
(M – m) vs – mv
M d
––––––––
M – m
M d
TS = ––––––––––––––
(M – m) vs – mv
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
5 DD
Um gerador elétrico alimenta um circuito cuja resistência
equivalente varia de 50 a 150 ⍀, dependendo das
condições de uso desse circuito. Lembrando que, com
resistência mínima, a potência útil do gerador é máxima,
então, o rendimento do gerador na situação de resistência
máxima, é igual a
a) 0,25. b) 0,50. c) 0,67.
d) 0,75 e) 0,90.
Resolução
Temos o circuito
Na condição de potência útil máxima, temos r = R,
isto é, r = 50⍀
Para r = 150⍀, vem:
1.°) i = ⇒ i = ⇒ i =
2.°) U = E – ri ⇒ U = E – 50 . ⇒ U =
O rendimento do gerador na situação de resistência
elétrica máxima é igual a:
␩ = ⇒ ␩ = ⇒ ␩ = 0,75
3E/4
–––––
E
U
–––
E
E
–––––
200
E
–––––––
50 + 150
E
–––––
r + R
3E
–––––
4
E
––––
200
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
6 CC
Um funil que gira com velocidade angular uniforme em
torno do seu eixo vertical de simetria apresenta uma
superfície cônica que forma um ângulo ␪ com a
horizontal, conforme a figura. Sobre esta superfície, uma
pequena esfera gira com a mesma velocidade angular
mantendo-se a uma distância d do eixo de rotação.
Nestas condições, o período de rotação do funil é dado
por
a) 2␲ ͙ෆෆෆෆෆd/g sen ␪ . b) 2␲ ͙ෆෆෆෆෆd/g cos ␪ .
c) 2␲ ͙ෆෆෆෆෆd/g tan ␪ . d) 2␲ ͙ෆෆෆෆෆෆ2d/g sen2␪.
e) 2␲ ͙ෆෆෆෆෆෆෆෆd cos ␪ / g tan ␪.
Resolução
1) Fy = P = mg
2) Fx = Fcp = m ␻2d
3) tg ␪ =
␻2 =
␻ = =
Nota: Admitimos que não há atrito entre o funil e a
bolinha.
m ␻2d
–––––––
mg
g tg ␪
–––––––
d
2␲
––––
T
g tg ␪
––––––
d
d
T = 2␲ ––––––
g tg ␪
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
7 EE
No interior de um carrinho de massa M mantido em
repouso, uma mola de constante elástica k encontra-se
comprimida de uma distância x, tendo uma extremidade
presa e a outra conectada a um bloco de massa m,
conforme a figura.
Sendo o sistema então abandonado e considerando que
não há atrito, pode-se afirmar que o valor inicial da
aceleração do bloco relativa ao carrinho é
a) kx / m. b) kx / M.
c) kx / (m + M). d) kx (M – m) / mM.
e) kx (M + m) / mM.
Resolução
PFD (bloco): Fmola = k x = m ab
PFD (carrinho): Fmola = k x = M ac
A aceleração do bloco relativa ao carrinho será:
arel = ab + ac
arel = + = k x ΂ + ΃
kx
ab = ––––
m
kx
ac = ––––
M
1
–––
M
1
–––
m
k x
––––
M
k x
––––
m
(M + m)
arel = k x –––––––––
Mm
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
8 CC
Um corpo movimenta-se numa superfície horizontal sem
atrito, a partir do repouso, devido à ação contínua de um
dispositivo que lhe fornece uma potência mecânica
constante. Sendo v sua velocidade após certo tempo t,
pode-se afirmar que
a) a aceleração do corpo é constante.
b) a distância percorrida é proporcional a v2.
c) o quadrado da velocidade é proporcional a t.
d) a força que atua sobre o corpo é proporcional a ͙ෆt .
e) a taxa de variação temporal da energia cinética não é
constante.
Resolução
Como a potência é constante, a potência média
coincide com a instantânea:
P = Pm =
TEC: τ = –
Como V0 = 0, vem τ =
Δt = t – 0 = t
P =
V2 =
Como é constante, então V2 é proporcional a t.
τ
–––
Δt
mV0
2
–––––
2
mV2
–––––
2
mV2
–––––
2
mV2
–––––
2t
2 P t
–––––
m
2 P
––––
m
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
9 DD
Acredita-se que a colisão de um grande asteroide com a
Terra tenha causado a extinção dos dinossauros. Para se
ter uma ideia de um impacto dessa ordem, considere um
asteroide esférico de ferro, com 2 km de diâmetro, que se
encontra em repouso quase no infinito, estando sujeito
somente à ação da gravidade terrestre. Desprezando as
forças de atrito atmosférico, assinale a opção que expressa
a energia liberada no impacto, medida em número
aproximado de bombas de hidrogênio de 10 megatons de
TNT.
a) 1 b) 10 c) 500 d) 50.000 e) 1.000.000
Resolução
A energia mecânica total do asteroide no infinito é
nula.
Ao atingir a Terra, supondo-se que esta energia mecâ-
nica se conservou, teremos:
Em = – + = 0
Sendo g = , vem:
Ecin = ⇒
A massa m do asteroide é dada por:
m = ␳ ␲ r3
Portanto:
Ecin = . 3 . 8000 . (1,0 . 103)3 . 10 . 6,4 . 106 (J)
Ecin = 32 . 6,4 . 1019J ഡ 2,0 . 1021J
E = 10 megatons de TNT = 10 . 106 . 4,0 . 109J = 4,0 . 1016J
Ecin = n E
20 . 1020 = n . 4 . 1016
4
Ecin = –– ␲ ␳ r3 g R
3
4
––
3
n = 5 . 104
m V2
–––––
2
G M m
––––––
R
G M m
Ecin = –––––––––
R
G M
–––––
R2
Ecin = m g R
g . R2 m
–––––––
R
4
––
3
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
10 BB
Boa parte das estrelas do Universo formam sistemas
binários nos quais duas estrelas giram em torno do centro
de massa comum, CM. Considere duas estrelas esféricas
de um sistema binário em que cada qual descreve uma
órbita circular em torno desse centro. Sobre tal sistema
são feitas duas afirmações:
I. O período de revolução é o mesmo para as duas
estrelas e depende apenas da distância entre elas, da
massa total deste binário e da constante gravitacional.
II. Considere que
→
R1 e
→
R2 são os vetores que ligam o CM
ao respectivo centro de cada estrela. Num certo
intervalo de tempo ⌬t, o raio vetor
→
R1varre uma certa
área A. Durante este mesmo intervalo de tempo, o raio
vetor
→
R2 também varre uma área igual a A.
Diante destas duas proposições, assinale a alternativa
correta.
a) As afirmações I e II são falsas.
b) Apenas a afirmação I é verdadeira.
c) Apenas a afirmação II é verdadeira.
d) As afirmações I e II são verdadeiras, mas a II não
justifica a I.
e) As afirmações I e II são verdadeiras e, além disso, a II
justifica a I.
Resolução
I. (V)
1) Localização do CM:
r1 =
Mr1 + mr1 = mr2 + mr1
Sendo r1 + r2 = d, vem:
r1 + r1 = d ⇒ r1 . = d ⇒
e
r2 M
––– = ––––
r1 m
M
΂1 + ––
΃m
M
–––
m
m d
r1 = ––––––
M + m
M d
r2 = ––––––
M + m
M . 0 + m (r2 + r1)
––––––––––––––––
M + m
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
2) Cálculo do período T:
FG = Fcp
= M␻2 . ⇒ ␻2 =
␻ =
=
II. (F)
As velocidades angulares são iguais: no mesmo
intervalo de tempo Δt, os ângulos são iguais e a
estrela que tem maior raio de órbita descreve área
maior.
G (M + m)
––––––––––
d3
md
––––––
M + m
GMm
–––––––
d2
G (M + m)
––––––––––
d3
G (M + m)
––––––––––
d3
2␲
––––
T
d3
T = 2␲ –––––––––
G (M + m)
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
11 BB
Um cilindro vazado pode deslizar sem atrito num eixo
horizontal no qual se apoia. Preso ao cilindro, há um cabo
de 40 cm de comprimento tendo uma esfera na ponta,
conforme figura. Uma força externa faz com que o
cilindro adquira um movimento na horizontal do tipo
y = y0 sen (2␲ ft).
Qual deve ser o valor de f em hertz para que seja máxima
a amplitude das oscilações da esfera?
a) 0,40 b) 0,80 c) 1,3 d) 2,5 e) 5,0
Resolução
A esfera pendular vai oscilar com máxima amplitude
quando o cilindro e a esfera estiverem em ressonância.
Isso significa que o cilindro e a esfera deverão oscilar
com a mesma frequência f.
Considerando-se que a massa do cilindro seja muito
maior que a da esfera para que o pêndulo tenha com-
primento efetivo de oscilação igual a 40cm e imaginan-
do-se que o movimento oscilatório do pêndulo seja
praticamente harmônico simples, o período T e a
frequência f ficam dados por:
T = 2π ⇒ f = ⇒ f =
f = (Hz) ⇒
g
–––
L
1
–––
2␲
1
––
T
L
–––
g
f ഡ 0,80Hz
10
––––
0,40
1
–––––––
2 . 3,14
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
12 EE
No interior de um elevador encontra-se um tubo de vidro
fino, em forma de U, contendo um líquido sob vácuo na
extremidade vedada, sendo a outra conectada a um
recipiente de volume V com ar mantido à temperatura
constante. Com o elevador em repouso, verifica-se uma
altura h de 10 cm entre os níveis do líquido em ambos os
braços do tubo. Com o elevador subindo com aceleração
constante →
a (ver figura), os níveis do líquido sofrem um
deslocamento de altura de 1,0 cm.
Pode-se dizer então que a aceleração do elevador é igual
a
a) – 1,1 m/s2. b) – 0,91 m/s2.
c) 0,91 m/s2. d) 1,1 m/s2.
e) 2,5 m/s2.
Resolução
(I) Situação inicial (elevador em repouso):
p2 = p1 ⇒ par = ␳ g h
par = ␳ . 10 . 0,10 (SI)
par = ␳ . 1,0 (SI)
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
(II) Situação final (elevador acelerado):
p4 = p3 ⇒ p’ar = ␳ gap h’
p’ar = ␳ . gap . 0,080 (SI)
Como a temperatura é constante e o tubo é fino
(volume desprezível), a pressão do ar dentro do
bulbo praticamente não se altera. Assim:
p’ar = par ⇒ ␳ gap 0,080 = ␳ 1,0
Da qual:
(III) Sendo gap > g, a aceleração do elevador é dirigida
para cima (no sentido de a
→
), com módulo deter-
minado por:
gap = g + a ⇒ 12,5 = 10,0 + a
a = 2,5m/s2
p’ar = ␳ . gap . 0,080 (SI)
gap = 12,5m/s2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
13 EE
Conforme a figura, um circuito elétrico dispõe de uma
fonte de tensão de 100 V e de dois resistores, cada qual de
0,50 ⍀. Um resistor encontra-se imerso no recipiente
contendo 2,0 kg de água com temperatura inicial de 20°C,
calor específico 4,18 kJ /kg.°C e calor latente de vapori-
zação 2230 kJ /kg. Com a chave S fechada, a corrente
elétrica do circuito faz com que o resistor imerso dissipe
calor, que é integralmente absorvido pela água. Durante
o processo, o sistema é isolado termicamente e a tempe-
ratura da água permanece sempre homogênea.
Mantido o resistor imerso durante todo o processo, o
tempo necessário para vaporizar 1,0 kg de água é
a) 67,0 s. b) 223 s. c) 256 s.
d) 446 s. e) 580 s.
Resolução
i = ⇒ i = ⇒ i = 100 A
P = R . i2 ⇒ P = 0,50 . (100)2W ⇒ P = 5,0 . 103W
Quantidade de calor total absorvida pela água
Q = m . c . ⌬␪ + m . Lvap
Q = 2,0 . 4,18 . 80 + 1,0 . 2230 (J)
Q = 2898,80kJ
Sendo
Q = P . ⌬t
2898,80 . 103 = 5,0 . 103 . ⌬t
100V
––––––––
2.0,50⍀
ε
–––
2R
⌬t ഡ 580s
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
14 DD
Em uma superfície líquida, na origem de um sistema de
coordenadas encontra-se um emissor de ondas circulares
transversais. Bem distante dessa origem, elas têm a forma
aproximada dada por h1 (x, y, t) = h0 sen (2␲( r / ␭ – ft)), em
que ␭ é o comprimento de onda, f é a frequência e r, a
distância de um ponto da onda até a origem. Uma onda plana
transversal com a forma h2(x, y, t) = h0 sen (2␲(x / ␭ – ft))
superpõe-se à primeira, conforme a figura.
Na situação descrita, podemos afirmar, sendo ‫ޚ‬ o conjun-
to dos números inteiros, que
a) nas posições (y2
P /(2n␭) – n␭/8, yP) as duas ondas estão
em fase se n ∈ ‫.ޚ‬
b) nas posições (y2
P /(2n␭) – n␭/2, yP) as duas ondas estão
em oposição de fase se n ∈ ‫ޚ‬ e n 0.
c) nas posições (y2
P /(2n␭) – (n + 1/2) ␭/2, yP) as duas
ondas estão em oposição de fase se n ∈ ‫ޚ‬ e n 0.
d) nas posições (y2
P /((2n + 1)␭) – (n + 1/2) ␭/2, yP) as duas
ondas estão em oposição de fase se n ∈ ‫.ޚ‬
e) na posição (2y2
P /␭ – ␭/8, yP) a diferença de fase entre
as ondas é de 45°.
Resolução
Para o caso no qual as ondas estão em oposição de
fase, temos:
2π – ft – 2π – ft = (2n + 1)π
r – xP = (2n + 1)
Como r = ͙ළළළළළළළළxP
2 +yP
2 , temos:
͙ළළළළළළළළxP
2 +yP
2 – xP = (2n + 1)
͙ළළළළළළළළxP
2 + yP
2 = (2n + 1) + xP
xP
2 + yP
2 = (2n + 1)2 + λ(2n + 1)xP + xP
2
΃
xP
–––
λ΂΃
r
–––
λ΂
λ
–––
2
λ
–––
2
λ
–––
2
λ2
–––
4
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
yP
2 – (2n + 1)2 = λ(2n + 1)xP
– n + = xP
O ponto P tem coordenadas xP e yP, tais que:
Para o caso no qual as ondas estão em concordância
de fase, temos:
2π – f t – 2π – f t = 2nπ
– = n
͙ළළළළළළළළළxP
2 + yP
2 = nλ + xP
xP
2 + yP
2 = (nλ)2 + 2nλxP + xP
2
= xP
– = xP
O ponto P tem coordenadas xP e yP, tais que
Para o caso no qual a diferença de fase entre as ondas
seja de 45° ( rad), temos:
2π – ft – 2π – ft =
– =
͙ළළළළළළළළළxP
2 + yP
2 = + xP
xP
2 + yP
2 = + xP + xP
2
yP
2 – = xP
– = xP
O ponto P tem coordenadas xP e yP, tais que
λ2
–––
4
΃
1
––
2΂
λ
–––
2
yP
2
–––––––––
λ(2n + 1)
yP
2
1 λ
P = ΂––––––––– – ΂n + ––΃. –––, yP΃, n ʦ ‫ޚ‬
(2n + 1)λ 2 2
΃
xP
–––
λ΂΃r––
λ΂
xP
–––
λ
r––
λ
yP
2 – (nλ)2
–––––––––
2nλ
nλ
––––
2
yP
2
––––
2nλ
yP
2 nλ
P = (––––– – –––, yP), n ʦ ‫*ޚ‬
2nλ 2
π
––
4
π
–––
4΃
xP
–––
λ΂΃
r
–––
λ΂
1
–––
8
xP
––––
λ
r
––
λ
λ
–––
8
λ
–––
4
λ2
–––
64
λ
–––
4
λ2
–––
64
λ
–––
16
4yP
2
–––––
λ
4yP
2 λ
P = (––––– – –––, yP)
λ 16
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
15 EE
Um capacitor de placas paralelas de área A e distância 3h
possui duas placas metálicas idênticas, de espessura h e
área A cada uma.
Compare a capacitância C deste capacitor com a capa-
citância C0 que ele teria sem as duas placas metálicas.
a) C = C0 b) C > 4C0 c) 0 < C < C0
d) C0 < C < 2C0 e) 2C0 < C < 4C0
Resolução
Capacitor sem as placas metálicas:
C0 = ␧0 . (1)
Capacitor com as duas placas metálicas:
Equivale a três
capacitores em
série:
= + +
= + +
=
= ⇒ C = ␧0 . (2)
De (1) e (2), vem: C = 3C0
A
–––
3h
1
–––
C3
1
–––
C2
1
–––
C1
1
––
C
h3
––––
␧0A
h2
––––
␧0A
h1
––––
␧0A
1
––
C
h1 + h2 + h3
–––––––––––
␧0A
1
––
C
A
–––
h
h
––––
␧0A
1
––
C
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
16 AA
A figura mostra uma região espacial de campo elétrico
uniforme de módulo E = 20 N/C. Uma carga Q = 4 C é
deslocada com velocidade constante ao longo do perí-
metro do quadrado de lado L = 1 m, sob ação de uma
força
→
F igual e contrária à força coulombiana que atua na
carga Q. Considere, então, as seguintes afirmações:
I. O trabalho da força
→
F para deslocar a carga Q do
ponto 1 para 2 é o mesmo do dispendido no seu
deslocamento ao longo do caminho fechado 1-2-3-
4-1.
II. O trabalho de
→
F para deslocar a carga Q de 2 para
3 é maior que o para deslocá-la de 1 para 2.
III. É nula a soma do trabalho da força
→
F para deslocar
a carga Q de 2 para 3 com seu trabalho para
deslocá-la de 4 para 1.
Então, pode-se afirmar que
a) todas são corretas.
b) todas são incorretas.
c) apenas a II é correta.
d) apenas a I é incorreta.
e) apenas a II e III são corretas.
Resolução
I. Correta
␶12 = F . L . cos 90° = 0
␶12341 = ␶12 + ␶23 + ␶34 + ␶41 = 0 + F . L + 0 – F . L = 0
Em ambos os casos, o trabalho é nulo:
II. Correta
␶23 = + F . L
␶12 = + F . L . cos 90° = 0
III. Correta
␶23 = + F . L
␶41 = F . L cos 180° = – FL
␶23 + ␶41 = (+FL) + (–FL) = 0
␶12 = ␶12341
␶23 > ␶12
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
17 DD
Uma fonte luminosa uniforme no vértice de um cone reto
tem iluminamento energético (fluxo energético por
unidade de área) HA na área A da base desse cone. O
iluminamento incidente numa seção desse cone que
forma ângulo de 30° com a sua base, e de projeção
vertical S sobre esta, é igual a
a) AHA/S. b) SHA/A. c) AHA/2S.
d) ͙ළ3AHA/2S. e) 2AHA/͙ළ3S.
Resolução
—
AC =
—
AC’ . cos 30°
—
AC =
—
AC’ .
Sendo a’ o semieixo maior da elipse:
a’ =
A elipse projetada na base tem semieixo a:
a = ⇒ a = a’
Logo, a área da elipse ADBDA e a área da elipse
AD’B’D’A se relacionam por:
= = = =
S’ = S
͙ළළ3
––––
2
—
AC’
––––
2
͙ළළ3
––––
2
—
AC
––––
2
2͙ළළ3
–––––
3
2
–––––
͙ළළ3
a’
–––
a
πa’b
–––––
πab
S’
––––
S
΃2͙ළළ3
–––––
3΂
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
a: semieixo maior de S
b: semieixo menor: constante
a’: semieixo maior de S’
Como o fluxo é constante:
Φ = HA . A = H’ . S’
HA . A = H’ . S .
H’ = ⇒
2͙ළළ3
–––––
3
HA . A . ͙ළළ3
H’ = ––––––––––
2 S
HA . A . 3
–––––––––
2 S͙ළළ3
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
18 CC
Alguns tipos de sensores piezorresistivos podem ser usa-
dos na confecção de sensores de pressão baseados em pon-
tes de Wheatstone. Suponha que o resistor Rx do circuito
da figura seja um piezorresistor com variação de resistên-
cia dada por Rx = kp + 10⍀, em que k = 2,0 x 10-4⍀/Pa
e p, a pressão.
Usando este piezorresistor na construção de um sensor
para medir pressões na faixa de 0,10 atm a 1,0 atm,
assinale a faixa de valores do resistor R1 para que a ponte
de Wheatstone seja balanceada. São dados: R2 = 20⍀ e
R3 = 15⍀.
a) De R1min = 25⍀ a R1max = 30⍀
b) De R1min = 20⍀ a R1max = 30⍀
c) De R1min = 10⍀ a R1max = 25⍀
d) De R1min = 9,0⍀ a R1max = 23⍀
e) De R1min = 7,7⍀ a R1max = 9,0⍀
Resolução
Determinemos, inicialmente, os valores extremos que
Rx pode assumir.
Para p = 1,0 atm = 1,0 . 105 Pa, temos:
Rx = K . p + 10⍀
Rx = 2,0 . 10–4 . 1,0 . 105 + 10
Rxmáx
= 30⍀
Para p = 0,10 atm = 0,10 . 105Pa, temos:
R’x = 2,0 . 10–4 . 0,10 . 105 + 10
R’xmín
= 12⍀
Ponte de Wheatstone em equilíbrio na situação 1:
R1mín
. Rx = R2R3
R1mín
. 30 = 20 x 15
Ponte de Wheatstone em equilíbrio na situação 2:
R1máx
. R’x = R2R3
R1máx
. 12 = 20 x 15
R1mín
= 10⍀
R1máx
= 25⍀
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
19 DD
Assinale em qual das situações descritas nas opções
abaixo as linhas de campo magnético formam circun-
ferências no espaço.
a) Na região externa de um toroide.
b) Na região interna de um solenoide.
c) Próximo a um íma com formato esférico.
d) Ao redor de um fio retilíneo percorrido por corrente
elétrica.
e) Na região interna de uma espira circular percorrida por
corrente elétrica.
Resolução
As linhas de campo magnético formam circunferên-
cias no espaço ao redor de um fio retilíneo infinito
percorrido por corrente elétrica.
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
20 AA
Considere as seguintes afirmações:
I. As energias do átomo de Hidrogênio do modelo de
Bohr satisfazem à relação, En = –13,6/n2 eV, com
n = 1, 2, 3, …; portanto, o elétron no estado funda-
mental do átomo de Hidrogênio pode absorver
energia menor que 13,6 eV.
II. Não existe um limiar de frequência de radiação no
efeito fotoelétrico.
III. O modelo de Bohr, que resulta em energias quanti-
zadas, viola o princípio da incerteza de Heisenberg.
Então, pode-se afirmar que
a) apenas a II é incorreta.
b) apenas a I e II são corretas.
c) apenas a I e III são incorretas.
d) apenas a I é incorreta.
e) todas são incorretas.
Resolução
I. Correta
De acordo com o modelo de Bohr para o átomo de
hidrogênio, quando o átomo recebe energia, o
elétron pode sofrer uma transição para um estado
de maior energia ou estado excitado, no qual n >
1.
Assim: utilizando a expressão E = – eV
tem-se:
para n = 1, temos: E1 = – 13,6eV (estado funda-
mental)
para n = 2, temos: E2 = – 3,40eV
para n = 3, temos: E3 = – 1,51eV
Na passagem do estado fundamental (n = 1) para
o segundo estado excitado (n = 2), por exemplo, a
energia recebida para a transição vale:
ΔE = – 3,40 – (– 13,6)(eV)
(< 13,6eV)
II. Incorreta
A explicação de Einstein para o efeito fotoelétrico
mostra que existe, para cada superfície metálica,
um limiar de frequências f0 característico. Para
frequências menores que f0, o efeito não ocorre,
qualquer que seja a intensidade da iluminação.
Graficamente:
13,6
–––––
n2
ΔE = 10,2eV
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
III. Correta
O segundo postulado de Bohr pode ser assim
enunciado:
“Em vez da infinidade de órbitas que seriam
possíveis segundo a Mecânica Clássica, um elétron
só pode mover-se em uma única órbita na qual seu
momento angular orbital L é um múltiplo inteiro
de
”
.
O modelo de Bohr (1913) define com precisão a
posição (raio da órbita) e o momento do elétron de
forma simultânea, contrariando o Princípio da
Incerteza de Heisenberg (1925):
“Uma experiência não pode determinar simul-
taneamente o valor exato de uma componente do
momento, por exemplo px, de uma partícula e
também o valor exato da coordenada correspon-
dente, x”.
h
–––
2␲
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
As questões dissertativas, numeradas de 21 a 30, devem
ser desenvolvidas, justificadas e respondidas no caderno
de soluções
21
100 cápsulas com água, cada uma de massa m = 1,0g, são
disparadas à velocidade de 10,0m/s perpendicularmente a
uma placa vertical com a qual colidem inelasticamente.
Sendo as cápsulas enfileiradas com espaçamento de
1,0cm, determine a força média exercida pelas mesmas
sobre a placa.
Resolução
As cápsulas alinhadas perfazem um comprimento L
dado por:
L = 100 . 1,0cm = 1,0m
O tempo gasto para a última cápsula atingir a parede
é dado por:
V = ⇒ 10,0 = ⇒
Neste tempo, aplicando o teorema do impulso:
Iparede = ⌬Qcápsula
Fm . T = mtotal ͉⌬V͉
Fm . 0,1 = 0,1 . 10,0
Resposta: Fm = 10,0N
T1 = 0,1s
1,0
–––
T
⌬s
–––
⌬t
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
22
O arranjo de polias da figura é preso ao teto para erguer
uma massa de 24 kg, sendo os fios inextensíveis, e
desprezíveis as massas das polias e dos fios.
Desprezando os atritos, determine:
1. O valor do módulo da força
→
F necessário para equi-
librar o sistema.
2. O valor do módulo da força
→
F necessário para erguer a
massa com velocidade constante.
3. A força (
→
F ou peso?) que realiza maior trabalho, em
módulo, durante o tempo T em que a massa está sendo
erguida com velocidade constante.
Resolução
1) 4F = P
F = =
F = (N)
mg
–––
4
P
–––
4
240
–––
4
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
2) Em repouso ou com velocidade constante, a força
resultante é nula e F = 60N.
3) Trabalho é uma forma de energia e os trabalhos
serão iguais, em módulo, porque não há variação
de energia cinética.
Respostas: 1) F = 60N
2) F = 60N
3) Trabalho com módulos iguais
F = 60N
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
23
A figura mostra uma chapa fina de massa M com o
formato de um triângulo equilátero, tendo um lado na
posição vertical, de comprimento a, e um vértice
articulado numa barra horizontal contida no plano da
figura. Em cada um dos outros vértices encontra-se fixada
uma carga elétrica q e, na barra horizontal, a uma
distância a͙ෆ3/2 do ponto de articulação, encontra-se
fixada uma carga Q.
Sendo as três cargas de mesmo sinal e massa desprezível,
determine a magnitude da carga Q para que o sistema
permaneça em equilíbrio.
Resolução
1) Elementos geométricos necessários:
–––
OC =
–––
BC =
____
OM =
–––
OA = a
____
AC 2 =
____
OA2 +
____
OC 2 (Pitágoras)
____
AC 2 = a2 + = ⇒
____
AC =
cos ␣ = = . =
a ͙ෆ7
–––––
2
7a2
–––
4
3a2
–––
4
͙ෆ3
–––––
͙ෆ7
2
–––––
a ͙ෆ7
a ͙ෆ3
–––––
2
____
OC
––––____
AC
a ͙ෆ3
–––––
2
a
–––
2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
____
MB = ⇒
____
MG =
____
MB =
2) Lei de Coulomb para
calcular os módulos das forças elétricas
→
F1 e
→
F2 :
F1 = k = =
F2 = k = =
Observação: Adotamos k como sendo a constante
eletrostática do meio, embora não tenha sido dada
na prova.
Decompondo
→
F2 nas direções horizontal Ox e
vertical Oy:
F2x = F2 . cos ␣ = . =
3) Para que a chapa não sofra rotação, o somatório
dos momentos em torno de O (articulação) deve
ser nulo.
MF2x
+ MF2y
+ MF1
– MP = 0
MF2y
= 0
F2x .
–––
OA + 0 + F1 .
––––
MB – P .
––––
MG = 0
. . a + . = M . g .
Simplificando:
+ =
=
=
M . g
–––––
6
2 kq Q
–––––––
a2
4 kq Q
––––––––
7 ͙ෆ7 . a2
M . g
–––––
6
2
΂––––– + 1΃7 ͙ෆ7
2 kq . Q
–––––––
a2
M . g
–––––
6
2 + 7 ͙ෆ7
΂–––––––––΃7 ͙ෆ7
2 kq . Q
–––––––
a2
7 ͙ෆ7 a2 M . g
Q = ––––––––––––––– . ––––––
12 (2 + 7 ͙ෆ7 ) k . q
a ͙ෆ3
–––––
6
1
–––
3
a ͙ෆ3
–––––
2
4 kq Q
––––––
a2
k . q . Q
–––––––
a
΂–––΃
2
2
q . Q
––––____
BC
2
4 kq Q
––––––
7a2
k . q . Q
–––––––
7a2
–––
4
q . Q
––––____
AC
2
4 ͙ෆ3 . k q . Q
––––––––––––
7 ͙ෆ7 . a2
͙ෆ3
––––
͙ෆ7
4 kq . Q
–––––––
7 . a2
a ͙ෆ3
––––
6
a ͙ෆ3
––––
2
4 kq Q
––––––
a2
kq Q
–––––
a2
4 ͙ෆ3
–––––
7͙ෆ7
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
Se usarmos para a constante eletrostática:
k =
Q =
Q =
1
–––––––
4␲␧0
7 ͙ෆ7 . a2 . M . g
–––––––––––––––––––––––
1
12 (2 + 7 ͙ෆ7 ) q . ––––––
4 ␲ ␧0
7 ͙ෆ7 ␲␧0 . a2 . M . g
–––––––––––––––––––
3 (2 + 7 ͙ෆ7 ) . q
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
24
A figura mostra um sistema formado por dois blocos, A e
B, cada um com massa m. O bloco A pode deslocar-se
sobre a superfície plana e horizontal onde se encontra. O
bloco B está conectado a um fio inextensível fixado à
parede, e que passa por uma polia ideal com eixo preso ao
bloco A. Um suporte vertical sem atrito mantém o bloco
B descendo sempre paralelo a ele, conforme mostra a
figura.
Sendo ␮ o coeficiente de atrito cinético entre o bloco A e
a superfície, g a aceleração da gravidade, e ␪ = 30°
mantido constante, determine a tração no fio após o
sistema ser abandonado do repouso.
Resolução
1) Força normal que A troca com o solo:
FN = PA + T – T cos 60°
FN = m g + T – = m g +
2) Força de atrito aplicada pelo chão:
Fat = ␮ FN = ␮ ΂m g + ΃
3) 2.ª Lei de Newton (A + B):
T cos 30° – Fat = (mA + mB) a
T – ␮ ΂m g + ΃ = 2 m a
T – ␮ m g – ␮ = 2 m a
T
–––
2
T
–––
2
͙ළළ3
–––––
2
T
–––
2
͙ළළ3
–––––
2
T
–––
2
T
–––
2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
(͙ළළ3 – ␮) = ␮ m g + 2 m a
(͙ළළ3 – ␮) = m (␮ g + 2 a)
(1)
Se o valor de a não for considerado como dado,
temos:
4) O deslocamento vertical de B se relaciona com o
seu deslocamento horizontal pela relação:
⌬x = ⌬y . cos ␪
⌬x = ⌬y
a = ⇒
5) PFD (B) (na direção vertical):
P – T = m ay
m g – T =
2a = = g͙ළළ3 – ͙ළළ3 (2)
(2) em (1):
T = ΂␮ g + g͙ළළ3 – ͙ළළ3 ΃
T(͙ළළ3 – ␮) = 2 m ␮ g + 2 m g͙ළළ3 – 2T ͙ළළ3
T(͙ළළ3 – ␮ + 2͙ළළ3 ) = 2 m g (␮ + ͙ළළ3 )
2 m g (␮ + ͙ළළ3 )
T = –––––––––––––––
3͙ළළ3 – ␮
m 2 a
–––––––
͙ළළ3
T
––
m
m g͙ළළ3 – T͙ළළ3
–––––––––––––––––
m
T
––
m
2m
––––––––
͙ළළ3 – ␮
T
–––
2
T
–––
2
2m (␮ g + 2a)
T = ––––––––––––––
͙ළළ3 – ␮
͙ළළ3
–––––
2
2a
ay = –––––
͙ළළ3
ay͙ළළ3
–––––––
2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
25
Átomos neutros ultrafrios restritos a um plano são uma
realidade experimental atual em armadilhas magneto-
ópticas. Imagine que possa existir uma situação na qual
átomos do tipo A e B estão restritos respectivamente aos
planos ␣ e ␤ perpendiculares entre si, sendo suas massas
tais que mA = 2mB. Os átomos A e B colidem elasti-
camente entre si não saindo dos respectivos planos, sendo
as quantidades de movimento iniciais →pA e →pB, e as finais,
→qA e →qB . →pA forma um ângulo ␪ com o plano horizontal
e →pB = 0.
Sabendo que houve transferência de momento entre A e
B, qual é a razão das energias cinéticas de B e A após a
colisão?
Resolução
→
Q0 =
→
pA +
→
pB =
→
pA
→
Qf =
→
qA +
→
qB
Como
→
Qf =
→
Q0, temos
→
qA +
→
qB =
→
pA
Como
→
pA e
→
qA estão restritos ao plano ␣, concluímos
que
→
qB também estará no plano ␣ e como
→
qB pertence
ao plano ␤, ele estará na intersecção entre ␣ e ␤, ou
seja, no eixo x.
Na direção x: qAx + qB = pA cos ␪ (I)
Na direção z: qAz = pA sen ␪ (II)
qA
2 = q2
Ax + q2
Az = (pA cos ␪ – qB)2 + (pA sen ␪)2
qA
2 = p2
A cos2 ␪ – 2pA qB cos ␪ + qB
2 + p2
A sen2 ␪
qA
2 = p2
A – 2pA qB cos ␪ + qB
2
(1)
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
Conservação da energia cinética:
Ecin0
= Ecinf
= +
pA
2 = q2
A + 2 qB
2
(2)
(2) em (1): qA
2 = qA
2 + 2 qB
2
– 2 pAqB cos ␪ + qB
2
3 qB
2
= 2pAqB cos ␪
Em (I): qAx + pA cos ␪ = pA cos ␪
qAx = pA cos ␪
Como qAz = pA
sen ␪, vem:
qA
2 = + pA
2
sen2 ␪
Comparando as energias cinéticas após a colisão:
EcinA
=
EcinB
=
=
=
=
qA
2
–––––
qB
2
1
–––
2
EcinA
––––––
EcinB
cos2 ␪
pA
2
΂–––––– + sen2 ␪΃9–––––––––––––––––––
4
––– pA
2
cos2 ␪
9
1
–––
2
EcinA
––––––
EcinB
8 cos2 ␪
––––––––––––––
cos2 ␪ + 9 sen2 ␪
EcinB
––––––
EcinA
EcinB 8
–––––– = ––––––––––
EcinA
1 + 9 tg2 ␪
2
qB = –– pA cos ␪
3
2
–––
3
1
–––
3
pA
2
cos2 ␪
––––––––––
9
qA
2
–––––
4m
qB
2
–––––
2m
qB
2
–––
2m
qA
2
–––
4m
pA
2
–––
4m
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
26
Dois capacitores em série, de capacitância C1 e C2,
respectivamente, estão sujeitos a uma diferença de
potencial V. O Capacitor de capacitância C1 tem carga Ql
e está relacionado com C2 através de C2 = xC1, sendo x
um coeficiente de proporcionalidade. Os capacitores
carregados são então desligados da fonte e entre si, sendo
a seguir religados com os respectivos terminais de carga
de mesmo sinal. Determine o valor de x para que a carga
Q2 final do capacitor de capacitância C2 seja Ql 4.
Resolução
Estando ligados em série, concluímos que Q2 = Q1
Religando-os com os respectivos terminais de carga de
mesmo sinal e atingindo o equilíbrio eletrostático,
temos:
Q1 + Q1 = Q’1 + ⇒ Q’1 =
Sendo C1 = e C2 = , vem:
C1 = 7C2 e de C2 = xC1, vem:
Q1
––––
4
7Q1
––––
4
7Q1
––––
4
–––––
U
Q1
–––
4
––––
U
1
x = ––
7
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
27
O momento angular é uma grandeza importante na Física.
O seu módulo é definido como L = rp sen ␪, em que r é o
módulo do vetor posição com relação à origem de um
dado sistema de referência, p o módulo do vetor
quantidade de movimento e ␪ o ângulo por eles formado.
Em particular, no caso de um satélite girando ao redor da
Terra, em órbita elíptica ou circular, seu momento angular
(medido em relação ao centro da Terra) é conservado.
Considere, então, três satélites de mesma massa com
órbitas diferentes entre si, I, II e III, sendo I e III circulares
e II elíptica e tangencial a I e III, como mostra a figura.
Sendo LI, LII e LIII os respectivos módulos do momento
angular dos satélites em suas órbitas, ordene, de forma
crescente, LI, LII e LIII.
Justifique com equações a sua resposta.
Resolução
Comparando as órbitas circulares I e III:
1) FG = Fcp ⇒ = ⇒
2) Para a órbita circular, temos θ = 90° ⇒ sen θ = 1
e L = r p
L = r m V ⇒ L = ⇒ L = m͙ළළළළළළළළG M r
Como rIII > rI, resulta LIII > LI
Comparando a órbita circular I com a órbita
elíptica II:
Para a órbita circular: v2
I = (1)
G Mm r
͙ළළළළළ–––––
r
G M
––––––
r1
G MV =
͙ළළළළළ–––––
r
m V2
–––––
r
G M m
–––––––
r2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
Para a órbita elíptica:
1) LA = LB ⇒ m VA r1 = m VB r2 ⇒
2) Conservação da energia mecânica:
EA = EB
– = –
VA
2 – 2 = –
VA
2 1 – = 2GM –
VA
2 = 2GM
VA
2
=
VA
2
= (2)
Fazendo-se : =
Como r2 > r1 ⇒ 2 r2 > r2 + r1
Portanto: VA > VI
Sendo: LI = m VI r1
LII = m VA r1
Vem: LII > LI
Comparando a órbita circular III com a órbita
elíptica II:
V2 = (3)
VB
2
= (4)
: =
r1 < r2 ⇒ 2 r1 < r2 + r1 ⇒ VB < V
L = m V r
LII = m VB r2
LIII = m V r2
VB < V ⇒ LII < LIII
Portanto:
GM
–––––
r2
2 GM r1
–––––––––
r2(r1 + r2)
2 r1
–––––––
r1 + r2
VB
2
–––––
V2
(4)
–––
(3)
VA . r1
VB = ––––––
r2
G M m
–––––––
r2
m VB
2
––––––
2
G M m
–––––––
r1
m VA
2
––––––
2
2 G M
–––––––
r2
VA
2 r1
2
––––––
r2
2
G M
––––––
r1
΃
1
–––
r2
1
–––
r1
΂΃
r1
2
–––––
r2
2΂
(r2 – r1)
–––––––––
r1 r2
(r2
2
– r1
2
)
–––––––––
r2
2
2 GM
–––––––
r1
(r2 + r1)
–––––––
r2
2 GM r2
––––––––––
r1(r2 + r1)
2 r2
––––––
r2 + r1
VA
2
–––––
VI
2
(2)
––––
(1)
LI < LII < LIII
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
28
Uma partícula de massa m está sujeita exclusivamente à
ação da força
→
F = F(x)
→
ex, que varia de acordo com o
gráfico da figura, sendo
→
ex o versor no sentido positivo de
x. Se em t = 0, a partícula se encontra em x = 0 com
velocidade v no sentido positivo de x, pedem-se:
1. O período do movimento da partícula em função de F1,
F2, L e m.
2. A máxima distância da partícula à origem em função
de F1, F2, L, m e v.
3. Explicar se o movimento descrito pela partícula é do
tipo harmônico simples.
Resolução
1) A partícula descreve nos semieixos, positivo e
negativo, do eixo x dois MHS.
O período do oscilador harmônico simples é T,
dado por:
T = 2␲
em que k é a constante de força do MHS.
Assim, o período do oscilador em questão fica
expresso por:
T = + ⇒ T = +
Mas k1 = e k2 = , logo:
T = ␲ +
Da qual:
m
–––
k2
2␲
–––
2
m
–––
k1
2␲
–––
2
T2
–––
2
T1
–––
2
F2
–––
L
F1
–––
L
΃
m
––––
F2
––––
L
m
––––
F1
––––
L΂
m
–––
k
mL mL
T = ␲
΂ –––– + –––– ΃F1 F2
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
2) A máxima distância da partícula à origem é dada
por:
=
m v2 = x2
máx
xmáx =
xmáx = v
No semieixo negativo, temos:
xmáx2
= v
No semieixo positivo, temos:
xmáx1
= v
Do gráfico, temos que F2 > F1 e, portanto:
xmáx1
> xmáx2
Assim, a máxima distância da partícula à origem
é:
3) O movimento completo é periódico, mas não é
harmônico simples, pois, em cada semieixo, a
partícula tem períodos e amplitudes diferentes.
mL
xmáx1
= v ––––
F1
k x2
máx
–––––––
2
m v2
–––––
2
F
–––
L
m v2 L
––––––––
F
m L
––––––
F
m L
––––––
F2
m L
––––––
F1
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
29
Considere dois fios paralelos, muito longos e finos,
dispostos horizontalmente conforme mostra a figura. O
fio de cima pesa 0,080N/m, é percorrido por uma corrente
I1 = 20A e se encontra dependurado por dois cabos. O fio
de baixo encontra-se preso e é percorrido por uma
corrente I2 = 40A, em sentido oposto. Para qual distância
r indicada na figura, a tensão T nos cabos será nula?
Resolução
O fio (2) gera um campo magnético
→
B2, que tem orien-
tação dada pela “regra da mão direita”, como mos-
trada na figura:
A intensidade de
→
B2 é dada por:
B2 =
B2 = (T)
B2 = (T)
Devido ao campo
→
B2, o fio (1) sofre a ação da força
→
F2,1, com intensidade dada por:
→
F2,1 = B2I1 L sen ␪, com ␪ = 90°
F2,1 = . 20 . L . sen (90°)
F2,1 = 1,6 . 10– 4 (N)
μ0I2
––––––
2␲r
4␲ . 10–2 . 40
––––––––––––
2␲r
8,0 . 10–6
––––––––––
r
8,0 . 10–6
––––––––––
r
L
–––
r
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
Para que as trações nos fios se anulem,
→
F2,1 deve
equilibrar a força peso do fio (1).
Para um comprimento L do fio (2), seu peso tem inten-
sidade dada por:
P2 = 8,0 . 10–2 L (N)
F2,1 = P2
1,6 . 10– 4 = 8,0 . 10–2 L
r = (m)
1,6 . 10–4
–––––––––––
8,0 . 10–2
r = 2,0 . 10–3m
L
–––
r
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
30
Considere uma espira com N voltas de área A, imersa
num campo magnético B
→
uniforme e constante, cujo
sen–tido aponta para dentro da página. A espira está
situada inicialmente no plano perpendicular ao campo e
possui uma resistência R. Se a espira gira 180° em torno
do eixo mostrado na figura, calcule a carga que passa pelo
ponto P.
Resolução
Analisaremos, inicialmente, apenas metade do giro
total de 180°, assim:
Φinicial = NBA cos 180°
Φinicial = – NBA
O fluxo final será nulo, pois a espira estará paralela a
→
B nesta situação.
Φfinal = 0
A variação do fluxo para esta metade do giro será
dada por:
ΔΦ = Φfinal – Φinicial
ΔΦ = 0 – (– NBA)
ΔΦ = NBA
A f.e.m. induzida média, em módulo, será dada por:
E = =
A intensidade média de corrente elétrica neste trecho
analisado será dada por
i =
mas i =
Assim: =
=
Q =
Q
–––
Δt
NBA
––––––
Δt R
Q
––––
Δt
E
–––
R
Q
–––
Δt
E
–––
R
NBA
–––––
Δt
ΔΦ
––––
Δt
NBA
––––––
R
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
Nos 90° restantes, para se completar os 180° de giro,
teremos essa mesma quantidade de carga passando
por P mas com sentido oposto.
A carga total que passa efetivamente por P será então:
Qtotal = +
NBA
––––––
R
NBA
––––––
R
2NBA
Qtotal = –––––––
R
IITTAA ((11..OO
DD IIAA )) —— DDEEZZEEMMBBRROO//22001111

Contenu connexe

Tendances

Tendances (16)

Ita2007 1dia
Ita2007 1diaIta2007 1dia
Ita2007 1dia
 
F128 exercicios resolvidos-cap_10_a
F128 exercicios resolvidos-cap_10_aF128 exercicios resolvidos-cap_10_a
F128 exercicios resolvidos-cap_10_a
 
6 dinamica
6 dinamica6 dinamica
6 dinamica
 
Movimento 1 D
Movimento 1 DMovimento 1 D
Movimento 1 D
 
ITA_2010
ITA_2010ITA_2010
ITA_2010
 
Ita2002
Ita2002Ita2002
Ita2002
 
Ita2002 parte 001
Ita2002 parte 001Ita2002 parte 001
Ita2002 parte 001
 
Módulo 01
Módulo 01Módulo 01
Módulo 01
 
ConservaçãO Da Energia
ConservaçãO Da EnergiaConservaçãO Da Energia
ConservaçãO Da Energia
 
15 oscilacoes (1)
15 oscilacoes (1)15 oscilacoes (1)
15 oscilacoes (1)
 
Trabalho E Energia
Trabalho E EnergiaTrabalho E Energia
Trabalho E Energia
 
10. colisões
10. colisões10. colisões
10. colisões
 
Oscilações
OscilaçõesOscilações
Oscilações
 
Ita2008 1dia parte_001
Ita2008 1dia parte_001Ita2008 1dia parte_001
Ita2008 1dia parte_001
 
Ita2008 1e2dias
Ita2008 1e2diasIta2008 1e2dias
Ita2008 1e2dias
 
Módulo 02
Módulo 02Módulo 02
Módulo 02
 

En vedette

Coment obf nivel3_3fase
Coment obf nivel3_3faseComent obf nivel3_3fase
Coment obf nivel3_3faseThommas Kevin
 
Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Thommas Kevin
 
Fuvest1998 2fase (1) parte_001
Fuvest1998 2fase (1) parte_001Fuvest1998 2fase (1) parte_001
Fuvest1998 2fase (1) parte_001Thommas Kevin
 
Resolução enem 2012
Resolução enem 2012Resolução enem 2012
Resolução enem 2012Thommas Kevin
 
Fuvest2008 2fase 4dia
Fuvest2008 2fase 4diaFuvest2008 2fase 4dia
Fuvest2008 2fase 4diaThommas Kevin
 
Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Thommas Kevin
 

En vedette (10)

Coment obf nivel3_3fase
Coment obf nivel3_3faseComent obf nivel3_3fase
Coment obf nivel3_3fase
 
Ita2004 parte 001
Ita2004 parte 001Ita2004 parte 001
Ita2004 parte 001
 
Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001Unicamp2012 2fase 3dia_parte_001
Unicamp2012 2fase 3dia_parte_001
 
Pucsp2013 parte 001
Pucsp2013 parte 001Pucsp2013 parte 001
Pucsp2013 parte 001
 
Fuvest1998 2fase (1) parte_001
Fuvest1998 2fase (1) parte_001Fuvest1998 2fase (1) parte_001
Fuvest1998 2fase (1) parte_001
 
Resolução enem 2012
Resolução enem 2012Resolução enem 2012
Resolução enem 2012
 
Fuvest2008 2fase 4dia
Fuvest2008 2fase 4diaFuvest2008 2fase 4dia
Fuvest2008 2fase 4dia
 
Ita2007 1dia
Ita2007 1diaIta2007 1dia
Ita2007 1dia
 
Ita2013 1dia
Ita2013 1diaIta2013 1dia
Ita2013 1dia
 
Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001Unicamp2008 2fase 3dia_parte_001
Unicamp2008 2fase 3dia_parte_001
 

Similaire à Ita2012 1dia

Ita2010 1dia
Ita2010 1diaIta2010 1dia
Ita2010 1diacavip
 
Ita2008 1e2dias
Ita2008 1e2diasIta2008 1e2dias
Ita2008 1e2diascavip
 
Ita2009 1dia
Ita2009 1diaIta2009 1dia
Ita2009 1diacavip
 
Unicamp2011 2fase 3dia_parte_001
Unicamp2011 2fase 3dia_parte_001Unicamp2011 2fase 3dia_parte_001
Unicamp2011 2fase 3dia_parte_001Thommas Kevin
 
Unicamp2001 2fase 3dia_parte_001
Unicamp2001 2fase 3dia_parte_001Unicamp2001 2fase 3dia_parte_001
Unicamp2001 2fase 3dia_parte_001Thommas Kevin
 
Fuvest2010 3fase 3dia_parte_001
Fuvest2010 3fase 3dia_parte_001Fuvest2010 3fase 3dia_parte_001
Fuvest2010 3fase 3dia_parte_001Thommas Kevin
 
Unicamp2013 2fase 3dia_parte_001
Unicamp2013 2fase 3dia_parte_001Unicamp2013 2fase 3dia_parte_001
Unicamp2013 2fase 3dia_parte_001Thommas Kevin
 
Unicamp2010 2fase 3dia_parte_001
Unicamp2010 2fase 3dia_parte_001Unicamp2010 2fase 3dia_parte_001
Unicamp2010 2fase 3dia_parte_001Thommas Kevin
 
Unicamp2005 2fase 3dia_parte_001
Unicamp2005 2fase 3dia_parte_001Unicamp2005 2fase 3dia_parte_001
Unicamp2005 2fase 3dia_parte_001Thommas Kevin
 
Ita2006 1dia
Ita2006 1diaIta2006 1dia
Ita2006 1diacavip
 
Fuvest2001 2fase 4dia
Fuvest2001 2fase 4diaFuvest2001 2fase 4dia
Fuvest2001 2fase 4diaThommas Kevin
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Thommas Kevin
 

Similaire à Ita2012 1dia (20)

Ita2010 1dia
Ita2010 1diaIta2010 1dia
Ita2010 1dia
 
Ita2010 1dia
Ita2010 1diaIta2010 1dia
Ita2010 1dia
 
Ita2008 1e2dias
Ita2008 1e2diasIta2008 1e2dias
Ita2008 1e2dias
 
puc- sp 2004
puc- sp 2004puc- sp 2004
puc- sp 2004
 
Ita2009 1dia
Ita2009 1diaIta2009 1dia
Ita2009 1dia
 
Ita2009 1dia
Ita2009 1diaIta2009 1dia
Ita2009 1dia
 
Ita2009 1dia
Ita2009 1diaIta2009 1dia
Ita2009 1dia
 
Unicamp2011 2fase 3dia_parte_001
Unicamp2011 2fase 3dia_parte_001Unicamp2011 2fase 3dia_parte_001
Unicamp2011 2fase 3dia_parte_001
 
Unicamp2001 2fase 3dia_parte_001
Unicamp2001 2fase 3dia_parte_001Unicamp2001 2fase 3dia_parte_001
Unicamp2001 2fase 3dia_parte_001
 
Fuvest2010 3fase 3dia_parte_001
Fuvest2010 3fase 3dia_parte_001Fuvest2010 3fase 3dia_parte_001
Fuvest2010 3fase 3dia_parte_001
 
Unicamp2013 2fase 3dia_parte_001
Unicamp2013 2fase 3dia_parte_001Unicamp2013 2fase 3dia_parte_001
Unicamp2013 2fase 3dia_parte_001
 
Unicamp2010 2fase 3dia_parte_001
Unicamp2010 2fase 3dia_parte_001Unicamp2010 2fase 3dia_parte_001
Unicamp2010 2fase 3dia_parte_001
 
Proxima postagem
Proxima postagemProxima postagem
Proxima postagem
 
Unicamp2005 2fase 3dia_parte_001
Unicamp2005 2fase 3dia_parte_001Unicamp2005 2fase 3dia_parte_001
Unicamp2005 2fase 3dia_parte_001
 
Dinamica
DinamicaDinamica
Dinamica
 
Ita2006 1dia
Ita2006 1diaIta2006 1dia
Ita2006 1dia
 
Ita2006 1dia
Ita2006 1diaIta2006 1dia
Ita2006 1dia
 
Fuvest2001 2fase 4dia
Fuvest2001 2fase 4diaFuvest2001 2fase 4dia
Fuvest2001 2fase 4dia
 
Mhs
MhsMhs
Mhs
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001
 

Plus de Thommas Kevin

Coment obf nivel1_3fase
Coment obf nivel1_3faseComent obf nivel1_3fase
Coment obf nivel1_3faseThommas Kevin
 
Coment obf nivel2_3fase
Coment obf nivel2_3faseComent obf nivel2_3fase
Coment obf nivel2_3faseThommas Kevin
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Thommas Kevin
 
Unicamp2009 2fase 3dia_parte_001
Unicamp2009 2fase 3dia_parte_001Unicamp2009 2fase 3dia_parte_001
Unicamp2009 2fase 3dia_parte_001Thommas Kevin
 
Unicamp2007 2fase 3dia_parte_001
Unicamp2007 2fase 3dia_parte_001Unicamp2007 2fase 3dia_parte_001
Unicamp2007 2fase 3dia_parte_001Thommas Kevin
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Thommas Kevin
 
Unicamp2004 2fase 3dia_parte_001
Unicamp2004 2fase 3dia_parte_001Unicamp2004 2fase 3dia_parte_001
Unicamp2004 2fase 3dia_parte_001Thommas Kevin
 
Unicamp2003 2fase 2dia_parte_001
Unicamp2003 2fase 2dia_parte_001Unicamp2003 2fase 2dia_parte_001
Unicamp2003 2fase 2dia_parte_001Thommas Kevin
 
Unicamp1998 2fase (1) parte_001
Unicamp1998 2fase (1) parte_001Unicamp1998 2fase (1) parte_001
Unicamp1998 2fase (1) parte_001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Thommas Kevin
 

Plus de Thommas Kevin (20)

01 parte 001
01 parte 00101 parte 001
01 parte 001
 
Coment obf nivel1_3fase
Coment obf nivel1_3faseComent obf nivel1_3fase
Coment obf nivel1_3fase
 
Coment obf nivel2_3fase
Coment obf nivel2_3faseComent obf nivel2_3fase
Coment obf nivel2_3fase
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001
 
Unicamp2009 2fase 3dia_parte_001
Unicamp2009 2fase 3dia_parte_001Unicamp2009 2fase 3dia_parte_001
Unicamp2009 2fase 3dia_parte_001
 
Unicamp2007 2fase 3dia_parte_001
Unicamp2007 2fase 3dia_parte_001Unicamp2007 2fase 3dia_parte_001
Unicamp2007 2fase 3dia_parte_001
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001
 
Unicamp2004 2fase 3dia_parte_001
Unicamp2004 2fase 3dia_parte_001Unicamp2004 2fase 3dia_parte_001
Unicamp2004 2fase 3dia_parte_001
 
Unicamp2003 2fase 2dia_parte_001
Unicamp2003 2fase 2dia_parte_001Unicamp2003 2fase 2dia_parte_001
Unicamp2003 2fase 2dia_parte_001
 
Unicamp1998 2fase (1) parte_001
Unicamp1998 2fase (1) parte_001Unicamp1998 2fase (1) parte_001
Unicamp1998 2fase (1) parte_001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 

Ita2012 1dia

  • 1. FFÍÍSSIICCAA Quando precisar use os seguintes valores para as constantes: 1 ton de TNT = 4,0 x 109 J. Aceleração da gravidade g = 10 m/s2. 1 atm = 105 Pa. Massa específica do ferro ρ = 8000 kg/m3. Raio da Terra R = 6400 km. Permeabilidade magnética do vácuo μ0 = 4π × 10–7 N/A2. 1 BB Ondas acústicas são ondas de compressão, ou seja, propagam-se em meios compressíveis. Quando uma barra metálica é golpeada em sua extremidade, uma onda lon- gitudinal propaga-se por ela com velocidade v = ͙ළළළළළළEa/ρ. A grandeza E é conhecida como módulo de Young, enquanto ρ é a massa específica e a uma constante adimensional. Qual das alternativas é condizente à dimensão de E? a) J/m2 b) N/m2 c) J/s.m d) kg.m/s2 e) dyn/cm3 Resolução V = LT–1 = L2 T–2 = [E] = ML–1T–2 = = [p] O Módulo de Young tem a mesma equação dimen- sional de pressão e sua unidade, no SI, é . Ea ––– ␳ [E] ––––– ML–3 [E] ––––– ML–3 MLT–2 –––––– L2 N ––– m2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 2. 2 BB Considere uma rampa plana, inclinada de um ângulo θ em relação à horizontal, no início da qual encontra-se um carrinho. Ele então recebe uma pancada que o faz subir até uma certa distância, durante o tempo ts, descendo em seguida até sua posição inicial.A“viagem” completa dura um tempo total t. Sendo μ o coeficiente de atrito cinético entre o carrinho e a rampa, a relação t/ts é igual a a) 2 b) 1 + ͙ළළළළළළළළළළළළළළළළළළළළළළළළළළළළ(tan ␪ + μ)/͉tan ␪ – μ͉ c) 1 + ͙ළළළළළළළළළළළළළළළළළළළළළළළළළළළළ(cos ␪ + μ)/͉cos ␪ – μ͉ d) 1 + ͙ළළළළළළළළළළළළළළළළළළළළළළළළළළළළ(sen ␪ + μ)/͉cos ␪ – μ͉ e) 1 – ͙ළළළළළළළළළළළළළළළළළළළළළළළළළළළළ(tan ␪ + μ)/͉tan ␪ – μ͉ Resolução Na subida da rampa: 1) PFD: Pt + Fat = ma1 mg sen ␪ + μ mg cos ␪ = ma1 2) V = V0 + γt 0 = V0 – a1 ts ⇒ 3) = ⇒ = ⇒ ts 2 = ts = ⇒ (1) 4) Na descida da rampa: 1) PFD: Pt – Fat = ma2 mg sen ␪ – μmg cos ␪ = ma2 a2 = g(sen ␪ – μ cos ␪) 2) ⌬s = v0t + t2 a1 = g(sen ␪ + μ cos ␪) V0 = a1 ts 2d –––– a1 a1 ts ––––– 2 d ––– ts V0 + 0 ––––––– 2 ⌬s ––– ⌬t 2d ts = –––––––––––––––– g(sen ␪ + μcos ␪) 2d ––– a1 γ ––– 2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 3. d = td 2 (2) O tempo total t é dado por: t = ts + td ÷ ts: = 1 + (3) : = = Em (3): t tg ␪ + μ ––– = 1 + –––––––– ts tg ␪ – μ g(sen ␪ – μ cos ␪) –––––––––––––––– 2 2d td = –––––––––––––––– g(sen ␪ – μcos ␪) td ––– ts t ––– ts sen ␪ + μ cos ␪ ––––––––––––– sen ␪ – μ cos ␪ td ––– ts (2) ––– (1) tg ␪ + μ –––––––– tg ␪ – μ IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 4. 3 CC Um elevador sobe verticalmente com aceleração cons- tante e igual a a. No seu teto está preso um conjunto de dois sistemas massa-mola acoplados em série, conforme a figura. O primeiro tem massa m1 e constante de mola k1, e o segundo, massa m2 e constante de mola k2. Ambas as molas têm o mesmo comprimento natural (sem defor- mação) ᐉ. Na condição de equilíbrio estático relativo ao elevador, a deformação da mola de constante k1 é y, e a da outra, x. Pode-se então afirmar que (y – x) é a) [(k2 – k1)m2 + k2ml](g – a)/k1k2. b) [(k2 + k1)m2 + k2ml](g – a)/k1k2. c) [(k2 - k1)m2 + k2m1](g + a)/k1k2. d) [(k2 + k1)m2 + k2ml](g + a)/k1k2 – 2ᐉ. e) [(k2 – k1)m2 + k2ml](g + a)/k1k2 + 2ᐉ. Resolução Como não se sabe se o movimento de subida do ele- vador é acelerado ou retardado, não podemos concluir qual o sentido da aceleração do elevador. Admitindo-se que o movimento do elevador seja acelerado, a aceleração terá sentido dirigido para cima e a gravidade aparente dentro do elevador será: A força deformadora da mola k1 é o peso aparente do sistema (m1 + m2): (m1 + m2) (g + a) = k1 . y A força deformadora da mola k2 é o peso aparente do bloco m2: m2 (g + a) = k2 . x y – x = – m2 (g + a) x = –––––––––– k2 m2 (g + a) –––––––––– k2 (m1 + m2) (g + a) ––––––––––––––– k1 gap = g + a (m1 + m2) (g + a) y = –––––––––––––––– k1 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 5. y – x = (g + a) y – x = (g + a) Nota: Se o movimento do elevador for retardado, tere- mos a opção A. m1 + m2 m2 ΄–––––––– – –––– ΅k1 k2 (m1 k2 + m2k2 – m2k1) ––––––––––––––––––– k1k2 [(k2 – k1) m2 + m1k2] y – x = (g + a) ––––––––––––––––––– k1k2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 6. 4 AA Apoiado sobre patins numa superfície horizontal sem atrito, um atirador dispara um projétil de massa m com velocidade v contra um alvo a uma distância d. Antes do disparo, a massa total do atirador e seus equipamentos é M. Sendo vs a velocidade do som no ar e desprezando a perda de energia em todo o processo, quanto tempo após o disparo o atirador ouviria o ruído do impacto do projétil no alvo? a) b) c) d) e) Resolução 1) Admitindo-se que o atirador esteja inicialmente em repouso, temos: → Qf = → Q0 → Qp + → QA = → 0 ͉ → QA͉ = ͉ → Qp͉ ⇒ (M – m) V1 = m v 2) Tempo t1 gasto pelo projétil para chegar ao alvo: d = v . t1 ⇒ 3) Distância d1 percorrida pelo atirador no tempo t1: d1 = V1 . t1 d1 = . ⇒ 4) Distância entre atirador e alvo no instante t1: D = d1 + d = + d = m d d1 = ––––––– M – m d ––– v mv –––––––– M – m md + Md – md ––––––––––––––– M – m m d –––––––– M – m m v V1 = –––––– M – m d t1 = ––– v d(vs + v)(M + m) ––––––––––––––––– v(Mvs + m(vs + v)) d(vs + v)(M – m) ––––––––––––––––– v(Mvs – m(vs + v)) d(vs + v)(M – m) ––––––––––––––––– v(Mvs – m(vs – v)) d(vs – v)(M + m) ––––––––––––––––– v(Mvs + m(vs + v)) d(vs – v)(M – m) ––––––––––––––––– v(Mvs + m(vs + v)) IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 7. 5) O som e o atirador se movimentam no mesmo sentido e a velocidade relativa terá módulo Vrel dado por: Vrel = vs – v1 = vs – = 6) O tempo gasto pelo som TS para chegar ao atira- dor é dado por: Vrel = TS = TS = D . TS = . 7) O tempo total pedido T é dado por: T = t1 + TS T = + T = d T = d T = . Md ––––––––––––––– (M – m) vs – mv d –––– v M 1 ΄––––––––––––––– + –– ΅M vs – m (vs + v) v M (v + vs) – m (vs + v) ΄–––––––––––––––––––– ΅v(M vs – m (vs + v)) M v + M vs – mvs – mv –––––––––––––––––––– M vs – m (vs + v) d –––– v d (M – m) (vs + v) T = ––– ––––––––––––––––– v (M vs – m (vs + v)) M d D = ––––––– M – m (M – m) vs – mv ––––––––––––––– M – m m v ––––––– M – m D –––– TS D –––– Vrel M – m ––––––––––––––– (M – m) vs – mv M – m ––––––––––––––– (M – m) vs – mv M d –––––––– M – m M d TS = –––––––––––––– (M – m) vs – mv IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 8. 5 DD Um gerador elétrico alimenta um circuito cuja resistência equivalente varia de 50 a 150 ⍀, dependendo das condições de uso desse circuito. Lembrando que, com resistência mínima, a potência útil do gerador é máxima, então, o rendimento do gerador na situação de resistência máxima, é igual a a) 0,25. b) 0,50. c) 0,67. d) 0,75 e) 0,90. Resolução Temos o circuito Na condição de potência útil máxima, temos r = R, isto é, r = 50⍀ Para r = 150⍀, vem: 1.°) i = ⇒ i = ⇒ i = 2.°) U = E – ri ⇒ U = E – 50 . ⇒ U = O rendimento do gerador na situação de resistência elétrica máxima é igual a: ␩ = ⇒ ␩ = ⇒ ␩ = 0,75 3E/4 ––––– E U ––– E E ––––– 200 E ––––––– 50 + 150 E ––––– r + R 3E ––––– 4 E –––– 200 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 9. 6 CC Um funil que gira com velocidade angular uniforme em torno do seu eixo vertical de simetria apresenta uma superfície cônica que forma um ângulo ␪ com a horizontal, conforme a figura. Sobre esta superfície, uma pequena esfera gira com a mesma velocidade angular mantendo-se a uma distância d do eixo de rotação. Nestas condições, o período de rotação do funil é dado por a) 2␲ ͙ෆෆෆෆෆd/g sen ␪ . b) 2␲ ͙ෆෆෆෆෆd/g cos ␪ . c) 2␲ ͙ෆෆෆෆෆd/g tan ␪ . d) 2␲ ͙ෆෆෆෆෆෆ2d/g sen2␪. e) 2␲ ͙ෆෆෆෆෆෆෆෆd cos ␪ / g tan ␪. Resolução 1) Fy = P = mg 2) Fx = Fcp = m ␻2d 3) tg ␪ = ␻2 = ␻ = = Nota: Admitimos que não há atrito entre o funil e a bolinha. m ␻2d ––––––– mg g tg ␪ ––––––– d 2␲ –––– T g tg ␪ –––––– d d T = 2␲ –––––– g tg ␪ IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 10. 7 EE No interior de um carrinho de massa M mantido em repouso, uma mola de constante elástica k encontra-se comprimida de uma distância x, tendo uma extremidade presa e a outra conectada a um bloco de massa m, conforme a figura. Sendo o sistema então abandonado e considerando que não há atrito, pode-se afirmar que o valor inicial da aceleração do bloco relativa ao carrinho é a) kx / m. b) kx / M. c) kx / (m + M). d) kx (M – m) / mM. e) kx (M + m) / mM. Resolução PFD (bloco): Fmola = k x = m ab PFD (carrinho): Fmola = k x = M ac A aceleração do bloco relativa ao carrinho será: arel = ab + ac arel = + = k x ΂ + ΃ kx ab = –––– m kx ac = –––– M 1 ––– M 1 ––– m k x –––– M k x –––– m (M + m) arel = k x ––––––––– Mm IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 11. 8 CC Um corpo movimenta-se numa superfície horizontal sem atrito, a partir do repouso, devido à ação contínua de um dispositivo que lhe fornece uma potência mecânica constante. Sendo v sua velocidade após certo tempo t, pode-se afirmar que a) a aceleração do corpo é constante. b) a distância percorrida é proporcional a v2. c) o quadrado da velocidade é proporcional a t. d) a força que atua sobre o corpo é proporcional a ͙ෆt . e) a taxa de variação temporal da energia cinética não é constante. Resolução Como a potência é constante, a potência média coincide com a instantânea: P = Pm = TEC: τ = – Como V0 = 0, vem τ = Δt = t – 0 = t P = V2 = Como é constante, então V2 é proporcional a t. τ ––– Δt mV0 2 ––––– 2 mV2 ––––– 2 mV2 ––––– 2 mV2 ––––– 2t 2 P t ––––– m 2 P –––– m IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 12. 9 DD Acredita-se que a colisão de um grande asteroide com a Terra tenha causado a extinção dos dinossauros. Para se ter uma ideia de um impacto dessa ordem, considere um asteroide esférico de ferro, com 2 km de diâmetro, que se encontra em repouso quase no infinito, estando sujeito somente à ação da gravidade terrestre. Desprezando as forças de atrito atmosférico, assinale a opção que expressa a energia liberada no impacto, medida em número aproximado de bombas de hidrogênio de 10 megatons de TNT. a) 1 b) 10 c) 500 d) 50.000 e) 1.000.000 Resolução A energia mecânica total do asteroide no infinito é nula. Ao atingir a Terra, supondo-se que esta energia mecâ- nica se conservou, teremos: Em = – + = 0 Sendo g = , vem: Ecin = ⇒ A massa m do asteroide é dada por: m = ␳ ␲ r3 Portanto: Ecin = . 3 . 8000 . (1,0 . 103)3 . 10 . 6,4 . 106 (J) Ecin = 32 . 6,4 . 1019J ഡ 2,0 . 1021J E = 10 megatons de TNT = 10 . 106 . 4,0 . 109J = 4,0 . 1016J Ecin = n E 20 . 1020 = n . 4 . 1016 4 Ecin = –– ␲ ␳ r3 g R 3 4 –– 3 n = 5 . 104 m V2 ––––– 2 G M m –––––– R G M m Ecin = ––––––––– R G M ––––– R2 Ecin = m g R g . R2 m ––––––– R 4 –– 3 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 13. 10 BB Boa parte das estrelas do Universo formam sistemas binários nos quais duas estrelas giram em torno do centro de massa comum, CM. Considere duas estrelas esféricas de um sistema binário em que cada qual descreve uma órbita circular em torno desse centro. Sobre tal sistema são feitas duas afirmações: I. O período de revolução é o mesmo para as duas estrelas e depende apenas da distância entre elas, da massa total deste binário e da constante gravitacional. II. Considere que → R1 e → R2 são os vetores que ligam o CM ao respectivo centro de cada estrela. Num certo intervalo de tempo ⌬t, o raio vetor → R1varre uma certa área A. Durante este mesmo intervalo de tempo, o raio vetor → R2 também varre uma área igual a A. Diante destas duas proposições, assinale a alternativa correta. a) As afirmações I e II são falsas. b) Apenas a afirmação I é verdadeira. c) Apenas a afirmação II é verdadeira. d) As afirmações I e II são verdadeiras, mas a II não justifica a I. e) As afirmações I e II são verdadeiras e, além disso, a II justifica a I. Resolução I. (V) 1) Localização do CM: r1 = Mr1 + mr1 = mr2 + mr1 Sendo r1 + r2 = d, vem: r1 + r1 = d ⇒ r1 . = d ⇒ e r2 M ––– = –––– r1 m M ΂1 + –– ΃m M ––– m m d r1 = –––––– M + m M d r2 = –––––– M + m M . 0 + m (r2 + r1) –––––––––––––––– M + m IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 14. 2) Cálculo do período T: FG = Fcp = M␻2 . ⇒ ␻2 = ␻ = = II. (F) As velocidades angulares são iguais: no mesmo intervalo de tempo Δt, os ângulos são iguais e a estrela que tem maior raio de órbita descreve área maior. G (M + m) –––––––––– d3 md –––––– M + m GMm ––––––– d2 G (M + m) –––––––––– d3 G (M + m) –––––––––– d3 2␲ –––– T d3 T = 2␲ ––––––––– G (M + m) IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 15. 11 BB Um cilindro vazado pode deslizar sem atrito num eixo horizontal no qual se apoia. Preso ao cilindro, há um cabo de 40 cm de comprimento tendo uma esfera na ponta, conforme figura. Uma força externa faz com que o cilindro adquira um movimento na horizontal do tipo y = y0 sen (2␲ ft). Qual deve ser o valor de f em hertz para que seja máxima a amplitude das oscilações da esfera? a) 0,40 b) 0,80 c) 1,3 d) 2,5 e) 5,0 Resolução A esfera pendular vai oscilar com máxima amplitude quando o cilindro e a esfera estiverem em ressonância. Isso significa que o cilindro e a esfera deverão oscilar com a mesma frequência f. Considerando-se que a massa do cilindro seja muito maior que a da esfera para que o pêndulo tenha com- primento efetivo de oscilação igual a 40cm e imaginan- do-se que o movimento oscilatório do pêndulo seja praticamente harmônico simples, o período T e a frequência f ficam dados por: T = 2π ⇒ f = ⇒ f = f = (Hz) ⇒ g ––– L 1 ––– 2␲ 1 –– T L ––– g f ഡ 0,80Hz 10 –––– 0,40 1 ––––––– 2 . 3,14 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 16. 12 EE No interior de um elevador encontra-se um tubo de vidro fino, em forma de U, contendo um líquido sob vácuo na extremidade vedada, sendo a outra conectada a um recipiente de volume V com ar mantido à temperatura constante. Com o elevador em repouso, verifica-se uma altura h de 10 cm entre os níveis do líquido em ambos os braços do tubo. Com o elevador subindo com aceleração constante → a (ver figura), os níveis do líquido sofrem um deslocamento de altura de 1,0 cm. Pode-se dizer então que a aceleração do elevador é igual a a) – 1,1 m/s2. b) – 0,91 m/s2. c) 0,91 m/s2. d) 1,1 m/s2. e) 2,5 m/s2. Resolução (I) Situação inicial (elevador em repouso): p2 = p1 ⇒ par = ␳ g h par = ␳ . 10 . 0,10 (SI) par = ␳ . 1,0 (SI) IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 17. (II) Situação final (elevador acelerado): p4 = p3 ⇒ p’ar = ␳ gap h’ p’ar = ␳ . gap . 0,080 (SI) Como a temperatura é constante e o tubo é fino (volume desprezível), a pressão do ar dentro do bulbo praticamente não se altera. Assim: p’ar = par ⇒ ␳ gap 0,080 = ␳ 1,0 Da qual: (III) Sendo gap > g, a aceleração do elevador é dirigida para cima (no sentido de a → ), com módulo deter- minado por: gap = g + a ⇒ 12,5 = 10,0 + a a = 2,5m/s2 p’ar = ␳ . gap . 0,080 (SI) gap = 12,5m/s2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 18. 13 EE Conforme a figura, um circuito elétrico dispõe de uma fonte de tensão de 100 V e de dois resistores, cada qual de 0,50 ⍀. Um resistor encontra-se imerso no recipiente contendo 2,0 kg de água com temperatura inicial de 20°C, calor específico 4,18 kJ /kg.°C e calor latente de vapori- zação 2230 kJ /kg. Com a chave S fechada, a corrente elétrica do circuito faz com que o resistor imerso dissipe calor, que é integralmente absorvido pela água. Durante o processo, o sistema é isolado termicamente e a tempe- ratura da água permanece sempre homogênea. Mantido o resistor imerso durante todo o processo, o tempo necessário para vaporizar 1,0 kg de água é a) 67,0 s. b) 223 s. c) 256 s. d) 446 s. e) 580 s. Resolução i = ⇒ i = ⇒ i = 100 A P = R . i2 ⇒ P = 0,50 . (100)2W ⇒ P = 5,0 . 103W Quantidade de calor total absorvida pela água Q = m . c . ⌬␪ + m . Lvap Q = 2,0 . 4,18 . 80 + 1,0 . 2230 (J) Q = 2898,80kJ Sendo Q = P . ⌬t 2898,80 . 103 = 5,0 . 103 . ⌬t 100V –––––––– 2.0,50⍀ ε ––– 2R ⌬t ഡ 580s IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 19. 14 DD Em uma superfície líquida, na origem de um sistema de coordenadas encontra-se um emissor de ondas circulares transversais. Bem distante dessa origem, elas têm a forma aproximada dada por h1 (x, y, t) = h0 sen (2␲( r / ␭ – ft)), em que ␭ é o comprimento de onda, f é a frequência e r, a distância de um ponto da onda até a origem. Uma onda plana transversal com a forma h2(x, y, t) = h0 sen (2␲(x / ␭ – ft)) superpõe-se à primeira, conforme a figura. Na situação descrita, podemos afirmar, sendo ‫ޚ‬ o conjun- to dos números inteiros, que a) nas posições (y2 P /(2n␭) – n␭/8, yP) as duas ondas estão em fase se n ∈ ‫.ޚ‬ b) nas posições (y2 P /(2n␭) – n␭/2, yP) as duas ondas estão em oposição de fase se n ∈ ‫ޚ‬ e n 0. c) nas posições (y2 P /(2n␭) – (n + 1/2) ␭/2, yP) as duas ondas estão em oposição de fase se n ∈ ‫ޚ‬ e n 0. d) nas posições (y2 P /((2n + 1)␭) – (n + 1/2) ␭/2, yP) as duas ondas estão em oposição de fase se n ∈ ‫.ޚ‬ e) na posição (2y2 P /␭ – ␭/8, yP) a diferença de fase entre as ondas é de 45°. Resolução Para o caso no qual as ondas estão em oposição de fase, temos: 2π – ft – 2π – ft = (2n + 1)π r – xP = (2n + 1) Como r = ͙ළළළළළළළළxP 2 +yP 2 , temos: ͙ළළළළළළළළxP 2 +yP 2 – xP = (2n + 1) ͙ළළළළළළළළxP 2 + yP 2 = (2n + 1) + xP xP 2 + yP 2 = (2n + 1)2 + λ(2n + 1)xP + xP 2 ΃ xP ––– λ΂΃ r ––– λ΂ λ ––– 2 λ ––– 2 λ ––– 2 λ2 ––– 4 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 20. yP 2 – (2n + 1)2 = λ(2n + 1)xP – n + = xP O ponto P tem coordenadas xP e yP, tais que: Para o caso no qual as ondas estão em concordância de fase, temos: 2π – f t – 2π – f t = 2nπ – = n ͙ළළළළළළළළළxP 2 + yP 2 = nλ + xP xP 2 + yP 2 = (nλ)2 + 2nλxP + xP 2 = xP – = xP O ponto P tem coordenadas xP e yP, tais que Para o caso no qual a diferença de fase entre as ondas seja de 45° ( rad), temos: 2π – ft – 2π – ft = – = ͙ළළළළළළළළළxP 2 + yP 2 = + xP xP 2 + yP 2 = + xP + xP 2 yP 2 – = xP – = xP O ponto P tem coordenadas xP e yP, tais que λ2 ––– 4 ΃ 1 –– 2΂ λ ––– 2 yP 2 ––––––––– λ(2n + 1) yP 2 1 λ P = ΂––––––––– – ΂n + ––΃. –––, yP΃, n ʦ ‫ޚ‬ (2n + 1)λ 2 2 ΃ xP ––– λ΂΃r–– λ΂ xP ––– λ r–– λ yP 2 – (nλ)2 ––––––––– 2nλ nλ –––– 2 yP 2 –––– 2nλ yP 2 nλ P = (––––– – –––, yP), n ʦ ‫*ޚ‬ 2nλ 2 π –– 4 π ––– 4΃ xP ––– λ΂΃ r ––– λ΂ 1 ––– 8 xP –––– λ r –– λ λ ––– 8 λ ––– 4 λ2 ––– 64 λ ––– 4 λ2 ––– 64 λ ––– 16 4yP 2 ––––– λ 4yP 2 λ P = (––––– – –––, yP) λ 16 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 21. 15 EE Um capacitor de placas paralelas de área A e distância 3h possui duas placas metálicas idênticas, de espessura h e área A cada uma. Compare a capacitância C deste capacitor com a capa- citância C0 que ele teria sem as duas placas metálicas. a) C = C0 b) C > 4C0 c) 0 < C < C0 d) C0 < C < 2C0 e) 2C0 < C < 4C0 Resolução Capacitor sem as placas metálicas: C0 = ␧0 . (1) Capacitor com as duas placas metálicas: Equivale a três capacitores em série: = + + = + + = = ⇒ C = ␧0 . (2) De (1) e (2), vem: C = 3C0 A ––– 3h 1 ––– C3 1 ––– C2 1 ––– C1 1 –– C h3 –––– ␧0A h2 –––– ␧0A h1 –––– ␧0A 1 –– C h1 + h2 + h3 ––––––––––– ␧0A 1 –– C A ––– h h –––– ␧0A 1 –– C IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 22. 16 AA A figura mostra uma região espacial de campo elétrico uniforme de módulo E = 20 N/C. Uma carga Q = 4 C é deslocada com velocidade constante ao longo do perí- metro do quadrado de lado L = 1 m, sob ação de uma força → F igual e contrária à força coulombiana que atua na carga Q. Considere, então, as seguintes afirmações: I. O trabalho da força → F para deslocar a carga Q do ponto 1 para 2 é o mesmo do dispendido no seu deslocamento ao longo do caminho fechado 1-2-3- 4-1. II. O trabalho de → F para deslocar a carga Q de 2 para 3 é maior que o para deslocá-la de 1 para 2. III. É nula a soma do trabalho da força → F para deslocar a carga Q de 2 para 3 com seu trabalho para deslocá-la de 4 para 1. Então, pode-se afirmar que a) todas são corretas. b) todas são incorretas. c) apenas a II é correta. d) apenas a I é incorreta. e) apenas a II e III são corretas. Resolução I. Correta ␶12 = F . L . cos 90° = 0 ␶12341 = ␶12 + ␶23 + ␶34 + ␶41 = 0 + F . L + 0 – F . L = 0 Em ambos os casos, o trabalho é nulo: II. Correta ␶23 = + F . L ␶12 = + F . L . cos 90° = 0 III. Correta ␶23 = + F . L ␶41 = F . L cos 180° = – FL ␶23 + ␶41 = (+FL) + (–FL) = 0 ␶12 = ␶12341 ␶23 > ␶12 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 23. 17 DD Uma fonte luminosa uniforme no vértice de um cone reto tem iluminamento energético (fluxo energético por unidade de área) HA na área A da base desse cone. O iluminamento incidente numa seção desse cone que forma ângulo de 30° com a sua base, e de projeção vertical S sobre esta, é igual a a) AHA/S. b) SHA/A. c) AHA/2S. d) ͙ළ3AHA/2S. e) 2AHA/͙ළ3S. Resolução — AC = — AC’ . cos 30° — AC = — AC’ . Sendo a’ o semieixo maior da elipse: a’ = A elipse projetada na base tem semieixo a: a = ⇒ a = a’ Logo, a área da elipse ADBDA e a área da elipse AD’B’D’A se relacionam por: = = = = S’ = S ͙ළළ3 –––– 2 — AC’ –––– 2 ͙ළළ3 –––– 2 — AC –––– 2 2͙ළළ3 ––––– 3 2 ––––– ͙ළළ3 a’ ––– a πa’b ––––– πab S’ –––– S ΃2͙ළළ3 ––––– 3΂ IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 24. a: semieixo maior de S b: semieixo menor: constante a’: semieixo maior de S’ Como o fluxo é constante: Φ = HA . A = H’ . S’ HA . A = H’ . S . H’ = ⇒ 2͙ළළ3 ––––– 3 HA . A . ͙ළළ3 H’ = –––––––––– 2 S HA . A . 3 ––––––––– 2 S͙ළළ3 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 25. 18 CC Alguns tipos de sensores piezorresistivos podem ser usa- dos na confecção de sensores de pressão baseados em pon- tes de Wheatstone. Suponha que o resistor Rx do circuito da figura seja um piezorresistor com variação de resistên- cia dada por Rx = kp + 10⍀, em que k = 2,0 x 10-4⍀/Pa e p, a pressão. Usando este piezorresistor na construção de um sensor para medir pressões na faixa de 0,10 atm a 1,0 atm, assinale a faixa de valores do resistor R1 para que a ponte de Wheatstone seja balanceada. São dados: R2 = 20⍀ e R3 = 15⍀. a) De R1min = 25⍀ a R1max = 30⍀ b) De R1min = 20⍀ a R1max = 30⍀ c) De R1min = 10⍀ a R1max = 25⍀ d) De R1min = 9,0⍀ a R1max = 23⍀ e) De R1min = 7,7⍀ a R1max = 9,0⍀ Resolução Determinemos, inicialmente, os valores extremos que Rx pode assumir. Para p = 1,0 atm = 1,0 . 105 Pa, temos: Rx = K . p + 10⍀ Rx = 2,0 . 10–4 . 1,0 . 105 + 10 Rxmáx = 30⍀ Para p = 0,10 atm = 0,10 . 105Pa, temos: R’x = 2,0 . 10–4 . 0,10 . 105 + 10 R’xmín = 12⍀ Ponte de Wheatstone em equilíbrio na situação 1: R1mín . Rx = R2R3 R1mín . 30 = 20 x 15 Ponte de Wheatstone em equilíbrio na situação 2: R1máx . R’x = R2R3 R1máx . 12 = 20 x 15 R1mín = 10⍀ R1máx = 25⍀ IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 26. 19 DD Assinale em qual das situações descritas nas opções abaixo as linhas de campo magnético formam circun- ferências no espaço. a) Na região externa de um toroide. b) Na região interna de um solenoide. c) Próximo a um íma com formato esférico. d) Ao redor de um fio retilíneo percorrido por corrente elétrica. e) Na região interna de uma espira circular percorrida por corrente elétrica. Resolução As linhas de campo magnético formam circunferên- cias no espaço ao redor de um fio retilíneo infinito percorrido por corrente elétrica. IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 27. 20 AA Considere as seguintes afirmações: I. As energias do átomo de Hidrogênio do modelo de Bohr satisfazem à relação, En = –13,6/n2 eV, com n = 1, 2, 3, …; portanto, o elétron no estado funda- mental do átomo de Hidrogênio pode absorver energia menor que 13,6 eV. II. Não existe um limiar de frequência de radiação no efeito fotoelétrico. III. O modelo de Bohr, que resulta em energias quanti- zadas, viola o princípio da incerteza de Heisenberg. Então, pode-se afirmar que a) apenas a II é incorreta. b) apenas a I e II são corretas. c) apenas a I e III são incorretas. d) apenas a I é incorreta. e) todas são incorretas. Resolução I. Correta De acordo com o modelo de Bohr para o átomo de hidrogênio, quando o átomo recebe energia, o elétron pode sofrer uma transição para um estado de maior energia ou estado excitado, no qual n > 1. Assim: utilizando a expressão E = – eV tem-se: para n = 1, temos: E1 = – 13,6eV (estado funda- mental) para n = 2, temos: E2 = – 3,40eV para n = 3, temos: E3 = – 1,51eV Na passagem do estado fundamental (n = 1) para o segundo estado excitado (n = 2), por exemplo, a energia recebida para a transição vale: ΔE = – 3,40 – (– 13,6)(eV) (< 13,6eV) II. Incorreta A explicação de Einstein para o efeito fotoelétrico mostra que existe, para cada superfície metálica, um limiar de frequências f0 característico. Para frequências menores que f0, o efeito não ocorre, qualquer que seja a intensidade da iluminação. Graficamente: 13,6 ––––– n2 ΔE = 10,2eV IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 28. III. Correta O segundo postulado de Bohr pode ser assim enunciado: “Em vez da infinidade de órbitas que seriam possíveis segundo a Mecânica Clássica, um elétron só pode mover-se em uma única órbita na qual seu momento angular orbital L é um múltiplo inteiro de ” . O modelo de Bohr (1913) define com precisão a posição (raio da órbita) e o momento do elétron de forma simultânea, contrariando o Princípio da Incerteza de Heisenberg (1925): “Uma experiência não pode determinar simul- taneamente o valor exato de uma componente do momento, por exemplo px, de uma partícula e também o valor exato da coordenada correspon- dente, x”. h ––– 2␲ IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 29. As questões dissertativas, numeradas de 21 a 30, devem ser desenvolvidas, justificadas e respondidas no caderno de soluções 21 100 cápsulas com água, cada uma de massa m = 1,0g, são disparadas à velocidade de 10,0m/s perpendicularmente a uma placa vertical com a qual colidem inelasticamente. Sendo as cápsulas enfileiradas com espaçamento de 1,0cm, determine a força média exercida pelas mesmas sobre a placa. Resolução As cápsulas alinhadas perfazem um comprimento L dado por: L = 100 . 1,0cm = 1,0m O tempo gasto para a última cápsula atingir a parede é dado por: V = ⇒ 10,0 = ⇒ Neste tempo, aplicando o teorema do impulso: Iparede = ⌬Qcápsula Fm . T = mtotal ͉⌬V͉ Fm . 0,1 = 0,1 . 10,0 Resposta: Fm = 10,0N T1 = 0,1s 1,0 ––– T ⌬s ––– ⌬t IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 30. 22 O arranjo de polias da figura é preso ao teto para erguer uma massa de 24 kg, sendo os fios inextensíveis, e desprezíveis as massas das polias e dos fios. Desprezando os atritos, determine: 1. O valor do módulo da força → F necessário para equi- librar o sistema. 2. O valor do módulo da força → F necessário para erguer a massa com velocidade constante. 3. A força ( → F ou peso?) que realiza maior trabalho, em módulo, durante o tempo T em que a massa está sendo erguida com velocidade constante. Resolução 1) 4F = P F = = F = (N) mg ––– 4 P ––– 4 240 ––– 4 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 31. 2) Em repouso ou com velocidade constante, a força resultante é nula e F = 60N. 3) Trabalho é uma forma de energia e os trabalhos serão iguais, em módulo, porque não há variação de energia cinética. Respostas: 1) F = 60N 2) F = 60N 3) Trabalho com módulos iguais F = 60N IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 32. 23 A figura mostra uma chapa fina de massa M com o formato de um triângulo equilátero, tendo um lado na posição vertical, de comprimento a, e um vértice articulado numa barra horizontal contida no plano da figura. Em cada um dos outros vértices encontra-se fixada uma carga elétrica q e, na barra horizontal, a uma distância a͙ෆ3/2 do ponto de articulação, encontra-se fixada uma carga Q. Sendo as três cargas de mesmo sinal e massa desprezível, determine a magnitude da carga Q para que o sistema permaneça em equilíbrio. Resolução 1) Elementos geométricos necessários: ––– OC = ––– BC = ____ OM = ––– OA = a ____ AC 2 = ____ OA2 + ____ OC 2 (Pitágoras) ____ AC 2 = a2 + = ⇒ ____ AC = cos ␣ = = . = a ͙ෆ7 ––––– 2 7a2 ––– 4 3a2 ––– 4 ͙ෆ3 ––––– ͙ෆ7 2 ––––– a ͙ෆ7 a ͙ෆ3 ––––– 2 ____ OC ––––____ AC a ͙ෆ3 ––––– 2 a ––– 2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 33. ____ MB = ⇒ ____ MG = ____ MB = 2) Lei de Coulomb para calcular os módulos das forças elétricas → F1 e → F2 : F1 = k = = F2 = k = = Observação: Adotamos k como sendo a constante eletrostática do meio, embora não tenha sido dada na prova. Decompondo → F2 nas direções horizontal Ox e vertical Oy: F2x = F2 . cos ␣ = . = 3) Para que a chapa não sofra rotação, o somatório dos momentos em torno de O (articulação) deve ser nulo. MF2x + MF2y + MF1 – MP = 0 MF2y = 0 F2x . ––– OA + 0 + F1 . –––– MB – P . –––– MG = 0 . . a + . = M . g . Simplificando: + = = = M . g ––––– 6 2 kq Q ––––––– a2 4 kq Q –––––––– 7 ͙ෆ7 . a2 M . g ––––– 6 2 ΂––––– + 1΃7 ͙ෆ7 2 kq . Q ––––––– a2 M . g ––––– 6 2 + 7 ͙ෆ7 ΂–––––––––΃7 ͙ෆ7 2 kq . Q ––––––– a2 7 ͙ෆ7 a2 M . g Q = ––––––––––––––– . –––––– 12 (2 + 7 ͙ෆ7 ) k . q a ͙ෆ3 ––––– 6 1 ––– 3 a ͙ෆ3 ––––– 2 4 kq Q –––––– a2 k . q . Q ––––––– a ΂–––΃ 2 2 q . Q ––––____ BC 2 4 kq Q –––––– 7a2 k . q . Q ––––––– 7a2 ––– 4 q . Q ––––____ AC 2 4 ͙ෆ3 . k q . Q –––––––––––– 7 ͙ෆ7 . a2 ͙ෆ3 –––– ͙ෆ7 4 kq . Q ––––––– 7 . a2 a ͙ෆ3 –––– 6 a ͙ෆ3 –––– 2 4 kq Q –––––– a2 kq Q ––––– a2 4 ͙ෆ3 ––––– 7͙ෆ7 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 34. Se usarmos para a constante eletrostática: k = Q = Q = 1 ––––––– 4␲␧0 7 ͙ෆ7 . a2 . M . g ––––––––––––––––––––––– 1 12 (2 + 7 ͙ෆ7 ) q . –––––– 4 ␲ ␧0 7 ͙ෆ7 ␲␧0 . a2 . M . g ––––––––––––––––––– 3 (2 + 7 ͙ෆ7 ) . q IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 35. 24 A figura mostra um sistema formado por dois blocos, A e B, cada um com massa m. O bloco A pode deslocar-se sobre a superfície plana e horizontal onde se encontra. O bloco B está conectado a um fio inextensível fixado à parede, e que passa por uma polia ideal com eixo preso ao bloco A. Um suporte vertical sem atrito mantém o bloco B descendo sempre paralelo a ele, conforme mostra a figura. Sendo ␮ o coeficiente de atrito cinético entre o bloco A e a superfície, g a aceleração da gravidade, e ␪ = 30° mantido constante, determine a tração no fio após o sistema ser abandonado do repouso. Resolução 1) Força normal que A troca com o solo: FN = PA + T – T cos 60° FN = m g + T – = m g + 2) Força de atrito aplicada pelo chão: Fat = ␮ FN = ␮ ΂m g + ΃ 3) 2.ª Lei de Newton (A + B): T cos 30° – Fat = (mA + mB) a T – ␮ ΂m g + ΃ = 2 m a T – ␮ m g – ␮ = 2 m a T ––– 2 T ––– 2 ͙ළළ3 ––––– 2 T ––– 2 ͙ළළ3 ––––– 2 T ––– 2 T ––– 2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 36. (͙ළළ3 – ␮) = ␮ m g + 2 m a (͙ළළ3 – ␮) = m (␮ g + 2 a) (1) Se o valor de a não for considerado como dado, temos: 4) O deslocamento vertical de B se relaciona com o seu deslocamento horizontal pela relação: ⌬x = ⌬y . cos ␪ ⌬x = ⌬y a = ⇒ 5) PFD (B) (na direção vertical): P – T = m ay m g – T = 2a = = g͙ළළ3 – ͙ළළ3 (2) (2) em (1): T = ΂␮ g + g͙ළළ3 – ͙ළළ3 ΃ T(͙ළළ3 – ␮) = 2 m ␮ g + 2 m g͙ළළ3 – 2T ͙ළළ3 T(͙ළළ3 – ␮ + 2͙ළළ3 ) = 2 m g (␮ + ͙ළළ3 ) 2 m g (␮ + ͙ළළ3 ) T = ––––––––––––––– 3͙ළළ3 – ␮ m 2 a ––––––– ͙ළළ3 T –– m m g͙ළළ3 – T͙ළළ3 ––––––––––––––––– m T –– m 2m –––––––– ͙ළළ3 – ␮ T ––– 2 T ––– 2 2m (␮ g + 2a) T = –––––––––––––– ͙ළළ3 – ␮ ͙ළළ3 ––––– 2 2a ay = ––––– ͙ළළ3 ay͙ළළ3 ––––––– 2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 37. 25 Átomos neutros ultrafrios restritos a um plano são uma realidade experimental atual em armadilhas magneto- ópticas. Imagine que possa existir uma situação na qual átomos do tipo A e B estão restritos respectivamente aos planos ␣ e ␤ perpendiculares entre si, sendo suas massas tais que mA = 2mB. Os átomos A e B colidem elasti- camente entre si não saindo dos respectivos planos, sendo as quantidades de movimento iniciais →pA e →pB, e as finais, →qA e →qB . →pA forma um ângulo ␪ com o plano horizontal e →pB = 0. Sabendo que houve transferência de momento entre A e B, qual é a razão das energias cinéticas de B e A após a colisão? Resolução → Q0 = → pA + → pB = → pA → Qf = → qA + → qB Como → Qf = → Q0, temos → qA + → qB = → pA Como → pA e → qA estão restritos ao plano ␣, concluímos que → qB também estará no plano ␣ e como → qB pertence ao plano ␤, ele estará na intersecção entre ␣ e ␤, ou seja, no eixo x. Na direção x: qAx + qB = pA cos ␪ (I) Na direção z: qAz = pA sen ␪ (II) qA 2 = q2 Ax + q2 Az = (pA cos ␪ – qB)2 + (pA sen ␪)2 qA 2 = p2 A cos2 ␪ – 2pA qB cos ␪ + qB 2 + p2 A sen2 ␪ qA 2 = p2 A – 2pA qB cos ␪ + qB 2 (1) IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 38. Conservação da energia cinética: Ecin0 = Ecinf = + pA 2 = q2 A + 2 qB 2 (2) (2) em (1): qA 2 = qA 2 + 2 qB 2 – 2 pAqB cos ␪ + qB 2 3 qB 2 = 2pAqB cos ␪ Em (I): qAx + pA cos ␪ = pA cos ␪ qAx = pA cos ␪ Como qAz = pA sen ␪, vem: qA 2 = + pA 2 sen2 ␪ Comparando as energias cinéticas após a colisão: EcinA = EcinB = = = = qA 2 ––––– qB 2 1 ––– 2 EcinA –––––– EcinB cos2 ␪ pA 2 ΂–––––– + sen2 ␪΃9––––––––––––––––––– 4 ––– pA 2 cos2 ␪ 9 1 ––– 2 EcinA –––––– EcinB 8 cos2 ␪ –––––––––––––– cos2 ␪ + 9 sen2 ␪ EcinB –––––– EcinA EcinB 8 –––––– = –––––––––– EcinA 1 + 9 tg2 ␪ 2 qB = –– pA cos ␪ 3 2 ––– 3 1 ––– 3 pA 2 cos2 ␪ –––––––––– 9 qA 2 ––––– 4m qB 2 ––––– 2m qB 2 ––– 2m qA 2 ––– 4m pA 2 ––– 4m IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 39. 26 Dois capacitores em série, de capacitância C1 e C2, respectivamente, estão sujeitos a uma diferença de potencial V. O Capacitor de capacitância C1 tem carga Ql e está relacionado com C2 através de C2 = xC1, sendo x um coeficiente de proporcionalidade. Os capacitores carregados são então desligados da fonte e entre si, sendo a seguir religados com os respectivos terminais de carga de mesmo sinal. Determine o valor de x para que a carga Q2 final do capacitor de capacitância C2 seja Ql 4. Resolução Estando ligados em série, concluímos que Q2 = Q1 Religando-os com os respectivos terminais de carga de mesmo sinal e atingindo o equilíbrio eletrostático, temos: Q1 + Q1 = Q’1 + ⇒ Q’1 = Sendo C1 = e C2 = , vem: C1 = 7C2 e de C2 = xC1, vem: Q1 –––– 4 7Q1 –––– 4 7Q1 –––– 4 ––––– U Q1 ––– 4 –––– U 1 x = –– 7 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 40. 27 O momento angular é uma grandeza importante na Física. O seu módulo é definido como L = rp sen ␪, em que r é o módulo do vetor posição com relação à origem de um dado sistema de referência, p o módulo do vetor quantidade de movimento e ␪ o ângulo por eles formado. Em particular, no caso de um satélite girando ao redor da Terra, em órbita elíptica ou circular, seu momento angular (medido em relação ao centro da Terra) é conservado. Considere, então, três satélites de mesma massa com órbitas diferentes entre si, I, II e III, sendo I e III circulares e II elíptica e tangencial a I e III, como mostra a figura. Sendo LI, LII e LIII os respectivos módulos do momento angular dos satélites em suas órbitas, ordene, de forma crescente, LI, LII e LIII. Justifique com equações a sua resposta. Resolução Comparando as órbitas circulares I e III: 1) FG = Fcp ⇒ = ⇒ 2) Para a órbita circular, temos θ = 90° ⇒ sen θ = 1 e L = r p L = r m V ⇒ L = ⇒ L = m͙ළළළළළළළළG M r Como rIII > rI, resulta LIII > LI Comparando a órbita circular I com a órbita elíptica II: Para a órbita circular: v2 I = (1) G Mm r ͙ළළළළළ––––– r G M –––––– r1 G MV = ͙ළළළළළ––––– r m V2 ––––– r G M m ––––––– r2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 41. Para a órbita elíptica: 1) LA = LB ⇒ m VA r1 = m VB r2 ⇒ 2) Conservação da energia mecânica: EA = EB – = – VA 2 – 2 = – VA 2 1 – = 2GM – VA 2 = 2GM VA 2 = VA 2 = (2) Fazendo-se : = Como r2 > r1 ⇒ 2 r2 > r2 + r1 Portanto: VA > VI Sendo: LI = m VI r1 LII = m VA r1 Vem: LII > LI Comparando a órbita circular III com a órbita elíptica II: V2 = (3) VB 2 = (4) : = r1 < r2 ⇒ 2 r1 < r2 + r1 ⇒ VB < V L = m V r LII = m VB r2 LIII = m V r2 VB < V ⇒ LII < LIII Portanto: GM ––––– r2 2 GM r1 ––––––––– r2(r1 + r2) 2 r1 ––––––– r1 + r2 VB 2 ––––– V2 (4) ––– (3) VA . r1 VB = –––––– r2 G M m ––––––– r2 m VB 2 –––––– 2 G M m ––––––– r1 m VA 2 –––––– 2 2 G M ––––––– r2 VA 2 r1 2 –––––– r2 2 G M –––––– r1 ΃ 1 ––– r2 1 ––– r1 ΂΃ r1 2 ––––– r2 2΂ (r2 – r1) ––––––––– r1 r2 (r2 2 – r1 2 ) ––––––––– r2 2 2 GM ––––––– r1 (r2 + r1) ––––––– r2 2 GM r2 –––––––––– r1(r2 + r1) 2 r2 –––––– r2 + r1 VA 2 ––––– VI 2 (2) –––– (1) LI < LII < LIII IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 42. 28 Uma partícula de massa m está sujeita exclusivamente à ação da força → F = F(x) → ex, que varia de acordo com o gráfico da figura, sendo → ex o versor no sentido positivo de x. Se em t = 0, a partícula se encontra em x = 0 com velocidade v no sentido positivo de x, pedem-se: 1. O período do movimento da partícula em função de F1, F2, L e m. 2. A máxima distância da partícula à origem em função de F1, F2, L, m e v. 3. Explicar se o movimento descrito pela partícula é do tipo harmônico simples. Resolução 1) A partícula descreve nos semieixos, positivo e negativo, do eixo x dois MHS. O período do oscilador harmônico simples é T, dado por: T = 2␲ em que k é a constante de força do MHS. Assim, o período do oscilador em questão fica expresso por: T = + ⇒ T = + Mas k1 = e k2 = , logo: T = ␲ + Da qual: m ––– k2 2␲ ––– 2 m ––– k1 2␲ ––– 2 T2 ––– 2 T1 ––– 2 F2 ––– L F1 ––– L ΃ m –––– F2 –––– L m –––– F1 –––– L΂ m ––– k mL mL T = ␲ ΂ –––– + –––– ΃F1 F2 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 43. 2) A máxima distância da partícula à origem é dada por: = m v2 = x2 máx xmáx = xmáx = v No semieixo negativo, temos: xmáx2 = v No semieixo positivo, temos: xmáx1 = v Do gráfico, temos que F2 > F1 e, portanto: xmáx1 > xmáx2 Assim, a máxima distância da partícula à origem é: 3) O movimento completo é periódico, mas não é harmônico simples, pois, em cada semieixo, a partícula tem períodos e amplitudes diferentes. mL xmáx1 = v –––– F1 k x2 máx ––––––– 2 m v2 ––––– 2 F ––– L m v2 L –––––––– F m L –––––– F m L –––––– F2 m L –––––– F1 IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 44. 29 Considere dois fios paralelos, muito longos e finos, dispostos horizontalmente conforme mostra a figura. O fio de cima pesa 0,080N/m, é percorrido por uma corrente I1 = 20A e se encontra dependurado por dois cabos. O fio de baixo encontra-se preso e é percorrido por uma corrente I2 = 40A, em sentido oposto. Para qual distância r indicada na figura, a tensão T nos cabos será nula? Resolução O fio (2) gera um campo magnético → B2, que tem orien- tação dada pela “regra da mão direita”, como mos- trada na figura: A intensidade de → B2 é dada por: B2 = B2 = (T) B2 = (T) Devido ao campo → B2, o fio (1) sofre a ação da força → F2,1, com intensidade dada por: → F2,1 = B2I1 L sen ␪, com ␪ = 90° F2,1 = . 20 . L . sen (90°) F2,1 = 1,6 . 10– 4 (N) μ0I2 –––––– 2␲r 4␲ . 10–2 . 40 –––––––––––– 2␲r 8,0 . 10–6 –––––––––– r 8,0 . 10–6 –––––––––– r L ––– r IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 45. Para que as trações nos fios se anulem, → F2,1 deve equilibrar a força peso do fio (1). Para um comprimento L do fio (2), seu peso tem inten- sidade dada por: P2 = 8,0 . 10–2 L (N) F2,1 = P2 1,6 . 10– 4 = 8,0 . 10–2 L r = (m) 1,6 . 10–4 ––––––––––– 8,0 . 10–2 r = 2,0 . 10–3m L ––– r IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 46. 30 Considere uma espira com N voltas de área A, imersa num campo magnético B → uniforme e constante, cujo sen–tido aponta para dentro da página. A espira está situada inicialmente no plano perpendicular ao campo e possui uma resistência R. Se a espira gira 180° em torno do eixo mostrado na figura, calcule a carga que passa pelo ponto P. Resolução Analisaremos, inicialmente, apenas metade do giro total de 180°, assim: Φinicial = NBA cos 180° Φinicial = – NBA O fluxo final será nulo, pois a espira estará paralela a → B nesta situação. Φfinal = 0 A variação do fluxo para esta metade do giro será dada por: ΔΦ = Φfinal – Φinicial ΔΦ = 0 – (– NBA) ΔΦ = NBA A f.e.m. induzida média, em módulo, será dada por: E = = A intensidade média de corrente elétrica neste trecho analisado será dada por i = mas i = Assim: = = Q = Q ––– Δt NBA –––––– Δt R Q –––– Δt E ––– R Q ––– Δt E ––– R NBA ––––– Δt ΔΦ –––– Δt NBA –––––– R IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111
  • 47. Nos 90° restantes, para se completar os 180° de giro, teremos essa mesma quantidade de carga passando por P mas com sentido oposto. A carga total que passa efetivamente por P será então: Qtotal = + NBA –––––– R NBA –––––– R 2NBA Qtotal = ––––––– R IITTAA ((11..OO DD IIAA )) —— DDEEZZEEMMBBRROO//22001111