SlideShare une entreprise Scribd logo
1  sur  40
Télécharger pour lire hors ligne
An Analysis of Low Earth
Orbit Launch Capabilities
George Mason University
May 11, 2012
Ashwini Narayan
James Belt
Colin Mullery
Ayobami Bamgbade
Content
• Introduction: Background / need / problem
statement
• Objectives and scope
• Technical approach
• Model / Architecture
• Results
• Evaluation
• Future work
• Acknowledgements
Private Sector
• Billionaire Investors:
• Jeff Bezos (Blue Origin)
• Paul Allen (Stratolaunch Systems)
• Sir Richard Branson (Virgin Galactic)
• Elon Musk (SpaceX)
• Larry Page and Eric Schmidt (Planetary Resources Inc.)
• Total Net Worth: ~$64 Billion
“Planetary Resources' high-profile investors are in good company,
for private spaceflight ventures have attracted the attention of
some of the world's richest people in the last decade or so. And
some of these folks aren't just money men, advisers or paying
customers they're running the show” -Mike Wall (Apr 25, 2012)
Source: http://www.space.com/15419-asteroid-mining-billionaires-private-spaceflight.html
Political Climate
Presidential Policy:
• In 2010 President Obama set goal of asteroid
exploration in 2025
• Transient goals reflect shortcomings of space
exploration based solely on government agendas
• Shuttle Program Cancelled

Government Agencies with a focus on
long-term interstellar travel:

• Defense Advanced Research Projects Agency
(DARPA) 100 Year Starship Program
Technical Advances
International Space Station (ISS) Baseline:
• Costs of the ISS were astronomical due to phased
construction, a more holistic approach will provide
significant savings in construction costs
• Lessons learned from the ISS can help in
construction of this base and future permanent LEO
habitations
• Better technologies, specifically launch
capabilities will result in cheaper launch costs
An Opportunity
Technical Advances

Political
Climate

Investment
Opportunity

ISS Baseline and
Shortcomings

Private
Industry
Low Earth Orbit
Low Earth orbit is defined as the distance between
180km and 2,000km above the earths surface.
Stakeholders
U.S. Government:
-FAA
-NASA
-DARPA (and other R&D Facilities)

Private Sector:
-Potential Investors
-Companies involved in launch capabilities (i.e. SpaceX)
-SPEC Innovations

Foreign Governments:
-Foreign Air Space Controllers
-Foreign Government Launch Agencies
Notional Stakeholder Interactions
Scope
• Constraints on NASA's Technology Readiness
Levels (TRLs) and rocket diameter will eliminate
many launch capabilities
• Feasibility determined by NASA’s Technology
Readiness Levels.
• Environmental/docking constraints in LEO are
not considered
• Avoided complex cost analysis. Assumed
capability providers estimates to be accurate
Problem Statement
• Investigate lower cost, higher performance
Launch Capabilities for transporting mass into
low earth orbit given the following constraints:
 Within the next ten years
 Lift 1000 metric tons into orbit
 At least 200 km above the earth’s surface
 During a period no longer than 2.5 years
 Minimize cost/pound
 With no more than 30 launches.
Assumptions
• Turnaround times are meant to represent an average
between all chosen launch methods
• Limitations on number of launches based upon
turnaround time (900 days / turnaround time [days])
• Astronauts will work in groups of 6.
 They are to be replaced every 6 months.
 Each manned launch has a capacity of 3 passengers
 Minimum of 10 launches to have 6 astronauts
continuously working
Technical Approach
Perform analysis of current and predicted capabilities
to determine which best meet(s) cost / performance /
feasibility needs for building a permanent commercial
space structure in LEO.
• Use available launch capabilities in order to create
models demonstrating cost minimization according to
various turnaround times
• Include trip minimization models where cost is
excluded
• Perform “What-if” scenarios relevant to optimization
• Analyze optimal launch capabilities to provide a cost
range at which they remain optimal
• Provide recommendations based on comparisons
Methodology
• Use NASA’s Technology
Readiness Levels (TRLs) in order
to identify launch methods that
are feasible to analyze (within 510 year timeframe)
• Compare costs, number of
launches, timeframe
adherence, overall capabilities
of competing technologies
• Provide a detailed analysis of
chosen launch capability(s)
Launch Capabilities

for
Heavy Lift Launch Systems
(1 of 2)

Falcon Heavy

Space Launch System

Proton
Heavy Lift Launch Systems
(2 of 2)

Soyuz

Zenit
Variables in Model
• Diameter of Rocket (5m)
• Launch Cost (<$10 Billion)
• Number of Launches (20-30)
• TRL Level (>7)
Model Formulation

for
Turnaround Time Results
Total Cost (millions $)
5000
4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000

for
Turnaround Time Results

for
Turnaround Time Results

for
Optimal Solutions
Cost per
launch

Mass to
LEO

Capability
Falcon
Heavy
128,000,000 53,000
Unbiased Proton
Results Launch
Vehicle
95,000,000 44,200
Dnepr-1

13,000,000

4,500

diameter
Company TRL Type
(m)
# Trips Total # of Trips
7 Mixed

Space X
Krunichev
Yuzhnoye
Design
Bureau

5.2

10

9

Cargo

7.4

11

9

Cargo

3

Total Cost
Cost per
launch

Capability
Falcon
Heavy
128,000,000
Spec-cific Proton
Results Launch
Vehicle
95,000,000
Zenit-2M

61,000,000

Mass to
LEO

23

2
$2,351,000,000

diameter
Company TRL Type
(m)
# Trips Total # of Trips

53,000

Space X

7

Mixed

5.2

8

44,200

Krunichev
Yuzhnoye
Design
Bureau

9

Cargo

7.4

13

9

Mixed

3.9

2
$2,381,000,000

13,900

Total Cost

23
Unbiased vs. Spec-cific

for
Unbiased vs. Spec-cific

for
Unbiased vs. Spec-cific

for
Unbiased vs. Spec-cific
for
Recommendations
• SPEC Innovations should invest in a closer
examination of the Proton Launch Vehicle and
the Falcon Heavy. Without these capabilities,
cost and number of trips required will increase
dramatically
• If the Falcon Heavy is ready in the timeframe
desired for construction of the space station to
begin, it can be recommended as the primary
source of transport.
Future Work
• Due to the inaccuracy of estimation in these types of problems
it is recommended that the model revisit the cost and
capabilities of immature technologies when more solid
attributes are known
• A re-examination of the problem as a scheduling model would
provide insight into effect different launch capabilities would
have on the phases of platform construction
• Finally a thorough cost analysis for the entire IAA initiative,
including the launch costs would give insight into the risks
involved with this type of large scale space project
Sponsor Value Added
“This is a powerful tool for commercial space”
- Dr. Steven Dam
“This work provides a solid basis for pursuing
the development of a commercial space
structure”
- Dr. Keith Taggart
Acknowledgements
We would like to thank our sponsors
Dr. Keith Taggart and Dr. Steven Dam
of SPEC Innovations
as well as our Project Advisor
Prof. Dr. Kathryn Laskey.
Sources
DARPA 100 Year Starship: http://www.100yss.org/
http://www.nytimes.com/2011/12/14/science/space/paul-allens-plan-airplanes-as-launching-pads-forrockets.html
http://www.aviationweek.com/
http://www.usatoday.com/tech/science/space/story/2011-09-14/NASA-heavy-lift-rocket-spacelaunch/50398568/1
http://www.spacex.com/falcon_heavy.php
http://www.usatoday.com/tech/science/space/2010-06-20-asteroid-obama-nasa-plan_N.htm
http://articles.cnn.com/keyword/soyuz
http://www.thetech.org/exhibits/online/satellite/4/4a/4a.1.html
http://www.space.com/15419-asteroid-mining-billionaires-private-spaceflight.html
http://www.space.com/8676-white-house-unveils-national-space-policy.html
http://earthobservatory.nasa.gov/Features/OrbitsCatalog/
Questions?
Backup
Space Station Concept
52 m
5m

30 m

Volume = 3100 m3
•
•
•
•

Side View

Drawn to scale
Genesis of 5m constraint
15 m radius at 3 rpm gives .15g at outer edge
30 m radius at 3 rpm gives .30g at outer edge

Top View
IAA Timeline
Phase 1

Phase 2

Graduate Project:
Analysis of LEO
launch alternatives
Undergraduate
Project: ROI
Architecture for space
infrastructure

Phase 3

Gather
Investments
and produce
RFPs

Phase 4

Proprietary

Phase 5

Working Starship
capable of
interstellar travel
International Space Station (ISS)
• Abbreviated timeline
• Construction begins Nov 1998
• First full-time inhabitants arrive Nov
2000

• Key differences
• Construction is ongoing
• Over 100 space flights on 5 different
types of vehicles

• Total Cost: $150 billion
•
•
•
•
•

40 shuttle flights at $1.4 billion each
$72 billion ISS budget
Europe: $5 billion
Japan: $5 billion
Canada: $2 billion

Assuming 20,000 person-days from 2000-2015
Each person-day costs $7.5 million
Swing Weight Analysis
Weights
Company Weights

Contenu connexe

En vedette

Закон о гражданстве уведомление 4 июня 2014
Закон о гражданстве уведомление 4 июня 2014Закон о гражданстве уведомление 4 июня 2014
Закон о гражданстве уведомление 4 июня 2014
Dmitry Tseitlin
 
GE industrial internetatwork
GE industrial internetatworkGE industrial internetatwork
GE industrial internetatwork
Dmitry Tseitlin
 
Cots lessons learned_2013_nov13
Cots lessons learned_2013_nov13Cots lessons learned_2013_nov13
Cots lessons learned_2013_nov13
Dmitry Tseitlin
 
2013 Satellite Industry Association
2013 Satellite Industry Association2013 Satellite Industry Association
2013 Satellite Industry Association
Dmitry Tseitlin
 
Booz co 2013-global-innovation-1000-study-navigating-the-digital-future_fact-...
Booz co 2013-global-innovation-1000-study-navigating-the-digital-future_fact-...Booz co 2013-global-innovation-1000-study-navigating-the-digital-future_fact-...
Booz co 2013-global-innovation-1000-study-navigating-the-digital-future_fact-...
Dmitry Tseitlin
 
ТП Жигулевская Долина
ТП Жигулевская ДолинаТП Жигулевская Долина
ТП Жигулевская Долина
Dmitry Tseitlin
 
2014 01-29-rosnano business-plan-2020
2014 01-29-rosnano business-plan-20202014 01-29-rosnano business-plan-2020
2014 01-29-rosnano business-plan-2020
Dmitry Tseitlin
 
Инновационное предпринимательство, управление НИОКР и трансфер технологий.Кур...
Инновационное предпринимательство, управление НИОКР и трансфер технологий.Кур...Инновационное предпринимательство, управление НИОКР и трансфер технологий.Кур...
Инновационное предпринимательство, управление НИОКР и трансфер технологий.Кур...
Dmitry Tseitlin
 

En vedette (11)

Закон о гражданстве уведомление 4 июня 2014
Закон о гражданстве уведомление 4 июня 2014Закон о гражданстве уведомление 4 июня 2014
Закон о гражданстве уведомление 4 июня 2014
 
Laser projection
Laser projection Laser projection
Laser projection
 
GE industrial internetatwork
GE industrial internetatworkGE industrial internetatwork
GE industrial internetatwork
 
Cots lessons learned_2013_nov13
Cots lessons learned_2013_nov13Cots lessons learned_2013_nov13
Cots lessons learned_2013_nov13
 
2013 Satellite Industry Association
2013 Satellite Industry Association2013 Satellite Industry Association
2013 Satellite Industry Association
 
Orbital Investors December 2014
Orbital  Investors December 2014Orbital  Investors December 2014
Orbital Investors December 2014
 
Booz co 2013-global-innovation-1000-study-navigating-the-digital-future_fact-...
Booz co 2013-global-innovation-1000-study-navigating-the-digital-future_fact-...Booz co 2013-global-innovation-1000-study-navigating-the-digital-future_fact-...
Booz co 2013-global-innovation-1000-study-navigating-the-digital-future_fact-...
 
ТП Жигулевская Долина
ТП Жигулевская ДолинаТП Жигулевская Долина
ТП Жигулевская Долина
 
2014 01-29-rosnano business-plan-2020
2014 01-29-rosnano business-plan-20202014 01-29-rosnano business-plan-2020
2014 01-29-rosnano business-plan-2020
 
Инновационное предпринимательство, управление НИОКР и трансфер технологий.Кур...
Инновационное предпринимательство, управление НИОКР и трансфер технологий.Кур...Инновационное предпринимательство, управление НИОКР и трансфер технологий.Кур...
Инновационное предпринимательство, управление НИОКР и трансфер технологий.Кур...
 
Ресурс П
Ресурс ПРесурс П
Ресурс П
 

Similaire à Leo final presentation

Andrew.petro
Andrew.petroAndrew.petro
Andrew.petro
NASAPMC
 
Andrew.petro
Andrew.petroAndrew.petro
Andrew.petro
NASAPMC
 
UNC Economic Transformation Council 4-14 - JKrukin
UNC Economic Transformation Council 4-14 - JKrukinUNC Economic Transformation Council 4-14 - JKrukin
UNC Economic Transformation Council 4-14 - JKrukin
Jeff Krukin
 
Commercial Crew Program status-update-1-9-13
Commercial Crew Program status-update-1-9-13Commercial Crew Program status-update-1-9-13
Commercial Crew Program status-update-1-9-13
Dmitry Tseitlin
 
Muirhead
MuirheadMuirhead
Muirhead
NASAPMC
 
Project LEON Overview 2015
Project LEON Overview 2015Project LEON Overview 2015
Project LEON Overview 2015
Patrick Brown
 

Similaire à Leo final presentation (20)

Leo final report
Leo final reportLeo final report
Leo final report
 
Systems Engineering Update - Dr. Ron Sega
Systems Engineering Update - Dr. Ron SegaSystems Engineering Update - Dr. Ron Sega
Systems Engineering Update - Dr. Ron Sega
 
DARPA Huntsville Space Club June 2014
DARPA Huntsville Space Club June 2014 DARPA Huntsville Space Club June 2014
DARPA Huntsville Space Club June 2014
 
Andrew.petro
Andrew.petroAndrew.petro
Andrew.petro
 
Andrew.petro
Andrew.petroAndrew.petro
Andrew.petro
 
UNC Economic Transformation Council 4-14 - JKrukin
UNC Economic Transformation Council 4-14 - JKrukinUNC Economic Transformation Council 4-14 - JKrukin
UNC Economic Transformation Council 4-14 - JKrukin
 
Commercial Crew Program status-update-1-9-13
Commercial Crew Program status-update-1-9-13Commercial Crew Program status-update-1-9-13
Commercial Crew Program status-update-1-9-13
 
Moore chris[1]
Moore chris[1]Moore chris[1]
Moore chris[1]
 
Airships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason RhodesAirships as an Earth and Space Science Platform - Jason Rhodes
Airships as an Earth and Space Science Platform - Jason Rhodes
 
Muirhead
MuirheadMuirhead
Muirhead
 
NASA_CCO_status-2013 update
NASA_CCO_status-2013 updateNASA_CCO_status-2013 update
NASA_CCO_status-2013 update
 
Investor space ops-presentation_2_dec2017
Investor  space ops-presentation_2_dec2017Investor  space ops-presentation_2_dec2017
Investor space ops-presentation_2_dec2017
 
4 Super Lightweight Tank - Risk Management
4 Super Lightweight Tank - Risk Management4 Super Lightweight Tank - Risk Management
4 Super Lightweight Tank - Risk Management
 
Goddard 2015: Pamela Melroy, DARPA
Goddard 2015: Pamela Melroy, DARPAGoddard 2015: Pamela Melroy, DARPA
Goddard 2015: Pamela Melroy, DARPA
 
Aerojet
Aerojet Aerojet
Aerojet
 
Hastol
HastolHastol
Hastol
 
Project LEON Overview 2015
Project LEON Overview 2015Project LEON Overview 2015
Project LEON Overview 2015
 
SMi Group's Military Space USA 2020 conference
SMi Group's Military Space USA 2020 conferenceSMi Group's Military Space USA 2020 conference
SMi Group's Military Space USA 2020 conference
 
Applying the Systems Engineering Process to a Conceptual Merucry CubeSat Mission
Applying the Systems Engineering Process to a Conceptual Merucry CubeSat MissionApplying the Systems Engineering Process to a Conceptual Merucry CubeSat Mission
Applying the Systems Engineering Process to a Conceptual Merucry CubeSat Mission
 
CCCProgram_TIMM-COMSTAC_ 5-16-07.ppt
CCCProgram_TIMM-COMSTAC_ 5-16-07.pptCCCProgram_TIMM-COMSTAC_ 5-16-07.ppt
CCCProgram_TIMM-COMSTAC_ 5-16-07.ppt
 

Plus de Dmitry Tseitlin

Постановление Правительства "О реализации национальной технологической иниц...
Постановление Правительства "О реализации национальной технологической иниц...Постановление Правительства "О реализации национальной технологической иниц...
Постановление Правительства "О реализации национальной технологической иниц...
Dmitry Tseitlin
 
Cоздание сверхтяжелых РН для исследования и освоения Луны и Марса - прошлое, ...
Cоздание сверхтяжелых РН для исследования и освоения Луны и Марса - прошлое, ...Cоздание сверхтяжелых РН для исследования и освоения Луны и Марса - прошлое, ...
Cоздание сверхтяжелых РН для исследования и освоения Луны и Марса - прошлое, ...
Dmitry Tseitlin
 
Ракета космического назначения «Зенит 3SL» для программы «Морской Старт» В.М...
Ракета космического назначения «Зенит 3SL» для программы «Морской Старт» В.М...Ракета космического назначения «Зенит 3SL» для программы «Морской Старт» В.М...
Ракета космического назначения «Зенит 3SL» для программы «Морской Старт» В.М...
Dmitry Tseitlin
 

Plus de Dmitry Tseitlin (20)

Ton Tlegram Open Network
Ton Tlegram Open NetworkTon Tlegram Open Network
Ton Tlegram Open Network
 
Marinet en 2017
Marinet en 2017Marinet en 2017
Marinet en 2017
 
State of innovation Thomson Reuters 2016
State of innovation Thomson Reuters 2016 State of innovation Thomson Reuters 2016
State of innovation Thomson Reuters 2016
 
Clarity from above PWC 2016
Clarity from above PWC 2016Clarity from above PWC 2016
Clarity from above PWC 2016
 
Отчет Фонд Сколково 25 апреля 2011
Отчет Фонд Сколково 25 апреля 2011Отчет Фонд Сколково 25 апреля 2011
Отчет Фонд Сколково 25 апреля 2011
 
Technology roadmap highlights_report 2015
Technology roadmap highlights_report 2015Technology roadmap highlights_report 2015
Technology roadmap highlights_report 2015
 
IGS Low cost access to space April 2016
IGS Low cost access to space April 2016IGS Low cost access to space April 2016
IGS Low cost access to space April 2016
 
Satellite technologies in UK agriculture 2015
Satellite technologies in UK agriculture 2015Satellite technologies in UK agriculture 2015
Satellite technologies in UK agriculture 2015
 
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...
A Roadmap to Interstellar Flight Philip Lubin Physics Dept, UC Santa Barbara ...
 
Постановление Правительства "О реализации национальной технологической иниц...
Постановление Правительства "О реализации национальной технологической иниц...Постановление Правительства "О реализации национальной технологической иниц...
Постановление Правительства "О реализации национальной технологической иниц...
 
ESA - 2013 space transportation
ESA - 2013 space transportation ESA - 2013 space transportation
ESA - 2013 space transportation
 
Результаты РФФИ 2015
Результаты РФФИ 2015 Результаты РФФИ 2015
Результаты РФФИ 2015
 
Cоздание сверхтяжелых РН для исследования и освоения Луны и Марса - прошлое, ...
Cоздание сверхтяжелых РН для исследования и освоения Луны и Марса - прошлое, ...Cоздание сверхтяжелых РН для исследования и освоения Луны и Марса - прошлое, ...
Cоздание сверхтяжелых РН для исследования и освоения Луны и Марса - прошлое, ...
 
Ракета космического назначения «Зенит 3SL» для программы «Морской Старт» В.М...
Ракета космического назначения «Зенит 3SL» для программы «Морской Старт» В.М...Ракета космического назначения «Зенит 3SL» для программы «Морской Старт» В.М...
Ракета космического назначения «Зенит 3SL» для программы «Морской Старт» В.М...
 
Space Works Nano Microsatellite Market forecast 2016
Space Works Nano Microsatellite Market forecast 2016Space Works Nano Microsatellite Market forecast 2016
Space Works Nano Microsatellite Market forecast 2016
 
WIPO Global Innovation Index 2015
WIPO Global Innovation Index 2015WIPO Global Innovation Index 2015
WIPO Global Innovation Index 2015
 
Agritech Funder Investing report 2015
Agritech Funder Investing report 2015Agritech Funder Investing report 2015
Agritech Funder Investing report 2015
 
High technology entrepreneurs and the patent system. 2008 Berkeley
High technology entrepreneurs and the patent system. 2008 BerkeleyHigh technology entrepreneurs and the patent system. 2008 Berkeley
High technology entrepreneurs and the patent system. 2008 Berkeley
 
Start-up Space Tauri Group 2016 -
Start-up Space Tauri Group 2016 -Start-up Space Tauri Group 2016 -
Start-up Space Tauri Group 2016 -
 
SolarCity Analysts Day_2015
SolarCity Analysts Day_2015SolarCity Analysts Day_2015
SolarCity Analysts Day_2015
 

Leo final presentation

  • 1. An Analysis of Low Earth Orbit Launch Capabilities George Mason University May 11, 2012 Ashwini Narayan James Belt Colin Mullery Ayobami Bamgbade
  • 2. Content • Introduction: Background / need / problem statement • Objectives and scope • Technical approach • Model / Architecture • Results • Evaluation • Future work • Acknowledgements
  • 3. Private Sector • Billionaire Investors: • Jeff Bezos (Blue Origin) • Paul Allen (Stratolaunch Systems) • Sir Richard Branson (Virgin Galactic) • Elon Musk (SpaceX) • Larry Page and Eric Schmidt (Planetary Resources Inc.) • Total Net Worth: ~$64 Billion “Planetary Resources' high-profile investors are in good company, for private spaceflight ventures have attracted the attention of some of the world's richest people in the last decade or so. And some of these folks aren't just money men, advisers or paying customers they're running the show” -Mike Wall (Apr 25, 2012) Source: http://www.space.com/15419-asteroid-mining-billionaires-private-spaceflight.html
  • 4. Political Climate Presidential Policy: • In 2010 President Obama set goal of asteroid exploration in 2025 • Transient goals reflect shortcomings of space exploration based solely on government agendas • Shuttle Program Cancelled Government Agencies with a focus on long-term interstellar travel: • Defense Advanced Research Projects Agency (DARPA) 100 Year Starship Program
  • 5. Technical Advances International Space Station (ISS) Baseline: • Costs of the ISS were astronomical due to phased construction, a more holistic approach will provide significant savings in construction costs • Lessons learned from the ISS can help in construction of this base and future permanent LEO habitations • Better technologies, specifically launch capabilities will result in cheaper launch costs
  • 7. Low Earth Orbit Low Earth orbit is defined as the distance between 180km and 2,000km above the earths surface.
  • 8. Stakeholders U.S. Government: -FAA -NASA -DARPA (and other R&D Facilities) Private Sector: -Potential Investors -Companies involved in launch capabilities (i.e. SpaceX) -SPEC Innovations Foreign Governments: -Foreign Air Space Controllers -Foreign Government Launch Agencies
  • 10. Scope • Constraints on NASA's Technology Readiness Levels (TRLs) and rocket diameter will eliminate many launch capabilities • Feasibility determined by NASA’s Technology Readiness Levels. • Environmental/docking constraints in LEO are not considered • Avoided complex cost analysis. Assumed capability providers estimates to be accurate
  • 11. Problem Statement • Investigate lower cost, higher performance Launch Capabilities for transporting mass into low earth orbit given the following constraints:  Within the next ten years  Lift 1000 metric tons into orbit  At least 200 km above the earth’s surface  During a period no longer than 2.5 years  Minimize cost/pound  With no more than 30 launches.
  • 12. Assumptions • Turnaround times are meant to represent an average between all chosen launch methods • Limitations on number of launches based upon turnaround time (900 days / turnaround time [days]) • Astronauts will work in groups of 6.  They are to be replaced every 6 months.  Each manned launch has a capacity of 3 passengers  Minimum of 10 launches to have 6 astronauts continuously working
  • 13. Technical Approach Perform analysis of current and predicted capabilities to determine which best meet(s) cost / performance / feasibility needs for building a permanent commercial space structure in LEO. • Use available launch capabilities in order to create models demonstrating cost minimization according to various turnaround times • Include trip minimization models where cost is excluded • Perform “What-if” scenarios relevant to optimization • Analyze optimal launch capabilities to provide a cost range at which they remain optimal • Provide recommendations based on comparisons
  • 14. Methodology • Use NASA’s Technology Readiness Levels (TRLs) in order to identify launch methods that are feasible to analyze (within 510 year timeframe) • Compare costs, number of launches, timeframe adherence, overall capabilities of competing technologies • Provide a detailed analysis of chosen launch capability(s)
  • 16. Heavy Lift Launch Systems (1 of 2) Falcon Heavy Space Launch System Proton
  • 17. Heavy Lift Launch Systems (2 of 2) Soyuz Zenit
  • 18. Variables in Model • Diameter of Rocket (5m) • Launch Cost (<$10 Billion) • Number of Launches (20-30) • TRL Level (>7)
  • 20. Turnaround Time Results Total Cost (millions $) 5000 4750 4500 4250 4000 3750 3500 3250 3000 2750 2500 2250 2000 for
  • 23. Optimal Solutions Cost per launch Mass to LEO Capability Falcon Heavy 128,000,000 53,000 Unbiased Proton Results Launch Vehicle 95,000,000 44,200 Dnepr-1 13,000,000 4,500 diameter Company TRL Type (m) # Trips Total # of Trips 7 Mixed Space X Krunichev Yuzhnoye Design Bureau 5.2 10 9 Cargo 7.4 11 9 Cargo 3 Total Cost Cost per launch Capability Falcon Heavy 128,000,000 Spec-cific Proton Results Launch Vehicle 95,000,000 Zenit-2M 61,000,000 Mass to LEO 23 2 $2,351,000,000 diameter Company TRL Type (m) # Trips Total # of Trips 53,000 Space X 7 Mixed 5.2 8 44,200 Krunichev Yuzhnoye Design Bureau 9 Cargo 7.4 13 9 Mixed 3.9 2 $2,381,000,000 13,900 Total Cost 23
  • 28. Recommendations • SPEC Innovations should invest in a closer examination of the Proton Launch Vehicle and the Falcon Heavy. Without these capabilities, cost and number of trips required will increase dramatically • If the Falcon Heavy is ready in the timeframe desired for construction of the space station to begin, it can be recommended as the primary source of transport.
  • 29. Future Work • Due to the inaccuracy of estimation in these types of problems it is recommended that the model revisit the cost and capabilities of immature technologies when more solid attributes are known • A re-examination of the problem as a scheduling model would provide insight into effect different launch capabilities would have on the phases of platform construction • Finally a thorough cost analysis for the entire IAA initiative, including the launch costs would give insight into the risks involved with this type of large scale space project
  • 30. Sponsor Value Added “This is a powerful tool for commercial space” - Dr. Steven Dam “This work provides a solid basis for pursuing the development of a commercial space structure” - Dr. Keith Taggart
  • 31. Acknowledgements We would like to thank our sponsors Dr. Keith Taggart and Dr. Steven Dam of SPEC Innovations as well as our Project Advisor Prof. Dr. Kathryn Laskey.
  • 32. Sources DARPA 100 Year Starship: http://www.100yss.org/ http://www.nytimes.com/2011/12/14/science/space/paul-allens-plan-airplanes-as-launching-pads-forrockets.html http://www.aviationweek.com/ http://www.usatoday.com/tech/science/space/story/2011-09-14/NASA-heavy-lift-rocket-spacelaunch/50398568/1 http://www.spacex.com/falcon_heavy.php http://www.usatoday.com/tech/science/space/2010-06-20-asteroid-obama-nasa-plan_N.htm http://articles.cnn.com/keyword/soyuz http://www.thetech.org/exhibits/online/satellite/4/4a/4a.1.html http://www.space.com/15419-asteroid-mining-billionaires-private-spaceflight.html http://www.space.com/8676-white-house-unveils-national-space-policy.html http://earthobservatory.nasa.gov/Features/OrbitsCatalog/
  • 35. Space Station Concept 52 m 5m 30 m Volume = 3100 m3 • • • • Side View Drawn to scale Genesis of 5m constraint 15 m radius at 3 rpm gives .15g at outer edge 30 m radius at 3 rpm gives .30g at outer edge Top View
  • 36. IAA Timeline Phase 1 Phase 2 Graduate Project: Analysis of LEO launch alternatives Undergraduate Project: ROI Architecture for space infrastructure Phase 3 Gather Investments and produce RFPs Phase 4 Proprietary Phase 5 Working Starship capable of interstellar travel
  • 37. International Space Station (ISS) • Abbreviated timeline • Construction begins Nov 1998 • First full-time inhabitants arrive Nov 2000 • Key differences • Construction is ongoing • Over 100 space flights on 5 different types of vehicles • Total Cost: $150 billion • • • • • 40 shuttle flights at $1.4 billion each $72 billion ISS budget Europe: $5 billion Japan: $5 billion Canada: $2 billion Assuming 20,000 person-days from 2000-2015 Each person-day costs $7.5 million