SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
Matemática
              Fascículo 03
Álvaro Zimmermann Aranha
Índice

Progressão Aritmética e Geométrica

Resumo Teórico .................................................................................................................................1
Exercícios ...........................................................................................................................................3
Dicas .................................................................................................................................................4
Resoluções ........................................................................................................................................5
Progressão Aritmética e Geométrica

Resumo teórico

Progressão Aritmética (P.A.)
Definição

Uma seqüência numérica (a1; a2; a3;....; an–1; an; an+1;...) será denominada P.A. se um termo qualquer
(an), a partir do segundo (a2 ) for obtido pela soma do termo imediatamente anterior (an–1) com um
valor constante (r) denominado razão da P.A.; ou seja, numa P.A.:

an = an–1+r           para          n Î IN / n ³ 2

Exemplo: (1,3,5,7,9,....)           seqüência dos números ímpares positivos é uma P.A. de razão r = 2 e
                                    primeiro termo a1 = 1
Conseqüências:
1. A diferença entre dois termos consecutivos é constante e igual à razão da P.A., ou seja:

  a4 – a3 = a3 – a2 = an – an–1 = r

2. Um termo qualquer, a partir do segundo, é a média aritmética dos termos que lhe são
   eqüidistantes, ou seja:

          a1 + a3         a + a 13        a n–p + a n+ p
   a2 =           ; a 10 = 7       ; an =
             2               2                  2

Fórmula do Termo Geral da P.A. (an)

Numa P.A. de razão r e primeiro termo a1 , podemos obter um termo qualquer an através da seguinte
relação:

 an = a1 + (n – 1).r         para        n Î IN / n ³ 1

Exemplo: para encontrarmos o 10º termo fazemos n = 10, logo: a10 = a1 + 9.r
Conseqüência:
1. Para obtermos um termo qualquer an, a partir de um termo de ordem p (ap) devemos fazer:

    an = ap + (n – p).r

  Exemplo: a10 = a7 + 3r ou a10 = a4 + 6r, etc...




                                                                                                          1
Soma dos Termos de uma P.A.

A soma dos n primeiros termos de uma P.A. pode ser obtida pela seguinte relação:

     (a 1 + a n ) × n
S=
           2

onde a1 é o primeiro termo,
an é o último termo,
n é o n.o de termos somados e
S é o valor da soma dos termos.


Progressão Geométrica (P.G.)
Definição

Uma seqüência numérica (a1; a2; a3;....; an–1; an; an+1;...) será denominada P.G. se um termo qualquer
(an), a partir do segundo (a2) for obtido pela multiplicação do termo imediatamente anterior (an–1) por
uma constante numérica (q) denominada razão da P.G.; ou seja, numa P.G.:

an = an–1 . q             para           n Î IN / n ³ 2

Exemplo: (2, 6, 18, 54, 162) é uma P.G. onde q=3

Conseqüências:
1. O quociente entre dois termos consecutivos é constante e é igual à razão (q) da P.G., ou ainda:

    a3 a2    a
       =   = n =q                           (para q ¹ 0)
    a 2 a 1 a n–1

2. Um termo qualquer, a partir do segundo (a2) é a média geométrica dos termos que lhe são
   eqüidistantes, ou:

    (a 3 ) 2 = a 2 × a 4 ou (a n ) 2 = a n –p × a n+ p


Fórmula do Termo Geral da P.G. (an)

Numa P.G. de primeiro termo a1 e razão q, um termo qualquer pode ser obtido através da seguinte
relação:

an = a1 . qn–1          para        n Î IN / n ³ 1

Exemplo: para obtermos o quinto termo fazemos n=5, daí: a5=a1.q4

Conseqüência: Para obtermos um termo qualquer (an) a partir de um termo de ordem p devemos usar
a seguinte relação:

an = ap . qn–p

Exemplo: a10 = a7 . q3 ou a10=a6 . q4, etc...




2
Soma Finita de Termos de uma P.G.

   A soma dos n primeiros termos de uma P.G. é dada pela seguinte relação:

          a 1(qn – 1)
   S=
              q–1

   Soma Infinita de Termos de uma P.G. Convergente

   Quando a soma infinita converge, ou seja, na P.G. |q|< 1 , podemos obter o limite da soma fazendo

         a1
   S=
        1– q

   Produto dos n Primeiros Termos de uma PG.

   É dado pelas seguintes relações:
                  n(n–1)                            n
            n
   IP = a 1 × q     2      ou      IP = (a 1 × a n ) 2



   Exercícios

01. (FUV-83-Modificado) Calculando um dos ângulos de um triângulo retângulo, sabendo que os mesmos
    estão em P.G. obtemos:
   a. ( 2 – 1).90º         b. ( 3 – 1).45º           c. ( 5 – 1).45º   d. ( 7 – 1).90º   e. (2+ 2).45º


02. (FUV-85-Modificado) Os números x, x, log210x são, nesta ordem, os três primeiros termos de uma
    progressão geométrica. Calculando o valor de x obtemos:
        1                                                                   1                 1
   a.                      b. 2                      c. 5              d.                e.
        2                                                                   5                 3


03. (FUV-92-Modificado) Três números distintos formam uma P.A. crescente, cuja soma é três. Seus
    quadrados, mantendo a respectiva ordem, formam uma P.G.. Qual é a razão da P.A.?
                                                                                               2
   a. 1                    b. 2                      c. 2              d. 3              e.
                                                                                              2


04. Em uma progressão aritmética de termos positivos, os três primeiros termos são 1 – a, – a, 11- a .
    O quarto termo desta P.A. é:
   a. 2                    b. 3                      c. 4              d. 5              e. 6


05. A seqüência de números reais a, b, c, d forma, nessa ordem, uma progressão aritmética cuja soma dos
    termos é 110; a seqüência de números reais a, b, e, f forma, nessa ordem, uma progressão
    geométrica de razão 2. A soma d + f é igual a:
   a. 96                   b.102                     c. 120            d. 132            e. 142



                                                                                                         3
06. Se a soma dos termos da progressão geométrica dada por 0,3 : 0,03 : 0,003 : ... é igual ao termo
    médio de uma progressão aritmética de três termos, então a soma dos termos da progressão
    aritmética vale
         1                            2                                                     1
    a.                           b.                   c. 1            d. 2             e.
         3                            3                                                     2


07. Para todo n natural não nulo, sejam as sequências

    (3, 5, 7, 9, ..., an, ...)
    (3, 6, 9, 12, ..., bn, ...)
    (c1, c2, c3, ..., cn, ...)
    com cn = an + bn. Nessas condições, c20 é igual a
    a. 25                        b. 37                c. 101          d. 119           e. 149


    Dicas

01. Use a P.G. de 3 termos (x, xq, xq2)
    Num triângulo retângulo o maior ângulo mede 90º
    (faça x = 90º, acima, e note que q < 1)
    Faça a soma dos termos acima igual a 180º (soma dos ângulos internos num triângulo).


                                      a3 a2
02. Numa P.G. (a1, a2, a3):             =
                                      a2 a1

    Lembre-se das condições de existência para os valores de x


03. Use a P.A. de três termos (1– r, { , 1+ r )
                               x23 x x2    3
                                a1 a2     a3
                                                        a2       a2
    Pelo enunciado (a12; a22; a32) é P.G., então:        3
                                                             =    2
                                                        a2
                                                         2       a2
                                                                  1

    Se a P.A. é crescente, então r > 0
    Calcule a razão, fazendo r = a2 – a1, (por exemplo)


04. Dados três termos consecutivos de uma P.A., o termo do meio é igual à média aritmética dos outros
                                                  a +c
    dois, ou seja, se (a, b, c) é P.A., então b =      .
                                                    2


05. Numa PA qualquer an – an–1 = r, onde r é a razão da PA
                                  an
    Numa PG qualquer                   = q, onde q é a razão da PG
                                 a n–1




    4
06.
                                                                          a1
      1. A soma dos termos de uma P.G. infinita é dada por S =                , –1 < q < 1
                                                                         1– q
      2. Para três termos em P.A. vale a propriedade: “o termo do meio é a média aritmética dos outros
         dois”.


07. A primeira seqüência dada é uma P.A. de razão 2 e a segunda seqüência dada é uma P.A. de razão 3.
      O termo geral de uma P.A. é dado pela fórmula an = a1 + (n – 1)r.


      Resoluções

01. Alternativa c.
      Usando a P.G. de 3 termos: (x, xq, xq2 ) faremos x = 90º; então as medidas serão (90º, 90ºq, 90ºq2)
      onde 0 < q < 1, pois o maior ângulo no triângulo retângulo mede 90º.
      Mas: 90º + 90ºq + 90ºq2 = 180º (Soma dos ângulos no triângulo)
                –1 + 5                    –1– 5
      daí q =                   ou q =          (não convém)
                   2                        2
      Logo, os ângulos medirão:
      (90º; 45º ( 5 – 1 45º(3 – 5)
                       ),


02. Alternativa d.
      Se (x, x, log210x) é P.G., então:
      log2 10x           x
                    =      Þ x × log2 10x = ( x) 2
            x           x
      Þ x × log2 10x = x , mas             x = x pois x > 0 (condição de existência)
      Þ x × log2 10x = x
                                                  1
      Þ log2 10x = 1 Þ 10x = 2 Þ x =
                                                  5


03. Alternativa c.
      Usando a P.A. de três termos (x – r, x, x + r) teremos:
      x – r + x + x + r = 3 (enunciado),
      onde x = 1
      Logo, a P.A. fica (1– r, 1, 1 + r)
      mas ((1– r) 2 ,1,(1 + r) 2 ) é P.G. (enunciado)

                1           (1+ r) 2
      daí               =            Þ (1+ r) 2 × (1– r) 2 = 1
            (1– r) 2           1




                                                                                                            5
ì r = 0,ou
            2 2         ï
   Þ (1 – r ) = 1, logo ír = 2,ou
                        ïr = – 2
                        î
    então r = 2 ou r = – 2


04. Alternativa b.
    Como (1 – a, – a, 11- a) é uma P.A., temos:
              (1 - a) + 11 - a
        –a=                    Þ
                       2
    Þ – 2a = 1 – a + 11- a Þ – a – 1 = 11- a (*)
    Elevando ao quadrado os dois membros, temos:
                                            ìa' = 2
    a2 + 2a + 1 = 11 – a Þ a2 + 3a – 10 = 0 í
                                            îa' ' = -5
    Como elevamos ao quadrado, temos que fazer a verificação dos valores encontrados na equação (*).
    Para a = 2, temos: – 2 – 1 = 11- 2 (falso)
    Para a = – 5, temos: + 5 – 1 = 11 + 5 (verdadeiro)
    Como a = – 5, a P.A. fica (6, 5, 4). O quarto termo será 3.


05. Alternativa d.
    Seja (a, b, c, d) uma PA de razão r Þ b – a = r (I)
                                               b
    Seja (a, b, e, f) uma PG de razão q = 2 Þ = 2 Þ b = 2a (II)
                                               a
    Substituindo II em I, temos 2a – a = r Þ r = a
    Assim sendo a PA poderá ser escrita como (a, 2a, 3a, 4a), cuja soma dos termos é igual a 110.
    a + 2a + 3a + 4a = 110 Þ 10a = 110 Þ a = 11
    A PG fica com primeiro termo a = 11 e razão q = 2 e pode ser escrita como
    (11, 22, 44, 88). Assim d + f = 44 + 88 = 132
     a b d f


06. Alternativa c.
                                                                                  a1   0,3     0,3 1
    A soma dos termos da PG infinita (0,3 ; 0,03 ; 0,003 ; ...) é dada por S =       =       =    =
                                                                                 1– q 1 - 0,1 0,9 3
    Uma PA de três termos com termo médio x e razão r pode ser escrita como (x – r, x, x + r).
                   1               1   1 1
    Sabendo que x = , temos a PA æ - r, , + r ö então a soma de seus termos vale
                                 ç            ÷
                   3             è3    3 3 ø
    1     1 1      3
      -r+ + +r = =1
    3     3 3      3




    6
07. Alternativa c.
    A sequência (3, 5, 7, 9, ... an, ...) é uma PA de razão 2, então
    an = a1 + (n – 1) . r Þ an = 3 + (n – 1) . 2
    A sequência (3, 6, 9, 12, ... bn, ...) é uma PA de razão 3, então
    bn = b1 + (n – 1) . r Þ bn = 3 + (n – 1) . 3
    Como cn = an + bn
    c20 = a20 + b20
    c20 = [3 + (20 – 1) . 2] + [3 + (20 – 1) . 3]
    c20 = 101




                                                                        7

Contenu connexe

Tendances

Questões de progressão geometrica 01
Questões de progressão geometrica 01Questões de progressão geometrica 01
Questões de progressão geometrica 01
Deusvaldo Junior
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
Jorgelgl
 
Mat progressoes geometricas p g
Mat progressoes geometricas p gMat progressoes geometricas p g
Mat progressoes geometricas p g
trigono_metria
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
leilamaluf
 
Transformações geométricas no plano
Transformações geométricas no planoTransformações geométricas no plano
Transformações geométricas no plano
con_seguir
 

Tendances (20)

Pa E Pg Feito Por Min
Pa E Pg Feito Por MinPa E Pg Feito Por Min
Pa E Pg Feito Por Min
 
Questões de progressão geometrica 01
Questões de progressão geometrica 01Questões de progressão geometrica 01
Questões de progressão geometrica 01
 
P.a. e p.g.
P.a. e p.g.P.a. e p.g.
P.a. e p.g.
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Aula progressão geométrica slides.
Aula progressão geométrica slides.Aula progressão geométrica slides.
Aula progressão geométrica slides.
 
Mat progressoes geometricas p g
Mat progressoes geometricas p gMat progressoes geometricas p g
Mat progressoes geometricas p g
 
Matemática - PA e PG
Matemática - PA e PGMatemática - PA e PG
Matemática - PA e PG
 
Progressao Aritmetica (PA)
Progressao Aritmetica (PA)Progressao Aritmetica (PA)
Progressao Aritmetica (PA)
 
Progressões Aritméticas NTEM
Progressões Aritméticas NTEMProgressões Aritméticas NTEM
Progressões Aritméticas NTEM
 
Pg
PgPg
Pg
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
 
Progressões
ProgressõesProgressões
Progressões
 
Intro teoria dos numerros cap3
Intro teoria dos numerros cap3Intro teoria dos numerros cap3
Intro teoria dos numerros cap3
 
P.A.
P.A.P.A.
P.A.
 
19042014
1904201419042014
19042014
 
Transformações geométricas no plano
Transformações geométricas no planoTransformações geométricas no plano
Transformações geométricas no plano
 
Penge2 mat2
Penge2 mat2Penge2 mat2
Penge2 mat2
 
Sequências e progressões
Sequências e progressõesSequências e progressões
Sequências e progressões
 
Progressão geometrica
Progressão geometricaProgressão geometrica
Progressão geometrica
 

Similaire à Mat exercicios resolvidos 007

055 filipe aula_progressoes_aritmetica
055 filipe aula_progressoes_aritmetica055 filipe aula_progressoes_aritmetica
055 filipe aula_progressoes_aritmetica
Adriano Ximenes
 
Mat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) iiMat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) ii
trigono_metrico
 
Razão e proporção1
Razão e proporção1Razão e proporção1
Razão e proporção1
Luccy Crystal
 
Mat progressoes ( pg) ii
Mat progressoes ( pg) iiMat progressoes ( pg) ii
Mat progressoes ( pg) ii
trigono_metrico
 

Similaire à Mat exercicios resolvidos 007 (20)

Gabarito pa
Gabarito paGabarito pa
Gabarito pa
 
Progressões
ProgressõesProgressões
Progressões
 
Progressão.pdf
Progressão.pdfProgressão.pdf
Progressão.pdf
 
055 filipe aula_progressoes_aritmetica
055 filipe aula_progressoes_aritmetica055 filipe aula_progressoes_aritmetica
055 filipe aula_progressoes_aritmetica
 
todas-as-formulas-de-matematica
 todas-as-formulas-de-matematica todas-as-formulas-de-matematica
todas-as-formulas-de-matematica
 
08 - Progressões
08 - Progressões08 - Progressões
08 - Progressões
 
Matemática - PA e PG
Matemática - PA e PGMatemática - PA e PG
Matemática - PA e PG
 
aulao_jefferson_fiel.ppt
aulao_jefferson_fiel.pptaulao_jefferson_fiel.ppt
aulao_jefferson_fiel.ppt
 
Mat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) iiMat progressao aritmetica ( pa ) ii
Mat progressao aritmetica ( pa ) ii
 
17052014
1705201417052014
17052014
 
Matematica suple
Matematica supleMatematica suple
Matematica suple
 
Progressão aritmética-prof-dalbello
Progressão aritmética-prof-dalbelloProgressão aritmética-prof-dalbello
Progressão aritmética-prof-dalbello
 
Conteúdo de Progressão Aritmética
Conteúdo de Progressão AritméticaConteúdo de Progressão Aritmética
Conteúdo de Progressão Aritmética
 
Dp lista matematica 1º 2013
Dp lista matematica 1º 2013Dp lista matematica 1º 2013
Dp lista matematica 1º 2013
 
Dp lista matematica 1º 2013
Dp lista matematica 1º 2013Dp lista matematica 1º 2013
Dp lista matematica 1º 2013
 
Progressões geométricas
Progressões geométricasProgressões geométricas
Progressões geométricas
 
PDF PA e PG.pptx
PDF PA e PG.pptxPDF PA e PG.pptx
PDF PA e PG.pptx
 
Sequências
SequênciasSequências
Sequências
 
Razão e proporção1
Razão e proporção1Razão e proporção1
Razão e proporção1
 
Mat progressoes ( pg) ii
Mat progressoes ( pg) iiMat progressoes ( pg) ii
Mat progressoes ( pg) ii
 

Plus de trigono_metrico

Pro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 03 resolução comentadaPro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 03 resolução comentada
trigono_metrico
 
Pro cefet fasciculo 04 resolução comentada
Pro cefet fasciculo 04 resolução comentadaPro cefet fasciculo 04 resolução comentada
Pro cefet fasciculo 04 resolução comentada
trigono_metrico
 
Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
trigono_metrico
 
Dfato vestibular fasciculo 3
Dfato vestibular fasciculo  3Dfato vestibular fasciculo  3
Dfato vestibular fasciculo 3
trigono_metrico
 
Ap geometria analitica resolvidos
Ap geometria analitica resolvidosAp geometria analitica resolvidos
Ap geometria analitica resolvidos
trigono_metrico
 
Dfato vestibular fasciculo 5
Dfato vestibular fasciculo  5Dfato vestibular fasciculo  5
Dfato vestibular fasciculo 5
trigono_metrico
 
Ap trigonometria numeros complexo
Ap trigonometria numeros complexoAp trigonometria numeros complexo
Ap trigonometria numeros complexo
trigono_metrico
 
Apostila 3 calculo i integrais
Apostila 3 calculo i integraisApostila 3 calculo i integrais
Apostila 3 calculo i integrais
trigono_metrico
 
Dfato vestibular fasciculo 2
Dfato vestibular fasciculo  2Dfato vestibular fasciculo  2
Dfato vestibular fasciculo 2
trigono_metrico
 
Dfato vestibular fasciculo 4
Dfato vestibular fasciculo  4Dfato vestibular fasciculo  4
Dfato vestibular fasciculo 4
trigono_metrico
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
trigono_metrico
 
Apostila 2 calculo i derivadas
Apostila 2 calculo i derivadasApostila 2 calculo i derivadas
Apostila 2 calculo i derivadas
trigono_metrico
 
Mat exercicios resolvidos 011
Mat exercicios resolvidos  011Mat exercicios resolvidos  011
Mat exercicios resolvidos 011
trigono_metrico
 

Plus de trigono_metrico (20)

Pro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 03 resolução comentadaPro cefet fasciculo 03 resolução comentada
Pro cefet fasciculo 03 resolução comentada
 
Pro cefet fasciculo 04 resolução comentada
Pro cefet fasciculo 04 resolução comentadaPro cefet fasciculo 04 resolução comentada
Pro cefet fasciculo 04 resolução comentada
 
Ap matemática m1
Ap matemática m1Ap matemática m1
Ap matemática m1
 
Ap geometria resolvidos
Ap geometria resolvidosAp geometria resolvidos
Ap geometria resolvidos
 
Ap matemática m2
Ap matemática m2Ap matemática m2
Ap matemática m2
 
Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
 
Ap matemática m3
Ap matemática m3Ap matemática m3
Ap matemática m3
 
Dfato vestibular fasciculo 3
Dfato vestibular fasciculo  3Dfato vestibular fasciculo  3
Dfato vestibular fasciculo 3
 
Apostila 3 funções
Apostila 3 funçõesApostila 3 funções
Apostila 3 funções
 
Ap geometria analitica resolvidos
Ap geometria analitica resolvidosAp geometria analitica resolvidos
Ap geometria analitica resolvidos
 
Dfato vestibular fasciculo 5
Dfato vestibular fasciculo  5Dfato vestibular fasciculo  5
Dfato vestibular fasciculo 5
 
Apostila 1 calculo i
Apostila 1 calculo iApostila 1 calculo i
Apostila 1 calculo i
 
Ap trigonometria numeros complexo
Ap trigonometria numeros complexoAp trigonometria numeros complexo
Ap trigonometria numeros complexo
 
Apostila 3 calculo i integrais
Apostila 3 calculo i integraisApostila 3 calculo i integrais
Apostila 3 calculo i integrais
 
Dfato vestibular fasciculo 2
Dfato vestibular fasciculo  2Dfato vestibular fasciculo  2
Dfato vestibular fasciculo 2
 
Apostila trigonometria
Apostila trigonometriaApostila trigonometria
Apostila trigonometria
 
Dfato vestibular fasciculo 4
Dfato vestibular fasciculo  4Dfato vestibular fasciculo  4
Dfato vestibular fasciculo 4
 
Apostila 2 matematica basica
Apostila 2 matematica basicaApostila 2 matematica basica
Apostila 2 matematica basica
 
Apostila 2 calculo i derivadas
Apostila 2 calculo i derivadasApostila 2 calculo i derivadas
Apostila 2 calculo i derivadas
 
Mat exercicios resolvidos 011
Mat exercicios resolvidos  011Mat exercicios resolvidos  011
Mat exercicios resolvidos 011
 

Dernier

19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
marlene54545
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
azulassessoria9
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
lenapinto
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
AntonioVieira539017
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 

Dernier (20)

Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptx
 
Sistema de Bibliotecas UCS - Cantos do fim do século
Sistema de Bibliotecas UCS  - Cantos do fim do séculoSistema de Bibliotecas UCS  - Cantos do fim do século
Sistema de Bibliotecas UCS - Cantos do fim do século
 
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxSlides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
 
Pesquisa Ação René Barbier Livro acadêmico
Pesquisa Ação René Barbier Livro  acadêmicoPesquisa Ação René Barbier Livro  acadêmico
Pesquisa Ação René Barbier Livro acadêmico
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
 
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptxPoesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
 
classe gramatical Substantivo apresentação..pptx
classe gramatical Substantivo apresentação..pptxclasse gramatical Substantivo apresentação..pptx
classe gramatical Substantivo apresentação..pptx
 
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
 
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdfAula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
Aula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .pptAula 1 - Psicologia Cognitiva, aula .ppt
Aula 1 - Psicologia Cognitiva, aula .ppt
 
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptxCópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
 

Mat exercicios resolvidos 007

  • 1. Matemática Fascículo 03 Álvaro Zimmermann Aranha
  • 2. Índice Progressão Aritmética e Geométrica Resumo Teórico .................................................................................................................................1 Exercícios ...........................................................................................................................................3 Dicas .................................................................................................................................................4 Resoluções ........................................................................................................................................5
  • 3. Progressão Aritmética e Geométrica Resumo teórico Progressão Aritmética (P.A.) Definição Uma seqüência numérica (a1; a2; a3;....; an–1; an; an+1;...) será denominada P.A. se um termo qualquer (an), a partir do segundo (a2 ) for obtido pela soma do termo imediatamente anterior (an–1) com um valor constante (r) denominado razão da P.A.; ou seja, numa P.A.: an = an–1+r para n Î IN / n ³ 2 Exemplo: (1,3,5,7,9,....) seqüência dos números ímpares positivos é uma P.A. de razão r = 2 e primeiro termo a1 = 1 Conseqüências: 1. A diferença entre dois termos consecutivos é constante e igual à razão da P.A., ou seja: a4 – a3 = a3 – a2 = an – an–1 = r 2. Um termo qualquer, a partir do segundo, é a média aritmética dos termos que lhe são eqüidistantes, ou seja: a1 + a3 a + a 13 a n–p + a n+ p a2 = ; a 10 = 7 ; an = 2 2 2 Fórmula do Termo Geral da P.A. (an) Numa P.A. de razão r e primeiro termo a1 , podemos obter um termo qualquer an através da seguinte relação: an = a1 + (n – 1).r para n Î IN / n ³ 1 Exemplo: para encontrarmos o 10º termo fazemos n = 10, logo: a10 = a1 + 9.r Conseqüência: 1. Para obtermos um termo qualquer an, a partir de um termo de ordem p (ap) devemos fazer: an = ap + (n – p).r Exemplo: a10 = a7 + 3r ou a10 = a4 + 6r, etc... 1
  • 4. Soma dos Termos de uma P.A. A soma dos n primeiros termos de uma P.A. pode ser obtida pela seguinte relação: (a 1 + a n ) × n S= 2 onde a1 é o primeiro termo, an é o último termo, n é o n.o de termos somados e S é o valor da soma dos termos. Progressão Geométrica (P.G.) Definição Uma seqüência numérica (a1; a2; a3;....; an–1; an; an+1;...) será denominada P.G. se um termo qualquer (an), a partir do segundo (a2) for obtido pela multiplicação do termo imediatamente anterior (an–1) por uma constante numérica (q) denominada razão da P.G.; ou seja, numa P.G.: an = an–1 . q para n Î IN / n ³ 2 Exemplo: (2, 6, 18, 54, 162) é uma P.G. onde q=3 Conseqüências: 1. O quociente entre dois termos consecutivos é constante e é igual à razão (q) da P.G., ou ainda: a3 a2 a = = n =q (para q ¹ 0) a 2 a 1 a n–1 2. Um termo qualquer, a partir do segundo (a2) é a média geométrica dos termos que lhe são eqüidistantes, ou: (a 3 ) 2 = a 2 × a 4 ou (a n ) 2 = a n –p × a n+ p Fórmula do Termo Geral da P.G. (an) Numa P.G. de primeiro termo a1 e razão q, um termo qualquer pode ser obtido através da seguinte relação: an = a1 . qn–1 para n Î IN / n ³ 1 Exemplo: para obtermos o quinto termo fazemos n=5, daí: a5=a1.q4 Conseqüência: Para obtermos um termo qualquer (an) a partir de um termo de ordem p devemos usar a seguinte relação: an = ap . qn–p Exemplo: a10 = a7 . q3 ou a10=a6 . q4, etc... 2
  • 5. Soma Finita de Termos de uma P.G. A soma dos n primeiros termos de uma P.G. é dada pela seguinte relação: a 1(qn – 1) S= q–1 Soma Infinita de Termos de uma P.G. Convergente Quando a soma infinita converge, ou seja, na P.G. |q|< 1 , podemos obter o limite da soma fazendo a1 S= 1– q Produto dos n Primeiros Termos de uma PG. É dado pelas seguintes relações: n(n–1) n n IP = a 1 × q 2 ou IP = (a 1 × a n ) 2 Exercícios 01. (FUV-83-Modificado) Calculando um dos ângulos de um triângulo retângulo, sabendo que os mesmos estão em P.G. obtemos: a. ( 2 – 1).90º b. ( 3 – 1).45º c. ( 5 – 1).45º d. ( 7 – 1).90º e. (2+ 2).45º 02. (FUV-85-Modificado) Os números x, x, log210x são, nesta ordem, os três primeiros termos de uma progressão geométrica. Calculando o valor de x obtemos: 1 1 1 a. b. 2 c. 5 d. e. 2 5 3 03. (FUV-92-Modificado) Três números distintos formam uma P.A. crescente, cuja soma é três. Seus quadrados, mantendo a respectiva ordem, formam uma P.G.. Qual é a razão da P.A.? 2 a. 1 b. 2 c. 2 d. 3 e. 2 04. Em uma progressão aritmética de termos positivos, os três primeiros termos são 1 – a, – a, 11- a . O quarto termo desta P.A. é: a. 2 b. 3 c. 4 d. 5 e. 6 05. A seqüência de números reais a, b, c, d forma, nessa ordem, uma progressão aritmética cuja soma dos termos é 110; a seqüência de números reais a, b, e, f forma, nessa ordem, uma progressão geométrica de razão 2. A soma d + f é igual a: a. 96 b.102 c. 120 d. 132 e. 142 3
  • 6. 06. Se a soma dos termos da progressão geométrica dada por 0,3 : 0,03 : 0,003 : ... é igual ao termo médio de uma progressão aritmética de três termos, então a soma dos termos da progressão aritmética vale 1 2 1 a. b. c. 1 d. 2 e. 3 3 2 07. Para todo n natural não nulo, sejam as sequências (3, 5, 7, 9, ..., an, ...) (3, 6, 9, 12, ..., bn, ...) (c1, c2, c3, ..., cn, ...) com cn = an + bn. Nessas condições, c20 é igual a a. 25 b. 37 c. 101 d. 119 e. 149 Dicas 01. Use a P.G. de 3 termos (x, xq, xq2) Num triângulo retângulo o maior ângulo mede 90º (faça x = 90º, acima, e note que q < 1) Faça a soma dos termos acima igual a 180º (soma dos ângulos internos num triângulo). a3 a2 02. Numa P.G. (a1, a2, a3): = a2 a1 Lembre-se das condições de existência para os valores de x 03. Use a P.A. de três termos (1– r, { , 1+ r ) x23 x x2 3 a1 a2 a3 a2 a2 Pelo enunciado (a12; a22; a32) é P.G., então: 3 = 2 a2 2 a2 1 Se a P.A. é crescente, então r > 0 Calcule a razão, fazendo r = a2 – a1, (por exemplo) 04. Dados três termos consecutivos de uma P.A., o termo do meio é igual à média aritmética dos outros a +c dois, ou seja, se (a, b, c) é P.A., então b = . 2 05. Numa PA qualquer an – an–1 = r, onde r é a razão da PA an Numa PG qualquer = q, onde q é a razão da PG a n–1 4
  • 7. 06. a1 1. A soma dos termos de uma P.G. infinita é dada por S = , –1 < q < 1 1– q 2. Para três termos em P.A. vale a propriedade: “o termo do meio é a média aritmética dos outros dois”. 07. A primeira seqüência dada é uma P.A. de razão 2 e a segunda seqüência dada é uma P.A. de razão 3. O termo geral de uma P.A. é dado pela fórmula an = a1 + (n – 1)r. Resoluções 01. Alternativa c. Usando a P.G. de 3 termos: (x, xq, xq2 ) faremos x = 90º; então as medidas serão (90º, 90ºq, 90ºq2) onde 0 < q < 1, pois o maior ângulo no triângulo retângulo mede 90º. Mas: 90º + 90ºq + 90ºq2 = 180º (Soma dos ângulos no triângulo) –1 + 5 –1– 5 daí q = ou q = (não convém) 2 2 Logo, os ângulos medirão: (90º; 45º ( 5 – 1 45º(3 – 5) ), 02. Alternativa d. Se (x, x, log210x) é P.G., então: log2 10x x = Þ x × log2 10x = ( x) 2 x x Þ x × log2 10x = x , mas x = x pois x > 0 (condição de existência) Þ x × log2 10x = x 1 Þ log2 10x = 1 Þ 10x = 2 Þ x = 5 03. Alternativa c. Usando a P.A. de três termos (x – r, x, x + r) teremos: x – r + x + x + r = 3 (enunciado), onde x = 1 Logo, a P.A. fica (1– r, 1, 1 + r) mas ((1– r) 2 ,1,(1 + r) 2 ) é P.G. (enunciado) 1 (1+ r) 2 daí = Þ (1+ r) 2 × (1– r) 2 = 1 (1– r) 2 1 5
  • 8. ì r = 0,ou 2 2 ï Þ (1 – r ) = 1, logo ír = 2,ou ïr = – 2 î então r = 2 ou r = – 2 04. Alternativa b. Como (1 – a, – a, 11- a) é uma P.A., temos: (1 - a) + 11 - a –a= Þ 2 Þ – 2a = 1 – a + 11- a Þ – a – 1 = 11- a (*) Elevando ao quadrado os dois membros, temos: ìa' = 2 a2 + 2a + 1 = 11 – a Þ a2 + 3a – 10 = 0 í îa' ' = -5 Como elevamos ao quadrado, temos que fazer a verificação dos valores encontrados na equação (*). Para a = 2, temos: – 2 – 1 = 11- 2 (falso) Para a = – 5, temos: + 5 – 1 = 11 + 5 (verdadeiro) Como a = – 5, a P.A. fica (6, 5, 4). O quarto termo será 3. 05. Alternativa d. Seja (a, b, c, d) uma PA de razão r Þ b – a = r (I) b Seja (a, b, e, f) uma PG de razão q = 2 Þ = 2 Þ b = 2a (II) a Substituindo II em I, temos 2a – a = r Þ r = a Assim sendo a PA poderá ser escrita como (a, 2a, 3a, 4a), cuja soma dos termos é igual a 110. a + 2a + 3a + 4a = 110 Þ 10a = 110 Þ a = 11 A PG fica com primeiro termo a = 11 e razão q = 2 e pode ser escrita como (11, 22, 44, 88). Assim d + f = 44 + 88 = 132 a b d f 06. Alternativa c. a1 0,3 0,3 1 A soma dos termos da PG infinita (0,3 ; 0,03 ; 0,003 ; ...) é dada por S = = = = 1– q 1 - 0,1 0,9 3 Uma PA de três termos com termo médio x e razão r pode ser escrita como (x – r, x, x + r). 1 1 1 1 Sabendo que x = , temos a PA æ - r, , + r ö então a soma de seus termos vale ç ÷ 3 è3 3 3 ø 1 1 1 3 -r+ + +r = =1 3 3 3 3 6
  • 9. 07. Alternativa c. A sequência (3, 5, 7, 9, ... an, ...) é uma PA de razão 2, então an = a1 + (n – 1) . r Þ an = 3 + (n – 1) . 2 A sequência (3, 6, 9, 12, ... bn, ...) é uma PA de razão 3, então bn = b1 + (n – 1) . r Þ bn = 3 + (n – 1) . 3 Como cn = an + bn c20 = a20 + b20 c20 = [3 + (20 – 1) . 2] + [3 + (20 – 1) . 3] c20 = 101 7