SlideShare une entreprise Scribd logo
1  sur  10
[object Object],[object Object],[object Object],ME0223 SEM-IV Applied Thermodynamics & Heat Engines Applied Thermodynamics & Heat Engines S.Y. B. Tech. ME0223 SEM - IV Production Engineering
ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 1 A turbine is supplied with steam at a gauge pressure of 1.4 MPa. After expansion in the turbine, the steam flows into a condenser which is maintained at a vacuum of 710 mm of Hg. The barometric pressure is 772 mm Hg. Express the inlet and exhaust steam pressures in Pascal (absolute).Take the density of mercury as 13.6 X 10 3 kg/m 3 . The Atmospheric Pressure, P 0  =  ρ .g.z 0  =  (13.6 X 10 3 ).(9.81).(0.772)   kg/m 3   m/sec 2   mtr   = 1.03 X 10 5  Pa Inlet Steam Pressure, P i  =  [(1.4 X 10 6 ) +  (1.03 X 10 5 )] Pa   =  15.05 X 10 5  Pa = 1.503 MPa ….. Ans Outlet Steam Pressure, (i.e. Condenser Pressure) P 0 =  (0.772 – 0.710).(9.81).(13.6 X 103)   mtr  m/sec 2   kg/m 3 = 8.27 kPa ….. Ans
Example 2 Work done by Stirring Device upon the system; W 1  = 2  π  T N   = (2 π ).(1.275).(10,000)   N-m  rpm   =  80 kJ A piston and cylinder machine containing a fluid system has a stirring device in the cylinder. The piston is frictionless and is held down against the fluid due to atmospheric pressure of 101.325 kPa. The stirring device is turned 10000 revolutions with an average torque against the fluid of 1.275 N-m. Meanwhile the piston of 0.6 m diameter moves out 0.8 m. Find the net work transfer for the system. This is  Negative Work.   Work done by the system on surrounding; W 2  = P. A . l   = (101.325).( π /4).(0.6) 2 .(0.8)   kN/m 2   m 2   mtr   =  22.9 kJ Net Work transfer is, W = W 1  + W 2  =  (-80) + (22.9)   = (-57.1) kJ ….. Ans W 1 0.8 m W 2 P =  101.325  kPa System
Example 3 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Q acb  = 84 kJ and  W acb = 32 kJ Volume Pressure Q adb  = U b  – U a  + W adb =  52 + 10.5  = 62.5 kJ …. Ans (i) a d b c Q acb  = U b  – U a  + W acb U b  – U a  =  84 – 32  = 52 kJ Q b-a  = U a  – U b  + W b-a =  (-52) - 21  = (-73) kJ …. Ans (ii) i.e. System   liberates  73 kJ  of Heat.
ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 4 A cyclic heat engine operates between a source temperature of 800  o C and a sink temperature of 30  o C. What is the least rate of heat rejection per kW net output of the engine? Source T H  = 1073 K W net = 1 kW   Q H   Q L   Heat  Engine Sink T L  = 303 K Now, Hence, Q L  = Q H  – W net   = 1.392 – 1  = 0.392 kW …. Ans
ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 5 A domestic food freezer maintains a temperature of -15  o C. The ambient air temperature is 30  o C. If the heat leaks into the freezer at a continuous rate of 1.75 kJ/s what is the least power necessary to pump this heat out continuously? And,  W = Q H  – Q L   = 2.06 – 1.75 =  0.31 kW …Ans Refrigerator cycle removes the Heat from the Freezer  at the same rate  at which Heat leaks into it. For  Minimum Power Requirement ; Air T H  = 303 K W net   Q H   Q L   Heat Pump Freezer  T L  = 258 K Q L  =  1.75 kJ/sec
ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 6 An ideal gas which obeys the equation  PV=mRT  is compressed in a piston – cylinder arrangement, such that the temperature remains constant. Derive an expression for the work done on the gas. Calculate the quantity of work when 2 kg of Helium is compressed from 1 atm, 20 °C to 1 MPa, holding the temperature constant. Now, .… Ans And,
ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 7 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],P 1   =  5 atm = 5.066 X 10 5  N/m 2 T 1   =  150 °C = 423 K m  =  1 gm = 10 -3  kg Initial Volume : For N 2 ; Pressure Volume 1 2 3
ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 7….Contd V 2  = 2. V 1   = 4.96 X 10 -4  m 3 . Adiabatic Process 1 – 2 : Adiabatic Work :
ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 7….Contd There is  NO  work done in Process  3-1 , since  V 3  = V 1  (i.e.  Constant Volume process ). Total Work  in the sequence of these processes is : Constant Pressure Process Work … Ans

Contenu connexe

Tendances

Reversed carnot cycle
Reversed carnot cycle   Reversed carnot cycle
Reversed carnot cycle Ihsan Wassan
 
heat conduction equations
heat conduction equationsheat conduction equations
heat conduction equationsZahir Baloch
 
Recapitulation of carnot,otto and diesel cycle, dual cycle,comparison of ott...
Recapitulation of  carnot,otto and diesel cycle, dual cycle,comparison of ott...Recapitulation of  carnot,otto and diesel cycle, dual cycle,comparison of ott...
Recapitulation of carnot,otto and diesel cycle, dual cycle,comparison of ott...vaibhav tailor
 
Simple Vapor Absorption Refrigeration System
Simple Vapor Absorption Refrigeration SystemSimple Vapor Absorption Refrigeration System
Simple Vapor Absorption Refrigeration SystemIan Louise Celestino
 
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...Waqas Manzoor
 
Refrigeration and air conditioning
Refrigeration and air conditioningRefrigeration and air conditioning
Refrigeration and air conditioningEagle .
 
03 part2 charging and discharging rigid Vessels
03 part2 charging and discharging rigid Vessels03 part2 charging and discharging rigid Vessels
03 part2 charging and discharging rigid Vesselsgunabalan sellan
 
Feed Water Treatment Power Plant Engineering
Feed Water Treatment Power Plant EngineeringFeed Water Treatment Power Plant Engineering
Feed Water Treatment Power Plant EngineeringAjaypalsinh Barad
 
Application of heat transfer
Application of heat transferApplication of heat transfer
Application of heat transferArman Nicoleta
 
Entropy change during thermodynamic process
Entropy change during thermodynamic processEntropy change during thermodynamic process
Entropy change during thermodynamic processPreetshah1212
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferVJTI Production
 
Vapour power cycles
Vapour power cyclesVapour power cycles
Vapour power cycleskrishna khot
 
Heat and Mass Transfer Assignment
Heat and Mass Transfer AssignmentHeat and Mass Transfer Assignment
Heat and Mass Transfer Assignmentsupriyakarthi7974
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionAzeem Waqar
 
Lab 1 the dryness fraction of the steam(mech)
Lab 1   the dryness fraction of the steam(mech)Lab 1   the dryness fraction of the steam(mech)
Lab 1 the dryness fraction of the steam(mech)lizwi nyandu
 

Tendances (20)

Reversed carnot cycle
Reversed carnot cycle   Reversed carnot cycle
Reversed carnot cycle
 
heat conduction equations
heat conduction equationsheat conduction equations
heat conduction equations
 
Recapitulation of carnot,otto and diesel cycle, dual cycle,comparison of ott...
Recapitulation of  carnot,otto and diesel cycle, dual cycle,comparison of ott...Recapitulation of  carnot,otto and diesel cycle, dual cycle,comparison of ott...
Recapitulation of carnot,otto and diesel cycle, dual cycle,comparison of ott...
 
Simple Vapor Absorption Refrigeration System
Simple Vapor Absorption Refrigeration SystemSimple Vapor Absorption Refrigeration System
Simple Vapor Absorption Refrigeration System
 
STEAM NOZZLES
STEAM NOZZLESSTEAM NOZZLES
STEAM NOZZLES
 
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
Presentation on Calculation of Polytropic and Isentropic Efficiency of natura...
 
Refrigeration and air conditioning
Refrigeration and air conditioningRefrigeration and air conditioning
Refrigeration and air conditioning
 
03 part2 charging and discharging rigid Vessels
03 part2 charging and discharging rigid Vessels03 part2 charging and discharging rigid Vessels
03 part2 charging and discharging rigid Vessels
 
Feed Water Treatment Power Plant Engineering
Feed Water Treatment Power Plant EngineeringFeed Water Treatment Power Plant Engineering
Feed Water Treatment Power Plant Engineering
 
Power cycles 1
Power cycles 1Power cycles 1
Power cycles 1
 
Application of heat transfer
Application of heat transferApplication of heat transfer
Application of heat transfer
 
Entropy change during thermodynamic process
Entropy change during thermodynamic processEntropy change during thermodynamic process
Entropy change during thermodynamic process
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
 
Boundary layer and heat exchangers
Boundary layer and heat exchangersBoundary layer and heat exchangers
Boundary layer and heat exchangers
 
Fin
FinFin
Fin
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equation
 
Vapour power cycles
Vapour power cyclesVapour power cycles
Vapour power cycles
 
Heat and Mass Transfer Assignment
Heat and Mass Transfer AssignmentHeat and Mass Transfer Assignment
Heat and Mass Transfer Assignment
 
Mcconkey Chapter 9 solution
Mcconkey Chapter 9 solutionMcconkey Chapter 9 solution
Mcconkey Chapter 9 solution
 
Lab 1 the dryness fraction of the steam(mech)
Lab 1   the dryness fraction of the steam(mech)Lab 1   the dryness fraction of the steam(mech)
Lab 1 the dryness fraction of the steam(mech)
 

En vedette

Thermodynamics Problems Chapter 1
Thermodynamics Problems Chapter 1Thermodynamics Problems Chapter 1
Thermodynamics Problems Chapter 1VJTI Production
 
Thermodynamics Lecture 1
Thermodynamics Lecture 1Thermodynamics Lecture 1
Thermodynamics Lecture 1VJTI Production
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamicsJaimin Patel
 
05 part1 combustion reactions
05 part1 combustion reactions05 part1 combustion reactions
05 part1 combustion reactionsgunabalan sellan
 
02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob02 part4 work heat transfer first law prob
02 part4 work heat transfer first law probgunabalan sellan
 
UrbanoVisio_leaflet
UrbanoVisio_leafletUrbanoVisio_leaflet
UrbanoVisio_leafletMihael Vaic
 
How to Install LAMP in Ubuntu 14.04
How to Install LAMP in Ubuntu 14.04How to Install LAMP in Ubuntu 14.04
How to Install LAMP in Ubuntu 14.04Sanjary Edu
 
03 part1 general conservation of energy and mass principles for control volume
03 part1 general conservation of energy and mass principles for control volume03 part1 general conservation of energy and mass principles for control volume
03 part1 general conservation of energy and mass principles for control volumegunabalan sellan
 
THE SECOND LAW OF THERMODYNAMICS For Mechanical and Industrial Engineerig
THE SECOND LAW OF THERMODYNAMICS For Mechanical and Industrial EngineerigTHE SECOND LAW OF THERMODYNAMICS For Mechanical and Industrial Engineerig
THE SECOND LAW OF THERMODYNAMICS For Mechanical and Industrial EngineerigKum Visal
 
03 part3 availability irreversibility
03 part3 availability irreversibility03 part3 availability irreversibility
03 part3 availability irreversibilitygunabalan sellan
 
05 part2 steady flow analysis of reacting mixtures
05 part2 steady flow analysis of reacting mixtures05 part2 steady flow analysis of reacting mixtures
05 part2 steady flow analysis of reacting mixturesgunabalan sellan
 

En vedette (20)

Thermodynamics Problems Chapter 1
Thermodynamics Problems Chapter 1Thermodynamics Problems Chapter 1
Thermodynamics Problems Chapter 1
 
Thermodynamics Lecture 1
Thermodynamics Lecture 1Thermodynamics Lecture 1
Thermodynamics Lecture 1
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
Ranjithu
RanjithuRanjithu
Ranjithu
 
Mixtures (2)
Mixtures (2)Mixtures (2)
Mixtures (2)
 
05 part1 combustion reactions
05 part1 combustion reactions05 part1 combustion reactions
05 part1 combustion reactions
 
02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob
 
Availability and irreversibility
Availability and irreversibilityAvailability and irreversibility
Availability and irreversibility
 
Ch04
Ch04Ch04
Ch04
 
02 part5 energy balance
02 part5 energy balance02 part5 energy balance
02 part5 energy balance
 
Chapter6
Chapter6Chapter6
Chapter6
 
UrbanoVisio_leaflet
UrbanoVisio_leafletUrbanoVisio_leaflet
UrbanoVisio_leaflet
 
7. communication
7. communication7. communication
7. communication
 
How to Install LAMP in Ubuntu 14.04
How to Install LAMP in Ubuntu 14.04How to Install LAMP in Ubuntu 14.04
How to Install LAMP in Ubuntu 14.04
 
03 part1 general conservation of energy and mass principles for control volume
03 part1 general conservation of energy and mass principles for control volume03 part1 general conservation of energy and mass principles for control volume
03 part1 general conservation of energy and mass principles for control volume
 
THE SECOND LAW OF THERMODYNAMICS For Mechanical and Industrial Engineerig
THE SECOND LAW OF THERMODYNAMICS For Mechanical and Industrial EngineerigTHE SECOND LAW OF THERMODYNAMICS For Mechanical and Industrial Engineerig
THE SECOND LAW OF THERMODYNAMICS For Mechanical and Industrial Engineerig
 
03 part3 availability irreversibility
03 part3 availability irreversibility03 part3 availability irreversibility
03 part3 availability irreversibility
 
05 part2 steady flow analysis of reacting mixtures
05 part2 steady flow analysis of reacting mixtures05 part2 steady flow analysis of reacting mixtures
05 part2 steady flow analysis of reacting mixtures
 
6. planning
6. planning6. planning
6. planning
 

Similaire à Thermodynamics Examples and Class test

Itenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aItenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aNoviyantiNugraha
 
chap4secondlawofthermodynamics-130703012656-phpapp01.ppt
chap4secondlawofthermodynamics-130703012656-phpapp01.pptchap4secondlawofthermodynamics-130703012656-phpapp01.ppt
chap4secondlawofthermodynamics-130703012656-phpapp01.pptethiouniverse
 
chapter 4 first law of thermodynamics thermodynamics 1
chapter 4  first law of thermodynamics thermodynamics 1chapter 4  first law of thermodynamics thermodynamics 1
chapter 4 first law of thermodynamics thermodynamics 1abfisho
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleMuhammad Surahman
 
Me6301 engineering thermodynamics uq - nov dec 2018
Me6301 engineering thermodynamics   uq - nov dec 2018Me6301 engineering thermodynamics   uq - nov dec 2018
Me6301 engineering thermodynamics uq - nov dec 2018BIBIN CHIDAMBARANATHAN
 
gas power plant problem.pdf
gas power plant problem.pdfgas power plant problem.pdf
gas power plant problem.pdfMahamad Jawhar
 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptHafizMudaserAhmad
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.pptWasifRazzaq2
 
Chapter 15-powerpoint-1233811850301350-2
Chapter 15-powerpoint-1233811850301350-2Chapter 15-powerpoint-1233811850301350-2
Chapter 15-powerpoint-1233811850301350-2Cleophas Rwemera
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYssuser5a6db81
 
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar ThermalLecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermalcdtpv
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...dineshprabhu41
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf21M220KARTHIKEYANC
 
Me2202 engineering thermodynamics uq - april may 2010
Me2202 engineering thermodynamics   uq - april may 2010Me2202 engineering thermodynamics   uq - april may 2010
Me2202 engineering thermodynamics uq - april may 2010BIBIN CHIDAMBARANATHAN
 
1. ejemplos y problemas evaporadores
1. ejemplos y problemas evaporadores 1. ejemplos y problemas evaporadores
1. ejemplos y problemas evaporadores MarcoAntonioEspinoRe
 

Similaire à Thermodynamics Examples and Class test (20)

Gas power-09
Gas power-09Gas power-09
Gas power-09
 
Itenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aItenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9a
 
Ch19 ssm
Ch19 ssmCh19 ssm
Ch19 ssm
 
chap4secondlawofthermodynamics-130703012656-phpapp01.ppt
chap4secondlawofthermodynamics-130703012656-phpapp01.pptchap4secondlawofthermodynamics-130703012656-phpapp01.ppt
chap4secondlawofthermodynamics-130703012656-phpapp01.ppt
 
Maquinas y equipos termicos
Maquinas y equipos termicos Maquinas y equipos termicos
Maquinas y equipos termicos
 
chapter 4 first law of thermodynamics thermodynamics 1
chapter 4  first law of thermodynamics thermodynamics 1chapter 4  first law of thermodynamics thermodynamics 1
chapter 4 first law of thermodynamics thermodynamics 1
 
Thermodynamic, examples a
Thermodynamic, examples aThermodynamic, examples a
Thermodynamic, examples a
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard CycleThermodynamic Chapter 5 Air Standard Cycle
Thermodynamic Chapter 5 Air Standard Cycle
 
Me6301 engineering thermodynamics uq - nov dec 2018
Me6301 engineering thermodynamics   uq - nov dec 2018Me6301 engineering thermodynamics   uq - nov dec 2018
Me6301 engineering thermodynamics uq - nov dec 2018
 
gas power plant problem.pdf
gas power plant problem.pdfgas power plant problem.pdf
gas power plant problem.pdf
 
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.pptGas Power Cycles in Chemical Engineering Thermodynamics.ppt
Gas Power Cycles in Chemical Engineering Thermodynamics.ppt
 
Gas Power Cycles.ppt
Gas Power Cycles.pptGas Power Cycles.ppt
Gas Power Cycles.ppt
 
Chapter 15-powerpoint-1233811850301350-2
Chapter 15-powerpoint-1233811850301350-2Chapter 15-powerpoint-1233811850301350-2
Chapter 15-powerpoint-1233811850301350-2
 
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITYGAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
GAS POWER CYCLES PRESENTATION FOR STUDENT UNIVERSITY
 
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar ThermalLecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
 
chap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdfchap5airstandardcycle2010-130703012738-02.pdf
chap5airstandardcycle2010-130703012738-02.pdf
 
Me2202 engineering thermodynamics uq - april may 2010
Me2202 engineering thermodynamics   uq - april may 2010Me2202 engineering thermodynamics   uq - april may 2010
Me2202 engineering thermodynamics uq - april may 2010
 
1. ejemplos y problemas evaporadores
1. ejemplos y problemas evaporadores 1. ejemplos y problemas evaporadores
1. ejemplos y problemas evaporadores
 

Plus de VJTI Production

Plus de VJTI Production (20)

Compensation
CompensationCompensation
Compensation
 
Job design
Job designJob design
Job design
 
Human nature and behaviour
Human nature and behaviourHuman nature and behaviour
Human nature and behaviour
 
Group behaviour
Group behaviourGroup behaviour
Group behaviour
 
Motivation
MotivationMotivation
Motivation
 
Optimization assignment 2
Optimization assignment 2Optimization assignment 2
Optimization assignment 2
 
Optimization assignment 3
Optimization assignment 3Optimization assignment 3
Optimization assignment 3
 
Optimization assignment 1
Optimization assignment 1Optimization assignment 1
Optimization assignment 1
 
Working capital
Working capitalWorking capital
Working capital
 
Capital budgeting techniques
Capital budgeting techniquesCapital budgeting techniques
Capital budgeting techniques
 
Market supply demand and market equilibrium
Market supply demand and market equilibriumMarket supply demand and market equilibrium
Market supply demand and market equilibrium
 
8. leadership
8. leadership8. leadership
8. leadership
 
5. decision making
5. decision making5. decision making
5. decision making
 
Final accounting assignment problems
Final accounting assignment problemsFinal accounting assignment problems
Final accounting assignment problems
 
Final account trading account pl acc balance sheet
Final account trading account pl acc balance sheetFinal account trading account pl acc balance sheet
Final account trading account pl acc balance sheet
 
4. organizational structure
4. organizational structure4. organizational structure
4. organizational structure
 
3. management contingency
3. management contingency3. management contingency
3. management contingency
 
2. scientific management
2. scientific management2. scientific management
2. scientific management
 
1. lect 1
1. lect 11. lect 1
1. lect 1
 
Gp 2012 part 1
Gp 2012 part 1Gp 2012 part 1
Gp 2012 part 1
 

Dernier

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 

Dernier (20)

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 

Thermodynamics Examples and Class test

  • 1.
  • 2. ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 1 A turbine is supplied with steam at a gauge pressure of 1.4 MPa. After expansion in the turbine, the steam flows into a condenser which is maintained at a vacuum of 710 mm of Hg. The barometric pressure is 772 mm Hg. Express the inlet and exhaust steam pressures in Pascal (absolute).Take the density of mercury as 13.6 X 10 3 kg/m 3 . The Atmospheric Pressure, P 0 = ρ .g.z 0 = (13.6 X 10 3 ).(9.81).(0.772) kg/m 3 m/sec 2 mtr = 1.03 X 10 5 Pa Inlet Steam Pressure, P i = [(1.4 X 10 6 ) + (1.03 X 10 5 )] Pa = 15.05 X 10 5 Pa = 1.503 MPa ….. Ans Outlet Steam Pressure, (i.e. Condenser Pressure) P 0 = (0.772 – 0.710).(9.81).(13.6 X 103) mtr m/sec 2 kg/m 3 = 8.27 kPa ….. Ans
  • 3. Example 2 Work done by Stirring Device upon the system; W 1 = 2 π T N = (2 π ).(1.275).(10,000) N-m rpm = 80 kJ A piston and cylinder machine containing a fluid system has a stirring device in the cylinder. The piston is frictionless and is held down against the fluid due to atmospheric pressure of 101.325 kPa. The stirring device is turned 10000 revolutions with an average torque against the fluid of 1.275 N-m. Meanwhile the piston of 0.6 m diameter moves out 0.8 m. Find the net work transfer for the system. This is Negative Work. Work done by the system on surrounding; W 2 = P. A . l = (101.325).( π /4).(0.6) 2 .(0.8) kN/m 2 m 2 mtr = 22.9 kJ Net Work transfer is, W = W 1 + W 2 = (-80) + (22.9) = (-57.1) kJ ….. Ans W 1 0.8 m W 2 P = 101.325 kPa System
  • 4.
  • 5. ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 4 A cyclic heat engine operates between a source temperature of 800 o C and a sink temperature of 30 o C. What is the least rate of heat rejection per kW net output of the engine? Source T H = 1073 K W net = 1 kW Q H Q L Heat Engine Sink T L = 303 K Now, Hence, Q L = Q H – W net = 1.392 – 1 = 0.392 kW …. Ans
  • 6. ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 5 A domestic food freezer maintains a temperature of -15 o C. The ambient air temperature is 30 o C. If the heat leaks into the freezer at a continuous rate of 1.75 kJ/s what is the least power necessary to pump this heat out continuously? And, W = Q H – Q L = 2.06 – 1.75 = 0.31 kW …Ans Refrigerator cycle removes the Heat from the Freezer at the same rate at which Heat leaks into it. For Minimum Power Requirement ; Air T H = 303 K W net Q H Q L Heat Pump Freezer T L = 258 K Q L = 1.75 kJ/sec
  • 7. ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 6 An ideal gas which obeys the equation PV=mRT is compressed in a piston – cylinder arrangement, such that the temperature remains constant. Derive an expression for the work done on the gas. Calculate the quantity of work when 2 kg of Helium is compressed from 1 atm, 20 °C to 1 MPa, holding the temperature constant. Now, .… Ans And,
  • 8.
  • 9. ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 7….Contd V 2 = 2. V 1 = 4.96 X 10 -4 m 3 . Adiabatic Process 1 – 2 : Adiabatic Work :
  • 10. ME0223 SEM-IV Applied Thermodynamics & Heat Engines Example 7….Contd There is NO work done in Process 3-1 , since V 3 = V 1 (i.e. Constant Volume process ). Total Work in the sequence of these processes is : Constant Pressure Process Work … Ans