SlideShare une entreprise Scribd logo
1  sur  138
Télécharger pour lire hors ligne
Globular Proteins
Globular proteins are characterized as generally
having:

•  a variety of different kinds of secondary structure


•  spherical shape


•  good water solubility


•  a catalytic/regulatory/transport role i.e. a dynamic
   metabolic function
Globular heme proteins contain heme as prosthetic
group.

Functions of globular hemeproteins include:


     •  electron carriers

     •  part of enzyme active site

     •  transport of O2 and CO2- hemoglobin

     •  storage of O2-myoglobin
•  II.	
  Globular	
  Hemeproteins	
  
•  Contain	
  heme	
  as	
  prosthe.c	
  group	
  
•  Role	
  of	
  heme	
  is	
  dependent	
  on	
  environment	
  created	
  by	
  
   3D	
  structure	
  of	
  protein	
  
•  Heme	
  of	
  cytochrome	
  →	
  electron	
  carrier	
  
•  Heme	
  of	
  catalase	
  →	
  part	
  of	
  ac.ve	
  site	
  
•  Heme	
  of	
  Hb	
  and	
  myoglobin	
  →	
  binds	
  O2	
  reversibly	
  
•  A.	
  Structure	
  of	
  Heme	
  
•  Complex	
  of	
  Protoporphyrin	
  
   IX	
  &	
  Fe2+	
  	
  
•  Fe2+	
  bound	
  to	
  4	
  Ns,	
  other	
  
   2	
  bonds	
  perpendicular	
  to	
  
   plane	
  of	
  ring	
  available	
  for	
  
   bonding	
  
•  In	
  Hb,	
  one	
  of	
  these	
  
   aHached	
  to	
  N	
  terminus	
  of	
  
   His,	
  other	
  binds	
  O2.	
  	
  
Structure of heme




   porphyrin        heme (Fe-protoporphyrin IX)
heme




“proximal”
 histidine

                    “distal”
                    histidine
B.	
  Structure	
  and	
  func9on	
  of	
  myoglobin	
  
                                                        	
  


•  It	
  is	
  a	
  heme	
  protein	
  present	
  in	
  
   heart	
  and	
  skeletal	
  muscle	
  
•  Reservoir	
  for	
  O2	
  and	
  carrier	
  of	
  
   O2	
  in	
  muscle	
  cell	
  
•  Single	
  polypep.de	
  chain	
  
   similar	
  to	
  polypep.des	
  in	
  Hb	
  
•  1.	
  α-­‐helical	
  content:	
  
•  ~	
  80%	
  of	
  pep.de	
  in	
  8	
  
   stretches	
  of	
  α-­‐helix	
  Labeled	
  A	
  
   to	
  H	
  
•  Terminated	
  by	
  Pro	
  or	
  β-­‐bends	
  
   and	
  loops	
  stabilized	
  by	
  H	
  
   bonds	
  and	
  ionic	
  bonds.	
  
•  2.	
  Loca9on	
  of	
  polar	
  and	
  nonpolar	
  amino	
  acid	
  residues:	
  
•  Interior	
  made	
  up	
  of	
  hydrophobic	
  amino	
  acids	
  stabilized	
  by	
  
   hydrophobic	
  interac.ons	
  
•  Surface	
  →	
  charged	
  amino	
  acids	
  –	
  form	
  H	
  bonds	
  with	
  water	
  

	
  
•  3.	
  Binding	
  of	
  heme	
  group:	
  
•  Heme	
  in	
  crevice	
  lined	
  with	
  non-­‐polar	
  amino	
  acids,	
  except	
  2	
  
     His	
  residues	
  
•  Proximal	
  his9dine	
  –	
  binds	
  directly	
  to	
  Fe2+	
  of	
  heme	
  
•  Distal	
  his9dine	
  stabilizes	
  binding	
  of	
  O2	
  to	
  Fe2+	
  
O2 Binding in Mb and
Hb
 
                  C.	
  Structure	
  and	
  func9on	
  of	
  hemoglobin	
  
                                              	
  
•  Found	
  exclusively	
  in	
  RBCs	
  →	
  
   transports	
  O2	
  
•  Hb	
  A	
  –	
  predominant	
  form	
  in	
  
   adults:	
  4	
  polypep.de	
  chains	
  
   -­‐-­‐	
  α2β2	
  
•  Each	
  subunit	
  –	
  heme-­‐binding	
  
   pocket	
  similar	
  to	
  myoglobin	
  
•  Can	
  transport	
  O2	
  and	
  CO2	
  
•  O2-­‐binding	
  proper.es	
  
   affected	
  by	
  allosteric	
  
   effectors,	
  unlike	
  myoglobin	
  
1.	
  Quaternary	
  structure	
  of	
  hemoglobin:	
  
                         	
  
 •  2	
  iden.cal	
  dimers:	
  (αβ)1	
  and	
  
    (αβ)2	
  
 •  dimers	
  held	
  together	
  by	
  
    hydrophobic	
  interac.ons	
  (on	
  
    contact	
  surfaces	
  of	
  subunits	
  
    as	
  well	
  as	
  internally)	
  but	
  
    ionic	
  and	
  H-­‐bonding	
  also	
  
    exist	
  	
  
 •  2	
  dimers	
  held	
  together	
  by	
  
    weak	
  polar	
  bonds	
  	
  
 •  different	
  conforma.on	
  in	
  
    deoxyHb	
  and	
  oxyHb	
  
αβ dimer 2
             αβ dimer1
T and R forms of Hemoglobin
    T = “taut” → deoxy Hb → low affinity for O2
    R = “relaxed” → oxy Hb → high affinity for O2
•    a.	
  T	
  form:	
  “taut”	
  form	
  
•    deoxy	
  form	
  of	
  Hb	
  
•    2	
  αβ	
  dimers	
  joined	
  by	
  ionic	
  and	
  H-­‐bonds	
  
•    low	
  oxygen-­‐affinity	
  form	
  of	
  Hb	
  

•  b.	
  R	
  form:	
  	
  
•  binding	
  of	
  O2	
  disrupts	
  some	
  ionic	
  and	
  H-­‐
   bonds	
  between	
  αβ	
  dimers	
  	
  
•  “relaxed”	
  form	
  
•  high	
  oxygen-­‐affinity	
  form	
  of	
  Hb	
  
 
                           D.	
  Binding	
  of	
  oxygen	
  to	
  myoglobin	
  and	
  
                                                  hemoglobin	
  
                                                        	
  
•    D.	
  Binding	
  of	
  oxygen	
  to	
  myoglobin	
  
     and	
  hemoglobin	
  
•    Myoglobin	
  →	
  one	
  heme	
  →	
  binds	
  
     one	
  O2	
  
•    Hb	
  →	
  4	
  heme→	
  binds	
  4	
  O2	
  
•    Hb	
  binding:	
  degree	
  of	
  satura.on	
  
     (Y)	
  from	
  0	
  to	
  100%	
  
•    1.	
  Oxygen	
  dissocia9on	
  curve:	
  
•    plot	
  of	
  Y	
  against	
  PO2	
  
•    myoglobin	
  :	
  higher	
  affinity	
  for	
  O2	
  
     than	
  Hb	
  
•    P50	
  is	
  1	
  mm	
  Hg	
  for	
  myoglobin	
  and	
  
     26	
  mm	
  Hg	
  for	
  Hb	
  
•  a.	
  Myoglobin:	
  
•  O2	
  dissocia.on	
  curve	
  hyperbolic	
  
•  This	
  reflects	
  that	
  myo	
  binds	
  single	
  O2	
  
•  Mb	
  +	
  O2	
  	
  	
  	
  	
  	
  	
  MbO2	
  they	
  exist	
  in	
  equilibrium	
  
•  Exchange	
  between	
  Hb	
  and	
  Mb,	
  Mb	
  and	
  
   muscle	
  cells	
  depending	
  on	
  equilibrium	
  
•  Mb	
  binds	
  O2	
  released	
  from	
  Hb,	
  releases	
  
   when	
  O2	
  drops.	
  	
  Mb	
  then	
  releases	
  the	
  O2	
  
   into	
  the	
  muscle	
  cell.	
  	
  This	
  only	
  happens	
  when	
  
   there	
  is	
  an	
  O2	
  demand.	
  
•  b.	
  Hemoglobin:	
  
•  O2	
  dissocia.on	
  curve	
  is	
  
   sigmoidal	
  	
  
•  Coopera.ve	
  bind	
  of	
  O2	
  
   (increased	
  affinity	
  for	
  Hb	
  
   with	
  more	
  binding)	
  
•  Heme-­‐heme	
  interac.on:	
  
   binding	
  of	
  O2	
  at	
  one	
  heme	
  
   increases	
  affinity	
  for	
  O2	
  at	
  
   others	
  
•  E.	
  Allosteric	
  effects	
  
•  Ability	
  of	
  Hb	
  to	
  bind	
  O2	
  depends	
  on	
  allosteric	
  
   (“other	
  site”)	
  effectors:	
  
    –  PO2	
  
    –  pH	
  of	
  environment	
  
    –  PCO2-­‐	
  an	
  inc	
  will	
  cause	
  the	
  inc	
  in	
  unloading	
  of	
  O2.	
  
    –  2,3-­‐disphosphoglycerate	
  availability	
  
•  allosteric	
  factors	
  do	
  not	
  affect	
  myoglobin	
  
•  1.	
  Heme-­‐heme	
  interac9ons:	
  
•  structural	
  changes	
  in	
  one	
  heme	
  group	
  transmiHed	
  to	
  
   others	
  
•  affinity	
  for	
  last	
  O2	
  ~300X	
  affinity	
  for	
  first	
  O2	
  
•  a.	
  Loading	
  and	
  unloading	
  of	
  oxygen:	
  
•  more	
  O2	
  can	
  be	
  delivered	
  to	
  .ssues	
  with	
  small	
  
   changes	
  in	
  PO2	
  
•  Graph	
  showing	
  loading	
  and	
  unloading	
  at	
  different	
  
   par.al	
  pressures	
  of	
  O2.	
  Hb	
  alterna.vely	
  carries	
  O2	
  
   and	
  CO2	
  between	
  lungs	
  and	
  .ssues	
  	
  
•  b.	
  Significance	
  of	
  sigmoidal	
  O2-­‐dissocia9on	
  curve	
  
   Compare	
  a	
  hyperbolic	
  curve	
  to	
  a	
  sigmoidal	
  curve	
  
•  A	
  sigmoidal	
  curve	
  gives	
  increasing	
  affinity	
  of	
  O2	
  for	
  Hb	
  
   with	
  increasing	
  par.al	
  pressure	
  while	
  a	
  hyperbolic	
  
   curve	
  is	
  a	
  straight	
  line	
  in	
  that	
  range.	
  
•  2.	
  Binding	
  of	
  CO2:	
  
•  Most	
  of	
  the	
  CO2	
  in	
  the	
  
   blood	
  is	
  transported	
  as	
  
   bicarbonate:	
  
•  CO2	
  +	
  H2O	
  	
  	
  	
  	
  	
  H2CO3	
  
•  H2CO3	
  	
  	
  	
  	
  	
  	
  	
  	
  HCO3-­‐	
  	
  +	
  H+	
  
•  Some	
  CO2	
  binds	
  to	
  the	
  
   terminal	
  –NH2	
  of	
  the	
  α	
  
   and	
  β	
  chains	
  forming	
  
   carbaminoHb.	
  
•  	
  Binding	
  of	
  CO2	
  stabilizes	
  
   the	
  “taut”	
  form	
  of	
  Hb	
  
   (deoxyHb).	
  	
  
•  3.	
  Binding	
  of	
  CO:	
  
•  CO	
  binds	
  reversibly	
  to	
  the	
  Fe2+	
  the	
  same	
  way	
  
   that	
  O2	
  does	
  
•  CO	
  +	
  Hb	
  	
  HbCO	
  (carbon	
  monoxy	
  Hb)	
  
•  Affinity	
  of	
  Hb	
  for	
  CO	
  is	
  220X	
  affinity	
  for	
  O2	
  
•  Binding	
  of	
  CO	
  to	
  Hb	
  increases	
  affinity	
  of	
  
   remaining	
  sites	
  for	
  O2	
  
•  O2	
  dissocia.on	
  curve	
  shigs	
  to	
  leg	
  (becomes	
  
   hyperbolic)	
  
•  >	
  60%	
  HbCO	
  fatal	
  
•  treated	
  with	
  O2	
  therapy	
  	
  
4.	
  Bohr	
  Effect:	
  
                                       	
  
•  Shig	
  of	
  O2	
  dissocia.on	
  
   curve	
  to	
  the	
  right	
  with	
  
   decrease	
  in	
  pH	
  or	
  increase	
  
   in	
  PCO2	
  	
  
•  This	
  translates	
  to	
  a	
  
   decreased	
  affinity	
  of	
  Hb	
  
   for	
  O2	
  under	
  these	
  
   condi.ons,	
  therefore	
  you	
  
   unload	
  O2	
  easier	
  
•  a.	
  Source	
  of	
  the	
  protons	
  that	
  lower	
  the	
  pH:	
  
•  2	
  principle	
  sources	
  of	
  protons:	
  
        –  lac.c	
  acid	
  produced	
  by	
  anaerobic	
  metabolism	
  in	
  muscles	
  
        –  increased	
  produc.on	
  of	
  CO2	
  by	
  cell	
  u.liza.on	
  of	
  O2	
  through	
  
           respira.on:	
  
•  CO2	
  +	
  H2O	
  	
  	
  	
  	
  	
  	
  H2CO3	
  	
  	
  	
  	
  	
  	
  	
  	
  H+	
  +	
  HCO3-­‐	
  

        –  in	
  lungs	
  the	
  equilibrium	
  of	
  this	
  reac.on	
  is	
  towards	
  the	
  leg	
  
           because	
  CO2	
  is	
  lost	
  through	
  exhaling	
  
•  the	
  decreased	
  affinity	
  of	
  Hb	
  for	
  O2	
  under	
  the	
  Bohr	
  
   effect	
  condi.ons	
  results	
  is	
  greater	
  off	
  loading	
  (release)	
  
   of	
  O2	
  in	
  the	
  .ssues.	
  
The Effect of CO2 and H+ on O2 Binding



  Bohr Effect:

  Increased concentrations of CO2 and H+ promote
  the release of O2 from hemoglobin in the blood.
How do CO2 and H+ promote the release of O2
from hemoglobin?




•  presence of “salt bridge”   •  no ionic interaction in
  in T form                      R form
CO2 is bound to hemoglobin at protein interfaces, not
Fe2+ center!
•  Summary	
  reac.on	
  for	
  the	
  Bohr	
  effect:	
  
•  HbO2	
  +	
  H+	
  	
  	
  	
  	
  	
  	
  HbH+	
  +	
  O2	
  	
  	
  
	
  	
  	
  OxyHb	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  DeoxyHb	
  	
  	
  
	
  
•  Equilibrium	
  shigs	
  to	
  	
  the	
  right	
  when	
  H+	
  conc.	
  
               increases	
  (decrease	
  in	
  pH),	
  while	
  it	
  shigs	
  to	
  
               leg	
  when	
  PO2	
  increases.	
  
           	
   	
  	
  
•  The	
  protonated	
  forms	
  of	
  the	
  terminal	
  α-­‐
               subunit	
  –NH2	
  groups	
  and	
  His	
  side-­‐chains	
  
               stabilize	
  the	
  T	
  form	
  (deoxy	
  form)	
  of	
  Hb.	
  
•  5.	
  Effect	
  of	
  	
  2,	
  3-­‐bis-­‐
   phosphoglycerate(BPG)	
  on	
  
   oxygen	
  affinity:	
  
•  Important	
  regulator	
  of	
  Hb	
  
   binding	
  O2	
  
•  Most	
  abundant	
  organic	
  
   phosphate	
  in	
  RBC	
  (conc.	
  ~	
  =	
  
   conc.	
  of	
  Hb)	
  
•  Synthesized	
  from	
  
   intermediate	
  of	
  glycolysis	
  	
  
•  a.	
  Binding	
  of	
  2,3-­‐BPG	
  to	
  
   deoxyhemoglobin:	
  
•  Binds	
  to	
  deoxyHb	
  stabilizing	
  it	
  
•  Decreases	
  affinity	
  of	
  Hb	
  for	
  O2	
  
•  b.	
  Binding	
  site	
  of	
  2,3-­‐BPG:	
  
•  1	
  molecule	
  of	
  2,3-­‐BPG	
  binds	
  to	
  a	
  
   pocket	
  between	
  the	
  β-­‐chains	
  in	
  
   the	
  center	
  of	
  the	
  deoxyHb	
  center	
  
•  expelled	
  on	
  oxida.on	
  of	
  Hb	
  
   (pocket	
  disappears)	
  

•  c.	
  ShiX	
  of	
  oxygen-­‐dissocia9on	
  
   curve:	
  
•  Blood	
  stripped	
  of	
  2,3-­‐BPG	
  has	
  a	
  
   high	
  affinity	
  for	
  O2	
  
•  2,3-­‐BPG	
  shigs	
  the	
  O2-­‐dissocia.on	
  
   curve	
  to	
  the	
  right	
  allowing	
  
   decreased	
  affinity	
  of	
  Hb	
  for	
  O2	
  
   and	
  effec.ve	
  unloading	
  of	
  O2	
  in	
  
   .ssues	
  
•  similar	
  to	
  Bohr	
  effect	
  but	
  no	
  
   difference	
  between	
  lungs	
  and	
  
   .ssues	
  
•  d.	
  Response	
  of	
  2,3-­‐BPG	
  levels	
  to	
  chronic	
  
   hypoxia	
  or	
  anemia:	
  
•  2,3-­‐BPG	
  increases	
  in	
  chronic	
  hypoxia	
  	
  
•  chronic	
  hypoxia	
  can	
  be	
  caused	
  by	
  	
  
    –  pulmonary	
  emphysema	
  or	
  	
  
    –  high	
  al.tudes	
  or	
  
    –  chronic	
  anemia	
  	
  
•  increased	
  2,3-­‐BPG	
  shigs	
  O2	
  dissocia.on	
  
   further	
  to	
  right	
  allowing	
  greater	
  unloading	
  
   of	
  O2	
  
•  e.	
  Role	
  of	
  2,3-­‐BPG	
  in	
  transfused	
  blood:	
  
•  2,3-­‐BPG	
  essen.al	
  for	
  normal	
  transport	
  func.on	
  of	
  
   blood	
  
•  Without	
  normal	
  concs.	
  of	
  2,3-­‐BPG,	
  Hb	
  becomes	
  an	
  
   O2	
  trap	
  (doesn’t	
  unload;	
  high	
  affinity)	
  
•  Blood	
  for	
  transfusion	
  formerly	
  stored	
  in	
  acid-­‐citrate-­‐
   dextrose	
  medium	
  decreased	
  2,3-­‐BPG	
  conc.	
  →	
  
   “stripped”	
  blood	
  
•  Body	
  restores	
  conc.	
  of	
  2,3-­‐BPG	
  in	
  24	
  –	
  48	
  h	
  
•  2,3-­‐BPG	
  can	
  be	
  restored	
  by	
  adding	
  inosin	
  
Minor Hemoglobins
Minor Hemoglobins
Minor Hemoglobins
Embryonic form is Hb Gower 1
(ζ2ε2) (yolk sac).


HbF - 2 α chains, 2 γ chains (β-
chain family) - major form in
fetus and newborn (fetal liver –
2 weeks).


HbA - 2 β chains, 2 α chains -
major form in adult.

Fetal bone marrow begins
synthesizing HbA around 8th
month.
Globin gene organization
Steps in globin chain synthesis:


1.  Transcription

2.  Modification of mRNA precursor
    by splicing

3.  Translation by ribosomes &
    further modifications (i.e.
    glycosylation)
Hemoglobinopathies
•  caused by abnormal structure of Hb

•  characterized by low levels of normal Hb

  Sickle-cell anemia (Hemoglobin S disease)

  Hemoglobin C disease

  Hemoglobin SC disease


  Thalassemias – α thalassemia
                 β thalassemia
Sickle-cell anemia (HbS disease)
•  abnormal β chain. HbS = α2βS2
•  β chain mutation - glu 6 à   val 6
•  glu is negatively charged, val is nonpolar.
•  only has effect postnatally because HbF is major
species in fetus
•  symptoms - hemolytic anemia, painful crises,
poor circulation, frequent infections
•  heterozygotes - HbA and HbS both present - 1 in
10 African Americans; "sickle cell trait" - no
symptoms, normal life span
Sickle-cell anemia (HbS disease)

•  glutamic acid is replaced by valine at position 6 of β
chain
normal RBCs   sickled RBCs
Symptoms worsen when Hb is in deoxy form - decreased pO2,
increased CO2, decreased pH, increased 2,3-BPG
Low solubility of HbS
causes aggregation and
distortion of cell shape.
HbS
•  val instead of glu at
position 6

HbA
•  glu at position 6

HbC
•  lys instead of glu at
position 6

HbSC
•  HbS as well as HbC
present → 2 bands in
electrophoresis
HbC disease

•  lys instead of glu at position 6

•  HbC homozygotes - mild, chronic hemolytic anemia. Not life-
threatening


 HbSC disease

 •  HbS as well as HbC present → 2 bands in electrophresis

 •  usually undiagnosed until infarctive crisis occurs (childbirth,
 surgery)

 •  can be fatal
Thalassemias
•  hereditary hemolytic diseases

•  most common genetic disorder in humans
•  heterogeneous collection of diseases
β-thalassemias
•  synthesis of β-chain decreased or absent


 β-thalassemia minor (or trait) - one normal, one defective β-
 chain gene. Not life-threatening


 β-thalassemia major - both genes defective. Normal at birth.
 Severe anemia by age 1-2.
 Treatment requires frequent transfusions → Leads to iron
 overload (hemosiderosis).
 Death between 15-25 years old. Bone marrow transplant
 (BMT) is an option.
α-thalassemias
•  decreased or absent α chain synthesis
•  severity of disease depends upon the number
of defective α genes:
0 defective - normal
1 defective - silent carrier of α-thalassemia. No
symptoms
2 defective - α-thalassemia trait - no serious
symptoms
3 defective - Hemoglobin H disease - moderately
severe hemolytic anemia
all 4 defective - hydrops fetalis - fetal death (α
chains needed for HbF)
Methemoglobinemia	
  
•  1.	
  Forma9on	
  of	
  methemoglobin	
  
•  Oxida.on	
  of	
  Fe2+	
  →	
  Fe3+	
  converts	
  Hb	
  and	
  myoglobin	
  to	
  
   metHb	
  and	
  metmyoglobin	
  
•  Cannot	
  bind	
  O2,	
  	
  
•  Oxida.on	
  by	
  drugs	
  like	
  nitrates,	
  H2O2	
  or	
  free	
  radicals	
  or	
  
   muta.on	
  in	
  α-­‐	
  or	
  β-­‐chain	
  of	
  globin	
  →	
  
   methemoglobinopathy	
  (HbM).	
  
•  a.	
  Reduc9on	
  of	
  methemoglobin:	
  
•  Normal	
  oxida.on	
  corrected	
  by	
  NADH-­‐cytochrome	
  b5-­‐
   reductase	
  
•  RBCs	
  of	
  newborns	
  →	
  half	
  the	
  capacity	
  of	
  this	
  enzyme,	
  
   therefore	
  more	
  suscep.ble	
  to	
  oxida.on	
  
Fibrous Proteins
Fibrous	
  proteins	
  are	
  characterized	
  as	
  generally	
  having:	
  
	
  
• 	
  	
  one	
  domina.ng	
  kind	
  of	
  secondary	
  structure	
  	
  
	
  	
  	
  (i.e.	
  collagen	
  helix	
  in	
  collagen)	
  

• 	
  	
  a	
  long	
  narrow	
  rod-­‐like	
  structure	
  

• 	
  	
  low	
  water	
  solubility	
  

• 	
  	
  a	
  role	
  in	
  determining	
  .ssue/cellular	
  structure	
  and	
  
	
  	
  	
  func.on	
  (e.g.	
  collagen,	
  α-kera.n)	
  
Collagen	
  -­‐	
  most	
  abundant	
  protein	
  in	
  body;	
  rigid,	
  
insoluble	
  
	
  
	
  
Elas.n	
  -­‐	
  stretchy,	
  rubber-­‐like,	
  lungs,	
  walls	
  of	
  
large	
  blood	
  vessels,	
  ligaments	
  
	
  
	
  
Structure	
  of	
  Collagen	
  

   Tropocollagen	
  is	
  a	
  right-­‐handed	
  triple	
  helix	
  	
  
   formed	
  of	
  α-­‐chains.	
  
Structure	
  of	
  Collagen	
  
The	
  α-­‐chains	
  (individual	
  polypep.des	
  composing	
  tropocollagen)	
  
consist	
  of	
  -­‐[Gly-­‐X-­‐Y]-­‐	
  	
  repeats.	
  
	
  
Proline	
  and	
  hydroxyproline/hydroxylysine	
  are	
  ogen	
  present	
  in	
  the	
  X	
  
and	
  Y	
  posi.ons,	
  respec.vely.	
  
Synthesis	
  of	
  collagen	
  
	
  
• 	
  	
  made	
  in	
  fibroblast,	
  osteoblasts	
  (bone),	
  chondroblasts	
  
(car.lage)	
  


• 	
  	
  secreted	
  into	
  ECM	
  


• 	
  	
  enzyma.cally	
  modified	
  


• 	
  	
  aggregate	
  and	
  are	
  cross-­‐linked	
  
Structure	
  of	
  tropocollagen	
  molecule	
  
Biosynthesis	
  of	
  collagen	
  
1.  forma.on	
  of	
  pro-­‐α-­‐chains	
  -­‐	
  contains	
  signal	
  sequence	
  –	
  
    promotes	
  binding	
  of	
  polysome	
  to	
  RER	
  and	
  secre.on	
  into	
  the	
  
    cisternae;	
  signal	
  sequence	
  removed	
  
2.  some	
  pro	
  and	
  lys	
  residues	
  (in	
  the	
  Y	
  posi.on	
  of	
  gly-­‐X-­‐Y)	
  are	
  
    hydroxylated	
  by	
  prolyl	
  hydroxylase	
  and	
  lysyl	
  hydroxylase;	
  
    needs	
  molecular	
  O2	
  and	
  reducing	
  agent	
  like	
  ascorbic	
  acid	
  
    (from	
  vitamin	
  C).	
  
3.  glycosyla.on	
  -­‐	
  glucose	
  and	
  galactose	
  added	
  to	
  
    hydroxylysines;	
  pro-­‐α-­‐chains	
  join	
  to	
  form	
  procollagen.	
  N-­‐	
  and	
  
    C-­‐terminal	
  extensions	
  form	
  interchain	
  disulfide	
  bonds;	
  central	
  
    triple	
  helix	
  formed	
  because	
  of	
  favorable	
  alignment;	
  
    Transported	
  to	
  Golgi,	
  packaged,	
  and	
  secreted	
  as	
  procollagen.	
  
Biosynthesis	
  of	
  
collagen	
  
Biosynthesis	
  of	
  collagen	
  (cont’d)	
  
 4.	
  	
  N-­‐procollagen	
  pep.dase	
  and	
  C-­‐procollagen	
  pep.dase	
  remove	
  
           terminal	
  extensions,	
  leaving	
  triple	
  helical	
  collagen	
  (occurs	
  
           extracellularly).	
  
 5.	
  	
  collagen	
  fibrils	
  -­‐	
  form	
  by	
  associa.on	
  of	
  collagen	
  molecules	
  
            with	
  about	
  a	
  3/4	
  overlap	
  with	
  other	
  molecules	
  (staggered,	
  
            parallel	
  arrays)	
  
 5.	
  	
  cross-­‐linking	
  -­‐	
  interchain	
  cross-­‐links	
  caused	
  by	
  lysyl	
  oxidase	
  (a	
  
            pyridoxal	
  phosphate	
  and	
  copper-­‐requiring	
  enzyme);	
  O2	
  
            required;	
  oxida.ve	
  deamina.on	
  of	
  lysines	
  and	
  
            hydroxylysines;	
  Allysine	
  (aldehyde)	
  reacts	
  with	
  amino	
  group	
  
            of	
  nearby	
  lysine	
  or	
  hydroxylysine	
  to	
  form	
  interchain	
  cross-­‐
            link.	
  Very	
  important	
  for	
  tensile	
  strength	
  of	
  collagen.	
  
Ascorbate	
  coenzyme	
  
required	
  by	
  prolyl/lysyl	
  
hydroxylase	
  in	
  hydroxyla.on	
  
step.	
  


Vitamin	
  C	
  (ascorbate)	
  
deficiency	
  results	
  in	
  scurvy	
  
(collagen	
  can’t	
  be	
  cross-­‐
linked).	
  
Cross	
  links	
  formed	
  by	
  lysyl/        Cu2+/	
  
prolyl	
  oxidase	
                             vitamin	
  B6	
  

	
  
-­‐	
  copper	
  coenzyme	
  
	
  
Number	
  of	
  cross-­‐links	
  
increases	
  with	
  age	
  →	
  causes	
  
s.ffening,	
  decreased	
  
elas.city	
  of	
  skin	
  and	
  joints.	
  
Biosynthesis	
  of	
  collagen	
  (con’t)	
  
     In	
  the	
  final	
  step,	
  collagen	
  fibrils	
  form	
  spontaneously	
  from	
  
     tropocollagen.	
  




covalent	
  X-­‐links	
  
between	
  Allysine	
  
and	
  hydroxylysine	
  	
  

  tropocollagen	
  
  molecule	
  
                triple	
  helix	
  of	
  
                α-­‐chains.	
  
Types	
  of	
  Collagen	
  
           Common
Type                               Representative Tissues
           disorders
         Ehlers-Danlos
         Osteogenesis
   I     Imperfecta
                                   skin, bone, tendons, cornea

         Marfan’s
                              cartilage, intervertebral disks, vitreous
  II            -
                              body
                              blood vessels, lymph nodes, dermis,
  III    Ehlers-Danlos
                              early phases of wound repair
        Alport’s
  IV                                  basement membranes
        Goodpasture’s

  X             -                        epiphyseal plates
Collagen	
  Degrada.on	
  and	
  Disorders	
  
 • 	
  	
  degrada.on	
  of	
  collagen	
  by	
  collagenase	
  allows	
  
 remodeling	
  of	
  ECM	
  

 Ehlers-­‐Danlos	
  –	
  hyperextensive	
  joints,	
  hyperelas.city	
  of	
  
 skin,	
  aor.c	
  aneurisms,	
  rupture	
  of	
  colon,	
  skin	
  
 hemmorhages	
  due	
  to	
  muta.on	
  in	
  α-­‐chains	
  	
  


 Osteogenesis	
  Imperfecta	
  –	
  briHle	
  bone	
  disease,	
  mul.ple	
  
 fractures,	
  blue	
  sclera,	
  hearing	
  loss,	
  retarded	
  wound	
  
 healing	
  	
  
Ehlers-­‐Danlos	
  Syndrome	
  
	
  Hyperextension	
  of	
  skin	
  
Osteogenesis	
  Imperfecta	
  	
  
     (Blue	
  sclera)	
  
In	
  Utero	
  Radiograph:	
  



• 	
  	
  crumpled	
  long	
  bones	
  

• 	
  	
  beaded	
  ribs	
  
Elas.n	
  

 • 	
  	
  rubber-­‐like	
  proper.es	
  

 • 	
  	
  connec.ve	
  .ssue	
  protein	
  

 • 	
  	
  lungs,	
  large	
  blood	
  vessels,	
  elas.c	
  ligaments	
  
      	
  Composi.on:	
  	
  	
  
      	
  -­‐	
  small	
  nonpolar	
  amino	
  acids	
  (Gly,	
  Ala,	
  Val)	
  	
   	
  -­‐	
  
 also	
  rich	
  in	
  Pro	
  and	
  Lys	
  
      	
  -­‐	
  liHle	
  or	
  no	
  OH-­‐Pro	
  or	
  OH-­‐Lys	
  	
  
Elas.n	
  
Elas.n	
  


• 	
  	
  3D	
  network	
  of	
  cross-­‐linked	
  polypep.des	
  

• 	
  	
  cross	
  links	
  involve	
  Lys	
  	
  and	
  alLys	
  	
  

• 	
  	
  4	
  Lys	
  can	
  be	
  cross-­‐linked	
  into	
  desmosine	
  	
  

• 	
  	
  desmosines	
  account	
  for	
  elas.c	
  proper.es	
  
Elas.n	
  Degrada.on	
  and	
  Disorders	
  


• 	
  	
  in	
  lungs	
  -­‐	
  lung	
  alveolar	
  elas.n	
  in	
  constantly	
  exposed	
  to	
  
neutrophil	
  elastase	
  
	
  	
  
	
  
α1-­‐AT	
  inhibits	
  elastase	
  thus	
  preven.ng	
  loss	
  of	
  lung	
  
elas.city	
  


• 	
  	
  individuals	
  who	
  are	
  homozygotes	
  for	
  mutant	
  α1-­‐AT	
  are	
  
very	
  suscep.ble	
  to	
  emphysema	
  
Enzymes
Enzymes are
biological catalysts.
Some nomenclature…

Active site = special pocket where substrate binds



Specificity

1.  enzymes are specific for a single molecule or a
   structurally related group of substrates

2. usually only 1 enzyme per reaction type
Some more nomenclature…

Cofactor = inorganic component needed for enzyme
           function
Some more nomenclature…

Coenzyme = nonprotein small organic component
needed for enzyme function
Some more nomenclature…


Holoenzyme - the enzyme protein plus its cofactor


Apoenzyme - enzyme protein without its cofactor


Prosthetic groups – a coenzyme that’s very tightly
                         (usually covalently) attached to
                          the protein, such as heme
How Enzymes Work
 Enzymes increase the rate of reactions without
 themselves being altered in the process of
 substrate conversion to product.

 This defines a catalyst.
 	
  
 Enzymes increase reaction rates by lowering the
 energy input needed to form a reactant complex
 that will eventually form product.
 	
  
 This occurs via the formation of a complex
 between enzyme and substrate (ES):
                    k1        k2
       E   +   S         ES        E   +   P
                   k-1
Steps in an Enzymatic Reaction
1.  Enzyme and substrate combine to form a
    complex.

2.  Complex goes through a transition state – not
   quite substrate or product

3.  A complex of the enzyme and the product is
   produced.

4.  Finally, the enzyme and product separate.

All of these steps are equilibria.
Steps in an Enzymatic Reaction
Steps in an Enzymatic Reaction

1.  Enzyme and substrate combine to form a
    complex.
Steps in an Enzymatic Reaction

2. The complex goes through a transition state –
   not quite substrate or product
Steps in an Enzymatic Reaction
3.  A complex of enzyme and product is produced
    (EP).

4.  The product is released.
Factors that influence enzyme activity


 Environmental factors
 •  temperature, pH

 Cofactors
 •  metal ions

 Effectors
 •  species that alter enzyme activity
Effect of pH on enzyme activity
Effect of pH on enzyme activity


 Examples of optimum pH
Effect of temperature on enzyme activity

 •  exceeding normal temperature ranges always
   reduces enzyme reaction rates




 •  optimum temperature is usually 25 - 40 ºC (but
   not always)
Kinetics
•  Kinetics is the study of the rate of change of
reactants to products


•  Velocity (v) refers to the change in conc. of
substrate or product per unit time


•  Rate (k) refers to the change in total quantity (of
reactant or product) per unit time


•  Initial velocity (v0) is the change in reactant or
product conc. during the linear phase of a reaction
Michaelis-Menten Kinetics
Three basic assumptions:

1:   ES complex is in a steady state, i.e.
     remains constant during the initial phase of a
     reaction

2:   when enzyme is saturated all enzyme is in the
     form of ES complex

3:   if all enzyme in ES then rate of product
     formation is maximal:

                    Vmax = k2[ES]	
  
Michaelis-Menten Kinetics

 The Michaelis-Menten equation is a quantitative
 description of the relationship between the rate of
 an enzyme catalyzed reaction (v1), substrate
 concentration [S], the M-M rate constant (Km) and
 maximal velocity (Vmax)
Michaelis-Menten Kinetics
 Km is equal to the concentration of substrate
 required to attain half maximal velocity for any
 given reaction
Lineweaver-Burk Analysis
•  Lineweaver and Burk manipulated the MM
equation by taking its reciprocal values generating a
double reciprocal plot
•  Leads to a linear graph of the reciprocals of
velocity and substrate concentration
Lineweaver-Burk Plot
Enzyme inhibition


 •  many substances can inhibit enzyme activity:


            substrate analogs
                    toxins
                    drugs
             metal complexes
Enzyme inhibition - 2 broad classes:

Irreversible inhibition
•  forms covalent or very strong noncovalent bonds
•  site of attack is amino acid group that participates
   in the normal enzymatic reaction


Reversible inhibition
•  forms weak, noncovalent bonds that readily
   dissociate from an enzyme
•  the enzyme is only inactive when the inhibitor is
   present
Enzyme inhibition
 Competitive inhibitor

 •  resembles the normal substrate and competes
    for the same site
Enzyme inhibition

 Examples of competitive inhibitors:

 •  methanol and ethylene glycol compete with
 ethanol for the binding sites to alcohol
 dehydrogenase

 •  methotrexate competes with folic acid for
 dihydrofolate reductase
Enzyme inhibition
 Noncompetitive inhibitor

 •  materials that bind at a location other than the
    normal site

 •  results in a change in how the enzyme performs
Enzyme inhibition

 Examples of noncompetitive inhibitors:

 •  physostigmine is a cholinesterase inhibitor used
 in the treatment of glaucoma

 •  captopril is an ACE inhibitor used in treatment of
 hypertension

 •  allopurinol is a xanthine oxidase inhibitor used to
 treat gout
Enzyme inhibition

 Irreversible inhibitors

 •  permanently inactivate enzymes

 •  heavy metals (Hg2+, Pb2+, Cd2+)

 •  aspirin acetylates

 •  fluorouracil

 •  organophosphates
Enzyme Inhibition - Summary
Competitive
•  Inhibitor binds at substrate site, inhibition is reversible as higher substrate
competes for inhibitor, Vmax unchanged, Km increased

Noncompetitive
•  Inhibitor binds at site other than substrate, ESI cannot form product, increased
substrate does not compete, Km unchanged, Vmax decreased
Competitive Inhibition
Uncompetitive Inhibition
Noncompetetive model
Enzyme Regulation
•  Proteolytic cleavage to activate:
                                   Enzyme exists in inactive form (zymogen) that is
activated by removal of a short peptide segment ( truncation)

•  Covalent modification to increase or decrease
   activity, most common is phosphorylation

•  Sequestration: enzyme forms inactive polymers

•  Allosteric (“other site”) regulation, both positive
   and negative ( homotropic, heterotropic)

Induction-upregulation: increase gene expression, synthesis of more enzyme
molecules

Repression-downregulation: decrease gene expression, decrease synthesis of
enzyme molecules.
Allosteric enzymes

Are regulated by molecules called effectors
(modifiers) that bind non-covalently at a site
other than active site. They can alter Vmax or
Km or both)

1. Homotrophic effectors – when the substrate
itself is an effector

2. Heterotrophic effector – when the effector is
different from a substrate (often it is an end-
product - feedback inhibition)
Allosteric enzymes show sigmoid curve
(cooperative substrate binding like in Hb)
Feedback inhibition
Enzymes Used in Clinical diagnoses

Tissue damage: Increased release of tissue enzymes in plasma




   Enzyme assay is used for both diagnostic and prognostic purpose
   Eg: ALT – present in the liver will be appearing in the plasma if there is
   Liver damage or cell necrosis




 Isoenzymes: Structurally different enzymes but catalyze the same reaction
 Eg: CK1, CK2, CK3 (creatine kinase, CK MB (CK 2) is present in the heart, its
 presence in plasma is indicative of myocardial infarction
ALSO: Troponin T & Troponin I
are also released in cardiac
damage. Peaks in 8 – 24hr
Sensitive and specific for cardiac
tissue damage

Contenu connexe

Tendances

Structure of chlorophyll & haemoglobin
Structure of chlorophyll & haemoglobinStructure of chlorophyll & haemoglobin
Structure of chlorophyll & haemoglobinVishali29
 
Chemistry and function of Hemoglobin
Chemistry and function of HemoglobinChemistry and function of Hemoglobin
Chemistry and function of HemoglobinSantarupaThakurta
 
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...sana shaikh
 
Metalloporphyrins with special reference to Iron porphyrins ( Haemoglobin and...
Metalloporphyrins with special reference to Iron porphyrins ( Haemoglobin and...Metalloporphyrins with special reference to Iron porphyrins ( Haemoglobin and...
Metalloporphyrins with special reference to Iron porphyrins ( Haemoglobin and...ADITYA ARYA
 
Katabolisme hemoglobin
Katabolisme hemoglobinKatabolisme hemoglobin
Katabolisme hemoglobininsanrery
 
Respiratory Pigment(Girja Pd. Patel)
Respiratory Pigment(Girja Pd. Patel)Respiratory Pigment(Girja Pd. Patel)
Respiratory Pigment(Girja Pd. Patel)GirjaPrasad
 
Bioinorganic chemistry f
Bioinorganic chemistry fBioinorganic chemistry f
Bioinorganic chemistry fPERUMALCIPI
 
Hemoglobin and hemocyanin magnetic properties
Hemoglobin and hemocyanin   magnetic propertiesHemoglobin and hemocyanin   magnetic properties
Hemoglobin and hemocyanin magnetic propertiesKnowledgeGainer3
 
Chapter 5 globularproteins - Biochemistry
Chapter 5 globularproteins - Biochemistry Chapter 5 globularproteins - Biochemistry
Chapter 5 globularproteins - Biochemistry Areej Abu Hanieh
 
Hydroboration-oxidation, Addition with alkenes like Hydroxylation, Hypo-Halou...
Hydroboration-oxidation, Addition with alkenes like Hydroxylation, Hypo-Halou...Hydroboration-oxidation, Addition with alkenes like Hydroxylation, Hypo-Halou...
Hydroboration-oxidation, Addition with alkenes like Hydroxylation, Hypo-Halou...Einstein kannan
 
Acid base balance 5.2.14 final
Acid base balance 5.2.14 finalAcid base balance 5.2.14 final
Acid base balance 5.2.14 finalIshah Khaliq
 
Biocoordination Chemistry 2019
Biocoordination Chemistry 2019Biocoordination Chemistry 2019
Biocoordination Chemistry 2019YATA PRAVEEN KUMAR
 

Tendances (20)

Structure of chlorophyll & haemoglobin
Structure of chlorophyll & haemoglobinStructure of chlorophyll & haemoglobin
Structure of chlorophyll & haemoglobin
 
Hemoglobin Synthesis
Hemoglobin SynthesisHemoglobin Synthesis
Hemoglobin Synthesis
 
fish Hemoglobin 17m
fish Hemoglobin 17mfish Hemoglobin 17m
fish Hemoglobin 17m
 
Chemistry and function of Hemoglobin
Chemistry and function of HemoglobinChemistry and function of Hemoglobin
Chemistry and function of Hemoglobin
 
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
biological oxygen carriers hemoglobin ,hemocyanin ,hemerythrene .hill equatio...
 
Metalloporphyrins with special reference to Iron porphyrins ( Haemoglobin and...
Metalloporphyrins with special reference to Iron porphyrins ( Haemoglobin and...Metalloporphyrins with special reference to Iron porphyrins ( Haemoglobin and...
Metalloporphyrins with special reference to Iron porphyrins ( Haemoglobin and...
 
Katabolisme hemoglobin
Katabolisme hemoglobinKatabolisme hemoglobin
Katabolisme hemoglobin
 
Hemocyanin and Hemerythrin
Hemocyanin and HemerythrinHemocyanin and Hemerythrin
Hemocyanin and Hemerythrin
 
Mine acid base balance1
Mine  acid base balance1Mine  acid base balance1
Mine acid base balance1
 
Respiratory Pigment(Girja Pd. Patel)
Respiratory Pigment(Girja Pd. Patel)Respiratory Pigment(Girja Pd. Patel)
Respiratory Pigment(Girja Pd. Patel)
 
Bioinorganic chemistry f
Bioinorganic chemistry fBioinorganic chemistry f
Bioinorganic chemistry f
 
Hemoglobin and hemocyanin magnetic properties
Hemoglobin and hemocyanin   magnetic propertiesHemoglobin and hemocyanin   magnetic properties
Hemoglobin and hemocyanin magnetic properties
 
Mqt 1683 21-09-12
Mqt 1683   21-09-12Mqt 1683   21-09-12
Mqt 1683 21-09-12
 
Acids and Bses
Acids and Bses Acids and Bses
Acids and Bses
 
Chapter 5 globularproteins - Biochemistry
Chapter 5 globularproteins - Biochemistry Chapter 5 globularproteins - Biochemistry
Chapter 5 globularproteins - Biochemistry
 
Hydroboration-oxidation, Addition with alkenes like Hydroxylation, Hypo-Halou...
Hydroboration-oxidation, Addition with alkenes like Hydroxylation, Hypo-Halou...Hydroboration-oxidation, Addition with alkenes like Hydroxylation, Hypo-Halou...
Hydroboration-oxidation, Addition with alkenes like Hydroxylation, Hypo-Halou...
 
Buffers
BuffersBuffers
Buffers
 
Acid base balance 5.2.14 final
Acid base balance 5.2.14 finalAcid base balance 5.2.14 final
Acid base balance 5.2.14 final
 
Acid base balance and Imbalance
Acid base balance and ImbalanceAcid base balance and Imbalance
Acid base balance and Imbalance
 
Biocoordination Chemistry 2019
Biocoordination Chemistry 2019Biocoordination Chemistry 2019
Biocoordination Chemistry 2019
 

En vedette

Bark3304 lecture 11
Bark3304 lecture 11Bark3304 lecture 11
Bark3304 lecture 11ivannpd9
 
Biotech 2011-11-epigenetic regulation-of_human_development
Biotech 2011-11-epigenetic regulation-of_human_developmentBiotech 2011-11-epigenetic regulation-of_human_development
Biotech 2011-11-epigenetic regulation-of_human_developmentNikolay Vyahhi
 
Molbiol 2011-03-biochem
Molbiol 2011-03-biochemMolbiol 2011-03-biochem
Molbiol 2011-03-biochemNikolay Vyahhi
 
Biotech 2011-06-electrophoresis-blots
Biotech 2011-06-electrophoresis-blotsBiotech 2011-06-electrophoresis-blots
Biotech 2011-06-electrophoresis-blotsNikolay Vyahhi
 
Biotech 2011-03-prokaryotic-genes
Biotech 2011-03-prokaryotic-genesBiotech 2011-03-prokaryotic-genes
Biotech 2011-03-prokaryotic-genesNikolay Vyahhi
 
Biotech 2011-04-prokaryotic-expression
Biotech 2011-04-prokaryotic-expressionBiotech 2011-04-prokaryotic-expression
Biotech 2011-04-prokaryotic-expressionNikolay Vyahhi
 
Protein ligand interaction.
Protein ligand interaction.Protein ligand interaction.
Protein ligand interaction.Rachana Tiwari
 
Oxygen Binding by Myoglobin and Hemoglobin
Oxygen Binding by Myoglobin and HemoglobinOxygen Binding by Myoglobin and Hemoglobin
Oxygen Binding by Myoglobin and HemoglobinAlecks Madrona
 

En vedette (12)

Bark3304 lecture 11
Bark3304 lecture 11Bark3304 lecture 11
Bark3304 lecture 11
 
Biotech 2011-11-epigenetic regulation-of_human_development
Biotech 2011-11-epigenetic regulation-of_human_developmentBiotech 2011-11-epigenetic regulation-of_human_development
Biotech 2011-11-epigenetic regulation-of_human_development
 
Molbiol 2011-03-biochem
Molbiol 2011-03-biochemMolbiol 2011-03-biochem
Molbiol 2011-03-biochem
 
Biotech 2011-06-electrophoresis-blots
Biotech 2011-06-electrophoresis-blotsBiotech 2011-06-electrophoresis-blots
Biotech 2011-06-electrophoresis-blots
 
BioTech #3
BioTech #3BioTech #3
BioTech #3
 
Biotech 2011-03-prokaryotic-genes
Biotech 2011-03-prokaryotic-genesBiotech 2011-03-prokaryotic-genes
Biotech 2011-03-prokaryotic-genes
 
MolBiol #6-7
MolBiol #6-7MolBiol #6-7
MolBiol #6-7
 
Biotech 2011-04-prokaryotic-expression
Biotech 2011-04-prokaryotic-expressionBiotech 2011-04-prokaryotic-expression
Biotech 2011-04-prokaryotic-expression
 
Genome Rearrangements
Genome RearrangementsGenome Rearrangements
Genome Rearrangements
 
Molbiol 2011-wetlab
Molbiol 2011-wetlabMolbiol 2011-wetlab
Molbiol 2011-wetlab
 
Protein ligand interaction.
Protein ligand interaction.Protein ligand interaction.
Protein ligand interaction.
 
Oxygen Binding by Myoglobin and Hemoglobin
Oxygen Binding by Myoglobin and HemoglobinOxygen Binding by Myoglobin and Hemoglobin
Oxygen Binding by Myoglobin and Hemoglobin
 

Similaire à Globular Proteins: Structure and Functions of Globular Heme Proteins

Protein Function - General Biology 2 Lesson
Protein Function - General Biology 2 LessonProtein Function - General Biology 2 Lesson
Protein Function - General Biology 2 LessonCyrusEsguerra6
 
Hemoglobin and myoglobin are two important proteins involved in the transport...
Hemoglobin and myoglobin are two important proteins involved in the transport...Hemoglobin and myoglobin are two important proteins involved in the transport...
Hemoglobin and myoglobin are two important proteins involved in the transport...tekalignpawulose09
 
hemoglobin and myoglobin (1).pptx
hemoglobin and myoglobin (1).pptxhemoglobin and myoglobin (1).pptx
hemoglobin and myoglobin (1).pptxDrThangarajMD
 
hemoglobin and myoglobin .pptx
hemoglobin    and  myoglobin       .pptxhemoglobin    and  myoglobin       .pptx
hemoglobin and myoglobin .pptxavinashsingh9771
 
Hemoglobin structure and function.pptx
Hemoglobin structure and function.pptxHemoglobin structure and function.pptx
Hemoglobin structure and function.pptxParthModha
 
HAEMOGLOBIN & MYOGLOBIN STRUCTURE.pptx
HAEMOGLOBIN & MYOGLOBIN STRUCTURE.pptxHAEMOGLOBIN & MYOGLOBIN STRUCTURE.pptx
HAEMOGLOBIN & MYOGLOBIN STRUCTURE.pptxNiranjanShakya1
 
Hemoglobin Lecture for bs mlt
Hemoglobin Lecture for bs mltHemoglobin Lecture for bs mlt
Hemoglobin Lecture for bs mltHabibah Chaudhary
 
Haemoglobin and Gas Transport.pptx
Haemoglobin and Gas Transport.pptxHaemoglobin and Gas Transport.pptx
Haemoglobin and Gas Transport.pptxEbot Walter Ojong
 
Transportation of oxygen and co2
Transportation of oxygen and co2Transportation of oxygen and co2
Transportation of oxygen and co2Saadiyah Naeemi
 
New microsoft power point presentation
New microsoft power point presentationNew microsoft power point presentation
New microsoft power point presentationkeerthi samuel
 
6) transport of oxygen and carbon dioxdide
6) transport of oxygen and carbon dioxdide6) transport of oxygen and carbon dioxdide
6) transport of oxygen and carbon dioxdideAyub Abdi
 

Similaire à Globular Proteins: Structure and Functions of Globular Heme Proteins (20)

GLOBULAR PROTEINS
GLOBULAR PROTEINSGLOBULAR PROTEINS
GLOBULAR PROTEINS
 
Protein Function - General Biology 2 Lesson
Protein Function - General Biology 2 LessonProtein Function - General Biology 2 Lesson
Protein Function - General Biology 2 Lesson
 
Hemoglobin and myoglobin are two important proteins involved in the transport...
Hemoglobin and myoglobin are two important proteins involved in the transport...Hemoglobin and myoglobin are two important proteins involved in the transport...
Hemoglobin and myoglobin are two important proteins involved in the transport...
 
Haemoglobin
HaemoglobinHaemoglobin
Haemoglobin
 
hemoglobin and myoglobin (1).pptx
hemoglobin and myoglobin (1).pptxhemoglobin and myoglobin (1).pptx
hemoglobin and myoglobin (1).pptx
 
hemoglobin and myoglobin .pptx
hemoglobin    and  myoglobin       .pptxhemoglobin    and  myoglobin       .pptx
hemoglobin and myoglobin .pptx
 
Hemoglobin structure and function.pptx
Hemoglobin structure and function.pptxHemoglobin structure and function.pptx
Hemoglobin structure and function.pptx
 
Oxygen Transport.pptx
Oxygen Transport.pptxOxygen Transport.pptx
Oxygen Transport.pptx
 
HAEMOGLOBIN & MYOGLOBIN STRUCTURE.pptx
HAEMOGLOBIN & MYOGLOBIN STRUCTURE.pptxHAEMOGLOBIN & MYOGLOBIN STRUCTURE.pptx
HAEMOGLOBIN & MYOGLOBIN STRUCTURE.pptx
 
Hemoglobin Lecture for bs mlt
Hemoglobin Lecture for bs mltHemoglobin Lecture for bs mlt
Hemoglobin Lecture for bs mlt
 
Haemoglobin and Gas Transport.pptx
Haemoglobin and Gas Transport.pptxHaemoglobin and Gas Transport.pptx
Haemoglobin and Gas Transport.pptx
 
Transportation of oxygen and co2
Transportation of oxygen and co2Transportation of oxygen and co2
Transportation of oxygen and co2
 
Haemoglobin
HaemoglobinHaemoglobin
Haemoglobin
 
Haemoglobin
HaemoglobinHaemoglobin
Haemoglobin
 
New microsoft power point presentation
New microsoft power point presentationNew microsoft power point presentation
New microsoft power point presentation
 
6) transport of oxygen and carbon dioxdide
6) transport of oxygen and carbon dioxdide6) transport of oxygen and carbon dioxdide
6) transport of oxygen and carbon dioxdide
 
Hemoglobin structure
Hemoglobin structure Hemoglobin structure
Hemoglobin structure
 
LECTURE-6.pptx
LECTURE-6.pptxLECTURE-6.pptx
LECTURE-6.pptx
 
Royal Mirage (ZHCET-AMU)
Royal Mirage (ZHCET-AMU)Royal Mirage (ZHCET-AMU)
Royal Mirage (ZHCET-AMU)
 
Transport of gases
Transport of gasesTransport of gases
Transport of gases
 

Plus de Nikolay Vyahhi

Assembly and finishing
Assembly and finishingAssembly and finishing
Assembly and finishingNikolay Vyahhi
 
Molbiol 2011-13-organelles
Molbiol 2011-13-organellesMolbiol 2011-13-organelles
Molbiol 2011-13-organellesNikolay Vyahhi
 
Molbiol 2011-12-eukaryotic gene-expression
Molbiol 2011-12-eukaryotic gene-expressionMolbiol 2011-12-eukaryotic gene-expression
Molbiol 2011-12-eukaryotic gene-expressionNikolay Vyahhi
 
Molbiol 2011-10-proteins
Molbiol 2011-10-proteinsMolbiol 2011-10-proteins
Molbiol 2011-10-proteinsNikolay Vyahhi
 
Molbiol 2011-09-reparation-recombination
Molbiol 2011-09-reparation-recombinationMolbiol 2011-09-reparation-recombination
Molbiol 2011-09-reparation-recombinationNikolay Vyahhi
 
Molbiol 2011-08-epigenetics
Molbiol 2011-08-epigeneticsMolbiol 2011-08-epigenetics
Molbiol 2011-08-epigeneticsNikolay Vyahhi
 
Molbiol 2011-07-chromosomes-cell-cycle
Molbiol 2011-07-chromosomes-cell-cycleMolbiol 2011-07-chromosomes-cell-cycle
Molbiol 2011-07-chromosomes-cell-cycleNikolay Vyahhi
 
Molbiol 2011-06-transcription-translation
Molbiol 2011-06-transcription-translationMolbiol 2011-06-transcription-translation
Molbiol 2011-06-transcription-translationNikolay Vyahhi
 
Molbiol 2011-05-dna-rna-protein
Molbiol 2011-05-dna-rna-proteinMolbiol 2011-05-dna-rna-protein
Molbiol 2011-05-dna-rna-proteinNikolay Vyahhi
 
Molbiol 2011-04-metabolism
Molbiol 2011-04-metabolismMolbiol 2011-04-metabolism
Molbiol 2011-04-metabolismNikolay Vyahhi
 
Molbiol 2011-02-biology
Molbiol 2011-02-biologyMolbiol 2011-02-biology
Molbiol 2011-02-biologyNikolay Vyahhi
 
Molbiol 2011-01-chemistry
Molbiol 2011-01-chemistryMolbiol 2011-01-chemistry
Molbiol 2011-01-chemistryNikolay Vyahhi
 
Biotech 2011-08-recombinant-dna
Biotech 2011-08-recombinant-dnaBiotech 2011-08-recombinant-dna
Biotech 2011-08-recombinant-dnaNikolay Vyahhi
 
Biotech 2011-02-genetics
Biotech 2011-02-geneticsBiotech 2011-02-genetics
Biotech 2011-02-geneticsNikolay Vyahhi
 
Biotech 2011-10-methods
Biotech 2011-10-methodsBiotech 2011-10-methods
Biotech 2011-10-methodsNikolay Vyahhi
 
Biotech 2011-09-pcr and-in_situ_methods
Biotech 2011-09-pcr and-in_situ_methodsBiotech 2011-09-pcr and-in_situ_methods
Biotech 2011-09-pcr and-in_situ_methodsNikolay Vyahhi
 
Biotech 2011-07-finding-orf-etc
Biotech 2011-07-finding-orf-etcBiotech 2011-07-finding-orf-etc
Biotech 2011-07-finding-orf-etcNikolay Vyahhi
 
Biotech 2011-06-electrophoresis-blots
Biotech 2011-06-electrophoresis-blotsBiotech 2011-06-electrophoresis-blots
Biotech 2011-06-electrophoresis-blotsNikolay Vyahhi
 
Biotech 2011-05-eukaryotic-genes
Biotech 2011-05-eukaryotic-genesBiotech 2011-05-eukaryotic-genes
Biotech 2011-05-eukaryotic-genesNikolay Vyahhi
 

Plus de Nikolay Vyahhi (20)

Assembly and finishing
Assembly and finishingAssembly and finishing
Assembly and finishing
 
Molbiol 2011-13-organelles
Molbiol 2011-13-organellesMolbiol 2011-13-organelles
Molbiol 2011-13-organelles
 
Molbiol 2011-12-eukaryotic gene-expression
Molbiol 2011-12-eukaryotic gene-expressionMolbiol 2011-12-eukaryotic gene-expression
Molbiol 2011-12-eukaryotic gene-expression
 
Molbiol 2011-10-proteins
Molbiol 2011-10-proteinsMolbiol 2011-10-proteins
Molbiol 2011-10-proteins
 
Molbiol 2011-09-reparation-recombination
Molbiol 2011-09-reparation-recombinationMolbiol 2011-09-reparation-recombination
Molbiol 2011-09-reparation-recombination
 
Molbiol 2011-08-epigenetics
Molbiol 2011-08-epigeneticsMolbiol 2011-08-epigenetics
Molbiol 2011-08-epigenetics
 
Molbiol 2011-07-chromosomes-cell-cycle
Molbiol 2011-07-chromosomes-cell-cycleMolbiol 2011-07-chromosomes-cell-cycle
Molbiol 2011-07-chromosomes-cell-cycle
 
Molbiol 2011-06-transcription-translation
Molbiol 2011-06-transcription-translationMolbiol 2011-06-transcription-translation
Molbiol 2011-06-transcription-translation
 
Molbiol 2011-05-dna-rna-protein
Molbiol 2011-05-dna-rna-proteinMolbiol 2011-05-dna-rna-protein
Molbiol 2011-05-dna-rna-protein
 
Molbiol 2011-04-metabolism
Molbiol 2011-04-metabolismMolbiol 2011-04-metabolism
Molbiol 2011-04-metabolism
 
Molbiol 2011-02-biology
Molbiol 2011-02-biologyMolbiol 2011-02-biology
Molbiol 2011-02-biology
 
Molbiol 2011-01-chemistry
Molbiol 2011-01-chemistryMolbiol 2011-01-chemistry
Molbiol 2011-01-chemistry
 
Biotech 2011-08-recombinant-dna
Biotech 2011-08-recombinant-dnaBiotech 2011-08-recombinant-dna
Biotech 2011-08-recombinant-dna
 
Biotech 2011-02-genetics
Biotech 2011-02-geneticsBiotech 2011-02-genetics
Biotech 2011-02-genetics
 
Biotech 2011-10-methods
Biotech 2011-10-methodsBiotech 2011-10-methods
Biotech 2011-10-methods
 
Biotech 2011-09-pcr and-in_situ_methods
Biotech 2011-09-pcr and-in_situ_methodsBiotech 2011-09-pcr and-in_situ_methods
Biotech 2011-09-pcr and-in_situ_methods
 
Biotech 2011-07-finding-orf-etc
Biotech 2011-07-finding-orf-etcBiotech 2011-07-finding-orf-etc
Biotech 2011-07-finding-orf-etc
 
Biotech 2011-06-electrophoresis-blots
Biotech 2011-06-electrophoresis-blotsBiotech 2011-06-electrophoresis-blots
Biotech 2011-06-electrophoresis-blots
 
Biotech 2011-05-eukaryotic-genes
Biotech 2011-05-eukaryotic-genesBiotech 2011-05-eukaryotic-genes
Biotech 2011-05-eukaryotic-genes
 
Biotech 2011-01-intro
Biotech 2011-01-introBiotech 2011-01-intro
Biotech 2011-01-intro
 

Globular Proteins: Structure and Functions of Globular Heme Proteins

  • 2. Globular proteins are characterized as generally having: •  a variety of different kinds of secondary structure •  spherical shape •  good water solubility •  a catalytic/regulatory/transport role i.e. a dynamic metabolic function
  • 3. Globular heme proteins contain heme as prosthetic group. Functions of globular hemeproteins include: •  electron carriers •  part of enzyme active site •  transport of O2 and CO2- hemoglobin •  storage of O2-myoglobin
  • 4. •  II.  Globular  Hemeproteins   •  Contain  heme  as  prosthe.c  group   •  Role  of  heme  is  dependent  on  environment  created  by   3D  structure  of  protein   •  Heme  of  cytochrome  →  electron  carrier   •  Heme  of  catalase  →  part  of  ac.ve  site   •  Heme  of  Hb  and  myoglobin  →  binds  O2  reversibly  
  • 5. •  A.  Structure  of  Heme   •  Complex  of  Protoporphyrin   IX  &  Fe2+     •  Fe2+  bound  to  4  Ns,  other   2  bonds  perpendicular  to   plane  of  ring  available  for   bonding   •  In  Hb,  one  of  these   aHached  to  N  terminus  of   His,  other  binds  O2.    
  • 6. Structure of heme porphyrin heme (Fe-protoporphyrin IX)
  • 7. heme “proximal” histidine “distal” histidine
  • 8. B.  Structure  and  func9on  of  myoglobin     •  It  is  a  heme  protein  present  in   heart  and  skeletal  muscle   •  Reservoir  for  O2  and  carrier  of   O2  in  muscle  cell   •  Single  polypep.de  chain   similar  to  polypep.des  in  Hb   •  1.  α-­‐helical  content:   •  ~  80%  of  pep.de  in  8   stretches  of  α-­‐helix  Labeled  A   to  H   •  Terminated  by  Pro  or  β-­‐bends   and  loops  stabilized  by  H   bonds  and  ionic  bonds.  
  • 9. •  2.  Loca9on  of  polar  and  nonpolar  amino  acid  residues:   •  Interior  made  up  of  hydrophobic  amino  acids  stabilized  by   hydrophobic  interac.ons   •  Surface  →  charged  amino  acids  –  form  H  bonds  with  water     •  3.  Binding  of  heme  group:   •  Heme  in  crevice  lined  with  non-­‐polar  amino  acids,  except  2   His  residues   •  Proximal  his9dine  –  binds  directly  to  Fe2+  of  heme   •  Distal  his9dine  stabilizes  binding  of  O2  to  Fe2+  
  • 10.
  • 11.
  • 12. O2 Binding in Mb and Hb
  • 13.
  • 14.   C.  Structure  and  func9on  of  hemoglobin     •  Found  exclusively  in  RBCs  →   transports  O2   •  Hb  A  –  predominant  form  in   adults:  4  polypep.de  chains   -­‐-­‐  α2β2   •  Each  subunit  –  heme-­‐binding   pocket  similar  to  myoglobin   •  Can  transport  O2  and  CO2   •  O2-­‐binding  proper.es   affected  by  allosteric   effectors,  unlike  myoglobin  
  • 15. 1.  Quaternary  structure  of  hemoglobin:     •  2  iden.cal  dimers:  (αβ)1  and   (αβ)2   •  dimers  held  together  by   hydrophobic  interac.ons  (on   contact  surfaces  of  subunits   as  well  as  internally)  but   ionic  and  H-­‐bonding  also   exist     •  2  dimers  held  together  by   weak  polar  bonds     •  different  conforma.on  in   deoxyHb  and  oxyHb  
  • 16. αβ dimer 2 αβ dimer1
  • 17. T and R forms of Hemoglobin T = “taut” → deoxy Hb → low affinity for O2 R = “relaxed” → oxy Hb → high affinity for O2
  • 18. •  a.  T  form:  “taut”  form   •  deoxy  form  of  Hb   •  2  αβ  dimers  joined  by  ionic  and  H-­‐bonds   •  low  oxygen-­‐affinity  form  of  Hb   •  b.  R  form:     •  binding  of  O2  disrupts  some  ionic  and  H-­‐ bonds  between  αβ  dimers     •  “relaxed”  form   •  high  oxygen-­‐affinity  form  of  Hb  
  • 19.   D.  Binding  of  oxygen  to  myoglobin  and   hemoglobin     •  D.  Binding  of  oxygen  to  myoglobin   and  hemoglobin   •  Myoglobin  →  one  heme  →  binds   one  O2   •  Hb  →  4  heme→  binds  4  O2   •  Hb  binding:  degree  of  satura.on   (Y)  from  0  to  100%   •  1.  Oxygen  dissocia9on  curve:   •  plot  of  Y  against  PO2   •  myoglobin  :  higher  affinity  for  O2   than  Hb   •  P50  is  1  mm  Hg  for  myoglobin  and   26  mm  Hg  for  Hb  
  • 20.
  • 21. •  a.  Myoglobin:   •  O2  dissocia.on  curve  hyperbolic   •  This  reflects  that  myo  binds  single  O2   •  Mb  +  O2              MbO2  they  exist  in  equilibrium   •  Exchange  between  Hb  and  Mb,  Mb  and   muscle  cells  depending  on  equilibrium   •  Mb  binds  O2  released  from  Hb,  releases   when  O2  drops.    Mb  then  releases  the  O2   into  the  muscle  cell.    This  only  happens  when   there  is  an  O2  demand.  
  • 22. •  b.  Hemoglobin:   •  O2  dissocia.on  curve  is   sigmoidal     •  Coopera.ve  bind  of  O2   (increased  affinity  for  Hb   with  more  binding)   •  Heme-­‐heme  interac.on:   binding  of  O2  at  one  heme   increases  affinity  for  O2  at   others  
  • 23.
  • 24. •  E.  Allosteric  effects   •  Ability  of  Hb  to  bind  O2  depends  on  allosteric   (“other  site”)  effectors:   –  PO2   –  pH  of  environment   –  PCO2-­‐  an  inc  will  cause  the  inc  in  unloading  of  O2.   –  2,3-­‐disphosphoglycerate  availability   •  allosteric  factors  do  not  affect  myoglobin  
  • 25. •  1.  Heme-­‐heme  interac9ons:   •  structural  changes  in  one  heme  group  transmiHed  to   others   •  affinity  for  last  O2  ~300X  affinity  for  first  O2   •  a.  Loading  and  unloading  of  oxygen:   •  more  O2  can  be  delivered  to  .ssues  with  small   changes  in  PO2   •  Graph  showing  loading  and  unloading  at  different   par.al  pressures  of  O2.  Hb  alterna.vely  carries  O2   and  CO2  between  lungs  and  .ssues     •  b.  Significance  of  sigmoidal  O2-­‐dissocia9on  curve   Compare  a  hyperbolic  curve  to  a  sigmoidal  curve   •  A  sigmoidal  curve  gives  increasing  affinity  of  O2  for  Hb   with  increasing  par.al  pressure  while  a  hyperbolic   curve  is  a  straight  line  in  that  range.  
  • 26.
  • 27. •  2.  Binding  of  CO2:   •  Most  of  the  CO2  in  the   blood  is  transported  as   bicarbonate:   •  CO2  +  H2O            H2CO3   •  H2CO3                  HCO3-­‐    +  H+   •  Some  CO2  binds  to  the   terminal  –NH2  of  the  α   and  β  chains  forming   carbaminoHb.   •   Binding  of  CO2  stabilizes   the  “taut”  form  of  Hb   (deoxyHb).    
  • 28. •  3.  Binding  of  CO:   •  CO  binds  reversibly  to  the  Fe2+  the  same  way   that  O2  does   •  CO  +  Hb    HbCO  (carbon  monoxy  Hb)   •  Affinity  of  Hb  for  CO  is  220X  affinity  for  O2   •  Binding  of  CO  to  Hb  increases  affinity  of   remaining  sites  for  O2   •  O2  dissocia.on  curve  shigs  to  leg  (becomes   hyperbolic)   •  >  60%  HbCO  fatal   •  treated  with  O2  therapy    
  • 29. 4.  Bohr  Effect:     •  Shig  of  O2  dissocia.on   curve  to  the  right  with   decrease  in  pH  or  increase   in  PCO2     •  This  translates  to  a   decreased  affinity  of  Hb   for  O2  under  these   condi.ons,  therefore  you   unload  O2  easier  
  • 30. •  a.  Source  of  the  protons  that  lower  the  pH:   •  2  principle  sources  of  protons:   –  lac.c  acid  produced  by  anaerobic  metabolism  in  muscles   –  increased  produc.on  of  CO2  by  cell  u.liza.on  of  O2  through   respira.on:   •  CO2  +  H2O              H2CO3                  H+  +  HCO3-­‐   –  in  lungs  the  equilibrium  of  this  reac.on  is  towards  the  leg   because  CO2  is  lost  through  exhaling   •  the  decreased  affinity  of  Hb  for  O2  under  the  Bohr   effect  condi.ons  results  is  greater  off  loading  (release)   of  O2  in  the  .ssues.  
  • 31. The Effect of CO2 and H+ on O2 Binding Bohr Effect: Increased concentrations of CO2 and H+ promote the release of O2 from hemoglobin in the blood.
  • 32. How do CO2 and H+ promote the release of O2 from hemoglobin? •  presence of “salt bridge” •  no ionic interaction in in T form R form
  • 33. CO2 is bound to hemoglobin at protein interfaces, not Fe2+ center!
  • 34. •  Summary  reac.on  for  the  Bohr  effect:   •  HbO2  +  H+              HbH+  +  O2            OxyHb                      DeoxyHb         •  Equilibrium  shigs  to    the  right  when  H+  conc.   increases  (decrease  in  pH),  while  it  shigs  to   leg  when  PO2  increases.         •  The  protonated  forms  of  the  terminal  α-­‐ subunit  –NH2  groups  and  His  side-­‐chains   stabilize  the  T  form  (deoxy  form)  of  Hb.  
  • 35. •  5.  Effect  of    2,  3-­‐bis-­‐ phosphoglycerate(BPG)  on   oxygen  affinity:   •  Important  regulator  of  Hb   binding  O2   •  Most  abundant  organic   phosphate  in  RBC  (conc.  ~  =   conc.  of  Hb)   •  Synthesized  from   intermediate  of  glycolysis     •  a.  Binding  of  2,3-­‐BPG  to   deoxyhemoglobin:   •  Binds  to  deoxyHb  stabilizing  it   •  Decreases  affinity  of  Hb  for  O2  
  • 36. •  b.  Binding  site  of  2,3-­‐BPG:   •  1  molecule  of  2,3-­‐BPG  binds  to  a   pocket  between  the  β-­‐chains  in   the  center  of  the  deoxyHb  center   •  expelled  on  oxida.on  of  Hb   (pocket  disappears)   •  c.  ShiX  of  oxygen-­‐dissocia9on   curve:   •  Blood  stripped  of  2,3-­‐BPG  has  a   high  affinity  for  O2   •  2,3-­‐BPG  shigs  the  O2-­‐dissocia.on   curve  to  the  right  allowing   decreased  affinity  of  Hb  for  O2   and  effec.ve  unloading  of  O2  in   .ssues   •  similar  to  Bohr  effect  but  no   difference  between  lungs  and   .ssues  
  • 37.
  • 38. •  d.  Response  of  2,3-­‐BPG  levels  to  chronic   hypoxia  or  anemia:   •  2,3-­‐BPG  increases  in  chronic  hypoxia     •  chronic  hypoxia  can  be  caused  by     –  pulmonary  emphysema  or     –  high  al.tudes  or   –  chronic  anemia     •  increased  2,3-­‐BPG  shigs  O2  dissocia.on   further  to  right  allowing  greater  unloading   of  O2  
  • 39.
  • 40. •  e.  Role  of  2,3-­‐BPG  in  transfused  blood:   •  2,3-­‐BPG  essen.al  for  normal  transport  func.on  of   blood   •  Without  normal  concs.  of  2,3-­‐BPG,  Hb  becomes  an   O2  trap  (doesn’t  unload;  high  affinity)   •  Blood  for  transfusion  formerly  stored  in  acid-­‐citrate-­‐ dextrose  medium  decreased  2,3-­‐BPG  conc.  →   “stripped”  blood   •  Body  restores  conc.  of  2,3-­‐BPG  in  24  –  48  h   •  2,3-­‐BPG  can  be  restored  by  adding  inosin  
  • 43. Minor Hemoglobins Embryonic form is Hb Gower 1 (ζ2ε2) (yolk sac). HbF - 2 α chains, 2 γ chains (β- chain family) - major form in fetus and newborn (fetal liver – 2 weeks). HbA - 2 β chains, 2 α chains - major form in adult. Fetal bone marrow begins synthesizing HbA around 8th month.
  • 45. Steps in globin chain synthesis: 1.  Transcription 2.  Modification of mRNA precursor by splicing 3.  Translation by ribosomes & further modifications (i.e. glycosylation)
  • 46. Hemoglobinopathies •  caused by abnormal structure of Hb •  characterized by low levels of normal Hb Sickle-cell anemia (Hemoglobin S disease) Hemoglobin C disease Hemoglobin SC disease Thalassemias – α thalassemia β thalassemia
  • 47. Sickle-cell anemia (HbS disease) •  abnormal β chain. HbS = α2βS2 •  β chain mutation - glu 6 à val 6 •  glu is negatively charged, val is nonpolar. •  only has effect postnatally because HbF is major species in fetus •  symptoms - hemolytic anemia, painful crises, poor circulation, frequent infections •  heterozygotes - HbA and HbS both present - 1 in 10 African Americans; "sickle cell trait" - no symptoms, normal life span
  • 48. Sickle-cell anemia (HbS disease) •  glutamic acid is replaced by valine at position 6 of β chain
  • 49.
  • 50. normal RBCs sickled RBCs
  • 51. Symptoms worsen when Hb is in deoxy form - decreased pO2, increased CO2, decreased pH, increased 2,3-BPG
  • 52. Low solubility of HbS causes aggregation and distortion of cell shape.
  • 53. HbS •  val instead of glu at position 6 HbA •  glu at position 6 HbC •  lys instead of glu at position 6 HbSC •  HbS as well as HbC present → 2 bands in electrophoresis
  • 54. HbC disease •  lys instead of glu at position 6 •  HbC homozygotes - mild, chronic hemolytic anemia. Not life- threatening HbSC disease •  HbS as well as HbC present → 2 bands in electrophresis •  usually undiagnosed until infarctive crisis occurs (childbirth, surgery) •  can be fatal
  • 55. Thalassemias •  hereditary hemolytic diseases •  most common genetic disorder in humans •  heterogeneous collection of diseases
  • 56. β-thalassemias •  synthesis of β-chain decreased or absent β-thalassemia minor (or trait) - one normal, one defective β- chain gene. Not life-threatening β-thalassemia major - both genes defective. Normal at birth. Severe anemia by age 1-2. Treatment requires frequent transfusions → Leads to iron overload (hemosiderosis). Death between 15-25 years old. Bone marrow transplant (BMT) is an option.
  • 57.
  • 58. α-thalassemias •  decreased or absent α chain synthesis •  severity of disease depends upon the number of defective α genes: 0 defective - normal 1 defective - silent carrier of α-thalassemia. No symptoms 2 defective - α-thalassemia trait - no serious symptoms 3 defective - Hemoglobin H disease - moderately severe hemolytic anemia all 4 defective - hydrops fetalis - fetal death (α chains needed for HbF)
  • 59. Methemoglobinemia   •  1.  Forma9on  of  methemoglobin   •  Oxida.on  of  Fe2+  →  Fe3+  converts  Hb  and  myoglobin  to   metHb  and  metmyoglobin   •  Cannot  bind  O2,     •  Oxida.on  by  drugs  like  nitrates,  H2O2  or  free  radicals  or   muta.on  in  α-­‐  or  β-­‐chain  of  globin  →   methemoglobinopathy  (HbM).   •  a.  Reduc9on  of  methemoglobin:   •  Normal  oxida.on  corrected  by  NADH-­‐cytochrome  b5-­‐ reductase   •  RBCs  of  newborns  →  half  the  capacity  of  this  enzyme,   therefore  more  suscep.ble  to  oxida.on  
  • 61. Fibrous  proteins  are  characterized  as  generally  having:     •     one  domina.ng  kind  of  secondary  structure          (i.e.  collagen  helix  in  collagen)   •     a  long  narrow  rod-­‐like  structure   •     low  water  solubility   •     a  role  in  determining  .ssue/cellular  structure  and        func.on  (e.g.  collagen,  α-kera.n)  
  • 62. Collagen  -­‐  most  abundant  protein  in  body;  rigid,   insoluble       Elas.n  -­‐  stretchy,  rubber-­‐like,  lungs,  walls  of   large  blood  vessels,  ligaments      
  • 63. Structure  of  Collagen   Tropocollagen  is  a  right-­‐handed  triple  helix     formed  of  α-­‐chains.  
  • 64. Structure  of  Collagen   The  α-­‐chains  (individual  polypep.des  composing  tropocollagen)   consist  of  -­‐[Gly-­‐X-­‐Y]-­‐    repeats.     Proline  and  hydroxyproline/hydroxylysine  are  ogen  present  in  the  X   and  Y  posi.ons,  respec.vely.  
  • 65.
  • 66.
  • 67. Synthesis  of  collagen     •     made  in  fibroblast,  osteoblasts  (bone),  chondroblasts   (car.lage)   •     secreted  into  ECM   •     enzyma.cally  modified   •     aggregate  and  are  cross-­‐linked  
  • 69. Biosynthesis  of  collagen   1.  forma.on  of  pro-­‐α-­‐chains  -­‐  contains  signal  sequence  –   promotes  binding  of  polysome  to  RER  and  secre.on  into  the   cisternae;  signal  sequence  removed   2.  some  pro  and  lys  residues  (in  the  Y  posi.on  of  gly-­‐X-­‐Y)  are   hydroxylated  by  prolyl  hydroxylase  and  lysyl  hydroxylase;   needs  molecular  O2  and  reducing  agent  like  ascorbic  acid   (from  vitamin  C).   3.  glycosyla.on  -­‐  glucose  and  galactose  added  to   hydroxylysines;  pro-­‐α-­‐chains  join  to  form  procollagen.  N-­‐  and   C-­‐terminal  extensions  form  interchain  disulfide  bonds;  central   triple  helix  formed  because  of  favorable  alignment;   Transported  to  Golgi,  packaged,  and  secreted  as  procollagen.  
  • 71. Biosynthesis  of  collagen  (cont’d)   4.    N-­‐procollagen  pep.dase  and  C-­‐procollagen  pep.dase  remove   terminal  extensions,  leaving  triple  helical  collagen  (occurs   extracellularly).   5.    collagen  fibrils  -­‐  form  by  associa.on  of  collagen  molecules   with  about  a  3/4  overlap  with  other  molecules  (staggered,   parallel  arrays)   5.    cross-­‐linking  -­‐  interchain  cross-­‐links  caused  by  lysyl  oxidase  (a   pyridoxal  phosphate  and  copper-­‐requiring  enzyme);  O2   required;  oxida.ve  deamina.on  of  lysines  and   hydroxylysines;  Allysine  (aldehyde)  reacts  with  amino  group   of  nearby  lysine  or  hydroxylysine  to  form  interchain  cross-­‐ link.  Very  important  for  tensile  strength  of  collagen.  
  • 72.
  • 73. Ascorbate  coenzyme   required  by  prolyl/lysyl   hydroxylase  in  hydroxyla.on   step.   Vitamin  C  (ascorbate)   deficiency  results  in  scurvy   (collagen  can’t  be  cross-­‐ linked).  
  • 74. Cross  links  formed  by  lysyl/ Cu2+/   prolyl  oxidase   vitamin  B6     -­‐  copper  coenzyme     Number  of  cross-­‐links   increases  with  age  →  causes   s.ffening,  decreased   elas.city  of  skin  and  joints.  
  • 75. Biosynthesis  of  collagen  (con’t)   In  the  final  step,  collagen  fibrils  form  spontaneously  from   tropocollagen.   covalent  X-­‐links   between  Allysine   and  hydroxylysine     tropocollagen   molecule   triple  helix  of   α-­‐chains.  
  • 76. Types  of  Collagen   Common Type Representative Tissues disorders Ehlers-Danlos Osteogenesis I Imperfecta skin, bone, tendons, cornea Marfan’s cartilage, intervertebral disks, vitreous II - body blood vessels, lymph nodes, dermis, III Ehlers-Danlos early phases of wound repair Alport’s IV basement membranes Goodpasture’s X - epiphyseal plates
  • 77. Collagen  Degrada.on  and  Disorders   •     degrada.on  of  collagen  by  collagenase  allows   remodeling  of  ECM   Ehlers-­‐Danlos  –  hyperextensive  joints,  hyperelas.city  of   skin,  aor.c  aneurisms,  rupture  of  colon,  skin   hemmorhages  due  to  muta.on  in  α-­‐chains     Osteogenesis  Imperfecta  –  briHle  bone  disease,  mul.ple   fractures,  blue  sclera,  hearing  loss,  retarded  wound   healing    
  • 78. Ehlers-­‐Danlos  Syndrome    Hyperextension  of  skin  
  • 79. Osteogenesis  Imperfecta     (Blue  sclera)  
  • 80.
  • 81. In  Utero  Radiograph:   •     crumpled  long  bones   •     beaded  ribs  
  • 82.
  • 83. Elas.n   •     rubber-­‐like  proper.es   •     connec.ve  .ssue  protein   •     lungs,  large  blood  vessels,  elas.c  ligaments    Composi.on:        -­‐  small  nonpolar  amino  acids  (Gly,  Ala,  Val)      -­‐   also  rich  in  Pro  and  Lys    -­‐  liHle  or  no  OH-­‐Pro  or  OH-­‐Lys    
  • 85. Elas.n   •     3D  network  of  cross-­‐linked  polypep.des   •     cross  links  involve  Lys    and  alLys     •     4  Lys  can  be  cross-­‐linked  into  desmosine     •     desmosines  account  for  elas.c  proper.es  
  • 86. Elas.n  Degrada.on  and  Disorders   •     in  lungs  -­‐  lung  alveolar  elas.n  in  constantly  exposed  to   neutrophil  elastase         α1-­‐AT  inhibits  elastase  thus  preven.ng  loss  of  lung   elas.city   •     individuals  who  are  homozygotes  for  mutant  α1-­‐AT  are   very  suscep.ble  to  emphysema  
  • 87.
  • 89.
  • 90.
  • 92. Some nomenclature… Active site = special pocket where substrate binds Specificity 1.  enzymes are specific for a single molecule or a structurally related group of substrates 2. usually only 1 enzyme per reaction type
  • 93. Some more nomenclature… Cofactor = inorganic component needed for enzyme function
  • 94. Some more nomenclature… Coenzyme = nonprotein small organic component needed for enzyme function
  • 95. Some more nomenclature… Holoenzyme - the enzyme protein plus its cofactor Apoenzyme - enzyme protein without its cofactor Prosthetic groups – a coenzyme that’s very tightly (usually covalently) attached to the protein, such as heme
  • 96.
  • 97.
  • 98.
  • 99. How Enzymes Work Enzymes increase the rate of reactions without themselves being altered in the process of substrate conversion to product. This defines a catalyst.   Enzymes increase reaction rates by lowering the energy input needed to form a reactant complex that will eventually form product.   This occurs via the formation of a complex between enzyme and substrate (ES): k1 k2 E + S ES E + P k-1
  • 100. Steps in an Enzymatic Reaction 1.  Enzyme and substrate combine to form a complex. 2.  Complex goes through a transition state – not quite substrate or product 3.  A complex of the enzyme and the product is produced. 4.  Finally, the enzyme and product separate. All of these steps are equilibria.
  • 101. Steps in an Enzymatic Reaction
  • 102. Steps in an Enzymatic Reaction 1.  Enzyme and substrate combine to form a complex.
  • 103. Steps in an Enzymatic Reaction 2. The complex goes through a transition state – not quite substrate or product
  • 104. Steps in an Enzymatic Reaction 3.  A complex of enzyme and product is produced (EP). 4.  The product is released.
  • 105. Factors that influence enzyme activity Environmental factors •  temperature, pH Cofactors •  metal ions Effectors •  species that alter enzyme activity
  • 106. Effect of pH on enzyme activity
  • 107. Effect of pH on enzyme activity Examples of optimum pH
  • 108. Effect of temperature on enzyme activity •  exceeding normal temperature ranges always reduces enzyme reaction rates •  optimum temperature is usually 25 - 40 ºC (but not always)
  • 109. Kinetics •  Kinetics is the study of the rate of change of reactants to products •  Velocity (v) refers to the change in conc. of substrate or product per unit time •  Rate (k) refers to the change in total quantity (of reactant or product) per unit time •  Initial velocity (v0) is the change in reactant or product conc. during the linear phase of a reaction
  • 110. Michaelis-Menten Kinetics Three basic assumptions: 1: ES complex is in a steady state, i.e. remains constant during the initial phase of a reaction 2: when enzyme is saturated all enzyme is in the form of ES complex 3: if all enzyme in ES then rate of product formation is maximal: Vmax = k2[ES]  
  • 111.
  • 112. Michaelis-Menten Kinetics The Michaelis-Menten equation is a quantitative description of the relationship between the rate of an enzyme catalyzed reaction (v1), substrate concentration [S], the M-M rate constant (Km) and maximal velocity (Vmax)
  • 113. Michaelis-Menten Kinetics Km is equal to the concentration of substrate required to attain half maximal velocity for any given reaction
  • 114.
  • 115.
  • 116. Lineweaver-Burk Analysis •  Lineweaver and Burk manipulated the MM equation by taking its reciprocal values generating a double reciprocal plot •  Leads to a linear graph of the reciprocals of velocity and substrate concentration
  • 118. Enzyme inhibition •  many substances can inhibit enzyme activity: substrate analogs toxins drugs metal complexes
  • 119. Enzyme inhibition - 2 broad classes: Irreversible inhibition •  forms covalent or very strong noncovalent bonds •  site of attack is amino acid group that participates in the normal enzymatic reaction Reversible inhibition •  forms weak, noncovalent bonds that readily dissociate from an enzyme •  the enzyme is only inactive when the inhibitor is present
  • 120. Enzyme inhibition Competitive inhibitor •  resembles the normal substrate and competes for the same site
  • 121. Enzyme inhibition Examples of competitive inhibitors: •  methanol and ethylene glycol compete with ethanol for the binding sites to alcohol dehydrogenase •  methotrexate competes with folic acid for dihydrofolate reductase
  • 122. Enzyme inhibition Noncompetitive inhibitor •  materials that bind at a location other than the normal site •  results in a change in how the enzyme performs
  • 123. Enzyme inhibition Examples of noncompetitive inhibitors: •  physostigmine is a cholinesterase inhibitor used in the treatment of glaucoma •  captopril is an ACE inhibitor used in treatment of hypertension •  allopurinol is a xanthine oxidase inhibitor used to treat gout
  • 124. Enzyme inhibition Irreversible inhibitors •  permanently inactivate enzymes •  heavy metals (Hg2+, Pb2+, Cd2+) •  aspirin acetylates •  fluorouracil •  organophosphates
  • 125. Enzyme Inhibition - Summary Competitive •  Inhibitor binds at substrate site, inhibition is reversible as higher substrate competes for inhibitor, Vmax unchanged, Km increased Noncompetitive •  Inhibitor binds at site other than substrate, ESI cannot form product, increased substrate does not compete, Km unchanged, Vmax decreased
  • 127.
  • 130. Enzyme Regulation •  Proteolytic cleavage to activate: Enzyme exists in inactive form (zymogen) that is activated by removal of a short peptide segment ( truncation) •  Covalent modification to increase or decrease activity, most common is phosphorylation •  Sequestration: enzyme forms inactive polymers •  Allosteric (“other site”) regulation, both positive and negative ( homotropic, heterotropic) Induction-upregulation: increase gene expression, synthesis of more enzyme molecules Repression-downregulation: decrease gene expression, decrease synthesis of enzyme molecules.
  • 131. Allosteric enzymes Are regulated by molecules called effectors (modifiers) that bind non-covalently at a site other than active site. They can alter Vmax or Km or both) 1. Homotrophic effectors – when the substrate itself is an effector 2. Heterotrophic effector – when the effector is different from a substrate (often it is an end- product - feedback inhibition)
  • 132. Allosteric enzymes show sigmoid curve (cooperative substrate binding like in Hb)
  • 133.
  • 135.
  • 136.
  • 137. Enzymes Used in Clinical diagnoses Tissue damage: Increased release of tissue enzymes in plasma Enzyme assay is used for both diagnostic and prognostic purpose Eg: ALT – present in the liver will be appearing in the plasma if there is Liver damage or cell necrosis Isoenzymes: Structurally different enzymes but catalyze the same reaction Eg: CK1, CK2, CK3 (creatine kinase, CK MB (CK 2) is present in the heart, its presence in plasma is indicative of myocardial infarction
  • 138. ALSO: Troponin T & Troponin I are also released in cardiac damage. Peaks in 8 – 24hr Sensitive and specific for cardiac tissue damage