SlideShare une entreprise Scribd logo
1  sur  38
Télécharger pour lire hors ligne
Reading revue of Inferring Multiple Graphical
Structures
from J. Chiquet et al. (and related articles)
Nathalie Villa-Vialaneix - nathalie.villa@univ-paris1.fr
http://www.nathalievilla.org
Groupe de travail samm-graph - 17/02/2012
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 1 / 18
Outline
1 Network inference
Package GeneNet
Package glasso
2 Multiple Graphical Structures
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 2 / 18
Network inference
Outline
1 Network inference
Package GeneNet
Package glasso
2 Multiple Graphical Structures
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 3 / 18
Network inference
Framework
Data: large scale gene expression data
individuals
n 30/50



X =


. . . . . .
. . X
j
i . . .
. . . . . .


variables (genes expression), p 103/4
What we want to obtain: a network with
• nodes: genes;
• edges: signicant and direct co-expression between two genes (track
transcription regulations)
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 4 / 18
Network inference
Advantages of inferring a network from large scale
transcription data
1 over raw data: focuses on direct links
strong indirect correlation
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 5 / 18
Network inference
Advantages of inferring a network from large scale
transcription data
1 over raw data: focuses on direct links
2 over raw data (again): focuses on signicant links (more robust)
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 5 / 18
Network inference
Advantages of inferring a network from large scale
transcription data
1 over raw data: focuses on direct links
2 over raw data (again): focuses on signicant links (more robust)
3 over bibliographic network: can handle interactions with yet
unknown (not annotated) genes
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 5 / 18
Network inference
Various approaches (and packages) to infer gene
co-expression networks
• Graphical Gaussian Model (Xi)i=1,...,n are i.i.d. Gaussian random
variables N(0, Σ) (gene expression); then
j ←→ j (genes j and j are linked) ⇔ Cor X
j, X
j |(X
k)k=j,j  0
Cor X
j, X
j |(X
k)k=j,j Σ−1
j,j ⇒ nd the partial correlations
by means of (Σn)−1
.
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
Network inference
Various approaches (and packages) to infer gene
co-expression networks
• Graphical Gaussian Model (Xi)i=1,...,n are i.i.d. Gaussian random
variables N(0, Σ) (gene expression); then
j ←→ j (genes j and j are linked) ⇔ Cor X
j, X
j |(X
k)k=j,j  0
Cor X
j, X
j |(X
k)k=j,j Σ−1
j,j ⇒ nd the partial correlations
by means of (Σn)−1
.
Problem: Σ is a p-dimensional matrix (with p large) and n is small
compared to p ⇒ (Σn)−1
is a poor estimate of Σ−1
!
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
Network inference
Various approaches (and packages) to infer gene
co-expression networks
• Graphical Gaussian Model
• seminal work:
[Schäfer and Strimmer, 2005a, Schäfer and Strimmer, 2005b]
(with bootstrapping or shrinkage and a proposal for a Bayesian test for
signicance); package genenet;
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
Network inference
Various approaches (and packages) to infer gene
co-expression networks
• Graphical Gaussian Model
• seminal work:
[Schäfer and Strimmer, 2005a, Schäfer and Strimmer, 2005b]
(with bootstrapping or shrinkage and a proposal for a Bayesian test for
signicance); package genenet;
• sparse approaches [Friedman et al., 2008]: packages GGMselect
[Giraud et al., 2009] or SIMoNe [Chiquet et al., 2009,
Ambroise et al., 2009, Chiquet et al., 2011] (with unsupervised
clustering or able to handle multiple populations data)
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
Network inference
Various approaches (and packages) to infer gene
co-expression networks
• Graphical Gaussian Model
• Bayesian network learning [Pearl, 1998, Pearl and Russel, 2002]
DAG (Direct Acyclic Graph) and (conditional) probability tables
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
Network inference
Various approaches (and packages) to infer gene
co-expression networks
• Graphical Gaussian Model
• Bayesian network learning [Pearl, 1998, Pearl and Russel, 2002]
Learning: nd conditional probability tables and DAG.
Standard issues:
• search for unobserved (latent) variables dependency;
• estimate probabilities by ML optimization (EM algorithm);
• search for DAG (skeleton, directionality): several DAGs are often
plausible.
Package bnlearn, [Scutari, 2010].
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
Network inference
Various approaches (and packages) to infer gene
co-expression networks
• Graphical Gaussian Model
• Bayesian network learning [Pearl, 1998, Pearl and Russel, 2002]
• Networks based on mutual information (MI): MI, I (X
j, X
j )
measures the information gain (related to KL divergence):
I (X
j, X
j ) = H(X
j) + H(X
j ) − H(X
j, X
j ) = H(X
j) − H(X
j|X
j )
where H is the entropy H(X
j) = − x∈Xj p(x ) log p(x ) (I
uncertainty reduction in one variable after removing the uncertainty
in the other variable).
Standard issues:
• estimate I ;
• nd out which pairs of variables have signicant MI.
Package minet, [Meyer et al., 2008].
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
Network inference Package GeneNet
GGM: shrinkage approach
package GeneNet estimates partial correlations in the Gaussian
Graphical Model framework [Schäfer and Strimmer, 2005b]:
• X = (X
1
, . . . , X
p) (p genes expressions): random Gaussian vector
with variance Σ;
• j ↔ j ⇔ Cor(X
j, X
j |(X
k)k=j,j )  0 ⇔ Σ−1
jj  0.
Shrinkage: use (1 − λ)Σ + λΩ instead of Σ (where Ω is, e.g., identity
matrix and λ is estimated from the data) to stabilize the estimation of Σ−1
(bagging is also useable [Schäfer and Strimmer, 2005a])
Signicant partial correlations are then selected using a Bayesian test
based on a distribution mixture: partial correlation ts a mixture model
η0f0(., κ) + ηAfA
η0 prior for null hypothesis, ηA = 1 − η0, η0 ηA (η0, κ estimated by EM).
FDR correction: at level α (5% here), keep edges for which p(i) ≤ iα
e/η0
where e is the number of edges and p(1), p(2), ..., p(e) are ordered p-values.
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 7 / 18
Network inference Package GeneNet
Example
Expression data: 272 genes and 53 observations (pigs...)
Shrinkage approach: 883 edges (density: 2.24%); Bootstrap approach:
2345 edges (density: 6.36%).
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 8 / 18
Network inference Package glasso
Sparse linear regression
Linear regression for each node:
∀ j = 1, . . . , p, X
j = SjX
−j + j
with X
−j, gene expressions without gene j .
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
Network inference Package glasso
Sparse linear regression
Linear regression for each node:
∀ j = 1, . . . , p, X
j = SjX
−j + j
with X
−j, gene expressions without gene j .
Relation with the network:
j ↔ j ⇔ Sjj = 0.
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
Network inference Package glasso
Sparse linear regression
Linear regression for each node:
∀ j = 1, . . . , p, X
j = SjX
−j + j
with X
−j, gene expressions without gene j .
Relation with the network:
j ↔ j ⇔ Sjj = 0.
Estimation: [Meinshausen and Bühlmann, 2006] LS estimate
∀ j = 1, . . . , p, arg min
Sj
n
i=1
X
j
i − SjX
−j
i
2
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
Network inference Package glasso
Sparse linear regression
Linear regression for each node:
∀ j = 1, . . . , p, X
j = SjX
−j + j
with X
−j, gene expressions without gene j .
Relation with the network:
j ↔ j ⇔ Sjj = 0.
Estimation: [Meinshausen and Bühlmann, 2006] LS estimate with
L
1
-penalization
∀ j = 1, . . . , p, arg min
Sj
n
i=1
X
j
i − SjX
−j
i
2
+λ
j =j
|Sjj |
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
Network inference Package glasso
Sparse linear regression
Linear regression for each node:
∀ j = 1, . . . , p, X
j = SjX
−j + j
with X
−j, gene expressions without gene j .
Relation with the network:
j ↔ j ⇔ Sjj = 0.
Estimation: [Meinshausen and Bühlmann, 2006] LS estimate with
L
1
-penalization
∀ j = 1, . . . , p, arg min
Sj
n
i=1
X
j
i − SjX
−j
i
2
+λ
j =j
|Sjj |
Sparse penalization ⇒ only a few j are such that Sjj = 0 (variable
selection).
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
Network inference Package glasso
Sparse linear regression by pseudo-Likelihood maximization
Estimation: [Friedman et al., 2008] Gaussien framework allows us to
use pseudo-ML optimization with a sparse penalization
L (S |X ) −λ S 1 =
n
i=1


p
j=1
log P(X
j
i |X
−j
i , Sj)

 −λ S 1
Remark: For [Meinshausen and Bühlmann, 2006], the estimates are
not symmetric ⇒ symmetrization is done by OR or AND policies.
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 10 / 18
Network inference Package glasso
Summary
Density comparison
Schäfer and Strimmer (shrinkage) 2.24%
Schäfer and Strimmer (bootstrap) 6.36%
Friedman et al. 3.78%
Meinshausen and Bühlmann (OR policy) 3.24%
Meinshausen and Bühlmann (AND policy) 1.68%
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 11 / 18
Network inference Package glasso
Summary
Density comparison
Schäfer and Strimmer (shrinkage) 2.24%
Schäfer and Strimmer (bootstrap) 6.36%
Friedman et al. 3.78%
Meinshausen and Bühlmann (OR policy) 3.24%
Meinshausen and Bühlmann (AND policy) 1.68%
Edges comparison
Schäfer  Strimmer Schäfer  Strimmer Friedman et al.
(883) (2345) (1425)
Schäfer  Strimmer 883
Friedman et al. 883 1425
Meinshausen  Bühlmann (1195) 883 1195 1195
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 11 / 18
Multiple Graphical Structures
Outline
1 Network inference
Package GeneNet
Package glasso
2 Multiple Graphical Structures
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 12 / 18
Multiple Graphical Structures
Framework
T samples measuring the expression of the same genes:
X
1,t, . . . , X
p,t
for t = 1, . . . , T and each X
j,t is a nt-dimensional vectors (nt observations
in sample t).
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 13 / 18
Multiple Graphical Structures
Framework
T samples measuring the expression of the same genes:
X
1,t, . . . , X
p,t
for t = 1, . . . , T and each X
j,t is a nt-dimensional vectors (nt observations
in sample t).
Naive approach: independant inferences
L S
t|X
t =
n
i=1


p
j=1
log P(X
j,t
i |X
−j,t
i , S
t
j )


and
arg max
S1,...,ST
t
L S
t|X
t − λ S
t
1
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 13 / 18
Multiple Graphical Structures
Framework
T samples measuring the expression of the same genes:
X
1,t, . . . , X
p,t
for t = 1, . . . , T and each X
j,t is a nt-dimensional vectors (nt observations
in sample t).
Naive approach: independant inferences
L S
t|X
t =
n
i=1


p
j=1
log P(X
j,t
i |X
−j,t
i , S
t
j )


and
arg max
S1,...,ST
t
L S
t|X
t − λ S
t
1
Problem: Doesn't use the fact that the samples are actually related... and
produces T networks!
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 13 / 18
Multiple Graphical Structures
3 solutions to address this issue
First note that, in the Gaussian framework:
L (S |X ) =
n
2
log det(D) −
n
2
Tr D
−1/2
S ΣSD
−1/2
−
np
2π
where D = Diag (S11, . . . , Spp) and Σ is the empirical covariance matrix ⇒
L (S |X ) ≡ L S |Σ ;
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 14 / 18
Multiple Graphical Structures
3 solutions to address this issue
First note that, in the Gaussian framework:
L (S |X ) =
n
2
log det(D) −
n
2
Tr D
−1/2
S ΣSD
−1/2
−
np
2π
where D = Diag (S11, . . . , Spp) and Σ is the empirical covariance matrix ⇒
L (S |X ) ≡ L S |Σ ;
• Intertwined estimation Use Σt = αΣt + (1 − α)¯Σt instead of Σt
where ¯Σt = 1
n t ntΣt
arg max
S1,...,ST
t
L S
t|Σt − λ S
t
1
Similar to the assumption that each sample is generated from a
mixture of Gaussian(?). In the experiments, α = 1/2.
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 14 / 18
Multiple Graphical Structures
3 solutions to address this issue
First note that, in the Gaussian framework:
L (S |X ) =
n
2
log det(D) −
n
2
Tr D
−1/2
S ΣSD
−1/2
−
np
2π
where D = Diag (S11, . . . , Spp) and Σ is the empirical covariance matrix ⇒
L (S |X ) ≡ L S |Σ ;
• Intertwined estimation
• Group-LASSO Mixed norm:
arg max
t









L S
t|Σt − λ
j=j t
(Sjj )2
1/2
Sjj ≡ t (St
jj
)2
1/2









(tends to encourage Sjj = 0). Hence should lead to very consensual
inferred networks.
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 14 / 18
Multiple Graphical Structures
3 solutions to address this issue
First note that, in the Gaussian framework:
L (S |X ) =
n
2
log det(D) −
n
2
Tr D
−1/2
S ΣSD
−1/2
−
np
2π
where D = Diag (S11, . . . , Spp) and Σ is the empirical covariance matrix ⇒
L (S |X ) ≡ L S |Σ ;
• Intertwined estimation
• Group-LASSO
• Cooperative-LASSO
arg max
t








L St
|Σt
− λ
j=j







 t
(St
jj )2
+
1/2
(S+)jj
+
t
(−St
jj )2
+
1/2
(S−)jj
















Takes into account that sign swaps are unlickely accross samples (down and
up-regulations).
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 14 / 18
Multiple Graphical Structures
Illustration of Group vs Cooperative LASSO
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 15 / 18
Multiple Graphical Structures
Comparison
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 16 / 18
Multiple Graphical Structures
Real life experiment
independent estimations true - sum of intertwined
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 17 / 18
Multiple Graphical Structures
Open questions
• is the group-lasso type penalty the correct approach to the biological
problem?
• how to be able to combine the network to analyze the dierences
between networks? (distances between graphs?) to build a unique
consensual network from all samples (mean network, AND network,
OR network... ?)
• could it be relevant to penalize the sparse regression problem by an
additional relagularization (e.g., distance between each network and a
consensual network)?
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 18 / 18
Multiple Graphical Structures
References
Ambroise, C., Chiquet, J., and Matias, C. (2009).
Inferring sparse Gaussian graphical models with latent structure.
Electronic Journal of Statistics, 3:205238.
Chiquet, J., Grandvalet, Y., and Ambroise, C. (2011).
Inferring multiple graphical structures.
Statistics and Computing, 21(4):537553.
Chiquet, J., Smith, A., Grasseau, G., Matias, C., and Ambroise, C. (2009).
SIMoNe: Statistical Inference for MOdular NEtworks.
Bioinformatics, 25(3):417418.
Friedman, J., Hastie, T., and Tibshirani, R. (2008).
Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432441.
Giraud, C., Huet, S., and Verzelen, N. (2009).
Graph selection with ggmselect.
Technical report, preprint arXiv.
http://fr.arxiv.org/abs/0907.0619.
Meinshausen, N. and Bühlmann, P. (2006).
High dimensional graphs and variable selection with the lasso.
Annals of Statistic, 34(3):14361462.
Meyer, P., Latte, F., and Bontempi, G. (2008).
minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information.
BMC Bioinformatics, 9(461).
Pearl, J. (1998).
Probabilistic reasoning in intelligent systems: networks of plausible inference.
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 18 / 18
Multiple Graphical Structures
In Kaufmann, M., editor, Representation and reasoning series (2nd printing ed.). San Fracisco, California,
USA.
Pearl, J. and Russel, S. (2002).
Bayesian networks.
In Michael, A., editor, Handbook of Brain Theory and Neural Networks. Bradford Books (MIT Press),
Cambridge, Massachussets, USA.
Schäfer, J. and Strimmer, K. (2005a).
An empirical bayes approach to inferring large-scale gene association networks.
Bioinformatics, 21(6):754764.
Schäfer, J. and Strimmer, K. (2005b).
A shrinkage approach to large-scale covariance matrix estimation and implication for functional genomics.
Statistical Applications in Genetics and Molecular Biology, 4:132.
Scutari, M. (2010).
Learning Bayesian networks with the bnlearn R package.
Journal of Statistical Software, 35(3):122.
Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 18 / 18

Contenu connexe

Tendances

Estimating Functional Connectomes: Sparsity’s Strength and Limitations
Estimating Functional Connectomes: Sparsity’s Strength and LimitationsEstimating Functional Connectomes: Sparsity’s Strength and Limitations
Estimating Functional Connectomes: Sparsity’s Strength and LimitationsGael Varoquaux
 
Enhancing Partition Crossover with Articulation Points Analysis
Enhancing Partition Crossover with Articulation Points AnalysisEnhancing Partition Crossover with Articulation Points Analysis
Enhancing Partition Crossover with Articulation Points Analysisjfrchicanog
 
Connectomics: Parcellations and Network Analysis Methods
Connectomics: Parcellations and Network Analysis MethodsConnectomics: Parcellations and Network Analysis Methods
Connectomics: Parcellations and Network Analysis MethodsGael Varoquaux
 
2018.01.12 AHClab SD-study paper reading
2018.01.12 AHClab SD-study paper reading2018.01.12 AHClab SD-study paper reading
2018.01.12 AHClab SD-study paper readingShinagawa Seitaro
 
Advanced network modelling 2: connectivity measures, goup analysis
Advanced network modelling 2: connectivity measures, goup analysisAdvanced network modelling 2: connectivity measures, goup analysis
Advanced network modelling 2: connectivity measures, goup analysisGael Varoquaux
 
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...changedaeoh
 
Reading "Bayesian measures of model complexity and fit"
Reading "Bayesian measures of model complexity and fit"Reading "Bayesian measures of model complexity and fit"
Reading "Bayesian measures of model complexity and fit"Christian Robert
 
Lecture17 xing fei-fei
Lecture17 xing fei-feiLecture17 xing fei-fei
Lecture17 xing fei-feiTianlu Wang
 
Inter-site autism biomarkers from resting state fMRI
Inter-site autism biomarkers from resting state fMRIInter-site autism biomarkers from resting state fMRI
Inter-site autism biomarkers from resting state fMRIGael Varoquaux
 
Reviews on Deep Generative Models in the early days / GANs & VAEs paper review
Reviews on Deep Generative Models in the early days / GANs & VAEs paper reviewReviews on Deep Generative Models in the early days / GANs & VAEs paper review
Reviews on Deep Generative Models in the early days / GANs & VAEs paper reviewchangedaeoh
 
Graph Neural Network in practice
Graph Neural Network in practiceGraph Neural Network in practice
Graph Neural Network in practicetuxette
 
About functional SIR
About functional SIRAbout functional SIR
About functional SIRtuxette
 
Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...tuxette
 
Teaching Matrices within Statistics
Teaching Matrices within StatisticsTeaching Matrices within Statistics
Teaching Matrices within StatisticsKimmo Vehkalahti
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imagingCheng-Bin Jin
 
Brain reading, compressive sensing, fMRI and statistical learning in Python
Brain reading, compressive sensing, fMRI and statistical learning in PythonBrain reading, compressive sensing, fMRI and statistical learning in Python
Brain reading, compressive sensing, fMRI and statistical learning in PythonGael Varoquaux
 
Spatially Coherent Latent Topic Model For Concurrent Object Segmentation and ...
Spatially Coherent Latent Topic Model For Concurrent Object Segmentation and ...Spatially Coherent Latent Topic Model For Concurrent Object Segmentation and ...
Spatially Coherent Latent Topic Model For Concurrent Object Segmentation and ...Shao-Chuan Wang
 
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge GraphJoint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge GraphFedorNikolaev
 
Goodness–of–fit tests for regression models: the functional data case
Goodness–of–fit tests for regression models: the functional data caseGoodness–of–fit tests for regression models: the functional data case
Goodness–of–fit tests for regression models: the functional data caseNeuroMat
 
Data Science for Number and Coding Theory
Data Science for Number and Coding TheoryData Science for Number and Coding Theory
Data Science for Number and Coding TheoryCapgemini
 

Tendances (20)

Estimating Functional Connectomes: Sparsity’s Strength and Limitations
Estimating Functional Connectomes: Sparsity’s Strength and LimitationsEstimating Functional Connectomes: Sparsity’s Strength and Limitations
Estimating Functional Connectomes: Sparsity’s Strength and Limitations
 
Enhancing Partition Crossover with Articulation Points Analysis
Enhancing Partition Crossover with Articulation Points AnalysisEnhancing Partition Crossover with Articulation Points Analysis
Enhancing Partition Crossover with Articulation Points Analysis
 
Connectomics: Parcellations and Network Analysis Methods
Connectomics: Parcellations and Network Analysis MethodsConnectomics: Parcellations and Network Analysis Methods
Connectomics: Parcellations and Network Analysis Methods
 
2018.01.12 AHClab SD-study paper reading
2018.01.12 AHClab SD-study paper reading2018.01.12 AHClab SD-study paper reading
2018.01.12 AHClab SD-study paper reading
 
Advanced network modelling 2: connectivity measures, goup analysis
Advanced network modelling 2: connectivity measures, goup analysisAdvanced network modelling 2: connectivity measures, goup analysis
Advanced network modelling 2: connectivity measures, goup analysis
 
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...Representation Learning & Generative Modeling with Variational Autoencoder(VA...
Representation Learning & Generative Modeling with Variational Autoencoder(VA...
 
Reading "Bayesian measures of model complexity and fit"
Reading "Bayesian measures of model complexity and fit"Reading "Bayesian measures of model complexity and fit"
Reading "Bayesian measures of model complexity and fit"
 
Lecture17 xing fei-fei
Lecture17 xing fei-feiLecture17 xing fei-fei
Lecture17 xing fei-fei
 
Inter-site autism biomarkers from resting state fMRI
Inter-site autism biomarkers from resting state fMRIInter-site autism biomarkers from resting state fMRI
Inter-site autism biomarkers from resting state fMRI
 
Reviews on Deep Generative Models in the early days / GANs & VAEs paper review
Reviews on Deep Generative Models in the early days / GANs & VAEs paper reviewReviews on Deep Generative Models in the early days / GANs & VAEs paper review
Reviews on Deep Generative Models in the early days / GANs & VAEs paper review
 
Graph Neural Network in practice
Graph Neural Network in practiceGraph Neural Network in practice
Graph Neural Network in practice
 
About functional SIR
About functional SIRAbout functional SIR
About functional SIR
 
Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...Kernel methods and variable selection for exploratory analysis and multi-omic...
Kernel methods and variable selection for exploratory analysis and multi-omic...
 
Teaching Matrices within Statistics
Teaching Matrices within StatisticsTeaching Matrices within Statistics
Teaching Matrices within Statistics
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imaging
 
Brain reading, compressive sensing, fMRI and statistical learning in Python
Brain reading, compressive sensing, fMRI and statistical learning in PythonBrain reading, compressive sensing, fMRI and statistical learning in Python
Brain reading, compressive sensing, fMRI and statistical learning in Python
 
Spatially Coherent Latent Topic Model For Concurrent Object Segmentation and ...
Spatially Coherent Latent Topic Model For Concurrent Object Segmentation and ...Spatially Coherent Latent Topic Model For Concurrent Object Segmentation and ...
Spatially Coherent Latent Topic Model For Concurrent Object Segmentation and ...
 
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge GraphJoint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
Joint Word and Entity Embeddings for Entity Retrieval from Knowledge Graph
 
Goodness–of–fit tests for regression models: the functional data case
Goodness–of–fit tests for regression models: the functional data caseGoodness–of–fit tests for regression models: the functional data case
Goodness–of–fit tests for regression models: the functional data case
 
Data Science for Number and Coding Theory
Data Science for Number and Coding TheoryData Science for Number and Coding Theory
Data Science for Number and Coding Theory
 

Similaire à Reading revue of "Inferring Multiple Graphical Structures"

Consensual gene co-expression network inference with multiple samples
Consensual gene co-expression network inference with multiple samplesConsensual gene co-expression network inference with multiple samples
Consensual gene co-expression network inference with multiple samplestuxette
 
Asynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsAsynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsFabian Pedregosa
 
Joint gene network inference with multiple samples: a bootstrapped consensual...
Joint gene network inference with multiple samples: a bootstrapped consensual...Joint gene network inference with multiple samples: a bootstrapped consensual...
Joint gene network inference with multiple samples: a bootstrapped consensual...tuxette
 
A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelstuxette
 
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18Olga Zinkevych
 
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Quantitative Propagation of Chaos for SGD in Wide Neural NetworksQuantitative Propagation of Chaos for SGD in Wide Neural Networks
Quantitative Propagation of Chaos for SGD in Wide Neural NetworksValentin De Bortoli
 
Neural Nets Deconstructed
Neural Nets DeconstructedNeural Nets Deconstructed
Neural Nets DeconstructedPaul Sterk
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...tuxette
 
Projection methods for stochastic structural dynamics
Projection methods for stochastic structural dynamicsProjection methods for stochastic structural dynamics
Projection methods for stochastic structural dynamicsUniversity of Glasgow
 
Hybrid Meta-Heuristic Algorithms For Solving Network Design Problem
Hybrid Meta-Heuristic Algorithms For Solving Network Design ProblemHybrid Meta-Heuristic Algorithms For Solving Network Design Problem
Hybrid Meta-Heuristic Algorithms For Solving Network Design ProblemAlana Cartwright
 
Probabilistic Modelling with Information Filtering Networks
Probabilistic Modelling with Information Filtering NetworksProbabilistic Modelling with Information Filtering Networks
Probabilistic Modelling with Information Filtering NetworksTomaso Aste
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOtuxette
 
09 Inference for Networks – Exponential Random Graph Models (2017)
09 Inference for Networks – Exponential Random Graph Models (2017)09 Inference for Networks – Exponential Random Graph Models (2017)
09 Inference for Networks – Exponential Random Graph Models (2017)Duke Network Analysis Center
 
Statistical inference of network structure
Statistical inference of network structureStatistical inference of network structure
Statistical inference of network structureTiago Peixoto
 
User Interfaces that Design Themselves: Talk given at Data-Driven Design Day ...
User Interfaces that Design Themselves: Talk given at Data-Driven Design Day ...User Interfaces that Design Themselves: Talk given at Data-Driven Design Day ...
User Interfaces that Design Themselves: Talk given at Data-Driven Design Day ...Aalto University
 
Learning to discover monte carlo algorithm on spin ice manifold
Learning to discover monte carlo algorithm on spin ice manifoldLearning to discover monte carlo algorithm on spin ice manifold
Learning to discover monte carlo algorithm on spin ice manifoldKai-Wen Zhao
 

Similaire à Reading revue of "Inferring Multiple Graphical Structures" (20)

Consensual gene co-expression network inference with multiple samples
Consensual gene co-expression network inference with multiple samplesConsensual gene co-expression network inference with multiple samples
Consensual gene co-expression network inference with multiple samples
 
Asynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and AlgorithmsAsynchronous Stochastic Optimization, New Analysis and Algorithms
Asynchronous Stochastic Optimization, New Analysis and Algorithms
 
Joint gene network inference with multiple samples: a bootstrapped consensual...
Joint gene network inference with multiple samples: a bootstrapped consensual...Joint gene network inference with multiple samples: a bootstrapped consensual...
Joint gene network inference with multiple samples: a bootstrapped consensual...
 
A short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction modelsA short and naive introduction to using network in prediction models
A short and naive introduction to using network in prediction models
 
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
Variational autoencoders for speech processing d.bielievtsov dataconf 21 04 18
 
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Quantitative Propagation of Chaos for SGD in Wide Neural NetworksQuantitative Propagation of Chaos for SGD in Wide Neural Networks
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
 
Neural Nets Deconstructed
Neural Nets DeconstructedNeural Nets Deconstructed
Neural Nets Deconstructed
 
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
Quelques résultats préliminaires de l'évaluation de méthodes d'inférence de r...
 
Projection methods for stochastic structural dynamics
Projection methods for stochastic structural dynamicsProjection methods for stochastic structural dynamics
Projection methods for stochastic structural dynamics
 
Hybrid Meta-Heuristic Algorithms For Solving Network Design Problem
Hybrid Meta-Heuristic Algorithms For Solving Network Design ProblemHybrid Meta-Heuristic Algorithms For Solving Network Design Problem
Hybrid Meta-Heuristic Algorithms For Solving Network Design Problem
 
SASA 2016
SASA 2016SASA 2016
SASA 2016
 
Probabilistic Modelling with Information Filtering Networks
Probabilistic Modelling with Information Filtering NetworksProbabilistic Modelling with Information Filtering Networks
Probabilistic Modelling with Information Filtering Networks
 
Inferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSOInferring networks from multiple samples with consensus LASSO
Inferring networks from multiple samples with consensus LASSO
 
09 Inference for Networks – Exponential Random Graph Models (2017)
09 Inference for Networks – Exponential Random Graph Models (2017)09 Inference for Networks – Exponential Random Graph Models (2017)
09 Inference for Networks – Exponential Random Graph Models (2017)
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Model Selection in the...
 
Statistical inference of network structure
Statistical inference of network structureStatistical inference of network structure
Statistical inference of network structure
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
User Interfaces that Design Themselves: Talk given at Data-Driven Design Day ...
User Interfaces that Design Themselves: Talk given at Data-Driven Design Day ...User Interfaces that Design Themselves: Talk given at Data-Driven Design Day ...
User Interfaces that Design Themselves: Talk given at Data-Driven Design Day ...
 
Learning to discover monte carlo algorithm on spin ice manifold
Learning to discover monte carlo algorithm on spin ice manifoldLearning to discover monte carlo algorithm on spin ice manifold
Learning to discover monte carlo algorithm on spin ice manifold
 
MUMS: Bayesian, Fiducial, and Frequentist Conference - Spatially Informed Var...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Spatially Informed Var...MUMS: Bayesian, Fiducial, and Frequentist Conference - Spatially Informed Var...
MUMS: Bayesian, Fiducial, and Frequentist Conference - Spatially Informed Var...
 

Plus de tuxette

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathstuxette
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènestuxette
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquestuxette
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-Ctuxette
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?tuxette
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...tuxette
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquestuxette
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeantuxette
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...tuxette
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquestuxette
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...tuxette
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation datatuxette
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?tuxette
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysistuxette
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricestuxette
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random foresttuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICStuxette
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICStuxette
 
A review on structure learning in GNN
A review on structure learning in GNNA review on structure learning in GNN
A review on structure learning in GNNtuxette
 
La statistique et le machine learning pour l'intégration de données de la bio...
La statistique et le machine learning pour l'intégration de données de la bio...La statistique et le machine learning pour l'intégration de données de la bio...
La statistique et le machine learning pour l'intégration de données de la bio...tuxette
 

Plus de tuxette (20)

Racines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en mathsRacines en haut et feuilles en bas : les arbres en maths
Racines en haut et feuilles en bas : les arbres en maths
 
Méthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènesMéthodes à noyaux pour l’intégration de données hétérogènes
Méthodes à noyaux pour l’intégration de données hétérogènes
 
Méthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiquesMéthodologies d'intégration de données omiques
Méthodologies d'intégration de données omiques
 
Projets autour de l'Hi-C
Projets autour de l'Hi-CProjets autour de l'Hi-C
Projets autour de l'Hi-C
 
Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?Can deep learning learn chromatin structure from sequence?
Can deep learning learn chromatin structure from sequence?
 
Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...Multi-omics data integration methods: kernel and other machine learning appro...
Multi-omics data integration methods: kernel and other machine learning appro...
 
ASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiquesASTERICS : une application pour intégrer des données omiques
ASTERICS : une application pour intégrer des données omiques
 
Autour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWeanAutour des projets Idefics et MetaboWean
Autour des projets Idefics et MetaboWean
 
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
Rserve, renv, flask, Vue.js dans un docker pour intégrer des données omiques ...
 
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiquesApprentissage pour la biologie moléculaire et l’analyse de données omiques
Apprentissage pour la biologie moléculaire et l’analyse de données omiques
 
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
Intégration de données omiques multi-échelles : méthodes à noyau et autres ap...
 
Journal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation dataJournal club: Validation of cluster analysis results on validation data
Journal club: Validation of cluster analysis results on validation data
 
Overfitting or overparametrization?
Overfitting or overparametrization?Overfitting or overparametrization?
Overfitting or overparametrization?
 
Selective inference and single-cell differential analysis
Selective inference and single-cell differential analysisSelective inference and single-cell differential analysis
Selective inference and single-cell differential analysis
 
SOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatricesSOMbrero : un package R pour les cartes auto-organisatrices
SOMbrero : un package R pour les cartes auto-organisatrices
 
Explanable models for time series with random forest
Explanable models for time series with random forestExplanable models for time series with random forest
Explanable models for time series with random forest
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 
Présentation du projet ASTERICS
Présentation du projet ASTERICSPrésentation du projet ASTERICS
Présentation du projet ASTERICS
 
A review on structure learning in GNN
A review on structure learning in GNNA review on structure learning in GNN
A review on structure learning in GNN
 
La statistique et le machine learning pour l'intégration de données de la bio...
La statistique et le machine learning pour l'intégration de données de la bio...La statistique et le machine learning pour l'intégration de données de la bio...
La statistique et le machine learning pour l'intégration de données de la bio...
 

Dernier

Servosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicServosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicAditi Jain
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxmaryFF1
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 

Dernier (20)

Servosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicServosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by Petrovic
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 

Reading revue of "Inferring Multiple Graphical Structures"

  • 1. Reading revue of Inferring Multiple Graphical Structures from J. Chiquet et al. (and related articles) Nathalie Villa-Vialaneix - nathalie.villa@univ-paris1.fr http://www.nathalievilla.org Groupe de travail samm-graph - 17/02/2012 Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 1 / 18
  • 2. Outline 1 Network inference Package GeneNet Package glasso 2 Multiple Graphical Structures Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 2 / 18
  • 3. Network inference Outline 1 Network inference Package GeneNet Package glasso 2 Multiple Graphical Structures Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 3 / 18
  • 4. Network inference Framework Data: large scale gene expression data individuals n 30/50    X =   . . . . . . . . X j i . . . . . . . . .   variables (genes expression), p 103/4 What we want to obtain: a network with • nodes: genes; • edges: signicant and direct co-expression between two genes (track transcription regulations) Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 4 / 18
  • 5. Network inference Advantages of inferring a network from large scale transcription data 1 over raw data: focuses on direct links strong indirect correlation Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 5 / 18
  • 6. Network inference Advantages of inferring a network from large scale transcription data 1 over raw data: focuses on direct links 2 over raw data (again): focuses on signicant links (more robust) Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 5 / 18
  • 7. Network inference Advantages of inferring a network from large scale transcription data 1 over raw data: focuses on direct links 2 over raw data (again): focuses on signicant links (more robust) 3 over bibliographic network: can handle interactions with yet unknown (not annotated) genes Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 5 / 18
  • 8. Network inference Various approaches (and packages) to infer gene co-expression networks • Graphical Gaussian Model (Xi)i=1,...,n are i.i.d. Gaussian random variables N(0, Σ) (gene expression); then j ←→ j (genes j and j are linked) ⇔ Cor X j, X j |(X k)k=j,j 0 Cor X j, X j |(X k)k=j,j Σ−1 j,j ⇒ nd the partial correlations by means of (Σn)−1 . Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
  • 9. Network inference Various approaches (and packages) to infer gene co-expression networks • Graphical Gaussian Model (Xi)i=1,...,n are i.i.d. Gaussian random variables N(0, Σ) (gene expression); then j ←→ j (genes j and j are linked) ⇔ Cor X j, X j |(X k)k=j,j 0 Cor X j, X j |(X k)k=j,j Σ−1 j,j ⇒ nd the partial correlations by means of (Σn)−1 . Problem: Σ is a p-dimensional matrix (with p large) and n is small compared to p ⇒ (Σn)−1 is a poor estimate of Σ−1 ! Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
  • 10. Network inference Various approaches (and packages) to infer gene co-expression networks • Graphical Gaussian Model • seminal work: [Schäfer and Strimmer, 2005a, Schäfer and Strimmer, 2005b] (with bootstrapping or shrinkage and a proposal for a Bayesian test for signicance); package genenet; Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
  • 11. Network inference Various approaches (and packages) to infer gene co-expression networks • Graphical Gaussian Model • seminal work: [Schäfer and Strimmer, 2005a, Schäfer and Strimmer, 2005b] (with bootstrapping or shrinkage and a proposal for a Bayesian test for signicance); package genenet; • sparse approaches [Friedman et al., 2008]: packages GGMselect [Giraud et al., 2009] or SIMoNe [Chiquet et al., 2009, Ambroise et al., 2009, Chiquet et al., 2011] (with unsupervised clustering or able to handle multiple populations data) Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
  • 12. Network inference Various approaches (and packages) to infer gene co-expression networks • Graphical Gaussian Model • Bayesian network learning [Pearl, 1998, Pearl and Russel, 2002] DAG (Direct Acyclic Graph) and (conditional) probability tables Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
  • 13. Network inference Various approaches (and packages) to infer gene co-expression networks • Graphical Gaussian Model • Bayesian network learning [Pearl, 1998, Pearl and Russel, 2002] Learning: nd conditional probability tables and DAG. Standard issues: • search for unobserved (latent) variables dependency; • estimate probabilities by ML optimization (EM algorithm); • search for DAG (skeleton, directionality): several DAGs are often plausible. Package bnlearn, [Scutari, 2010]. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
  • 14. Network inference Various approaches (and packages) to infer gene co-expression networks • Graphical Gaussian Model • Bayesian network learning [Pearl, 1998, Pearl and Russel, 2002] • Networks based on mutual information (MI): MI, I (X j, X j ) measures the information gain (related to KL divergence): I (X j, X j ) = H(X j) + H(X j ) − H(X j, X j ) = H(X j) − H(X j|X j ) where H is the entropy H(X j) = − x∈Xj p(x ) log p(x ) (I uncertainty reduction in one variable after removing the uncertainty in the other variable). Standard issues: • estimate I ; • nd out which pairs of variables have signicant MI. Package minet, [Meyer et al., 2008]. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 6 / 18
  • 15. Network inference Package GeneNet GGM: shrinkage approach package GeneNet estimates partial correlations in the Gaussian Graphical Model framework [Schäfer and Strimmer, 2005b]: • X = (X 1 , . . . , X p) (p genes expressions): random Gaussian vector with variance Σ; • j ↔ j ⇔ Cor(X j, X j |(X k)k=j,j ) 0 ⇔ Σ−1 jj 0. Shrinkage: use (1 − λ)Σ + λΩ instead of Σ (where Ω is, e.g., identity matrix and λ is estimated from the data) to stabilize the estimation of Σ−1 (bagging is also useable [Schäfer and Strimmer, 2005a]) Signicant partial correlations are then selected using a Bayesian test based on a distribution mixture: partial correlation ts a mixture model η0f0(., κ) + ηAfA η0 prior for null hypothesis, ηA = 1 − η0, η0 ηA (η0, κ estimated by EM). FDR correction: at level α (5% here), keep edges for which p(i) ≤ iα e/η0 where e is the number of edges and p(1), p(2), ..., p(e) are ordered p-values. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 7 / 18
  • 16. Network inference Package GeneNet Example Expression data: 272 genes and 53 observations (pigs...) Shrinkage approach: 883 edges (density: 2.24%); Bootstrap approach: 2345 edges (density: 6.36%). Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 8 / 18
  • 17. Network inference Package glasso Sparse linear regression Linear regression for each node: ∀ j = 1, . . . , p, X j = SjX −j + j with X −j, gene expressions without gene j . Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
  • 18. Network inference Package glasso Sparse linear regression Linear regression for each node: ∀ j = 1, . . . , p, X j = SjX −j + j with X −j, gene expressions without gene j . Relation with the network: j ↔ j ⇔ Sjj = 0. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
  • 19. Network inference Package glasso Sparse linear regression Linear regression for each node: ∀ j = 1, . . . , p, X j = SjX −j + j with X −j, gene expressions without gene j . Relation with the network: j ↔ j ⇔ Sjj = 0. Estimation: [Meinshausen and Bühlmann, 2006] LS estimate ∀ j = 1, . . . , p, arg min Sj n i=1 X j i − SjX −j i 2 Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
  • 20. Network inference Package glasso Sparse linear regression Linear regression for each node: ∀ j = 1, . . . , p, X j = SjX −j + j with X −j, gene expressions without gene j . Relation with the network: j ↔ j ⇔ Sjj = 0. Estimation: [Meinshausen and Bühlmann, 2006] LS estimate with L 1 -penalization ∀ j = 1, . . . , p, arg min Sj n i=1 X j i − SjX −j i 2 +λ j =j |Sjj | Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
  • 21. Network inference Package glasso Sparse linear regression Linear regression for each node: ∀ j = 1, . . . , p, X j = SjX −j + j with X −j, gene expressions without gene j . Relation with the network: j ↔ j ⇔ Sjj = 0. Estimation: [Meinshausen and Bühlmann, 2006] LS estimate with L 1 -penalization ∀ j = 1, . . . , p, arg min Sj n i=1 X j i − SjX −j i 2 +λ j =j |Sjj | Sparse penalization ⇒ only a few j are such that Sjj = 0 (variable selection). Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 9 / 18
  • 22. Network inference Package glasso Sparse linear regression by pseudo-Likelihood maximization Estimation: [Friedman et al., 2008] Gaussien framework allows us to use pseudo-ML optimization with a sparse penalization L (S |X ) −λ S 1 = n i=1   p j=1 log P(X j i |X −j i , Sj)   −λ S 1 Remark: For [Meinshausen and Bühlmann, 2006], the estimates are not symmetric ⇒ symmetrization is done by OR or AND policies. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 10 / 18
  • 23. Network inference Package glasso Summary Density comparison Schäfer and Strimmer (shrinkage) 2.24% Schäfer and Strimmer (bootstrap) 6.36% Friedman et al. 3.78% Meinshausen and Bühlmann (OR policy) 3.24% Meinshausen and Bühlmann (AND policy) 1.68% Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 11 / 18
  • 24. Network inference Package glasso Summary Density comparison Schäfer and Strimmer (shrinkage) 2.24% Schäfer and Strimmer (bootstrap) 6.36% Friedman et al. 3.78% Meinshausen and Bühlmann (OR policy) 3.24% Meinshausen and Bühlmann (AND policy) 1.68% Edges comparison Schäfer Strimmer Schäfer Strimmer Friedman et al. (883) (2345) (1425) Schäfer Strimmer 883 Friedman et al. 883 1425 Meinshausen Bühlmann (1195) 883 1195 1195 Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 11 / 18
  • 25. Multiple Graphical Structures Outline 1 Network inference Package GeneNet Package glasso 2 Multiple Graphical Structures Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 12 / 18
  • 26. Multiple Graphical Structures Framework T samples measuring the expression of the same genes: X 1,t, . . . , X p,t for t = 1, . . . , T and each X j,t is a nt-dimensional vectors (nt observations in sample t). Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 13 / 18
  • 27. Multiple Graphical Structures Framework T samples measuring the expression of the same genes: X 1,t, . . . , X p,t for t = 1, . . . , T and each X j,t is a nt-dimensional vectors (nt observations in sample t). Naive approach: independant inferences L S t|X t = n i=1   p j=1 log P(X j,t i |X −j,t i , S t j )   and arg max S1,...,ST t L S t|X t − λ S t 1 Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 13 / 18
  • 28. Multiple Graphical Structures Framework T samples measuring the expression of the same genes: X 1,t, . . . , X p,t for t = 1, . . . , T and each X j,t is a nt-dimensional vectors (nt observations in sample t). Naive approach: independant inferences L S t|X t = n i=1   p j=1 log P(X j,t i |X −j,t i , S t j )   and arg max S1,...,ST t L S t|X t − λ S t 1 Problem: Doesn't use the fact that the samples are actually related... and produces T networks! Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 13 / 18
  • 29. Multiple Graphical Structures 3 solutions to address this issue First note that, in the Gaussian framework: L (S |X ) = n 2 log det(D) − n 2 Tr D −1/2 S ΣSD −1/2 − np 2π where D = Diag (S11, . . . , Spp) and Σ is the empirical covariance matrix ⇒ L (S |X ) ≡ L S |Σ ; Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 14 / 18
  • 30. Multiple Graphical Structures 3 solutions to address this issue First note that, in the Gaussian framework: L (S |X ) = n 2 log det(D) − n 2 Tr D −1/2 S ΣSD −1/2 − np 2π where D = Diag (S11, . . . , Spp) and Σ is the empirical covariance matrix ⇒ L (S |X ) ≡ L S |Σ ; • Intertwined estimation Use Σt = αΣt + (1 − α)¯Σt instead of Σt where ¯Σt = 1 n t ntΣt arg max S1,...,ST t L S t|Σt − λ S t 1 Similar to the assumption that each sample is generated from a mixture of Gaussian(?). In the experiments, α = 1/2. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 14 / 18
  • 31. Multiple Graphical Structures 3 solutions to address this issue First note that, in the Gaussian framework: L (S |X ) = n 2 log det(D) − n 2 Tr D −1/2 S ΣSD −1/2 − np 2π where D = Diag (S11, . . . , Spp) and Σ is the empirical covariance matrix ⇒ L (S |X ) ≡ L S |Σ ; • Intertwined estimation • Group-LASSO Mixed norm: arg max t          L S t|Σt − λ j=j t (Sjj )2 1/2 Sjj ≡ t (St jj )2 1/2          (tends to encourage Sjj = 0). Hence should lead to very consensual inferred networks. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 14 / 18
  • 32. Multiple Graphical Structures 3 solutions to address this issue First note that, in the Gaussian framework: L (S |X ) = n 2 log det(D) − n 2 Tr D −1/2 S ΣSD −1/2 − np 2π where D = Diag (S11, . . . , Spp) and Σ is the empirical covariance matrix ⇒ L (S |X ) ≡ L S |Σ ; • Intertwined estimation • Group-LASSO • Cooperative-LASSO arg max t         L St |Σt − λ j=j         t (St jj )2 + 1/2 (S+)jj + t (−St jj )2 + 1/2 (S−)jj                 Takes into account that sign swaps are unlickely accross samples (down and up-regulations). Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 14 / 18
  • 33. Multiple Graphical Structures Illustration of Group vs Cooperative LASSO Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 15 / 18
  • 34. Multiple Graphical Structures Comparison Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 16 / 18
  • 35. Multiple Graphical Structures Real life experiment independent estimations true - sum of intertwined Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 17 / 18
  • 36. Multiple Graphical Structures Open questions • is the group-lasso type penalty the correct approach to the biological problem? • how to be able to combine the network to analyze the dierences between networks? (distances between graphs?) to build a unique consensual network from all samples (mean network, AND network, OR network... ?) • could it be relevant to penalize the sparse regression problem by an additional relagularization (e.g., distance between each network and a consensual network)? Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 18 / 18
  • 37. Multiple Graphical Structures References Ambroise, C., Chiquet, J., and Matias, C. (2009). Inferring sparse Gaussian graphical models with latent structure. Electronic Journal of Statistics, 3:205238. Chiquet, J., Grandvalet, Y., and Ambroise, C. (2011). Inferring multiple graphical structures. Statistics and Computing, 21(4):537553. Chiquet, J., Smith, A., Grasseau, G., Matias, C., and Ambroise, C. (2009). SIMoNe: Statistical Inference for MOdular NEtworks. Bioinformatics, 25(3):417418. Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432441. Giraud, C., Huet, S., and Verzelen, N. (2009). Graph selection with ggmselect. Technical report, preprint arXiv. http://fr.arxiv.org/abs/0907.0619. Meinshausen, N. and Bühlmann, P. (2006). High dimensional graphs and variable selection with the lasso. Annals of Statistic, 34(3):14361462. Meyer, P., Latte, F., and Bontempi, G. (2008). minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9(461). Pearl, J. (1998). Probabilistic reasoning in intelligent systems: networks of plausible inference. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 18 / 18
  • 38. Multiple Graphical Structures In Kaufmann, M., editor, Representation and reasoning series (2nd printing ed.). San Fracisco, California, USA. Pearl, J. and Russel, S. (2002). Bayesian networks. In Michael, A., editor, Handbook of Brain Theory and Neural Networks. Bradford Books (MIT Press), Cambridge, Massachussets, USA. Schäfer, J. and Strimmer, K. (2005a). An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics, 21(6):754764. Schäfer, J. and Strimmer, K. (2005b). A shrinkage approach to large-scale covariance matrix estimation and implication for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4:132. Scutari, M. (2010). Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software, 35(3):122. Reading revue (Chiquet et al., 2011) samm-graph, 17/02/2012 Nathalie Villa-Vialaneix 18 / 18