CHAPITRE 4 : Trigonométrie
I ) Lectures sur le cercle trigonométrique
1) Enroulement de la droite numérique :
Propriété et...
Définition :
L'angle ( ⃗OI , ⃗OM ) a une unique mesure appartenant à l'intervalle ] –π ; π ].
On appelle cette mesure la m...
Propriétés :
Soient ⃗u et ⃗v , deux vecteurs non nuls, k et k' deux réels non nuls.
1. ( ⃗v , ⃗u ) = -( ⃗u , ⃗v )+ 2k π 2....
Prochain SlideShare
Chargement dans…5
×

Courschapitre4 trigonometrie

284 vues

Publié le

Cours Trigonométrie 1S

Publié dans : Formation
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
284
Sur SlideShare
0
Issues des intégrations
0
Intégrations
32
Actions
Partages
0
Téléchargements
4
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Courschapitre4 trigonometrie

  1. 1. CHAPITRE 4 : Trigonométrie I ) Lectures sur le cercle trigonométrique 1) Enroulement de la droite numérique : Propriété et définition : Dans un repère orthonormé (O ; ⃗i , ⃗j ), le cercle trigonométrique C est le cercle de centre O est de rayon 1, parcouru dans le sens direct, c'est-à-dire dans le sens inverse des aiguilles d'une montre. On considère la droite d tangente au cercle C en I sur laquelle on définit un repère d'origine I. On enroule la droite d autour de C. Pour tout réel , le point d'abscisse  sur d coïncide avec un unique point M sur le cercle C ; M s'appelle l'image de  sur le cercle trigonométrique. Réciproquement, tout point M du cercle trigonométrique est l'image d'une infinité de réels. Si  est un de ces réels, les autres réels ayant comme image M sont de la forme α+2k π , où k est un entier relatif. Illustration : https://www.geogebra.org/material/show/id/1236779 2) Radian : Définition: Soit U, le point du cercle trigonométrique, image du nombre réel 1 de la droite d. On définit 1 radian comme la mesure de l'angle ̂IOU . On note 1 rad. Exemple : Le point image de π 2 est J. Donc la mesure en radians de l'angle ̂IOJ est π 2 . Cela correspond à un angle de 90°. Propriété : Les mesures d'un angle en degrés d'une part et en radians d'autre part sont proportionnelles. On en déduit le tableau de conversion suivant : Mesure en degrés 30 45 60 90 180 Mesure en radians π 6 π 4 π 3 π 2 π 3) Mesure principale d'un angle : Soit M, un point du cercle trigonométrique. OI et OM sont appelés des vecteurs unitaires, c'est-à-dire de norme 1. Propriété et définition : Le réel  d'image M est appelé une mesure en radians de l'angle orienté des vecteurs ( ⃗OI , ⃗OM ). Tous les réels ayant pour image le point M sur C sont aussi des mesures en radians de l'angle ( ⃗OI , ⃗OM ). Toutes les mesures x en radians de l'angle ( ⃗OI , ⃗OM ) sont de la forme x =  + 2kπ , où k est un entier relatif. 1S Chapitre 4– page 1/3 ..× 180 π ..× π 180
  2. 2. Définition : L'angle ( ⃗OI , ⃗OM ) a une unique mesure appartenant à l'intervalle ] –π ; π ]. On appelle cette mesure la mesure principale de l'angle ( ⃗OI , ⃗OM ). Remarque : Si a est la mesure principale de l'angle ( ⃗OI , ⃗OM ), alors la mesure de l'angle géométrique ̂IOM est ̂IOM = |a|. Exemple : Sur le cercle trigonométrique, une mesure de l'angle ( ⃗OI , ⃗OJ ) est 3π 2 ; sa mesure principale est −π 2 car −π 2 ∈]- π ; π ] et ̂IOJ'=π 2 . II ) Angle orienté d'un couple de vecteurs 1) Introduction : Dans un repère (O ; I,J), on considère le cercle trigonométrique et 2 vecteurs ⃗u et ⃗v non nuls. On considère A' et B' les points définis par ⃗OA' = ⃗u et ⃗OB ' = ⃗v . Les demi-droites [OA') et [OB') coupent le cercle trigonométrique respectivement en A et B. Les vecteurs ⃗OA et ⃗OB sont unitaires et sont respectivement colinéaires à ⃗u et ⃗v , de même sens. Définition : Les mesures en radians de l'angle orienté de vecteurs ( ⃗u , ⃗v ) sont celles de l'angle orienté de vecteurs unitaires ( ⃗OA , ⃗OB ). Si x est une mesure de ( ⃗u , ⃗v ), alors toutes les mesures de ( ⃗u , ⃗v ) sont de la forme x+2k π , avec k un entier relatif. Exemple : ( ⃗u , ⃗v ) = π 2 signifie qu'une mesure de l'angle orienté de vecteurs ( ⃗u , ⃗v ) est égale à π 2 . Toutes les mesures de l'angle ( ⃗u , ⃗v ) sont de la forme (⃗u ,⃗v )= π 2 +2kπ , k∈ℤ. On peut aussi écrire ( ⃗u , ⃗v ) = π 2 ( 2π ). On lit : π 2 modulo 2π . Définition : Une seule des mesures de l'angle orienté de vecteurs ( ⃗u , ⃗v ) appartient à ] –π ; π ]. Cette mesure est la mesure principale de l'angle orienté de vecteurs ( ⃗u , ⃗v ). 2) Propriétés Propriété : Soit ⃗u et ⃗v deux vecteurs non nuls. • Dire que ⃗u et ⃗v sont colinéaires revient à dire que la mesure principale de ( ⃗u , ⃗v ) est égale à 0 ( ⃗u et ⃗v sont de même sens) ou π ( ⃗u et ⃗v sont de sens opposés). • Dire que ⃗u et ⃗v sont orthogonaux revient à dire que la mesure principale de ( ⃗u , ⃗v ) est égale à π 2 ou −π 2 . Remarque : Pour tout vecteur ⃗u non nul, ( ⃗u , ⃗u ) = 0+2k π et ( ⃗u ,- ⃗u ) = π+2k π Relation de Chasles pour les angles orientés : Soient ⃗u , ⃗v , ⃗w , trois vecteurs non nuls. On a alors : ( ⃗u , ⃗w ) = ( ⃗u , ⃗v )+( ⃗v , ⃗w )+ 2k π 1S Chapitre 4– page 2/3
  3. 3. Propriétés : Soient ⃗u et ⃗v , deux vecteurs non nuls, k et k' deux réels non nuls. 1. ( ⃗v , ⃗u ) = -( ⃗u , ⃗v )+ 2k π 2. ( ⃗u , −⃗v ) = (⃗u ,⃗v )+π + 2k π 3. ( −⃗u , ⃗v ) = (⃗u ,⃗v )+π + 2k π 4. ( −⃗u , −⃗v ) = (⃗u ,⃗v ) + 2k π 5. Si k et k' sont de même signe, ( k ⃗u , k ' ⃗v ) = (⃗u ,⃗v ) + 2k π 6. Si k et k' sont de signes contraires, ( k ⃗u , k ' ⃗v ) = (⃗u ,⃗v )+π + 2k π Ces propriétés se déduisent de la relation de Chasles Démonstration : • Certaines sont démontrées au niveau du ROC 74 p 209. • Manuel page 196 (bas) • Vidéo de démonstration : https://lc.cx/ZtQF III. Calculs trigonométriques 1) Cosinus et sinus d'un nombre réel Définition : Soit x , un nombre réel et M, son image sur le cercle trigonométrique. Dans un repère (O ; I,J), on appelle : • cosinus du réel x , noté cos( x ), l'abscisse du point M. • sinus du réel x , noté sin( x ), l'ordonnée du point M. 2) Propriétés algébriques Propriétés : • Pour tout réel t, on a : −1⩽cos(t)⩽1 et −1⩽sin(t )⩽1 . • Pour tout réel t et tout entier k, on a : cos(t+2k π ) = cos(t) et sin(t+2k π ) = sin(t). • Pour tout réel t, cos²(t) + sin²(t) = 1. Ces propriétés se démontrent à partir du cercle trigonométrique. 3) Angles associés Propriétés : Pour tout réel t, on a : 1. cos(-t) = cos(t) 2. sin(-t) = - sin(t) 3. cos( π -t) = - cos(t) 4. sin( π -t) = sin(t) 5. cos( π +t) = - cos(t) 6. sin( π -t) = - sin(t) 7.cos( π 2 −t )=sin(t ) 8.sin(π 2 −t )=cos(t ) 9.cos( π 2 +t )=−sin(t ) 10.sin( π 2 +t)=cos(t ) Démonstration : Par symétrie, sur le cercle trigonométrique. 4) Résolution des équations cos(x) = cos(a) et sin(x) = sin(a) Propriété Soient x et a deux nombres réels. • cos(x) = cos(a) ⇔ x=a+2k π ou x=−a+2k π , k étant entier relatif. • sin(x) = sin(a) ⇔ x=a+2k π ou x=π−a+2 k π , k étant entier relatif. Démonstration : A partir des propriétés du 3). 1S Chapitre 4– page 3/3

×