SlideShare une entreprise Scribd logo
1  sur  38
Télécharger pour lire hors ligne
Sistem Transmisi Komunikasi
Fresnell Zone
Pertemuan 6
REFLEKSI (pemantulan)
REFRAKSI (pembiasan)
DIFRAKSI (pembelokan)
SCATERING (penyebaran)
Free space loss
Attenuation of signal due to distance alone.
Lbf = 20 log (4πd / λ) dB
or in practical units
Lbf = 32.5 + 20 log(f) + 20 log (d) dB
where f is in MHz and d is in distance
For most practical situations, free space loss is the minimum loss
 worst case interference.
Applicable to interference from aircraft, satellites.
Apparent “line-of-sight” paths not necessarily free space loss only!
ITU-R Recommendation P.525
Materi kul6 fesnel
Classical 2-ray ground bounce model
9
4.2 Free Space propagation Model
• Used to predict received signal strength
when the transmitter and receiver have a
clear, unobstructed line-of- sight path
between them.
• For examples: Satellite comm. systems and
microwave line-of-sight radio links.
10
• The power received by a receiver antenna at a
distance d is given by the Friis free space equation:
(4.1)
where Pt: transmitted power
Pr: received power
Gt, Gr: antenna gain
L: the system loss factor not related to propagation. (miscellaneous
loss, and L 1)
: wavelength in metersλ
≥
11
• The gain of an antenna
(4.2)
where Ae: the effective aperture related to the physical size of
antenna.
• The wavelength is related to the carrier frequency
(4.3)
where f: the carrier frequency in Hertz
: the carrier frequency in radians per second.
c: the speed of light in meters/sec
cω
12
• Path Loss
– Represents signal attenuation in dB between the effective
transmitter power and the receiver power.
– For free space
which is valid only in the far-field of transmitting antenna region.
That is, the far-field distance
and df must satisfy
df>>D and df>>
where D is the largest physical linear dimension of antenna.
λ
2
2D
d f =
Fresnel Zone
Daerah Fresnel Pertama
 Daerah Fresnel pertama merupakan hal yang patut diperhatikan
dalam perencanaan lintasan gelombang radio line of sight.
 Daerah ini sebisa mungkin harus bebas dari halangan pandangan
(free of sight obstruction), karena bila tidak, akan menambah
redaman lintasan.
 Gambar menunjukkan 2 (dua) bekas lintasan propagasi
gelombang radio dari pemancar (T x) ke penerima (Rx), yaitu
berkas lintasan langsung (direct ray) dan berkas lintasan pantulan
(reflected ray), yang mempunyai radius F1 dari garis lintasan
langsung.
 Jika berkas lintasan pantulan mempunyai panjang setengah
kali lebih panjang dari berkas lintasan langsung, dan dianggap
bumi merupakan pemantul ya ng sempurna (koefisien pantul =
-1, artinya gelombang datang dan gelombang pantul berbeda
fasa 180 derajat), maka pada saat tiba di penerima akan
mempunyai fasa yang sama dengan gelombang langsung.
Akibatnya akan terjadi intensitas kedua gelombang pada saa t
mencapai antena penerima akan saling menguatkan.
 Berdasarkan Gambar dan keterangan di atas, F1 disebut
sebagai radius daerah Fresnel pertama , yang dirumuskan
dengan:
 dimana : F1 = radius daerah Fresnel pertama (m)
 f = frekuensi kerja (GHz)
 d1 = jarak antara Tx dengan halangan (km)
 d2 = jarak antara Rx dengan halangan (km)
 d = d1+ d 2 = jarak antara Tx dan Rx (km)
• Untuk daerah Fresnel pertama di tengah lintasan d = d1+ d2, dan d1 = d2
=1/2 d, sehingga:
• Sedangkan untuk radius daerah Fresnel kedua , daerah Fresnel ketiga, dan
seterusnya seperti diilustrasikan pada Gambar 6-11, dinyatakan dengan
rumusan berikut:
• n = 1,2,3, … . Atau secara singkat dinyatakan:
• dimana F1 = radius daerah Fresnel pertama (m)
18
Excess Path Length = difference between direct path & diffracted path
 = d – (d1+d2)
3.7.1 Fresnel Zone Geometry
• consider a transmitter-receiver pair in free space
• let obstruction of effective height h & width   protrude  to page
- distance from transmitter = d1
- distance from receiver = d2
- LOS distance between transmitter & receiver = d = d1+d2
Knife Edge Diffraction Geometry for ht = hr
h
TX RX
hr
ht
d2d1
hobs
d
d =  d1+  d2, where , 22
idh + di =
2
1
2
dh + = 2
2
2
dh ++ – (d1+d2)
19
Phase Difference between two paths given as
3.54





 +
21
21
2
2 dd
ddh 
Assume h << d1 , h << d2 and h >>  then by substitution and Taylor
Series Approximation
Knife Edge Diffraction Geometry ht > hr

d2
d1


h
TX
RX
hr
ht
hobs
h’





 +
=
∆
21
21
2
2
22
dd
ddh
λ
π
λ
π
 = 3.55
=
( )





 +
21
212 2
2 dd
dd
h
λ
π
20
(0.4 rad ≈ 23o
)
x = 0.4 rad  tan(x) = 0.423
tan(x)
x
when tan x  x   =  + 
 





 +
=+
21
21
21 dd
dd
h
d
h
d
h
Equivalent Knife Edge Diffraction Geometry with hr subtracted from all other heights


d2d1
TX
RX
ht-hr

hobs-hr
180-
tan  =  
1d
h
tan  =  
2d
h
21
Eqn 3.55 for  is often normalized using the dimensionless Fresnel-Kirchoff diffraction
parameter, v
)(
2)(2
21
21
21
21
dd
dd
dd
dd
h
+
=
+
λ
α
λ
v = (3.56)
when  is in units of radians  is given as
 = 2
2
v
π (3.57)
from equations 3.54-3.57   , the phase difference, between LOS & diffracted path is
function of
• obstruction’s height & position
• transmitters & receivers height & position
simplify geometry by reducing all heights to minimum height
22
(1) Fresnel Zones
• used to describe diffraction loss as a function of path difference, 
around an obstruction
• represents successive regions between transmitter and receiver
• nth
region = region where path length of secondary waves is n/2
greater than total LOS path length
• regions form a series of ellipsoids with foci at Tx & Rx
λ/2 + d
1.5λ + d
d
λ + d
at 1 GHz λ = 0.3m
23
destructive interference
•  = /2
•d = /2 + d1+d2
For 1st
Fresnel Zone, at a distance d1 from Tx & d2 from Rx
• diffracted wave will have a path length of d
d1 d2
d
Tx Rx
constructive interference:
• d =  + d1+d2
•  = 
For 2nd
Fresnel Zone
24
Fresnel Zones
• slice the ellipsoids with a transparent plane between transmitter &
receiver – obtain series of concentric circles
• circles represent loci of 2nd
ry wavelets that propagate to receiver
such that total path length increases by /2 for each successive circle
• effectively produces alternatively constructive & destructive
interference to received signal
T
R
O
d1
d2
h
Q
• If an obstruction were present, it could block some of the Fresnel
zones
25
Assuming, d1 & d2 >> rn  radius of nth
Fresnel Zone can be given in terms of n, d1,d2, 
21
21
dd
ddn
+
λ
rn = (3.58)
Excess Total Path Length,  for each ray passing through nth
circle
2
3/23
/21
 =n/2n
Tx
Rx
26
Fresnel zones: ellipsoids with foci at transmit & receive antenna
• if obstruction does not block the volume contained within 1st
Fresnel
zone  then diffraction loss is minimal
• rule of thumb for LOS uwave:
if 55% of 1st
Fresnel zone is clear  further Fresnel zone clearing
does not significantly alter diffraction loss
d2d1
 and v are positive, thus h is positive
TX RX
h
 excess path length
/2

3/2
)(
2)(2
21
21
21
21
dd
dd
dd
dd
h
+
=
+
λ
α
λ
v =e.g.
27
h = 0   and v =0
TX RX
d2
d1
d2d1
 and v are negative h is negative
h
TX RX

)(
2)(2
21
21
21
21
dd
dd
dd
dd
h
+
=
+
λ
α
λ
v =
28
3.7.2 Knife Edge Diffraction Model
Diffraction Losses
• estimating attenuation caused by diffraction over obstacles is
essential for predicting field strength in a given service area
• generally not possible to estimate losses precisely
• theoretical approximations typically corrected with empirical
measurements
Computing Diffraction Losses
• for simple terrain  expressions have been derived
• for complex terrain  computing diffraction losses is complex
29
Knife-edge Model - simplest model that provides insight into order of magnitude for
diffraction loss
• useful for shadowing caused by 1 object  treat object as a knife edge
• diffraction losses estimated using classical Fresnel solution for field
behind a knife edge
Knife Edge Diffraction Geometry, R located in shadowed region
Huygens 2nd
dry
source
d2
d1
T
R
h’
30
Gd(dB) = Diffraction Gain due to knife edge presence relative to E0
• Gd(dB) = 20 log|F(v)| (3.60)
Gd(dB)
-3 -2 -1 0 1 2 3 4 5
Graphical Evaluation
5
0
-5
-10
-15
-20
-25
-30 v
31
Table for Gd(dB)
[0,1]20 log(0.5 e- 0.95v
)
[-1,0]20 log(0.5-0.62v)
> 2.420 log(0.225/v)
[1, 2.4]20 log(0.4-(0.1184-(0.38-0.1v)2
)1/2
)
 -10
vGd(dB)
32
e.g. Let:  = 0.333 (fc = 900MHz), d1 = 1km, d2 = 1km, h = 25m
2. diffraction loss
• from graph is Gd(dB)  -22dB
• from table Gd(dB)  20 log (0.225/2.74) = - 21.7dB
)10(333.0
)2000(2
25
)(2
6
21
21
=
+
dd
dd
h
λv = = 2.74
1. Fresnel Diffraction Parameter
3. path length difference between LOS & diffracted rays
m
dd
ddh
625.0
10
2000
2
25
2 6
2
21
21
2
=





=




 +
 
4. Fresnel zone at tip of obstruction (h=25)
• solve for n such that  = n/2
• n = 2· 0.625/0.333 = 3.75
• tip of the obstruction completely blocks 1st
3 Fresnel zones
Compute Diffraction Loss at h = 25m
33
e.g. Let:  = 0.333 (fc = 900MHz), d1 = 1km, d2 = 1km, h = 25m
2. diffraction loss from graph is Gd(dB)  1dB
)10(333.0
)2000(2
25
)(2
6
21
21
−=
+
dd
dd
h
λ
v = = -2.74
1. Fresnel Diffraction Parameter
3. path length difference between LOS & diffracted rays
m
dd
ddh
625.0
10
2000
2
25
2 6
2
21
21
2
=




−
=




 +
 
4. Fresnel zone at tip of the obstruction (h = -25)
• solve for n such that  = n/2
• n = 2· 0.625/0.333 = 3.75
• tip of the obstruction completely blocks 1st
3 Fresnel zones
• diffraction losses are negligible since obstruction is below LOS path
Compute Diffraction Loss at h = -25m
34
f = 900MHz   = 0.333m
 = tan-1
(75-25/10000) = 0.287o
 = tan-1
(75/2000) = 2.15o
 = +  = 2.43o
= 0.0424 radians
find diffraction loss
)(
2
21
21
dd
dd
+λ
αv =
from graph, Gd(dB) = -25.5 dB
24.4
)12000(333.0
)2000)(10000(2
0424.0 ==
find h if Gd(dB) = 6dB
• for Gd(dB) = 6dB  v ≈ 0
• then  = 0 and  = - 
• and h/2000 = 25/12000  h = 4.16m

2km10km

T
R25m

75m
2km10km
100m
T
25m
50m
R
=0
2km10km

T
R25m
 h
35
3.7.3 Multiple Knife Edge Diffraction
• with more than one obstruction  compute total diffraction loss
(1) replace multiple obstacles with one equivalent obstacle
• use single knife edge model
• oversimplifies problem
• often produces overly optimistic estimates of received signal
strength
(2) wave theory solution for field behind 2 knife edges in series
• Extensions beyond 2 knife edges becomes formidable
• Several models simplify and estimate losses from multiple obstacles
Diffraction (knife-edge) geometry
37
Fresnel diffraction geometry
Illustration of Fresnel zones for different knife-edge diffraction scenarios.
Fresnel diffraction or near-field
diffraction occurs when a wave passes
through an aperture and diffracts in
the near field, causing any diffraction
pattern observed to differ in size and
shape, depending on the distance
between the aperture and the
projection
38
Multiple knife-edge diffraction

Contenu connexe

Tendances

Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)asadkhan1327
 
Dsss final
Dsss finalDsss final
Dsss finalAJAL A J
 
Bab 4 propagasi gelombang radio
Bab 4 propagasi gelombang radioBab 4 propagasi gelombang radio
Bab 4 propagasi gelombang radioEKO SUPRIYADI
 
Introduction to Information Theory and Coding.pdf
Introduction to Information Theory and Coding.pdfIntroduction to Information Theory and Coding.pdf
Introduction to Information Theory and Coding.pdfJimma University
 
Teletraffic engineering handbook
Teletraffic engineering handbookTeletraffic engineering handbook
Teletraffic engineering handbookDeepak Singh
 
Telekomunikasi Analog dan Digital - Slide week 7 derau dalam sistem komunikasi
Telekomunikasi Analog dan Digital - Slide week 7   derau dalam sistem komunikasiTelekomunikasi Analog dan Digital - Slide week 7   derau dalam sistem komunikasi
Telekomunikasi Analog dan Digital - Slide week 7 derau dalam sistem komunikasiBeny Nugraha
 
Lecture 16 probabilidad de error para señales en awgn parte 1
Lecture 16 probabilidad de error para señales en awgn parte 1Lecture 16 probabilidad de error para señales en awgn parte 1
Lecture 16 probabilidad de error para señales en awgn parte 1nica2009
 
4. free space path loss model part 2
4. free space path loss model   part 24. free space path loss model   part 2
4. free space path loss model part 2JAIGANESH SEKAR
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesPei-Che Chang
 
Perancangan Antena Mikrostrip Pada Frekuensi 2,3 Ghz Untuk Aplikasi LTE (Long...
Perancangan Antena Mikrostrip Pada Frekuensi 2,3 Ghz Untuk Aplikasi LTE (Long...Perancangan Antena Mikrostrip Pada Frekuensi 2,3 Ghz Untuk Aplikasi LTE (Long...
Perancangan Antena Mikrostrip Pada Frekuensi 2,3 Ghz Untuk Aplikasi LTE (Long...Uofa_Unsada
 
PERANCANGAN ANTENA MIKROSTRIP PATCH BUJUR SANGKAR DENGAN FREKUENSI KERJA 2.6 ...
PERANCANGAN ANTENA MIKROSTRIP PATCH BUJUR SANGKAR DENGAN FREKUENSI KERJA 2.6 ...PERANCANGAN ANTENA MIKROSTRIP PATCH BUJUR SANGKAR DENGAN FREKUENSI KERJA 2.6 ...
PERANCANGAN ANTENA MIKROSTRIP PATCH BUJUR SANGKAR DENGAN FREKUENSI KERJA 2.6 ...Uofa_Unsada
 
Diversity Techniques in mobile communications
Diversity Techniques in mobile communicationsDiversity Techniques in mobile communications
Diversity Techniques in mobile communicationsDiwaker Pant
 
Presentasi wireless microwave
Presentasi wireless   microwavePresentasi wireless   microwave
Presentasi wireless microwaveKurniawan Suganda
 
Mobile Radio Propagation
Mobile Radio PropagationMobile Radio Propagation
Mobile Radio PropagationIzah Asmadi
 
Sistem Komunikasi Seluler
Sistem Komunikasi SelulerSistem Komunikasi Seluler
Sistem Komunikasi SelulerRio Hafandi
 

Tendances (20)

Sistem Komunikasi Bergerak
Sistem Komunikasi BergerakSistem Komunikasi Bergerak
Sistem Komunikasi Bergerak
 
Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)
 
Dsss final
Dsss finalDsss final
Dsss final
 
Bab 4 propagasi gelombang radio
Bab 4 propagasi gelombang radioBab 4 propagasi gelombang radio
Bab 4 propagasi gelombang radio
 
Introduction to Information Theory and Coding.pdf
Introduction to Information Theory and Coding.pdfIntroduction to Information Theory and Coding.pdf
Introduction to Information Theory and Coding.pdf
 
Teletraffic engineering handbook
Teletraffic engineering handbookTeletraffic engineering handbook
Teletraffic engineering handbook
 
Telekomunikasi Analog dan Digital - Slide week 7 derau dalam sistem komunikasi
Telekomunikasi Analog dan Digital - Slide week 7   derau dalam sistem komunikasiTelekomunikasi Analog dan Digital - Slide week 7   derau dalam sistem komunikasi
Telekomunikasi Analog dan Digital - Slide week 7 derau dalam sistem komunikasi
 
Lecture 16 probabilidad de error para señales en awgn parte 1
Lecture 16 probabilidad de error para señales en awgn parte 1Lecture 16 probabilidad de error para señales en awgn parte 1
Lecture 16 probabilidad de error para señales en awgn parte 1
 
4. free space path loss model part 2
4. free space path loss model   part 24. free space path loss model   part 2
4. free space path loss model part 2
 
Multiple access techniques for wireless communications
Multiple access techniques for wireless communicationsMultiple access techniques for wireless communications
Multiple access techniques for wireless communications
 
Radioenlaces Terrenales 1ra parte
Radioenlaces Terrenales 1ra parteRadioenlaces Terrenales 1ra parte
Radioenlaces Terrenales 1ra parte
 
Millimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphonesMillimeter wave 5G antennas for smartphones
Millimeter wave 5G antennas for smartphones
 
Perancangan Antena Mikrostrip Pada Frekuensi 2,3 Ghz Untuk Aplikasi LTE (Long...
Perancangan Antena Mikrostrip Pada Frekuensi 2,3 Ghz Untuk Aplikasi LTE (Long...Perancangan Antena Mikrostrip Pada Frekuensi 2,3 Ghz Untuk Aplikasi LTE (Long...
Perancangan Antena Mikrostrip Pada Frekuensi 2,3 Ghz Untuk Aplikasi LTE (Long...
 
PERANCANGAN ANTENA MIKROSTRIP PATCH BUJUR SANGKAR DENGAN FREKUENSI KERJA 2.6 ...
PERANCANGAN ANTENA MIKROSTRIP PATCH BUJUR SANGKAR DENGAN FREKUENSI KERJA 2.6 ...PERANCANGAN ANTENA MIKROSTRIP PATCH BUJUR SANGKAR DENGAN FREKUENSI KERJA 2.6 ...
PERANCANGAN ANTENA MIKROSTRIP PATCH BUJUR SANGKAR DENGAN FREKUENSI KERJA 2.6 ...
 
Diversity Techniques in mobile communications
Diversity Techniques in mobile communicationsDiversity Techniques in mobile communications
Diversity Techniques in mobile communications
 
Chapter 03 cyclic codes
Chapter 03   cyclic codesChapter 03   cyclic codes
Chapter 03 cyclic codes
 
Presentasi wireless microwave
Presentasi wireless   microwavePresentasi wireless   microwave
Presentasi wireless microwave
 
Mobile Radio Propagation
Mobile Radio PropagationMobile Radio Propagation
Mobile Radio Propagation
 
Error Control coding
Error Control codingError Control coding
Error Control coding
 
Sistem Komunikasi Seluler
Sistem Komunikasi SelulerSistem Komunikasi Seluler
Sistem Komunikasi Seluler
 

Similaire à Materi kul6 fesnel

Large scale path loss 1
Large scale path loss 1Large scale path loss 1
Large scale path loss 1Vrince Vimal
 
wirelessSlidesCh04 (2).ppt
wirelessSlidesCh04 (2).pptwirelessSlidesCh04 (2).ppt
wirelessSlidesCh04 (2).pptasodariyabhavesh
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)asadkhan1327
 
NetSim Technology Library- Propagation models
NetSim Technology Library- Propagation modelsNetSim Technology Library- Propagation models
NetSim Technology Library- Propagation modelsVishal Sharma
 
Parameters of multipath channel
Parameters of multipath channelParameters of multipath channel
Parameters of multipath channelNaveen Kumar
 
Wireless Communication Unit 3.pptx
Wireless Communication Unit 3.pptxWireless Communication Unit 3.pptx
Wireless Communication Unit 3.pptxKaran Belsare
 
Large Scale Fading and Network Deployment.pdf
Large	Scale	Fading	and Network Deployment.pdfLarge	Scale	Fading	and Network Deployment.pdf
Large Scale Fading and Network Deployment.pdfmshanajoel6
 
solution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationsolution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationNIT Raipur
 
Superposition 2008 prelim_solutions
Superposition 2008 prelim_solutionsSuperposition 2008 prelim_solutions
Superposition 2008 prelim_solutionsJohn Jon
 
IMPORTANCE OF WIRELESS CHANNELS IN COMMUNICATION
IMPORTANCE OF WIRELESS CHANNELS IN COMMUNICATIONIMPORTANCE OF WIRELESS CHANNELS IN COMMUNICATION
IMPORTANCE OF WIRELESS CHANNELS IN COMMUNICATIONDrMARYPRAVEENAS
 
microwave_communications1__1.pptx
microwave_communications1__1.pptxmicrowave_communications1__1.pptx
microwave_communications1__1.pptxGeoffreyAlleyne
 
microwave-communication-wave-guides
microwave-communication-wave-guidesmicrowave-communication-wave-guides
microwave-communication-wave-guidesATTO RATHORE
 
Chapter2rev011611 student
Chapter2rev011611 studentChapter2rev011611 student
Chapter2rev011611 studentDiogo Lourenço
 

Similaire à Materi kul6 fesnel (20)

Diffraction.ppt
Diffraction.pptDiffraction.ppt
Diffraction.ppt
 
Large scale path loss 1
Large scale path loss 1Large scale path loss 1
Large scale path loss 1
 
wirelessSlidesCh04 (2).ppt
wirelessSlidesCh04 (2).pptwirelessSlidesCh04 (2).ppt
wirelessSlidesCh04 (2).ppt
 
Wireless channels
Wireless channels Wireless channels
Wireless channels
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)
 
NetSim Technology Library- Propagation models
NetSim Technology Library- Propagation modelsNetSim Technology Library- Propagation models
NetSim Technology Library- Propagation models
 
Parameters of multipath channel
Parameters of multipath channelParameters of multipath channel
Parameters of multipath channel
 
Wireless Communication Unit 3.pptx
Wireless Communication Unit 3.pptxWireless Communication Unit 3.pptx
Wireless Communication Unit 3.pptx
 
Mobile Radio Propagations
Mobile Radio PropagationsMobile Radio Propagations
Mobile Radio Propagations
 
Large Scale Fading and Network Deployment.pdf
Large	Scale	Fading	and Network Deployment.pdfLarge	Scale	Fading	and Network Deployment.pdf
Large Scale Fading and Network Deployment.pdf
 
solution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationsolution manual of goldsmith wireless communication
solution manual of goldsmith wireless communication
 
Superposition 2008 prelim_solutions
Superposition 2008 prelim_solutionsSuperposition 2008 prelim_solutions
Superposition 2008 prelim_solutions
 
IMPORTANCE OF WIRELESS CHANNELS IN COMMUNICATION
IMPORTANCE OF WIRELESS CHANNELS IN COMMUNICATIONIMPORTANCE OF WIRELESS CHANNELS IN COMMUNICATION
IMPORTANCE OF WIRELESS CHANNELS IN COMMUNICATION
 
microwave_communications1__1.pptx
microwave_communications1__1.pptxmicrowave_communications1__1.pptx
microwave_communications1__1.pptx
 
Doppler radar
Doppler radarDoppler radar
Doppler radar
 
microwave-communication-wave-guides
microwave-communication-wave-guidesmicrowave-communication-wave-guides
microwave-communication-wave-guides
 
Ece5318 ch2
Ece5318 ch2Ece5318 ch2
Ece5318 ch2
 
Chapter2rev011611 student
Chapter2rev011611 studentChapter2rev011611 student
Chapter2rev011611 student
 
Ch 3
Ch 3Ch 3
Ch 3
 
IARE_RS_PPT_0.pdf
IARE_RS_PPT_0.pdfIARE_RS_PPT_0.pdf
IARE_RS_PPT_0.pdf
 

Dernier

Technology Features of Apollo HDD Machine, Its Technical Specification with C...
Technology Features of Apollo HDD Machine, Its Technical Specification with C...Technology Features of Apollo HDD Machine, Its Technical Specification with C...
Technology Features of Apollo HDD Machine, Its Technical Specification with C...Apollo Techno Industries Pvt Ltd
 
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...soginsider
 
A Seminar on Electric Vehicle Software Simulation
A Seminar on Electric Vehicle Software SimulationA Seminar on Electric Vehicle Software Simulation
A Seminar on Electric Vehicle Software SimulationMohsinKhanA
 
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Engineering Mechanics  Chapter 5  Equilibrium of a Rigid BodyEngineering Mechanics  Chapter 5  Equilibrium of a Rigid Body
Engineering Mechanics Chapter 5 Equilibrium of a Rigid BodyAhmadHajasad2
 
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfsdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfJulia Kaye
 
Nodal seismic construction requirements.pptx
Nodal seismic construction requirements.pptxNodal seismic construction requirements.pptx
Nodal seismic construction requirements.pptxwendy cai
 
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratoryدليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide LaboratoryBahzad5
 
Phase noise transfer functions.pptx
Phase noise transfer      functions.pptxPhase noise transfer      functions.pptx
Phase noise transfer functions.pptxSaiGouthamSunkara
 
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docxSUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docxNaveenVerma126
 
Power System electrical and electronics .pptx
Power System electrical and electronics .pptxPower System electrical and electronics .pptx
Power System electrical and electronics .pptxMUKULKUMAR210
 
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....santhyamuthu1
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxLMW Machine Tool Division
 
Basic Principle of Electrochemical Sensor
Basic Principle of  Electrochemical SensorBasic Principle of  Electrochemical Sensor
Basic Principle of Electrochemical SensorTanvir Moin
 
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxUNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxrealme6igamerr
 
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfRenewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfodunowoeminence2019
 
How to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfHow to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfRedhwan Qasem Shaddad
 
cloud computing notes for anna university syllabus
cloud computing notes for anna university syllabuscloud computing notes for anna university syllabus
cloud computing notes for anna university syllabusViolet Violet
 
Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...sahb78428
 

Dernier (20)

Technology Features of Apollo HDD Machine, Its Technical Specification with C...
Technology Features of Apollo HDD Machine, Its Technical Specification with C...Technology Features of Apollo HDD Machine, Its Technical Specification with C...
Technology Features of Apollo HDD Machine, Its Technical Specification with C...
 
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
 
A Seminar on Electric Vehicle Software Simulation
A Seminar on Electric Vehicle Software SimulationA Seminar on Electric Vehicle Software Simulation
A Seminar on Electric Vehicle Software Simulation
 
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
Engineering Mechanics  Chapter 5  Equilibrium of a Rigid BodyEngineering Mechanics  Chapter 5  Equilibrium of a Rigid Body
Engineering Mechanics Chapter 5 Equilibrium of a Rigid Body
 
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfsdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
 
Nodal seismic construction requirements.pptx
Nodal seismic construction requirements.pptxNodal seismic construction requirements.pptx
Nodal seismic construction requirements.pptx
 
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratoryدليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
 
Lecture 2 .pptx
Lecture 2                            .pptxLecture 2                            .pptx
Lecture 2 .pptx
 
Phase noise transfer functions.pptx
Phase noise transfer      functions.pptxPhase noise transfer      functions.pptx
Phase noise transfer functions.pptx
 
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docxSUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
SUMMER TRAINING REPORT ON BUILDING CONSTRUCTION.docx
 
Lecture 4 .pdf
Lecture 4                              .pdfLecture 4                              .pdf
Lecture 4 .pdf
 
Power System electrical and electronics .pptx
Power System electrical and electronics .pptxPower System electrical and electronics .pptx
Power System electrical and electronics .pptx
 
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
 
Basic Principle of Electrochemical Sensor
Basic Principle of  Electrochemical SensorBasic Principle of  Electrochemical Sensor
Basic Principle of Electrochemical Sensor
 
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxUNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
 
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfRenewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
 
How to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfHow to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdf
 
cloud computing notes for anna university syllabus
cloud computing notes for anna university syllabuscloud computing notes for anna university syllabus
cloud computing notes for anna university syllabus
 
Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...
 

Materi kul6 fesnel

  • 6. Free space loss Attenuation of signal due to distance alone. Lbf = 20 log (4πd / λ) dB or in practical units Lbf = 32.5 + 20 log(f) + 20 log (d) dB where f is in MHz and d is in distance For most practical situations, free space loss is the minimum loss  worst case interference. Applicable to interference from aircraft, satellites. Apparent “line-of-sight” paths not necessarily free space loss only! ITU-R Recommendation P.525
  • 8. Classical 2-ray ground bounce model
  • 9. 9 4.2 Free Space propagation Model • Used to predict received signal strength when the transmitter and receiver have a clear, unobstructed line-of- sight path between them. • For examples: Satellite comm. systems and microwave line-of-sight radio links.
  • 10. 10 • The power received by a receiver antenna at a distance d is given by the Friis free space equation: (4.1) where Pt: transmitted power Pr: received power Gt, Gr: antenna gain L: the system loss factor not related to propagation. (miscellaneous loss, and L 1) : wavelength in metersλ ≥
  • 11. 11 • The gain of an antenna (4.2) where Ae: the effective aperture related to the physical size of antenna. • The wavelength is related to the carrier frequency (4.3) where f: the carrier frequency in Hertz : the carrier frequency in radians per second. c: the speed of light in meters/sec cω
  • 12. 12 • Path Loss – Represents signal attenuation in dB between the effective transmitter power and the receiver power. – For free space which is valid only in the far-field of transmitting antenna region. That is, the far-field distance and df must satisfy df>>D and df>> where D is the largest physical linear dimension of antenna. λ 2 2D d f =
  • 14. Daerah Fresnel Pertama  Daerah Fresnel pertama merupakan hal yang patut diperhatikan dalam perencanaan lintasan gelombang radio line of sight.  Daerah ini sebisa mungkin harus bebas dari halangan pandangan (free of sight obstruction), karena bila tidak, akan menambah redaman lintasan.  Gambar menunjukkan 2 (dua) bekas lintasan propagasi gelombang radio dari pemancar (T x) ke penerima (Rx), yaitu berkas lintasan langsung (direct ray) dan berkas lintasan pantulan (reflected ray), yang mempunyai radius F1 dari garis lintasan langsung.
  • 15.  Jika berkas lintasan pantulan mempunyai panjang setengah kali lebih panjang dari berkas lintasan langsung, dan dianggap bumi merupakan pemantul ya ng sempurna (koefisien pantul = -1, artinya gelombang datang dan gelombang pantul berbeda fasa 180 derajat), maka pada saat tiba di penerima akan mempunyai fasa yang sama dengan gelombang langsung. Akibatnya akan terjadi intensitas kedua gelombang pada saa t mencapai antena penerima akan saling menguatkan.  Berdasarkan Gambar dan keterangan di atas, F1 disebut sebagai radius daerah Fresnel pertama , yang dirumuskan dengan:  dimana : F1 = radius daerah Fresnel pertama (m)  f = frekuensi kerja (GHz)  d1 = jarak antara Tx dengan halangan (km)  d2 = jarak antara Rx dengan halangan (km)  d = d1+ d 2 = jarak antara Tx dan Rx (km)
  • 16. • Untuk daerah Fresnel pertama di tengah lintasan d = d1+ d2, dan d1 = d2 =1/2 d, sehingga:
  • 17. • Sedangkan untuk radius daerah Fresnel kedua , daerah Fresnel ketiga, dan seterusnya seperti diilustrasikan pada Gambar 6-11, dinyatakan dengan rumusan berikut: • n = 1,2,3, … . Atau secara singkat dinyatakan: • dimana F1 = radius daerah Fresnel pertama (m)
  • 18. 18 Excess Path Length = difference between direct path & diffracted path  = d – (d1+d2) 3.7.1 Fresnel Zone Geometry • consider a transmitter-receiver pair in free space • let obstruction of effective height h & width   protrude  to page - distance from transmitter = d1 - distance from receiver = d2 - LOS distance between transmitter & receiver = d = d1+d2 Knife Edge Diffraction Geometry for ht = hr h TX RX hr ht d2d1 hobs d d =  d1+  d2, where , 22 idh + di = 2 1 2 dh + = 2 2 2 dh ++ – (d1+d2)
  • 19. 19 Phase Difference between two paths given as 3.54       + 21 21 2 2 dd ddh  Assume h << d1 , h << d2 and h >>  then by substitution and Taylor Series Approximation Knife Edge Diffraction Geometry ht > hr  d2 d1   h TX RX hr ht hobs h’       + = ∆ 21 21 2 2 22 dd ddh λ π λ π  = 3.55 = ( )       + 21 212 2 2 dd dd h λ π
  • 20. 20 (0.4 rad ≈ 23o ) x = 0.4 rad  tan(x) = 0.423 tan(x) x when tan x  x   =  +          + =+ 21 21 21 dd dd h d h d h Equivalent Knife Edge Diffraction Geometry with hr subtracted from all other heights   d2d1 TX RX ht-hr  hobs-hr 180- tan  =   1d h tan  =   2d h
  • 21. 21 Eqn 3.55 for  is often normalized using the dimensionless Fresnel-Kirchoff diffraction parameter, v )( 2)(2 21 21 21 21 dd dd dd dd h + = + λ α λ v = (3.56) when  is in units of radians  is given as  = 2 2 v π (3.57) from equations 3.54-3.57   , the phase difference, between LOS & diffracted path is function of • obstruction’s height & position • transmitters & receivers height & position simplify geometry by reducing all heights to minimum height
  • 22. 22 (1) Fresnel Zones • used to describe diffraction loss as a function of path difference,  around an obstruction • represents successive regions between transmitter and receiver • nth region = region where path length of secondary waves is n/2 greater than total LOS path length • regions form a series of ellipsoids with foci at Tx & Rx λ/2 + d 1.5λ + d d λ + d at 1 GHz λ = 0.3m
  • 23. 23 destructive interference •  = /2 •d = /2 + d1+d2 For 1st Fresnel Zone, at a distance d1 from Tx & d2 from Rx • diffracted wave will have a path length of d d1 d2 d Tx Rx constructive interference: • d =  + d1+d2 •  =  For 2nd Fresnel Zone
  • 24. 24 Fresnel Zones • slice the ellipsoids with a transparent plane between transmitter & receiver – obtain series of concentric circles • circles represent loci of 2nd ry wavelets that propagate to receiver such that total path length increases by /2 for each successive circle • effectively produces alternatively constructive & destructive interference to received signal T R O d1 d2 h Q • If an obstruction were present, it could block some of the Fresnel zones
  • 25. 25 Assuming, d1 & d2 >> rn  radius of nth Fresnel Zone can be given in terms of n, d1,d2,  21 21 dd ddn + λ rn = (3.58) Excess Total Path Length,  for each ray passing through nth circle 2 3/23 /21  =n/2n Tx Rx
  • 26. 26 Fresnel zones: ellipsoids with foci at transmit & receive antenna • if obstruction does not block the volume contained within 1st Fresnel zone  then diffraction loss is minimal • rule of thumb for LOS uwave: if 55% of 1st Fresnel zone is clear  further Fresnel zone clearing does not significantly alter diffraction loss d2d1  and v are positive, thus h is positive TX RX h  excess path length /2  3/2 )( 2)(2 21 21 21 21 dd dd dd dd h + = + λ α λ v =e.g.
  • 27. 27 h = 0   and v =0 TX RX d2 d1 d2d1  and v are negative h is negative h TX RX  )( 2)(2 21 21 21 21 dd dd dd dd h + = + λ α λ v =
  • 28. 28 3.7.2 Knife Edge Diffraction Model Diffraction Losses • estimating attenuation caused by diffraction over obstacles is essential for predicting field strength in a given service area • generally not possible to estimate losses precisely • theoretical approximations typically corrected with empirical measurements Computing Diffraction Losses • for simple terrain  expressions have been derived • for complex terrain  computing diffraction losses is complex
  • 29. 29 Knife-edge Model - simplest model that provides insight into order of magnitude for diffraction loss • useful for shadowing caused by 1 object  treat object as a knife edge • diffraction losses estimated using classical Fresnel solution for field behind a knife edge Knife Edge Diffraction Geometry, R located in shadowed region Huygens 2nd dry source d2 d1 T R h’
  • 30. 30 Gd(dB) = Diffraction Gain due to knife edge presence relative to E0 • Gd(dB) = 20 log|F(v)| (3.60) Gd(dB) -3 -2 -1 0 1 2 3 4 5 Graphical Evaluation 5 0 -5 -10 -15 -20 -25 -30 v
  • 31. 31 Table for Gd(dB) [0,1]20 log(0.5 e- 0.95v ) [-1,0]20 log(0.5-0.62v) > 2.420 log(0.225/v) [1, 2.4]20 log(0.4-(0.1184-(0.38-0.1v)2 )1/2 )  -10 vGd(dB)
  • 32. 32 e.g. Let:  = 0.333 (fc = 900MHz), d1 = 1km, d2 = 1km, h = 25m 2. diffraction loss • from graph is Gd(dB)  -22dB • from table Gd(dB)  20 log (0.225/2.74) = - 21.7dB )10(333.0 )2000(2 25 )(2 6 21 21 = + dd dd h λv = = 2.74 1. Fresnel Diffraction Parameter 3. path length difference between LOS & diffracted rays m dd ddh 625.0 10 2000 2 25 2 6 2 21 21 2 =      =      +   4. Fresnel zone at tip of obstruction (h=25) • solve for n such that  = n/2 • n = 2· 0.625/0.333 = 3.75 • tip of the obstruction completely blocks 1st 3 Fresnel zones Compute Diffraction Loss at h = 25m
  • 33. 33 e.g. Let:  = 0.333 (fc = 900MHz), d1 = 1km, d2 = 1km, h = 25m 2. diffraction loss from graph is Gd(dB)  1dB )10(333.0 )2000(2 25 )(2 6 21 21 −= + dd dd h λ v = = -2.74 1. Fresnel Diffraction Parameter 3. path length difference between LOS & diffracted rays m dd ddh 625.0 10 2000 2 25 2 6 2 21 21 2 =     − =      +   4. Fresnel zone at tip of the obstruction (h = -25) • solve for n such that  = n/2 • n = 2· 0.625/0.333 = 3.75 • tip of the obstruction completely blocks 1st 3 Fresnel zones • diffraction losses are negligible since obstruction is below LOS path Compute Diffraction Loss at h = -25m
  • 34. 34 f = 900MHz   = 0.333m  = tan-1 (75-25/10000) = 0.287o  = tan-1 (75/2000) = 2.15o  = +  = 2.43o = 0.0424 radians find diffraction loss )( 2 21 21 dd dd +λ αv = from graph, Gd(dB) = -25.5 dB 24.4 )12000(333.0 )2000)(10000(2 0424.0 == find h if Gd(dB) = 6dB • for Gd(dB) = 6dB  v ≈ 0 • then  = 0 and  = -  • and h/2000 = 25/12000  h = 4.16m  2km10km  T R25m  75m 2km10km 100m T 25m 50m R =0 2km10km  T R25m  h
  • 35. 35 3.7.3 Multiple Knife Edge Diffraction • with more than one obstruction  compute total diffraction loss (1) replace multiple obstacles with one equivalent obstacle • use single knife edge model • oversimplifies problem • often produces overly optimistic estimates of received signal strength (2) wave theory solution for field behind 2 knife edges in series • Extensions beyond 2 knife edges becomes formidable • Several models simplify and estimate losses from multiple obstacles
  • 37. 37 Fresnel diffraction geometry Illustration of Fresnel zones for different knife-edge diffraction scenarios. Fresnel diffraction or near-field diffraction occurs when a wave passes through an aperture and diffracts in the near field, causing any diffraction pattern observed to differ in size and shape, depending on the distance between the aperture and the projection

Notes de l'éditeur

  1. Fig. 2.5
  2. Fig. 2.8
  3. Fig. 2.10
  4. Fig. 2.13