SlideShare une entreprise Scribd logo
1  sur  27
Télécharger pour lire hors ligne
Deformação por torção de um eixo circular
• Torque é um momento que tende a torcer um elemento em torno de seu eixo
longitudinal.
• Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo
permanecerão inalterados.
Torção
1
Cisalhamento por torção
• BD=ρ dφ = dx γ
• γ = ρ dφ/dx (dφ/dx = para todos os elementos na
seção transversal na posição x) então a
deformação por cisalhamento é proporcional a ρ
• Como dφ/dx = γ / ρ = γmax / c então: γ = (ρ / c) γmax
Torção
2
ߛ =
ߨ
2
− lim
஻,஼→஺
ߠ´
γ = (ρ / c) γmax
A fórmula da torção
• Se o material for linear elástico, então a lei de Hooke se aplica τ=Gγ.
• Uma variação linear na deformação por cisalhamento γ resulta em uma
variação linear na tensão de cisalhamento ττττ correspondente, ao longo
de qualquer linha radial na seção transversal. Portanto, igual que no caso
da deformação por cisalhamento, τ variará de zero a τmax
J
T
J
Tc ρ
ττ == oumáx
= tensão de cisalhamento máxima no eixo
= deformação por cisalhamento à distância ρ
= torque interno resultante (método das seções!)
= momento polar de inércia da área da seção transversal
= raio externo do eixo
= distância intermediária
máxτ
τ
T
J
c
ρ 3
τ = (ρ / c) τ max
Para qualquer elemento de área dA localizado em ρ teremos uma força F = τ
dA. O torque produzido por F será dT = ρ τdA e para toda a seção teremos:
ܶ = න ߩ߬݀‫ܣ‬ = න ߩ
ߩ
ܿ
߬௠௔௫݀‫ܣ‬ =
߬௠௔௫
ܿ஺஺
න ߩଶ
݀‫ܣ‬
஺
• Se o eixo tiver uma seção transversal circular maciça, utilizamos um anel
diferencial de área de espessura dρ portanto dA = 2πρdρ e a integral (0 a c) fica:
• Se o eixo tiver uma seção transversal tubular,
4
2
cJ
π
=
( )44
2
io ccJ −=
π
4
Como calcular o J (momento polar de inércia)?
O eixo maciço de raio c é submetido a um torque T. Determine a fração de T à qual
resiste o material contido no interior da região externa do eixo, que tem raio interno
c/2 e raio externo c.
Solução:
( ) ( ) ( )ρπρτρρτρ dcdAdT 2' máx==
( ) máxτρτ c=
Para toda a área sombreada mais clara, o torque é
(1)
32
152
' 3
máx
2/
3máx
cd
c
T
c
c
τ
π
ρρ
πτ
== ∫
A tensão no eixo varia linearmente, tal que .
O torque no anel (área) localizado no interior da região
sombreada mais clara é
Exemplo 1
5Qual o valor de τmax em função do torque interno resultante T?
Usando a fórmula de torção para determinar a tensão máxima no eixo, temos
(Resposta)
16
15
' TT =
( )
3máx
4máx
2
2
c
T
c
Tc
J
Tc
π
τ
π
τ
=
==
Substituindo essa expressão na Equação 1,
6
O eixo está apoiado em dois mancais e sujeito a três torques. Determine a tensão
de cisalhamento desenvolvida nos pontos A e B localizados na seção a–a do eixo.
Exemplo 2
7
Solução:
Pelo diagrama de corpo livre do segmento
esquerdo determinamos o torque interno
resultante na seção:
( ) mm1097,475
2
74
×==
π
J
mmkN250.10000.3250.4;0 ⋅=⇒=−−=∑ TTMx
O momento polar de inércia para o eixo é
Visto que A se encontra em ρ = c = 75 mm, utilizando a fórmula da torção...
( )( ) (Resposta)MPa89,1
1097,4
75250.1
7
=
×
==
J
Tc
Aτ
Da mesma forma, para B, em ρ =15 mm, temos
( )( ) (Resposta)MPa377,0
1097,4
15250.1
7
=
×
==
J
Tc
Bτ
8
Transmissão de potência
• Potência é definida como o trabalho realizado por unidade de tempo.
• Para um eixo rotativo com torque, a potência é:
• Visto que , a equação para a potência é
• Se conhecemos o torque T e τadm, para o projeto do eixo, o parâmetro de
projeto ou parâmetro geométrico sai de:
dtdTP /éeixodoangularevelocidadaonde θωω ==
fπωπ 2rad2ciclo1 =⇒=
fTP π2=
admτ
T
c
J
=
9
Um eixo maciço de aço AB será usado para transmitir 3.750 W do motor M ao qual
está acoplado. Se o eixo girar a ω = 175 rpm e o aço tiver uma tensão de
cisalhamento admissível τadm = 100 MPa, determine o diâmetro exigido para o eixo
com precisão de mm.
Exemplo 3
10
Solução:
O torque no eixo é
Nm6,204
60
2175
750.3 =⇒




 ×
=
=
TT
TP
π
ω
Assim, o parâmetro geométrico é:
( )( )
( )
mm92,10
100
000.16,20422
2
3/13/1
adm
adm
4
=





=





=
==
ππτ
τ
π
T
c
T
c
c
c
J
Visto que 2c = 21,84 mm, selecione um eixo com diâmetro 22 mm.
11
Exercícios
1. O tubo da figura é submetido a um torque de 750 Nm. Determine a parcela
desse torque à qual a seção sombreada cinza resiste. Resolva o problema de duas
maneiras: (a) usando a fórmula da torção e (b) determinando a resultante da
distribuição da tensão de cisalhamento (5.4)
12
2. O eixo maciço de 30mm de diâmetro é usado para transmitir os torques
aplicados às engrenagens. Determine a tensão de cisalhamento máxima (em
valores absolutos) no eixo. (5.5)
13
3. O eixo maciço tem conicidade linear rA em uma extremidade e rB na outra
extremidade. Deduza uma equação que dê a tensão de cisalhamento máxima no
eixo em uma localização x ao longo da linha central do eixo. (5.30)
14
4. O projeto de um automóvel prevê que o eixo de transmissão AB será um tubo
com parede fina. O motor transmite 125 kW quando o eixo está girando a 1500
rev/min. Determine a espessura mínima da parede do eixo se o diâmetro externo
for 62,5 mm. A tensão de cisalhamento admissível do material é τadm = 50 Mpa.
(5.33)
15
Ângulo de torção - φφφφ
• Integrando em todo o comprimento L do eixo, temos
• Por exemplo, se o material é homogêneo, com seção, T e G constantes....
• A convenção de sinal é determinada pela regra
da mão direita.
( )
( )∫=
L
GxJ
dxxT
0
φ
Φ = ângulo de torção
T(x) = torque interno
J(x) = momento polar de inércia do eixo
G = módulo de elasticidade ao cisalhamento
JG
TL
=φ
16
Para o disco diferencial de espessura dx localizado em x o torque em geral será T(x).
Sendo dφ o deslocamento relativo de uma face em relação à outra já sabemos que a
uma distância ρ do eixo teremos γ = ρ dφ/dx. Como τ =Gγ e como τ = Tρ/J teremos:
γ = T(x) ρ/J(x)G substituindo teremos: ݀߶ =
ܶ(‫)ݔ‬
‫ܬ‬ ‫ݔ‬ ‫ܩ‬
݀‫ݔ‬
Os dois eixos maciços de aço estão interligados por meio das engrenagens.
Determine o ângulo de torção da extremidade A do eixo AB quando é aplicado o
torque 45 Nm. Considere G = 80 GPa. O eixo AB é livre para girar dentro dos
mancais E e F, enquanto o eixo DC é fixo em D. Cada eixo tem diâmetro de
20 mm.
Exemplo 4
17
Solução:
Do diagrama de corpo livre, nas
engrenagens teremos uma F e
um T:
( ) ( ) Nm5,22075,0300
N30015,0/45
==
==
xDT
F
1. O ângulo de torção da engrenagem C é
( )( )
( )( ) ( )[ ] rad0269,0
1080001,02
5,15,22
94
+=
+
==
π
φ
JG
LT DC
C
Visto que as engrenagens na
extremidade estão relacionadas
(r⋅θ = cte),
( ) ( )( ) rad0134,0075,00269,015,0 ⇒=Bφ
18
Agora determinaremos o ângulo
de torção da extremidade A em
relação à extremidade B.
O ângulo na extremidade A em relação ao extremo B do eixo AB causada pelo
torque de 45 Nm,
( )( )
( )( ) ( )[ ] rad0716,0
1080010,02
245
94/ +=
+
==
π
φ
JG
LT ABAB
BA
A rotação total da extremidade A é portanto
(Resposta)rad0850,00716,00134,0/ +=+=+= BABA φφφ
19
O eixo cônico mostrado abaixo é feito de um material com módulo de cisalhamento
G. Determine o ângulo de torção de sua extremidade B quando submetido ao
torque T.
Exemplo 5
20
Solução:
Do diagrama de corpo livre, o torque interno é T e
o raio c(x) é:





 −
−=⇒
−
=
−
L
cc
xcc
x
cc
L
cc 12
2
212
Assim, em x teremos um J(x):
( )
4
12
2
2 










 −
−=
L
cc
xcxJ
π
O ângulo de torção será:
(Resposta)
3
22
3
2
3
1
2
121
2
2
0
4
12
2





 ++
=











 −
−
= ∫ cc
cccc
G
TL
L
cc
xc
dx
G
T L
ππ
φ
21
( )
( )∫=
L
GxJ
dxxT
0
φ
5. Um eixo é submetido a um torque T. Compare a efetividade da utilização do tubo
mostrado na figura com a de uma seção maciça de raio c. Para isso calcule o
aumento percentual na tensão de torção e no ângulo de torção por unidade de
comprimento para o tubo em comparação com o da seção maciça (5.45)
22
Exercícios
6. O eixo de aço A-36 de 20 mm de diâmetro é submetido aos torques mostrados.
Determine o ângulo de torção da extremidade B (5.51)
23
Exercícios
7. O eixo maciço de 60 mm de diâmetro de aço A-36 é submetido aos
carregamentos de torção distribuídos e concentrados mostrados na figura.
Determine o ângulo de torção na extremidade livre A devido a esses
carregamentos (5.62)
24
Exercícios
Elementos estaticamente indeterminados carregados com
torque
෍ ‫ܯ‬௫ = 0 ܶ − ܶ‫ܣ‬ − ܶ‫ܤ‬ = 0
‫݅݀݊݋ܥ‬çã‫)ݏ݁ݐ݊ܽ	݁ݑݍ	݈ܽݑ݃݅(	݈ܾ݁݀ܽ݀݅݅݅ݐܽ݌݉݋ܿ	݁݀	݋‬
O ângulo de torção da extremidade A em
relação à outra (B) deve ser = 0
φ‫ܤܣ‬ = 0
Portanto:
்ಲ௅ಲ಴
௃ீ
−
்ಳ௅ಳ಴
௃ீ
= 0
Como L = LAB+LBC obtemos:
ܶ‫ܣ‬ = ܶ
‫ܮ‬஻஼
‫ܮ‬
ܶ‫ܤ‬ = ܶ
‫ܮ‬஺஼
‫ܮ‬
O eixo maciço de aço mostrado na figura abaixo tem
diâmetro de 20 mm. Se for submetido aos dois torques,
determine as reações nos apoios fixos A e B.
Solução: Examinando o diagrama de corpo livre,
(1)0500800;0 =−−+−=∑ Abx TTM
Visto que as extremidades do eixo são fixas, .0/ =BAφ
Para as três regiões (método das seções), usando a
convenção de sinal (para fora + ver figura ao lado):
( ) ( )( ) ( )
(2)7502,08,1
0
3,05,15002,0
−=−
=+
+
+
−
BA
AAB
TT
JG
T
JG
T
JG
T
Resolvendo as equações 1 e 2, obtemos TA = –345 Nm e TB = 645 Nm.
Exemplo 6
26
Utilizando a relação para as 3 regiões:
JG
TL
=φ
8. O eixo de aço é composto por dois segmentos: AC, com diâmetro de 12 mm e
CB, com diâmetro de 25 mm. Se estiver preso em suas extremidades A e B e for
submetido a um torque de 750 Nm, determine a tensão de cisalhamento máxima
no eixo. Gaço = 75 Gpa (5.76)
27
Exercícios

Contenu connexe

Tendances

NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS INOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS IUeiglas C. Vanderlei
 
Soluções resistência dos materiais - beer & johnston - 3a ed
Soluções   resistência dos materiais - beer & johnston - 3a edSoluções   resistência dos materiais - beer & johnston - 3a ed
Soluções resistência dos materiais - beer & johnston - 3a edLeandroHFDiogenes
 
Resmat ii material de aula com exercicios da av1 até av2
Resmat ii material de aula com exercicios da av1 até av2Resmat ii material de aula com exercicios da av1 até av2
Resmat ii material de aula com exercicios da av1 até av2Douglas Alves
 
Exercicios de torção
Exercicios de torçãoExercicios de torção
Exercicios de torçãoRomualdo SF
 
Exemplo resolvido-teorema-de-castigliano
Exemplo resolvido-teorema-de-castiglianoExemplo resolvido-teorema-de-castigliano
Exemplo resolvido-teorema-de-castiglianoaraujo_ing
 
Lista de exercícios flexão em vigas compostas mecânica dos sólidos ii
Lista de exercícios flexão em vigas compostas   mecânica dos sólidos iiLista de exercícios flexão em vigas compostas   mecânica dos sólidos ii
Lista de exercícios flexão em vigas compostas mecânica dos sólidos iiDiego Alves
 
201553 22238 7-flambagem
201553 22238 7-flambagem201553 22238 7-flambagem
201553 22238 7-flambagemBruna Húngaro
 
Resistência dos materiais
Resistência dos materiais   Resistência dos materiais
Resistência dos materiais Willian De Sá
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidoswedson Oliveira
 
Lista de exercícios
Lista de exercíciosLista de exercícios
Lista de exercíciosolivema91
 
Resistência dos materiais r. c. hibbeler
Resistência dos materiais   r. c. hibbelerResistência dos materiais   r. c. hibbeler
Resistência dos materiais r. c. hibbelerMeireles01
 
Dimensionamento de eixos
Dimensionamento de eixosDimensionamento de eixos
Dimensionamento de eixosSandro De Souza
 
Resistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosResistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosMoreira1972
 

Tendances (20)

NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS INOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
 
flambagem
flambagemflambagem
flambagem
 
Rm exerc resolvidos
Rm exerc resolvidosRm exerc resolvidos
Rm exerc resolvidos
 
Soluções resistência dos materiais - beer & johnston - 3a ed
Soluções   resistência dos materiais - beer & johnston - 3a edSoluções   resistência dos materiais - beer & johnston - 3a ed
Soluções resistência dos materiais - beer & johnston - 3a ed
 
Resmat ii material de aula com exercicios da av1 até av2
Resmat ii material de aula com exercicios da av1 até av2Resmat ii material de aula com exercicios da av1 até av2
Resmat ii material de aula com exercicios da av1 até av2
 
Exercicios de torção
Exercicios de torçãoExercicios de torção
Exercicios de torção
 
Momentos de inércia
Momentos de inérciaMomentos de inércia
Momentos de inércia
 
Exercício proposto furadeira de bancada
Exercício proposto furadeira de bancadaExercício proposto furadeira de bancada
Exercício proposto furadeira de bancada
 
Exemplo resolvido-teorema-de-castigliano
Exemplo resolvido-teorema-de-castiglianoExemplo resolvido-teorema-de-castigliano
Exemplo resolvido-teorema-de-castigliano
 
Lista de exercícios flexão em vigas compostas mecânica dos sólidos ii
Lista de exercícios flexão em vigas compostas   mecânica dos sólidos iiLista de exercícios flexão em vigas compostas   mecânica dos sólidos ii
Lista de exercícios flexão em vigas compostas mecânica dos sólidos ii
 
201553 22238 7-flambagem
201553 22238 7-flambagem201553 22238 7-flambagem
201553 22238 7-flambagem
 
Resistência dos materiais
Resistência dos materiais   Resistência dos materiais
Resistência dos materiais
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidos
 
Lista de exercícios
Lista de exercíciosLista de exercícios
Lista de exercícios
 
Resistência dos materiais r. c. hibbeler
Resistência dos materiais   r. c. hibbelerResistência dos materiais   r. c. hibbeler
Resistência dos materiais r. c. hibbeler
 
Exercício Resolvido 1 - Tensão Média
Exercício Resolvido 1 - Tensão MédiaExercício Resolvido 1 - Tensão Média
Exercício Resolvido 1 - Tensão Média
 
Flambagem
FlambagemFlambagem
Flambagem
 
Dimensionamento de eixos
Dimensionamento de eixosDimensionamento de eixos
Dimensionamento de eixos
 
Resistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios ResolvidosResistência dos materiais - Exercícios Resolvidos
Resistência dos materiais - Exercícios Resolvidos
 
Mecanica aplicada-apostila 2
Mecanica aplicada-apostila 2Mecanica aplicada-apostila 2
Mecanica aplicada-apostila 2
 

Similaire à Deformação por torção de eixo circular

Similaire à Deformação por torção de eixo circular (20)

230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circulares230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circulares
 
Material de estudo_pra_mecânica_dos_sólidos_ii (1)
Material de estudo_pra_mecânica_dos_sólidos_ii (1)Material de estudo_pra_mecânica_dos_sólidos_ii (1)
Material de estudo_pra_mecânica_dos_sólidos_ii (1)
 
Aula 17 - Torção.pdf
Aula 17 - Torção.pdfAula 17 - Torção.pdf
Aula 17 - Torção.pdf
 
Mecanismos
MecanismosMecanismos
Mecanismos
 
Ita2001 parte 001
Ita2001 parte 001Ita2001 parte 001
Ita2001 parte 001
 
3 torcao
3 torcao3 torcao
3 torcao
 
F128 exercicios resolvidos-cap_10_a
F128 exercicios resolvidos-cap_10_aF128 exercicios resolvidos-cap_10_a
F128 exercicios resolvidos-cap_10_a
 
Questões ri l1 selecionada-2017-1
Questões ri   l1 selecionada-2017-1Questões ri   l1 selecionada-2017-1
Questões ri l1 selecionada-2017-1
 
Eds
EdsEds
Eds
 
trocao Cap1 v4
trocao Cap1 v4trocao Cap1 v4
trocao Cap1 v4
 
Equipamento estáticos
Equipamento estáticosEquipamento estáticos
Equipamento estáticos
 
Analise de forca engrenagens
Analise de forca   engrenagensAnalise de forca   engrenagens
Analise de forca engrenagens
 
Aula 36 engrenagens v
Aula 36   engrenagens vAula 36   engrenagens v
Aula 36 engrenagens v
 
Cálculos movimento circular
Cálculos movimento circularCálculos movimento circular
Cálculos movimento circular
 
Aula 35 engrenagens iv
Aula 35   engrenagens ivAula 35   engrenagens iv
Aula 35 engrenagens iv
 
Rotaçao 11
Rotaçao 11Rotaçao 11
Rotaçao 11
 
Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001Unicamp2006 2fase 3dia_parte_001
Unicamp2006 2fase 3dia_parte_001
 
trigonometria
trigonometriatrigonometria
trigonometria
 
Física - 700 Questões de Vestibular - soluções
Física  - 700 Questões de Vestibular - soluçõesFísica  - 700 Questões de Vestibular - soluções
Física - 700 Questões de Vestibular - soluções
 
Resolução da flexão composta normal e oblíqua por meio de ábacos
Resolução da flexão composta normal e oblíqua por meio de ábacosResolução da flexão composta normal e oblíqua por meio de ábacos
Resolução da flexão composta normal e oblíqua por meio de ábacos
 

Dernier

Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinhaMary Alvarenga
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesMary Alvarenga
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMVanessaCavalcante37
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasCasa Ciências
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniCassio Meira Jr.
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024Jeanoliveira597523
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptxthaisamaral9365923
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxLuizHenriquedeAlmeid6
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdfJorge Andrade
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBAline Santana
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxOsnilReis1
 
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxAD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxkarinedarozabatista
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavrasMary Alvarenga
 
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptxSlides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptxLuizHenriquedeAlmeid6
 
Slides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSlides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSilvana Silva
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 

Dernier (20)

Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinha
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das Mães
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
 
Recurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de PartículasRecurso Casa das Ciências: Sistemas de Partículas
Recurso Casa das Ciências: Sistemas de Partículas
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxAD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavras
 
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptxSlides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
 
Slides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSlides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptx
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 

Deformação por torção de eixo circular

  • 1. Deformação por torção de um eixo circular • Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. • Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados. Torção 1
  • 2. Cisalhamento por torção • BD=ρ dφ = dx γ • γ = ρ dφ/dx (dφ/dx = para todos os elementos na seção transversal na posição x) então a deformação por cisalhamento é proporcional a ρ • Como dφ/dx = γ / ρ = γmax / c então: γ = (ρ / c) γmax Torção 2 ߛ = ߨ 2 − lim ஻,஼→஺ ߠ´ γ = (ρ / c) γmax
  • 3. A fórmula da torção • Se o material for linear elástico, então a lei de Hooke se aplica τ=Gγ. • Uma variação linear na deformação por cisalhamento γ resulta em uma variação linear na tensão de cisalhamento ττττ correspondente, ao longo de qualquer linha radial na seção transversal. Portanto, igual que no caso da deformação por cisalhamento, τ variará de zero a τmax J T J Tc ρ ττ == oumáx = tensão de cisalhamento máxima no eixo = deformação por cisalhamento à distância ρ = torque interno resultante (método das seções!) = momento polar de inércia da área da seção transversal = raio externo do eixo = distância intermediária máxτ τ T J c ρ 3 τ = (ρ / c) τ max Para qualquer elemento de área dA localizado em ρ teremos uma força F = τ dA. O torque produzido por F será dT = ρ τdA e para toda a seção teremos: ܶ = න ߩ߬݀‫ܣ‬ = න ߩ ߩ ܿ ߬௠௔௫݀‫ܣ‬ = ߬௠௔௫ ܿ஺஺ න ߩଶ ݀‫ܣ‬ ஺
  • 4. • Se o eixo tiver uma seção transversal circular maciça, utilizamos um anel diferencial de área de espessura dρ portanto dA = 2πρdρ e a integral (0 a c) fica: • Se o eixo tiver uma seção transversal tubular, 4 2 cJ π = ( )44 2 io ccJ −= π 4 Como calcular o J (momento polar de inércia)?
  • 5. O eixo maciço de raio c é submetido a um torque T. Determine a fração de T à qual resiste o material contido no interior da região externa do eixo, que tem raio interno c/2 e raio externo c. Solução: ( ) ( ) ( )ρπρτρρτρ dcdAdT 2' máx== ( ) máxτρτ c= Para toda a área sombreada mais clara, o torque é (1) 32 152 ' 3 máx 2/ 3máx cd c T c c τ π ρρ πτ == ∫ A tensão no eixo varia linearmente, tal que . O torque no anel (área) localizado no interior da região sombreada mais clara é Exemplo 1 5Qual o valor de τmax em função do torque interno resultante T?
  • 6. Usando a fórmula de torção para determinar a tensão máxima no eixo, temos (Resposta) 16 15 ' TT = ( ) 3máx 4máx 2 2 c T c Tc J Tc π τ π τ = == Substituindo essa expressão na Equação 1, 6
  • 7. O eixo está apoiado em dois mancais e sujeito a três torques. Determine a tensão de cisalhamento desenvolvida nos pontos A e B localizados na seção a–a do eixo. Exemplo 2 7
  • 8. Solução: Pelo diagrama de corpo livre do segmento esquerdo determinamos o torque interno resultante na seção: ( ) mm1097,475 2 74 ×== π J mmkN250.10000.3250.4;0 ⋅=⇒=−−=∑ TTMx O momento polar de inércia para o eixo é Visto que A se encontra em ρ = c = 75 mm, utilizando a fórmula da torção... ( )( ) (Resposta)MPa89,1 1097,4 75250.1 7 = × == J Tc Aτ Da mesma forma, para B, em ρ =15 mm, temos ( )( ) (Resposta)MPa377,0 1097,4 15250.1 7 = × == J Tc Bτ 8
  • 9. Transmissão de potência • Potência é definida como o trabalho realizado por unidade de tempo. • Para um eixo rotativo com torque, a potência é: • Visto que , a equação para a potência é • Se conhecemos o torque T e τadm, para o projeto do eixo, o parâmetro de projeto ou parâmetro geométrico sai de: dtdTP /éeixodoangularevelocidadaonde θωω == fπωπ 2rad2ciclo1 =⇒= fTP π2= admτ T c J = 9
  • 10. Um eixo maciço de aço AB será usado para transmitir 3.750 W do motor M ao qual está acoplado. Se o eixo girar a ω = 175 rpm e o aço tiver uma tensão de cisalhamento admissível τadm = 100 MPa, determine o diâmetro exigido para o eixo com precisão de mm. Exemplo 3 10
  • 11. Solução: O torque no eixo é Nm6,204 60 2175 750.3 =⇒      × = = TT TP π ω Assim, o parâmetro geométrico é: ( )( ) ( ) mm92,10 100 000.16,20422 2 3/13/1 adm adm 4 =      =      = == ππτ τ π T c T c c c J Visto que 2c = 21,84 mm, selecione um eixo com diâmetro 22 mm. 11
  • 12. Exercícios 1. O tubo da figura é submetido a um torque de 750 Nm. Determine a parcela desse torque à qual a seção sombreada cinza resiste. Resolva o problema de duas maneiras: (a) usando a fórmula da torção e (b) determinando a resultante da distribuição da tensão de cisalhamento (5.4) 12
  • 13. 2. O eixo maciço de 30mm de diâmetro é usado para transmitir os torques aplicados às engrenagens. Determine a tensão de cisalhamento máxima (em valores absolutos) no eixo. (5.5) 13
  • 14. 3. O eixo maciço tem conicidade linear rA em uma extremidade e rB na outra extremidade. Deduza uma equação que dê a tensão de cisalhamento máxima no eixo em uma localização x ao longo da linha central do eixo. (5.30) 14
  • 15. 4. O projeto de um automóvel prevê que o eixo de transmissão AB será um tubo com parede fina. O motor transmite 125 kW quando o eixo está girando a 1500 rev/min. Determine a espessura mínima da parede do eixo se o diâmetro externo for 62,5 mm. A tensão de cisalhamento admissível do material é τadm = 50 Mpa. (5.33) 15
  • 16. Ângulo de torção - φφφφ • Integrando em todo o comprimento L do eixo, temos • Por exemplo, se o material é homogêneo, com seção, T e G constantes.... • A convenção de sinal é determinada pela regra da mão direita. ( ) ( )∫= L GxJ dxxT 0 φ Φ = ângulo de torção T(x) = torque interno J(x) = momento polar de inércia do eixo G = módulo de elasticidade ao cisalhamento JG TL =φ 16 Para o disco diferencial de espessura dx localizado em x o torque em geral será T(x). Sendo dφ o deslocamento relativo de uma face em relação à outra já sabemos que a uma distância ρ do eixo teremos γ = ρ dφ/dx. Como τ =Gγ e como τ = Tρ/J teremos: γ = T(x) ρ/J(x)G substituindo teremos: ݀߶ = ܶ(‫)ݔ‬ ‫ܬ‬ ‫ݔ‬ ‫ܩ‬ ݀‫ݔ‬
  • 17. Os dois eixos maciços de aço estão interligados por meio das engrenagens. Determine o ângulo de torção da extremidade A do eixo AB quando é aplicado o torque 45 Nm. Considere G = 80 GPa. O eixo AB é livre para girar dentro dos mancais E e F, enquanto o eixo DC é fixo em D. Cada eixo tem diâmetro de 20 mm. Exemplo 4 17
  • 18. Solução: Do diagrama de corpo livre, nas engrenagens teremos uma F e um T: ( ) ( ) Nm5,22075,0300 N30015,0/45 == == xDT F 1. O ângulo de torção da engrenagem C é ( )( ) ( )( ) ( )[ ] rad0269,0 1080001,02 5,15,22 94 += + == π φ JG LT DC C Visto que as engrenagens na extremidade estão relacionadas (r⋅θ = cte), ( ) ( )( ) rad0134,0075,00269,015,0 ⇒=Bφ 18 Agora determinaremos o ângulo de torção da extremidade A em relação à extremidade B.
  • 19. O ângulo na extremidade A em relação ao extremo B do eixo AB causada pelo torque de 45 Nm, ( )( ) ( )( ) ( )[ ] rad0716,0 1080010,02 245 94/ += + == π φ JG LT ABAB BA A rotação total da extremidade A é portanto (Resposta)rad0850,00716,00134,0/ +=+=+= BABA φφφ 19
  • 20. O eixo cônico mostrado abaixo é feito de um material com módulo de cisalhamento G. Determine o ângulo de torção de sua extremidade B quando submetido ao torque T. Exemplo 5 20
  • 21. Solução: Do diagrama de corpo livre, o torque interno é T e o raio c(x) é:       − −=⇒ − = − L cc xcc x cc L cc 12 2 212 Assim, em x teremos um J(x): ( ) 4 12 2 2             − −= L cc xcxJ π O ângulo de torção será: (Resposta) 3 22 3 2 3 1 2 121 2 2 0 4 12 2       ++ =             − − = ∫ cc cccc G TL L cc xc dx G T L ππ φ 21 ( ) ( )∫= L GxJ dxxT 0 φ
  • 22. 5. Um eixo é submetido a um torque T. Compare a efetividade da utilização do tubo mostrado na figura com a de uma seção maciça de raio c. Para isso calcule o aumento percentual na tensão de torção e no ângulo de torção por unidade de comprimento para o tubo em comparação com o da seção maciça (5.45) 22 Exercícios
  • 23. 6. O eixo de aço A-36 de 20 mm de diâmetro é submetido aos torques mostrados. Determine o ângulo de torção da extremidade B (5.51) 23 Exercícios
  • 24. 7. O eixo maciço de 60 mm de diâmetro de aço A-36 é submetido aos carregamentos de torção distribuídos e concentrados mostrados na figura. Determine o ângulo de torção na extremidade livre A devido a esses carregamentos (5.62) 24 Exercícios
  • 25. Elementos estaticamente indeterminados carregados com torque ෍ ‫ܯ‬௫ = 0 ܶ − ܶ‫ܣ‬ − ܶ‫ܤ‬ = 0 ‫݅݀݊݋ܥ‬çã‫)ݏ݁ݐ݊ܽ ݁ݑݍ ݈ܽݑ݃݅( ݈ܾ݁݀ܽ݀݅݅݅ݐܽ݌݉݋ܿ ݁݀ ݋‬ O ângulo de torção da extremidade A em relação à outra (B) deve ser = 0 φ‫ܤܣ‬ = 0 Portanto: ்ಲ௅ಲ಴ ௃ீ − ்ಳ௅ಳ಴ ௃ீ = 0 Como L = LAB+LBC obtemos: ܶ‫ܣ‬ = ܶ ‫ܮ‬஻஼ ‫ܮ‬ ܶ‫ܤ‬ = ܶ ‫ܮ‬஺஼ ‫ܮ‬
  • 26. O eixo maciço de aço mostrado na figura abaixo tem diâmetro de 20 mm. Se for submetido aos dois torques, determine as reações nos apoios fixos A e B. Solução: Examinando o diagrama de corpo livre, (1)0500800;0 =−−+−=∑ Abx TTM Visto que as extremidades do eixo são fixas, .0/ =BAφ Para as três regiões (método das seções), usando a convenção de sinal (para fora + ver figura ao lado): ( ) ( )( ) ( ) (2)7502,08,1 0 3,05,15002,0 −=− =+ + + − BA AAB TT JG T JG T JG T Resolvendo as equações 1 e 2, obtemos TA = –345 Nm e TB = 645 Nm. Exemplo 6 26 Utilizando a relação para as 3 regiões: JG TL =φ
  • 27. 8. O eixo de aço é composto por dois segmentos: AC, com diâmetro de 12 mm e CB, com diâmetro de 25 mm. Se estiver preso em suas extremidades A e B e for submetido a um torque de 750 Nm, determine a tensão de cisalhamento máxima no eixo. Gaço = 75 Gpa (5.76) 27 Exercícios