SlideShare une entreprise Scribd logo
1  sur  12
Télécharger pour lire hors ligne
TEMA 1
CONCEPTOS FUNDAMENTALES
EN QUIMICA ORGANICA
1. Concepto y origen de la Química Orgánica.
2. Evolución histórica de la Química Orgánica.
3. Representación de Lewis de las moléculas orgánicas.
4. Electronegatividad y polarización del enlace.
5. Carga formal.
6. Estructuras de resonancia.
6.1. Contribución de las estructuras resonantes.
6.2. Cómo dibujar estructuras resonantes
Fundamentos de Química Orgánica 3
TEMA 1. CONCEPTOS FUNDAMENTALES EN QUIMICA ORGANICA.
1. Concepto y origen de la Química Orgánica. 2. Evolución histórica de la Química
Orgánica. 3. Representación de Lewis de las moléculas orgánicas. 4.
Electronegatividad y polarización del enlace. 5. Carga formal. 6. Estructuras de
resonancia. 6.1. Contribución de las estructuras resonantes. 6.2. Cómo dibujar
estructuras resonantes
1. Concepto y origen de la Química Orgánica.
La Química Orgánica se ocupa del estudio de las propiedades y
transformaciones de los compuestos que contienen el elemento carbono. El elevado
número y complejidad de estos compuestos se debe a las características de
enlazamiento del carbono, que puede formar enlaces hasta con cuatro átomos más.
Además, este elemento se puede unir a otros átomos de carbono para dar lugar a
largas cadenas constituidas por cientos e incluso miles de átomos. El carbono puede
formar enlaces estables con muchos átomos distintos de la tabla periódica y además,
puede formar diferentes tipos de enlaces: simples, dobles o triples. La diversidad de la
química que tiene como base el carbono no es sorprendente si se piensa en las
diferencias que presentan las formas del carbono elemental: diamante y grafito. El
diamante es duro e incoloro mientras que el grafito es suave y negro. Estas diferencias
en las propiedades de las distintas formas del carbono son consecuencia de las
diferencias estructurales que presentan dichas formas.
La Química Orgánica, junto con la Bioquímica, es la ciencia básica que permite
explicar los procesos químicos que tienen lugar en los organismos vivos. De hecho, el
nombre Química Orgánica proviene de la antigua creencia de que ciertas sustancias
sólo podían ser producidas por organismos vivos.
2. Evolución histórica de la Química Orgánica.
Los pueblos prehistóricos hicieron uso de las propiedades de algunos
compuestos orgánicos y realizaron algunas reacciones químico-orgánicas. Los
antiguos egipcios, los romanos y los fenicios emplearon varios colorantes que eran
verdaderos compuesto químicos puros: el índigo, la alizarina y la legendaria púrpura
de Tiro. Los dos primeros colorantes se aislaron de las plantas y el último se obtuvo en
pequeñas cantidades a partir de una especie rara de molusco.
Desde muy antiguo se sabía que la grasa animal se podía convertir en jabón por
tratamiento con lejía. Hasta época tan reciente como 1948, los químicos orgánicos no
pudieron sintetizar productos que fueran capaces de competir con el jabón
(detergentes)
Tema 14
La fermentación del almidón y de los azúcares para obtener alcohol se conoce
desde tiempos prehistóricos y el método que se aplica en la actualidad no difiere
mucho del que se ideó hace cientos de años.
La Química Orgánica, tal y como hoy la conocemos, arranca de finales del siglo
XVIII cuando se inició el aislamiento de sustancias orgánicas de extractos de origen
natural. En este orden de cosas son dignos de mención los estudios que el alemán
Carl Scheele llevó a cabo entre los años 1769 a 1786 sobre aislamiento de diversos
compuestos orgánicos de fuentes naturales.
En 1784, Lavoisier ideó un método, basado en la combustión de la materia
orgánica, que permitía determinar los porcentajes de carbono, hidrógeno, oxígeno y
nitrógeno que constituían los compuestos orgánicos.
En 1807, el químico sueco Berzelius denominó, con el nombre de compuestos
orgánicos, a aquellos compuestos derivados de los seres vivos o de la materia viva.
Durante todo el siglo XIX, Berzelius y otros químicos creyeron que tales compuestos
poseían una fuerza vital y que, por tanto, sería imposible sintetizar un compuesto
orgánico a partir de materiales inorgánicos. La teoría de la fuerza vital fue declinando a
medida que la aportación creciente de datos analíticos evidenciaba que las leyes
químicas que gobernaban el comportamiento de la materia inorgánica eran también
válidas para los compuestos orgánicos.
La teoría de la fuerza vital sufrió un gran revés en 1828, año en el que Wöhler
consiguió sintetizar la urea por descomposición térmica del isocianato amónico.
Según la clasificación de Berzelius la urea era un compuesto orgánico, poseedor de
fuerza vital y, por tanto, imposible de ser sintetizado a partir de compuestos
clasificados como inorgánicos:
∆ O
NH2H2N
NH4 OCN
isocianato amónico urea
La síntesis de la urea obligó a un replanteamiento de la definición de compuesto
orgánico, pasándose a denominar como tal todo compuesto que contuviese carbono
en su estructura.
Durante el primer tercio de siglo XIX investigadores como Gay-Lussac, Liebig y
Berzelius descubrieron y perfeccionaron nuevos métodos analíticos que permitieron
determinar la clase de elementos, así como su proporción, que constituían los
compuestos orgánicos.
Hacia mitad del siglo XIX, el desarrollo incipiente de la síntesis orgánica permitió
la preparación de compuestos orgánicos a partir de materiales de partida
relativamente simples.
Fundamentos de Química Orgánica 5
Uno de los aspectos de la Química que se resistía a los esfuerzos de las mentes
más brillantes del siglo XIX era el relacionado con la estructura de los compuestos
orgánicos. Se sabía, por ejemplo, que el alcohol etílico y el dimetiléter tenían la misma
fórmula molécular, C2H6O, pero mientras que el primero es un líquido con punto de
ebullición 78°C, el segundo es un gas. Los químicos del siglo XIX pensaron que las
diferentes propiedades químicas que presentaban compuestos con la misma fórmula
molecular se tenían que deber a la forma en la que se ordenaban los átomos en la
estructura molecular.
Teoría estructural de Kekulé: fórmulas estructurales.
En 1858 Kekulé propuso una teoría estructural que permitía asignar la estructura
de los compuestos orgánicos más simples. Esta teoría se basaba en la tetravalencia
del átomo de carbono y en el concepto de enlace químico, y fue la base de partida
para la asignación de las estructuras de moléculas orgánicas sencillas, tales como el
metano, el etano o el propano. La teoría estructural de Kekulé permitó explicar el
fenómeno de la isomería, es decir la presencia de diferentes propiedades físicas y/o
químicas en compuestos con la misma fórmula molecular.
En 1916, la introducción del concepto de enlace covalente por el químico
estadounidense Lewis proporcionó la base que permitió relacionar las estructuras de
las moléculas orgánicas y sus propiedades químicas.
3. Representación de Lewis de las moléculas orgánicas.
Según Lewis una capa llena de electrones es especialmente estable y los
átomos transfieren o comparten electrones para tratar de alcanzar una capa llena de
electrones y alcanzar, así, la estructura electrónica estable similar a la del gas noble
más próximo, que normalmente contiene 8 electrones en su capa más externa. La
tendencia de los átomos a adquirir la configuración electrónica externa de 8 electrones
se la conoce como regla del octeto.
Cuando dos átomos comparten dos electrones entre sí se forma entre ellos un
enlace covalente. Los átomos, de acuerdo con su configuración electrónica, pueden
cumplir la regla del octeto con pares de electrones compartidos (electrones
enlazantes) y pares de electrones sin compartir (electrones no enlazantes).
Las estructuras de Lewis utilizan un punto para representar a un electrón de
valencia, y un par de puntos o una línea para representar a pares de electrones. A
continuación, se indica la representación de Lewis de algunas moléculas orgánicas,
como el etano, la metilamina, el metanol y el clorometano. Nótese que estas tres
últimas contienen átomos que consiguen su octeto electrónico mediante la suma de
Tema 16
electrones enlazantes y no enlazantes, como el caso del átomo nitrógeno de la
metilamina, del átomo de oxígeno del metanol, o del átomo de cloro del clorometano.
C
H
H
H N
H
H
Metilamina
C
H
H
H C
H
O
Etanol
H
H
C
H
H
H Cl
Clorometano
Representación de Lewis de algunos compuestos orgánicos
C
H
H C
H
H
H
Etano
H
Como se acaba de ver, cuando se comparte un par de electrones entre dos
átomos se forma un enlace simple. Muchas moléculas orgánicas contienen átomos
que comparten dos pares electrónicos, como la del etileno, y se dice que estos átomos
están unidos mediante un enlace doble. También hay estructuras orgánicas con
átomos que comparten tres pares de electrones, como los de la molécula de acetileno,
y en este caso se dice que el enlace entre los átomos es un triple enlace.
H C C H
H
C C
H
HH
Representación de Lewis del etileno y del acetileno
etileno acetileno
4. Electronegatividad y polarización del enlace.
Cuando dos átomos comparten por igual los dos electrones del enlace covalente
se dice que el enlace es no polar, como ocurre en el enlace covalente de la molécula
de hidrógeno, en el enlace covalente de la molécula de cloro, o en el enlace covalente
carbono-carbono del etano. Sin embargo, la mayor parte de los enlaces covalentes
están formados por dos átomos diferentes, de manera que los electrones del enlace
son atraídos con mayor intensidad por uno de los dos átomos que forman el enlace.
Cuando esto ocurre el enlace covalente se denomina enlace polar. Por ejemplo,
cuando el carbono se enlaza al cloro el par de electrones del enlace se encuentra
atraído con más intensidad por el átomo de cloro, de manera que sobre el átomo de
carbono aparece una pequeña carga parcial positiva y sobre el átomo de cloro
aparece una cantidad igual de carga negativa. En la siguiente figura se indica el enlace
covalente polar C-Cl de la molécula de clorometano. La polaridad del enlace se indica
con una flecha que dirige su punta hacia el extremo negativo del enlace polar y un
signo mas (+) en el extremo positivo del enlace.
Fundamentos de Química Orgánica 7
C
H
H Cl
Clorometano
+
δ+ δ−
µ
H
La polaridad del enlace se mide mediante su momento dipolar (µ) que se define
como la cantidad de diferencia de carga multiplicada por la longitud del enlace. El
símbolo δ+ quiere decir una pequeña cantidad de carga positiva y el símbolo δ- quiere
decir una pequeña cantidad de carga negativa.
A fin de predecir si un enlace covalente va a ser polar se recurre a la
comparación de las electronegatividades de los átomos que forman el enlace. La
electronegatividad se define como la tendencia del núcleo atómico a la atracción de
electrones.
Pauling desarrolló una escala de electronegatividades relativas para la mayoría
de los átomos. En el Sistema Periódico la electronegatividad aumenta de izquierda a
derecha y disminuye al bajar en una columna, por lo que el flúor es el elemento más
electronegativo. A continuación, se da una tabla de electronegatividades para los
principales átomos de interés en Química Orgánica.
H
2.2
Li
1.0
Be
1.6
B
1.8
C
2.5
N
3.0
O
3.4
F
4.0
Na
0.9
Mg
1.3
Al
1.6
Si
1.9
P
2.2
S
2.6
Cl
3.2
Br
3.0
I
2.7
Como se deduce de la tabla anterior, un enlace C-H debería estar muy poco
polarizado, puesto que la electronegatividad del hidrógeno y del carbono es similar.
Sin embargo, los halógenos, el oxígeno y el nitrógeno, que son heteroátomos que
suelen aparecer en las estructuras orgánicas, son más electronegativos que el
carbono y, por tanto, los enlaces C-halógeno, C-O y C-N son polares. A continuación,
se representan las estructuras de Lewis de las moléculas de fluoruro de hidrógeno
(HF), agua (H2O) y amoníaco (NH3) con indicación de la polaridad de los enlaces. La
Tema 18
molécula de metano se puede considerar que está constituida por enlaces C-H muy
poco polarizados:
H F
fluoruro de
hidrógeno
δ+ δ−
H O
agua
δ+ δ−
H N HH
amoniaco
δ+
δ−
δ+
δ+
C
H
H
H H
metano
δ+
H
En algunos de los temas de esta asignatura se dará una representación del
contorno de densidad electrónica de determinadas moléculas. La asimetría en la
distribución de carga se indicará con un sistema de colores que varía de tonalidad
según el valor del potencial electrostático: el color rojo indica una zona de la estructura
con elevada densidad de carga negativa, debido a presencia de átomos muy
electronegativos, mientras que un color azul indica una zona de la estructura con
déficit de carga debido a la presencia de átomos poco electronegativos. En la siguiente
figura se muestra esta variación del color respecto al signo del potencial:
rojo < naranja < amarillo < verde < azul
potencial electrostático potencial electrostático
más negativo más positivo
En la siguiente figura se muestran los contornos de potencial electrostático que
presentan las moléculas descritas anteriormente:
El enlace H-F del fluoruro de hidrógeno está fuertemente polarizado y la
densidad de carga a lo largo del enlace entre el flúor y el hidrógeno está desplazada
hacia el átomo más electronegativo (flúor) creando un potencial electrostático negativo
alrededor de dicho átomo (color rojo) y en consecuencia un potencial electrostático
positivo alrededor del hidrógeno (color azul).
Fundamentos de Química Orgánica 9
Lo mismo ocurre en el caso de la molécula de agua, en el que la mayor
electronegatividad del oxígeno provoca la polarización de los enlaces O-H.
El caso del amoníaco es similar al de la molécula de agua: el nitrógeno es más
electronegativo que el hidrógeno y, por tanto, los tres enlaces N-H son polares. La
densidad de carga se halla desplazada hacia el nitrógeno lo cual se ve perfectamente
en el diagrama de contorno de potencial electrostatíco por la aparición de una zona de
color rojo en la parte superior de la figura (posición del nitrógeno), y la aparición de
una zona de color azul en la parte inferior donde se encuentran los tres átomos de
hidrógeno.
Por último, en el metano no existen enlaces polares debido a la similar
electronegatividad del átomo de carbono y el de hidrógeno. La distribución simétrica
de la densidad de carga conlleva la aparición de un potencial electrostático más bien
neutro (verde) alrededor de todos los átomos de la molécula.
5. Carga formal.
En los enlaces polares las cargas parciales sobre los átomos son reales. Sin
embargo, cuando se dibujan determinadas estructuras químicas, según la
representación de Lewis, aparecen cargas eléctricas asociadas a algunos átomos,
denominadas cargas formales. Las cargas formales permiten contar el número de
electrones de un átomo determinado de una estructura., y se calculan según la
siguiente ecuación:
Carga formal = nº electrones capa de valencia - nº electrones no compartidos
nº electrones enlazantes
2
+
A continuación, aparecen indicadas las estructuras de Lewis del anión carbonato
y del nitrometano. Se puede apreciar que sobre dos de los átomos de oxígeno del
anión carbonato aparecen una carga formal negativa y en la molécula de nitrometano
aparece una carga formal positiva sobre el átomo de nitrógeno y una carga parcial
negativa sobre uno de los dos átomos de oxígeno.
C
O
OO
N
O
OH3C
Anión carbonato Nitrometano
En la siguiente figura se indica el cálculo de la carga formal de cada uno de los
átomos que integran el anión carbonato:
Tema 110
C
O
OO
carga formal = 6 - ( 4 +
4
2
= 0
carga formal = 4 - ( 0 +
8
2
= 0
carga formal = 6 - ( 6 +
2
2
= -1
)
)
)
El mismo cálculo se indica a continuación para los átomos, exceptto H, que
componen la molécula de nitrometano:
N
O
O
carga formal = 6 - ( 4 +
4
2
) = 0
carga formal = 5 - ( 0 +
8
2
) = +1
carga formal = 6 - ( 6 +
2
2
) = -1
H3C
carga formal = 4 - ( 0 +
8
2
) = 0
Algunas moléculas orgánicas, aunque eléctricamente neutras, están
compuestas en realidad por átomos con cargas formales neutralizadas entre sí, como
se acaba de ver en el caso del nitrometano.
Dos átomos diferentes que poseen la misma configuración electrónica en la
capa de valencia, aunque posean distinta carga formal, se denominan átomos
isoelectrónicos. Por ejemplo, el átomo de fluor del fluorometano y el átomo de
oxígeno del anión metóxido son átomos isoelectrónicos, al igual que el átomo de
carbono del metano y el átomo de nitrógeno del catión amonio.
C
H
H
H F
N
H
H
H HC
H
H
H HC
H
H
H O
Fluorometano Anión metóxido Metano Catión amonio
Átomos isoelectrónicos Átomos isoelectrónicos
Fundamentos de Química Orgánica 11
6. Estructuras de resonancia.
Algunas moléculas orgánicas se pueden representar mediante dos o más
estructuras de Lewis, que difieren entre sí únicamente en la distribución de los
electrones, y que se denominan estructuras resonantes. En estos casos, la molécula
tendrá características de ambas estructuras y se dice que la molécula es un híbrido
de resonancia de las estructuras resonantes. El método de la resonancia permite
saber, de forma cualitativa, la estabilización que puede conseguir una molécula por
deslocalización electrónica. Cuanto mayor sea el número de estructuras resonantes
mediante las que se pueda describir una especie química mayor será su estabilidad.
El concepto de estructuras resonantes se puede aplicar en la descripción del
nitrometano, que se puede representar mediante las dos estructuras de Lewis que se
indican a continuación:
C
H
H
H N
O
O
C
H
H
H N
O
O
I II
Estructuras resonantes del nitrometano
En realidad, el nitrometano no es la estructura resonante I ni tampoco la
estructura resonante II, sino la estructura que resultaría al mezclar las características
asociadas a la estructura I y a la II, tal y como se indica a continuación:
C
H
H N
O
O
Híbrido de resonancia del nitrometano
H
El problema de dibujar los compuestos orgánicos como híbridos de resonancia
reside en la imposibilidad de contar el número de electrones sobre algunos átomos.
Por ejemplo, en la estructura de híbrido de resonancia del nitrometano se hace difícil
saber el número de electrones sobre el átomo de nitrógeno o sobre los átomos de
oxígeno. Aunque los híbridos de resonancia dan una imagen más real del orden de
enlace y de la distribución electrónica de la molécula no se suelen utilizar con
asiduidad por el problema acabado de comentar. Una forma de escribir el híbrido de
resonancia, que sí permite el contaje de los electrones en cada átomo, consiste en
Tema 112
encerrar entre corchetes a todas las estructuras resonantes conectándolas entre sí
mediante una flecha de doble punta, tal y como se ha descrito más arriba.
6.1. Contribución de las estructuras resonantes.
La mayor o menor contribución de las estructuras resonantes a la descripción de
la molécula se puede relacionar con la mayor o menor estabilidad que teóricamente
puede atribuirse a cada estructura. De forma cualitativa se puede evaluar esta mayor o
menor estabilidad teniendo en cuenta los siguientes puntos:
1. Una estructura resonante será tanto más estable cuanto mayor sea el número
de enlaces formales que posea.
2. Las estructuras iónicas con separación de cargas son más inestables que las
no cargadas.
3. Entre dos estructuras resonantes con separación de cargas, y en igualdad de
otras condiciones, será más estable la estructura con la carga negativa en el átomo
más electronegativo.
4. Las estructuras resonantes con octetos completos en todos los átomos de la
segunda fila del Sistema Periódico son particularmente estables, aunque ello suponga
la presencia de una carga positiva en un átomo electronegativo.
6.2. Cómo dibujar estructuras resonantes.
Para dibujar correctamente las estructuras resonantes de un compuesto
conviene seguir las siguientes reglas:
1. Dibujar una estructura de Lewis para el compuesto en cuestión.
2. Tomando como base la estructura de Lewis acabada de dibujar se dibuja
otra estructura de Lewis de manera que:
a) Todos los núcleos mantengan su posición original.
b) Se mantenga el mismo número de electrones apareados.
A continuación se aplican estas reglas para el dibujo de las estructuras
resonantes de la acetamida:
Fundamentos de Química Orgánica 13
1. Se dibuja la estructura de Lewis de la acetamida:
O
C
NH2H3C
I
2. Tomando como base la estructura de Lewis acabada de dibujar se dibuja
otra estructura de Lewis que mantenga los núcleos en la misma posición y que
contenga el mismo número de electrones apareados que la primera, tal y como
se indica a continuación.
O
C
NH2H3C
O
C
NH2H3C
I II
El método de las estructuras resonantes permite describir a la acetamida como
un híbrido de resonancia entre las estructuras resonantes I y II. De las dos estructuras
resonantes la que contribuye en mayor proporción en la composición del híbrido de
resonancia es la I porque tiene un mayor número de enlaces y porque no comporta
separación de cargas. Sin embargo, la estructura resonante II, aunque contribuye poco
a la hora de determinar las propiedades físicas y químicas de la acetamida, pone de
manifiesto que el enlace C-N de este compuesto debe tener un cierto carácter de
doble enlace, como así ocurre en realidad.

Contenu connexe

Tendances

Compuestos orgánicos e inorgánicos
Compuestos orgánicos e inorgánicosCompuestos orgánicos e inorgánicos
Compuestos orgánicos e inorgánicosMadelyn Deras
 
Tipos de ruptura de enlaces
Tipos de ruptura de enlacesTipos de ruptura de enlaces
Tipos de ruptura de enlacesfranperera
 
áTomos y especies químicas de brandon
áTomos y especies químicas de brandonáTomos y especies químicas de brandon
áTomos y especies químicas de brandonBrandon Fabian
 
Las bases de la bioquimica
Las bases de la bioquimicaLas bases de la bioquimica
Las bases de la bioquimicacandhy12
 
Introducción a la química orgánica
Introducción a la química orgánicaIntroducción a la química orgánica
Introducción a la química orgánicaluz amanda
 
Modulo de quimica (1) nivelacion
Modulo de quimica (1) nivelacionModulo de quimica (1) nivelacion
Modulo de quimica (1) nivelacionDannaRivera13
 
Cambios En La Estructura De La Materia
Cambios En La Estructura De La MateriaCambios En La Estructura De La Materia
Cambios En La Estructura De La MateriaAmaiamartinez
 
Especies quimicas y numero de oxidacion
Especies quimicas y numero de oxidacionEspecies quimicas y numero de oxidacion
Especies quimicas y numero de oxidacioncarlitoscontreras4985
 
quimica : enlace quimico,nomenclatura,estequiometria
quimica : enlace quimico,nomenclatura,estequiometriaquimica : enlace quimico,nomenclatura,estequiometria
quimica : enlace quimico,nomenclatura,estequiometriakiimyailin
 
Enlace Quimico y Nomenclatura
Enlace Quimico y NomenclaturaEnlace Quimico y Nomenclatura
Enlace Quimico y NomenclaturaLuis Oviedo
 
INTRODUCCION A LA QUIMICA ORGANICA
INTRODUCCION A LA QUIMICA ORGANICAINTRODUCCION A LA QUIMICA ORGANICA
INTRODUCCION A LA QUIMICA ORGANICAMARIO OLAYA
 
Tema 13 - Reactividad de los compuestos del carbono
Tema 13 - Reactividad de los compuestos del carbonoTema 13 - Reactividad de los compuestos del carbono
Tema 13 - Reactividad de los compuestos del carbonoJosé Miranda
 
Cambios en la estructura de la materia
Cambios en la estructura de la materiaCambios en la estructura de la materia
Cambios en la estructura de la materiaFCO JAVIER RUBIO
 
Presentación sobre Enlace Químico y Nomenclatura
Presentación sobre Enlace Químico y NomenclaturaPresentación sobre Enlace Químico y Nomenclatura
Presentación sobre Enlace Químico y NomenclaturaWINDARLYS ACOSTA
 
Moléculas y compuestos moleculares
Moléculas y compuestos molecularesMoléculas y compuestos moleculares
Moléculas y compuestos molecularesDr. Marcelo Ramos
 
Repaso uniones, biomoleculas, etc
Repaso uniones, biomoleculas, etcRepaso uniones, biomoleculas, etc
Repaso uniones, biomoleculas, etcPablo Otero
 

Tendances (20)

Reacciones orgánicas
Reacciones orgánicas Reacciones orgánicas
Reacciones orgánicas
 
Compuestos orgánicos e inorgánicos
Compuestos orgánicos e inorgánicosCompuestos orgánicos e inorgánicos
Compuestos orgánicos e inorgánicos
 
Modulo nivelacion
Modulo  nivelacionModulo  nivelacion
Modulo nivelacion
 
Tipos de ruptura de enlaces
Tipos de ruptura de enlacesTipos de ruptura de enlaces
Tipos de ruptura de enlaces
 
áTomos y especies químicas de brandon
áTomos y especies químicas de brandonáTomos y especies químicas de brandon
áTomos y especies químicas de brandon
 
Las bases de la bioquimica
Las bases de la bioquimicaLas bases de la bioquimica
Las bases de la bioquimica
 
Introducción a la química orgánica
Introducción a la química orgánicaIntroducción a la química orgánica
Introducción a la química orgánica
 
Modulo de quimica (1) nivelacion
Modulo de quimica (1) nivelacionModulo de quimica (1) nivelacion
Modulo de quimica (1) nivelacion
 
Modulo de quimica
Modulo de quimicaModulo de quimica
Modulo de quimica
 
Cambios En La Estructura De La Materia
Cambios En La Estructura De La MateriaCambios En La Estructura De La Materia
Cambios En La Estructura De La Materia
 
Especies quimicas y numero de oxidacion
Especies quimicas y numero de oxidacionEspecies quimicas y numero de oxidacion
Especies quimicas y numero de oxidacion
 
quimica : enlace quimico,nomenclatura,estequiometria
quimica : enlace quimico,nomenclatura,estequiometriaquimica : enlace quimico,nomenclatura,estequiometria
quimica : enlace quimico,nomenclatura,estequiometria
 
Enlace Quimico y Nomenclatura
Enlace Quimico y NomenclaturaEnlace Quimico y Nomenclatura
Enlace Quimico y Nomenclatura
 
INTRODUCCION A LA QUIMICA ORGANICA
INTRODUCCION A LA QUIMICA ORGANICAINTRODUCCION A LA QUIMICA ORGANICA
INTRODUCCION A LA QUIMICA ORGANICA
 
Tema 13 - Reactividad de los compuestos del carbono
Tema 13 - Reactividad de los compuestos del carbonoTema 13 - Reactividad de los compuestos del carbono
Tema 13 - Reactividad de los compuestos del carbono
 
Cambios en la estructura de la materia
Cambios en la estructura de la materiaCambios en la estructura de la materia
Cambios en la estructura de la materia
 
Organica i
Organica iOrganica i
Organica i
 
Presentación sobre Enlace Químico y Nomenclatura
Presentación sobre Enlace Químico y NomenclaturaPresentación sobre Enlace Químico y Nomenclatura
Presentación sobre Enlace Químico y Nomenclatura
 
Moléculas y compuestos moleculares
Moléculas y compuestos molecularesMoléculas y compuestos moleculares
Moléculas y compuestos moleculares
 
Repaso uniones, biomoleculas, etc
Repaso uniones, biomoleculas, etcRepaso uniones, biomoleculas, etc
Repaso uniones, biomoleculas, etc
 

En vedette

Lab, resumen, para tener en cuenta...
Lab, resumen, para tener en cuenta...Lab, resumen, para tener en cuenta...
Lab, resumen, para tener en cuenta...Wilson Montana
 
Talleres termodinámica
Talleres termodinámicaTalleres termodinámica
Talleres termodinámicajuan5vasquez
 
Carbono y compuestos organicos
Carbono y compuestos organicosCarbono y compuestos organicos
Carbono y compuestos organicosestudiantequimica
 
Semilleros de investigacion
Semilleros de investigacionSemilleros de investigacion
Semilleros de investigacionNelcy Laverde
 
Taller No 2 .. soluciones y unidades de concentracion...
Taller No 2 .. soluciones y unidades de concentracion...Taller No 2 .. soluciones y unidades de concentracion...
Taller No 2 .. soluciones y unidades de concentracion...j_wilsonmontana
 
Hibridacion carbono
Hibridacion carbonoHibridacion carbono
Hibridacion carbonojafatru
 
Física 2004 1. resuelto
Física 2004 1. resueltoFísica 2004 1. resuelto
Física 2004 1. resueltoHarold Urrea
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera leycharliebm7512
 
Ejercicios de moles con glucosa
Ejercicios de moles con glucosaEjercicios de moles con glucosa
Ejercicios de moles con glucosaManuel Diaz
 
Politica Actual Colombiana
Politica Actual ColombianaPolitica Actual Colombiana
Politica Actual ColombianaDaniel G.
 
Pensadores de la Edad Media | Pensamiento Político
Pensadores de la Edad Media | Pensamiento PolíticoPensadores de la Edad Media | Pensamiento Político
Pensadores de la Edad Media | Pensamiento PolíticoBel Martínez Retamar
 
ANALISIS DEL LIBRO RETRATO EN SEPIA
ANALISIS DEL LIBRO RETRATO EN SEPIAANALISIS DEL LIBRO RETRATO EN SEPIA
ANALISIS DEL LIBRO RETRATO EN SEPIAdianayjuli
 
Quimica 11 (hibridación del carbono)
Quimica 11 (hibridación del carbono)Quimica 11 (hibridación del carbono)
Quimica 11 (hibridación del carbono)SVENSON ORTIZ
 
Taller de magnitudes eléctricas
Taller de magnitudes eléctricasTaller de magnitudes eléctricas
Taller de magnitudes eléctricasDan Zethina
 
Proceso exportador expoartesanias 2013
Proceso exportador  expoartesanias 2013Proceso exportador  expoartesanias 2013
Proceso exportador expoartesanias 2013ProColombia
 

En vedette (20)

Lab, resumen, para tener en cuenta...
Lab, resumen, para tener en cuenta...Lab, resumen, para tener en cuenta...
Lab, resumen, para tener en cuenta...
 
Talleres termodinámica
Talleres termodinámicaTalleres termodinámica
Talleres termodinámica
 
Carbono y compuestos organicos
Carbono y compuestos organicosCarbono y compuestos organicos
Carbono y compuestos organicos
 
Semilleros de investigacion
Semilleros de investigacionSemilleros de investigacion
Semilleros de investigacion
 
Taller No 2 .. soluciones y unidades de concentracion...
Taller No 2 .. soluciones y unidades de concentracion...Taller No 2 .. soluciones y unidades de concentracion...
Taller No 2 .. soluciones y unidades de concentracion...
 
Hibridacion carbono
Hibridacion carbonoHibridacion carbono
Hibridacion carbono
 
BANCO DE PREGUNTAS
BANCO DE PREGUNTASBANCO DE PREGUNTAS
BANCO DE PREGUNTAS
 
Física 2004 1. resuelto
Física 2004 1. resueltoFísica 2004 1. resuelto
Física 2004 1. resuelto
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera ley
 
Ejercicios de moles con glucosa
Ejercicios de moles con glucosaEjercicios de moles con glucosa
Ejercicios de moles con glucosa
 
Politica Actual Colombiana
Politica Actual ColombianaPolitica Actual Colombiana
Politica Actual Colombiana
 
Pensadores de la Edad Media | Pensamiento Político
Pensadores de la Edad Media | Pensamiento PolíticoPensadores de la Edad Media | Pensamiento Político
Pensadores de la Edad Media | Pensamiento Político
 
ANALISIS DEL LIBRO RETRATO EN SEPIA
ANALISIS DEL LIBRO RETRATO EN SEPIAANALISIS DEL LIBRO RETRATO EN SEPIA
ANALISIS DEL LIBRO RETRATO EN SEPIA
 
Decada de los 20
Decada de los 20Decada de los 20
Decada de los 20
 
Capacidad de enlace del carbono
Capacidad de enlace del carbonoCapacidad de enlace del carbono
Capacidad de enlace del carbono
 
Unidad 1 biología 10
Unidad 1 biología 10Unidad 1 biología 10
Unidad 1 biología 10
 
Sesion com 2g_10
Sesion com 2g_10Sesion com 2g_10
Sesion com 2g_10
 
Quimica 11 (hibridación del carbono)
Quimica 11 (hibridación del carbono)Quimica 11 (hibridación del carbono)
Quimica 11 (hibridación del carbono)
 
Taller de magnitudes eléctricas
Taller de magnitudes eléctricasTaller de magnitudes eléctricas
Taller de magnitudes eléctricas
 
Proceso exportador expoartesanias 2013
Proceso exportador  expoartesanias 2013Proceso exportador  expoartesanias 2013
Proceso exportador expoartesanias 2013
 

Similaire à Química Orgánica Conceptos

1. conceptos fundamentales en qumica orgnica
1. conceptos fundamentales en qumica orgnica1. conceptos fundamentales en qumica orgnica
1. conceptos fundamentales en qumica orgnicaElizabeth Luna
 
Quimica 3 quimica del carbono quimica organica
Quimica 3 quimica del carbono quimica organicaQuimica 3 quimica del carbono quimica organica
Quimica 3 quimica del carbono quimica organicaAgustin Medellín
 
Quimica organica...
Quimica organica...Quimica organica...
Quimica organica...alfex cat
 
Que es la química
Que es la químicaQue es la química
Que es la químicaAlanva31
 
Que es la química
Que es la químicaQue es la química
Que es la químicaAlanva31
 
Que es la química
Que es la químicaQue es la química
Que es la químicaAlanva31
 
Que es la química
Que es la químicaQue es la química
Que es la químicaAlan Gòmez
 
Que es la química
Que es la químicaQue es la química
Que es la químicaAlanva31
 
Estructura y Propiedades de las Moléculas
Estructura y Propiedades de las MoléculasEstructura y Propiedades de las Moléculas
Estructura y Propiedades de las MoléculasSistemadeEstudiosMed
 
Unidad I. ESTRUCTURA Y PROPIEDADES DE LAS MOLÉCULAS
Unidad I. ESTRUCTURA Y PROPIEDADES DE LAS MOLÉCULASUnidad I. ESTRUCTURA Y PROPIEDADES DE LAS MOLÉCULAS
Unidad I. ESTRUCTURA Y PROPIEDADES DE LAS MOLÉCULASSistemadeEstudiosMed
 
QCA ORGANICA I - UNIDAD 1 - PARTE 1.pptx.pdf
QCA ORGANICA I - UNIDAD 1 - PARTE 1.pptx.pdfQCA ORGANICA I - UNIDAD 1 - PARTE 1.pptx.pdf
QCA ORGANICA I - UNIDAD 1 - PARTE 1.pptx.pdfIvan Perez
 
áTomos y especies químicas de brandon
áTomos y especies químicas de brandonáTomos y especies químicas de brandon
áTomos y especies químicas de brandonBrandon Fabian
 

Similaire à Química Orgánica Conceptos (20)

Tema1 fqo
Tema1 fqoTema1 fqo
Tema1 fqo
 
1. conceptos fundamentales en qumica orgnica
1. conceptos fundamentales en qumica orgnica1. conceptos fundamentales en qumica orgnica
1. conceptos fundamentales en qumica orgnica
 
Tema1 fqo
Tema1 fqoTema1 fqo
Tema1 fqo
 
Reacciones organicas
Reacciones organicasReacciones organicas
Reacciones organicas
 
Quimica 3 quimica del carbono quimica organica
Quimica 3 quimica del carbono quimica organicaQuimica 3 quimica del carbono quimica organica
Quimica 3 quimica del carbono quimica organica
 
Quimica organica...
Quimica organica...Quimica organica...
Quimica organica...
 
Que es la química
Que es la químicaQue es la química
Que es la química
 
Que es la química
Que es la químicaQue es la química
Que es la química
 
Que es la química
Que es la químicaQue es la química
Que es la química
 
Que es la química
Que es la químicaQue es la química
Que es la química
 
Que es la química
Que es la químicaQue es la química
Que es la química
 
Que es la química
Que es la químicaQue es la química
Que es la química
 
Que es la química
Que es la químicaQue es la química
Que es la química
 
Estructura y Propiedades de las Moléculas
Estructura y Propiedades de las MoléculasEstructura y Propiedades de las Moléculas
Estructura y Propiedades de las Moléculas
 
Unidad I. ESTRUCTURA Y PROPIEDADES DE LAS MOLÉCULAS
Unidad I. ESTRUCTURA Y PROPIEDADES DE LAS MOLÉCULASUnidad I. ESTRUCTURA Y PROPIEDADES DE LAS MOLÉCULAS
Unidad I. ESTRUCTURA Y PROPIEDADES DE LAS MOLÉCULAS
 
cQO Semana 01.pdf
cQO Semana 01.pdfcQO Semana 01.pdf
cQO Semana 01.pdf
 
Quimica organica
Quimica organicaQuimica organica
Quimica organica
 
QCA ORGANICA I - UNIDAD 1 - PARTE 1.pptx.pdf
QCA ORGANICA I - UNIDAD 1 - PARTE 1.pptx.pdfQCA ORGANICA I - UNIDAD 1 - PARTE 1.pptx.pdf
QCA ORGANICA I - UNIDAD 1 - PARTE 1.pptx.pdf
 
áTomos y especies químicas de brandon
áTomos y especies químicas de brandonáTomos y especies químicas de brandon
áTomos y especies químicas de brandon
 
Modulo nivelación
Modulo nivelación Modulo nivelación
Modulo nivelación
 

Plus de Wilson Montana

Informe de laboratorio_pautas_para_su_elaboracion(3)
Informe de laboratorio_pautas_para_su_elaboracion(3)Informe de laboratorio_pautas_para_su_elaboracion(3)
Informe de laboratorio_pautas_para_su_elaboracion(3)Wilson Montana
 
Reacciones quimicas...
Reacciones quimicas...Reacciones quimicas...
Reacciones quimicas...Wilson Montana
 
Configuración electrónica.taller.
Configuración electrónica.taller.Configuración electrónica.taller.
Configuración electrónica.taller.Wilson Montana
 
Plandemejor.sexto y décimo(1).2014
Plandemejor.sexto y décimo(1).2014Plandemejor.sexto y décimo(1).2014
Plandemejor.sexto y décimo(1).2014Wilson Montana
 
Historia de la tabla periodica. resumen
Historia de la tabla periodica. resumenHistoria de la tabla periodica. resumen
Historia de la tabla periodica. resumenWilson Montana
 
Reciclaje de pilas de obsolecencia programada
Reciclaje de pilas de obsolecencia programadaReciclaje de pilas de obsolecencia programada
Reciclaje de pilas de obsolecencia programadaWilson Montana
 
Laboratorio n.1química.2014 (recuperado)
Laboratorio n.1química.2014 (recuperado)Laboratorio n.1química.2014 (recuperado)
Laboratorio n.1química.2014 (recuperado)Wilson Montana
 
Conversiones. Química
Conversiones. QuímicaConversiones. Química
Conversiones. QuímicaWilson Montana
 
Evaluacion.Procesos fisico químicos. lectura.La luz
Evaluacion.Procesos fisico químicos. lectura.La luzEvaluacion.Procesos fisico químicos. lectura.La luz
Evaluacion.Procesos fisico químicos. lectura.La luzWilson Montana
 
Evaluacion. L.2. sistema muscular
Evaluacion. L.2. sistema muscularEvaluacion. L.2. sistema muscular
Evaluacion. L.2. sistema muscularWilson Montana
 
Evaluacion: sistema óseo
Evaluacion: sistema óseo Evaluacion: sistema óseo
Evaluacion: sistema óseo Wilson Montana
 
Lectura: Sistema muscular. 7. grado
Lectura: Sistema muscular. 7. gradoLectura: Sistema muscular. 7. grado
Lectura: Sistema muscular. 7. gradoWilson Montana
 
Sistema oseo.Control de lectura.
Sistema oseo.Control de lectura.Sistema oseo.Control de lectura.
Sistema oseo.Control de lectura.Wilson Montana
 
Procesos 7o.Control de Lectura.La luz y sus relaciones.
Procesos 7o.Control de Lectura.La luz  y sus relaciones.Procesos 7o.Control de Lectura.La luz  y sus relaciones.
Procesos 7o.Control de Lectura.La luz y sus relaciones.Wilson Montana
 

Plus de Wilson Montana (20)

Preguntas organica 2.
Preguntas organica 2.Preguntas organica 2.
Preguntas organica 2.
 
Informe de laboratorio_pautas_para_su_elaboracion(3)
Informe de laboratorio_pautas_para_su_elaboracion(3)Informe de laboratorio_pautas_para_su_elaboracion(3)
Informe de laboratorio_pautas_para_su_elaboracion(3)
 
Est.nivel.decimo.iti
Est.nivel.decimo.itiEst.nivel.decimo.iti
Est.nivel.decimo.iti
 
Reacciones quimicas...
Reacciones quimicas...Reacciones quimicas...
Reacciones quimicas...
 
Configuración electrónica.taller.
Configuración electrónica.taller.Configuración electrónica.taller.
Configuración electrónica.taller.
 
Plandemejor.sexto y décimo(1).2014
Plandemejor.sexto y décimo(1).2014Plandemejor.sexto y décimo(1).2014
Plandemejor.sexto y décimo(1).2014
 
Notas.quim.3.corte
Notas.quim.3.corteNotas.quim.3.corte
Notas.quim.3.corte
 
Lab,tejidos.6
Lab,tejidos.6Lab,tejidos.6
Lab,tejidos.6
 
Historia de la tabla periodica. resumen
Historia de la tabla periodica. resumenHistoria de la tabla periodica. resumen
Historia de la tabla periodica. resumen
 
Eval.materia.quim.10
Eval.materia.quim.10Eval.materia.quim.10
Eval.materia.quim.10
 
Reciclaje de pilas de obsolecencia programada
Reciclaje de pilas de obsolecencia programadaReciclaje de pilas de obsolecencia programada
Reciclaje de pilas de obsolecencia programada
 
Laboratorio n.1química.2014 (recuperado)
Laboratorio n.1química.2014 (recuperado)Laboratorio n.1química.2014 (recuperado)
Laboratorio n.1química.2014 (recuperado)
 
Prop.materia.2014
Prop.materia.2014Prop.materia.2014
Prop.materia.2014
 
Conversiones. Química
Conversiones. QuímicaConversiones. Química
Conversiones. Química
 
Evaluacion.Procesos fisico químicos. lectura.La luz
Evaluacion.Procesos fisico químicos. lectura.La luzEvaluacion.Procesos fisico químicos. lectura.La luz
Evaluacion.Procesos fisico químicos. lectura.La luz
 
Evaluacion. L.2. sistema muscular
Evaluacion. L.2. sistema muscularEvaluacion. L.2. sistema muscular
Evaluacion. L.2. sistema muscular
 
Evaluacion: sistema óseo
Evaluacion: sistema óseo Evaluacion: sistema óseo
Evaluacion: sistema óseo
 
Lectura: Sistema muscular. 7. grado
Lectura: Sistema muscular. 7. gradoLectura: Sistema muscular. 7. grado
Lectura: Sistema muscular. 7. grado
 
Sistema oseo.Control de lectura.
Sistema oseo.Control de lectura.Sistema oseo.Control de lectura.
Sistema oseo.Control de lectura.
 
Procesos 7o.Control de Lectura.La luz y sus relaciones.
Procesos 7o.Control de Lectura.La luz  y sus relaciones.Procesos 7o.Control de Lectura.La luz  y sus relaciones.
Procesos 7o.Control de Lectura.La luz y sus relaciones.
 

Dernier

TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)jlorentemartos
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdflizcortes48
 
Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfmiriamguevara21
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).hebegris04
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejormrcrmnrojasgarcia
 
NUEVO PLAN Y PROGRAMAS DE ESTUDIO 2022.pdf
NUEVO PLAN Y PROGRAMAS DE ESTUDIO  2022.pdfNUEVO PLAN Y PROGRAMAS DE ESTUDIO  2022.pdf
NUEVO PLAN Y PROGRAMAS DE ESTUDIO 2022.pdfEDNAMONICARUIZNIETO
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfPROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfMaritza438836
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.karlazoegarciagarcia
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdfGabrieldeJesusLopezG
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...MagalyDacostaPea
 
5º SOY LECTOR PART1- MD EDUCATIVO.pdfde
5º SOY LECTOR PART1- MD  EDUCATIVO.pdfde5º SOY LECTOR PART1- MD  EDUCATIVO.pdfde
5º SOY LECTOR PART1- MD EDUCATIVO.pdfdeBelnRosales2
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfJosé Hecht
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FJulio Lozano
 

Dernier (20)

Acuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptxAcuerdo segundo periodo - Grado Noveno.pptx
Acuerdo segundo periodo - Grado Noveno.pptx
 
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
Cuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdfCuadernillo de actividades eclipse solar.pdf
Cuadernillo de actividades eclipse solar.pdf
 
Acuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdfAcuerdo 05_04_24 Lineamientos del CTE.pdf
Acuerdo 05_04_24 Lineamientos del CTE.pdf
 
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
HISTORIETA: AVENTURAS VERDES (ECOLOGÍA).
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejor
 
NUEVO PLAN Y PROGRAMAS DE ESTUDIO 2022.pdf
NUEVO PLAN Y PROGRAMAS DE ESTUDIO  2022.pdfNUEVO PLAN Y PROGRAMAS DE ESTUDIO  2022.pdf
NUEVO PLAN Y PROGRAMAS DE ESTUDIO 2022.pdf
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdfPROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
PROGRAMACIÓN CURRICULAR - DPCC- 5°-2024.pdf
 
¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx¿Amor o egoísmo? Esa es la cuestión.pptx
¿Amor o egoísmo? Esa es la cuestión.pptx
 
Acuerdo segundo periodo - Grado Septimo.pptx
Acuerdo segundo periodo - Grado Septimo.pptxAcuerdo segundo periodo - Grado Septimo.pptx
Acuerdo segundo periodo - Grado Septimo.pptx
 
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.ENSEÑAR ACUIDAR  EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
ENSEÑAR ACUIDAR EL MEDIO AMBIENTE ES ENSEÑAR A VALORAR LA VIDA.
 
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdfPRIMER GRADO SOY LECTOR PART1- MD  EDUCATIVO.pdf
PRIMER GRADO SOY LECTOR PART1- MD EDUCATIVO.pdf
 
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
4° SES COM MAR 09 Leemos una noticia del dengue e identificamos sus partes (1...
 
5º SOY LECTOR PART1- MD EDUCATIVO.pdfde
5º SOY LECTOR PART1- MD  EDUCATIVO.pdfde5º SOY LECTOR PART1- MD  EDUCATIVO.pdfde
5º SOY LECTOR PART1- MD EDUCATIVO.pdfde
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
 

Química Orgánica Conceptos

  • 1. TEMA 1 CONCEPTOS FUNDAMENTALES EN QUIMICA ORGANICA 1. Concepto y origen de la Química Orgánica. 2. Evolución histórica de la Química Orgánica. 3. Representación de Lewis de las moléculas orgánicas. 4. Electronegatividad y polarización del enlace. 5. Carga formal. 6. Estructuras de resonancia. 6.1. Contribución de las estructuras resonantes. 6.2. Cómo dibujar estructuras resonantes
  • 2. Fundamentos de Química Orgánica 3 TEMA 1. CONCEPTOS FUNDAMENTALES EN QUIMICA ORGANICA. 1. Concepto y origen de la Química Orgánica. 2. Evolución histórica de la Química Orgánica. 3. Representación de Lewis de las moléculas orgánicas. 4. Electronegatividad y polarización del enlace. 5. Carga formal. 6. Estructuras de resonancia. 6.1. Contribución de las estructuras resonantes. 6.2. Cómo dibujar estructuras resonantes 1. Concepto y origen de la Química Orgánica. La Química Orgánica se ocupa del estudio de las propiedades y transformaciones de los compuestos que contienen el elemento carbono. El elevado número y complejidad de estos compuestos se debe a las características de enlazamiento del carbono, que puede formar enlaces hasta con cuatro átomos más. Además, este elemento se puede unir a otros átomos de carbono para dar lugar a largas cadenas constituidas por cientos e incluso miles de átomos. El carbono puede formar enlaces estables con muchos átomos distintos de la tabla periódica y además, puede formar diferentes tipos de enlaces: simples, dobles o triples. La diversidad de la química que tiene como base el carbono no es sorprendente si se piensa en las diferencias que presentan las formas del carbono elemental: diamante y grafito. El diamante es duro e incoloro mientras que el grafito es suave y negro. Estas diferencias en las propiedades de las distintas formas del carbono son consecuencia de las diferencias estructurales que presentan dichas formas. La Química Orgánica, junto con la Bioquímica, es la ciencia básica que permite explicar los procesos químicos que tienen lugar en los organismos vivos. De hecho, el nombre Química Orgánica proviene de la antigua creencia de que ciertas sustancias sólo podían ser producidas por organismos vivos. 2. Evolución histórica de la Química Orgánica. Los pueblos prehistóricos hicieron uso de las propiedades de algunos compuestos orgánicos y realizaron algunas reacciones químico-orgánicas. Los antiguos egipcios, los romanos y los fenicios emplearon varios colorantes que eran verdaderos compuesto químicos puros: el índigo, la alizarina y la legendaria púrpura de Tiro. Los dos primeros colorantes se aislaron de las plantas y el último se obtuvo en pequeñas cantidades a partir de una especie rara de molusco. Desde muy antiguo se sabía que la grasa animal se podía convertir en jabón por tratamiento con lejía. Hasta época tan reciente como 1948, los químicos orgánicos no pudieron sintetizar productos que fueran capaces de competir con el jabón (detergentes)
  • 3. Tema 14 La fermentación del almidón y de los azúcares para obtener alcohol se conoce desde tiempos prehistóricos y el método que se aplica en la actualidad no difiere mucho del que se ideó hace cientos de años. La Química Orgánica, tal y como hoy la conocemos, arranca de finales del siglo XVIII cuando se inició el aislamiento de sustancias orgánicas de extractos de origen natural. En este orden de cosas son dignos de mención los estudios que el alemán Carl Scheele llevó a cabo entre los años 1769 a 1786 sobre aislamiento de diversos compuestos orgánicos de fuentes naturales. En 1784, Lavoisier ideó un método, basado en la combustión de la materia orgánica, que permitía determinar los porcentajes de carbono, hidrógeno, oxígeno y nitrógeno que constituían los compuestos orgánicos. En 1807, el químico sueco Berzelius denominó, con el nombre de compuestos orgánicos, a aquellos compuestos derivados de los seres vivos o de la materia viva. Durante todo el siglo XIX, Berzelius y otros químicos creyeron que tales compuestos poseían una fuerza vital y que, por tanto, sería imposible sintetizar un compuesto orgánico a partir de materiales inorgánicos. La teoría de la fuerza vital fue declinando a medida que la aportación creciente de datos analíticos evidenciaba que las leyes químicas que gobernaban el comportamiento de la materia inorgánica eran también válidas para los compuestos orgánicos. La teoría de la fuerza vital sufrió un gran revés en 1828, año en el que Wöhler consiguió sintetizar la urea por descomposición térmica del isocianato amónico. Según la clasificación de Berzelius la urea era un compuesto orgánico, poseedor de fuerza vital y, por tanto, imposible de ser sintetizado a partir de compuestos clasificados como inorgánicos: ∆ O NH2H2N NH4 OCN isocianato amónico urea La síntesis de la urea obligó a un replanteamiento de la definición de compuesto orgánico, pasándose a denominar como tal todo compuesto que contuviese carbono en su estructura. Durante el primer tercio de siglo XIX investigadores como Gay-Lussac, Liebig y Berzelius descubrieron y perfeccionaron nuevos métodos analíticos que permitieron determinar la clase de elementos, así como su proporción, que constituían los compuestos orgánicos. Hacia mitad del siglo XIX, el desarrollo incipiente de la síntesis orgánica permitió la preparación de compuestos orgánicos a partir de materiales de partida relativamente simples.
  • 4. Fundamentos de Química Orgánica 5 Uno de los aspectos de la Química que se resistía a los esfuerzos de las mentes más brillantes del siglo XIX era el relacionado con la estructura de los compuestos orgánicos. Se sabía, por ejemplo, que el alcohol etílico y el dimetiléter tenían la misma fórmula molécular, C2H6O, pero mientras que el primero es un líquido con punto de ebullición 78°C, el segundo es un gas. Los químicos del siglo XIX pensaron que las diferentes propiedades químicas que presentaban compuestos con la misma fórmula molecular se tenían que deber a la forma en la que se ordenaban los átomos en la estructura molecular. Teoría estructural de Kekulé: fórmulas estructurales. En 1858 Kekulé propuso una teoría estructural que permitía asignar la estructura de los compuestos orgánicos más simples. Esta teoría se basaba en la tetravalencia del átomo de carbono y en el concepto de enlace químico, y fue la base de partida para la asignación de las estructuras de moléculas orgánicas sencillas, tales como el metano, el etano o el propano. La teoría estructural de Kekulé permitó explicar el fenómeno de la isomería, es decir la presencia de diferentes propiedades físicas y/o químicas en compuestos con la misma fórmula molecular. En 1916, la introducción del concepto de enlace covalente por el químico estadounidense Lewis proporcionó la base que permitió relacionar las estructuras de las moléculas orgánicas y sus propiedades químicas. 3. Representación de Lewis de las moléculas orgánicas. Según Lewis una capa llena de electrones es especialmente estable y los átomos transfieren o comparten electrones para tratar de alcanzar una capa llena de electrones y alcanzar, así, la estructura electrónica estable similar a la del gas noble más próximo, que normalmente contiene 8 electrones en su capa más externa. La tendencia de los átomos a adquirir la configuración electrónica externa de 8 electrones se la conoce como regla del octeto. Cuando dos átomos comparten dos electrones entre sí se forma entre ellos un enlace covalente. Los átomos, de acuerdo con su configuración electrónica, pueden cumplir la regla del octeto con pares de electrones compartidos (electrones enlazantes) y pares de electrones sin compartir (electrones no enlazantes). Las estructuras de Lewis utilizan un punto para representar a un electrón de valencia, y un par de puntos o una línea para representar a pares de electrones. A continuación, se indica la representación de Lewis de algunas moléculas orgánicas, como el etano, la metilamina, el metanol y el clorometano. Nótese que estas tres últimas contienen átomos que consiguen su octeto electrónico mediante la suma de
  • 5. Tema 16 electrones enlazantes y no enlazantes, como el caso del átomo nitrógeno de la metilamina, del átomo de oxígeno del metanol, o del átomo de cloro del clorometano. C H H H N H H Metilamina C H H H C H O Etanol H H C H H H Cl Clorometano Representación de Lewis de algunos compuestos orgánicos C H H C H H H Etano H Como se acaba de ver, cuando se comparte un par de electrones entre dos átomos se forma un enlace simple. Muchas moléculas orgánicas contienen átomos que comparten dos pares electrónicos, como la del etileno, y se dice que estos átomos están unidos mediante un enlace doble. También hay estructuras orgánicas con átomos que comparten tres pares de electrones, como los de la molécula de acetileno, y en este caso se dice que el enlace entre los átomos es un triple enlace. H C C H H C C H HH Representación de Lewis del etileno y del acetileno etileno acetileno 4. Electronegatividad y polarización del enlace. Cuando dos átomos comparten por igual los dos electrones del enlace covalente se dice que el enlace es no polar, como ocurre en el enlace covalente de la molécula de hidrógeno, en el enlace covalente de la molécula de cloro, o en el enlace covalente carbono-carbono del etano. Sin embargo, la mayor parte de los enlaces covalentes están formados por dos átomos diferentes, de manera que los electrones del enlace son atraídos con mayor intensidad por uno de los dos átomos que forman el enlace. Cuando esto ocurre el enlace covalente se denomina enlace polar. Por ejemplo, cuando el carbono se enlaza al cloro el par de electrones del enlace se encuentra atraído con más intensidad por el átomo de cloro, de manera que sobre el átomo de carbono aparece una pequeña carga parcial positiva y sobre el átomo de cloro aparece una cantidad igual de carga negativa. En la siguiente figura se indica el enlace covalente polar C-Cl de la molécula de clorometano. La polaridad del enlace se indica con una flecha que dirige su punta hacia el extremo negativo del enlace polar y un signo mas (+) en el extremo positivo del enlace.
  • 6. Fundamentos de Química Orgánica 7 C H H Cl Clorometano + δ+ δ− µ H La polaridad del enlace se mide mediante su momento dipolar (µ) que se define como la cantidad de diferencia de carga multiplicada por la longitud del enlace. El símbolo δ+ quiere decir una pequeña cantidad de carga positiva y el símbolo δ- quiere decir una pequeña cantidad de carga negativa. A fin de predecir si un enlace covalente va a ser polar se recurre a la comparación de las electronegatividades de los átomos que forman el enlace. La electronegatividad se define como la tendencia del núcleo atómico a la atracción de electrones. Pauling desarrolló una escala de electronegatividades relativas para la mayoría de los átomos. En el Sistema Periódico la electronegatividad aumenta de izquierda a derecha y disminuye al bajar en una columna, por lo que el flúor es el elemento más electronegativo. A continuación, se da una tabla de electronegatividades para los principales átomos de interés en Química Orgánica. H 2.2 Li 1.0 Be 1.6 B 1.8 C 2.5 N 3.0 O 3.4 F 4.0 Na 0.9 Mg 1.3 Al 1.6 Si 1.9 P 2.2 S 2.6 Cl 3.2 Br 3.0 I 2.7 Como se deduce de la tabla anterior, un enlace C-H debería estar muy poco polarizado, puesto que la electronegatividad del hidrógeno y del carbono es similar. Sin embargo, los halógenos, el oxígeno y el nitrógeno, que son heteroátomos que suelen aparecer en las estructuras orgánicas, son más electronegativos que el carbono y, por tanto, los enlaces C-halógeno, C-O y C-N son polares. A continuación, se representan las estructuras de Lewis de las moléculas de fluoruro de hidrógeno (HF), agua (H2O) y amoníaco (NH3) con indicación de la polaridad de los enlaces. La
  • 7. Tema 18 molécula de metano se puede considerar que está constituida por enlaces C-H muy poco polarizados: H F fluoruro de hidrógeno δ+ δ− H O agua δ+ δ− H N HH amoniaco δ+ δ− δ+ δ+ C H H H H metano δ+ H En algunos de los temas de esta asignatura se dará una representación del contorno de densidad electrónica de determinadas moléculas. La asimetría en la distribución de carga se indicará con un sistema de colores que varía de tonalidad según el valor del potencial electrostático: el color rojo indica una zona de la estructura con elevada densidad de carga negativa, debido a presencia de átomos muy electronegativos, mientras que un color azul indica una zona de la estructura con déficit de carga debido a la presencia de átomos poco electronegativos. En la siguiente figura se muestra esta variación del color respecto al signo del potencial: rojo < naranja < amarillo < verde < azul potencial electrostático potencial electrostático más negativo más positivo En la siguiente figura se muestran los contornos de potencial electrostático que presentan las moléculas descritas anteriormente: El enlace H-F del fluoruro de hidrógeno está fuertemente polarizado y la densidad de carga a lo largo del enlace entre el flúor y el hidrógeno está desplazada hacia el átomo más electronegativo (flúor) creando un potencial electrostático negativo alrededor de dicho átomo (color rojo) y en consecuencia un potencial electrostático positivo alrededor del hidrógeno (color azul).
  • 8. Fundamentos de Química Orgánica 9 Lo mismo ocurre en el caso de la molécula de agua, en el que la mayor electronegatividad del oxígeno provoca la polarización de los enlaces O-H. El caso del amoníaco es similar al de la molécula de agua: el nitrógeno es más electronegativo que el hidrógeno y, por tanto, los tres enlaces N-H son polares. La densidad de carga se halla desplazada hacia el nitrógeno lo cual se ve perfectamente en el diagrama de contorno de potencial electrostatíco por la aparición de una zona de color rojo en la parte superior de la figura (posición del nitrógeno), y la aparición de una zona de color azul en la parte inferior donde se encuentran los tres átomos de hidrógeno. Por último, en el metano no existen enlaces polares debido a la similar electronegatividad del átomo de carbono y el de hidrógeno. La distribución simétrica de la densidad de carga conlleva la aparición de un potencial electrostático más bien neutro (verde) alrededor de todos los átomos de la molécula. 5. Carga formal. En los enlaces polares las cargas parciales sobre los átomos son reales. Sin embargo, cuando se dibujan determinadas estructuras químicas, según la representación de Lewis, aparecen cargas eléctricas asociadas a algunos átomos, denominadas cargas formales. Las cargas formales permiten contar el número de electrones de un átomo determinado de una estructura., y se calculan según la siguiente ecuación: Carga formal = nº electrones capa de valencia - nº electrones no compartidos nº electrones enlazantes 2 + A continuación, aparecen indicadas las estructuras de Lewis del anión carbonato y del nitrometano. Se puede apreciar que sobre dos de los átomos de oxígeno del anión carbonato aparecen una carga formal negativa y en la molécula de nitrometano aparece una carga formal positiva sobre el átomo de nitrógeno y una carga parcial negativa sobre uno de los dos átomos de oxígeno. C O OO N O OH3C Anión carbonato Nitrometano En la siguiente figura se indica el cálculo de la carga formal de cada uno de los átomos que integran el anión carbonato:
  • 9. Tema 110 C O OO carga formal = 6 - ( 4 + 4 2 = 0 carga formal = 4 - ( 0 + 8 2 = 0 carga formal = 6 - ( 6 + 2 2 = -1 ) ) ) El mismo cálculo se indica a continuación para los átomos, exceptto H, que componen la molécula de nitrometano: N O O carga formal = 6 - ( 4 + 4 2 ) = 0 carga formal = 5 - ( 0 + 8 2 ) = +1 carga formal = 6 - ( 6 + 2 2 ) = -1 H3C carga formal = 4 - ( 0 + 8 2 ) = 0 Algunas moléculas orgánicas, aunque eléctricamente neutras, están compuestas en realidad por átomos con cargas formales neutralizadas entre sí, como se acaba de ver en el caso del nitrometano. Dos átomos diferentes que poseen la misma configuración electrónica en la capa de valencia, aunque posean distinta carga formal, se denominan átomos isoelectrónicos. Por ejemplo, el átomo de fluor del fluorometano y el átomo de oxígeno del anión metóxido son átomos isoelectrónicos, al igual que el átomo de carbono del metano y el átomo de nitrógeno del catión amonio. C H H H F N H H H HC H H H HC H H H O Fluorometano Anión metóxido Metano Catión amonio Átomos isoelectrónicos Átomos isoelectrónicos
  • 10. Fundamentos de Química Orgánica 11 6. Estructuras de resonancia. Algunas moléculas orgánicas se pueden representar mediante dos o más estructuras de Lewis, que difieren entre sí únicamente en la distribución de los electrones, y que se denominan estructuras resonantes. En estos casos, la molécula tendrá características de ambas estructuras y se dice que la molécula es un híbrido de resonancia de las estructuras resonantes. El método de la resonancia permite saber, de forma cualitativa, la estabilización que puede conseguir una molécula por deslocalización electrónica. Cuanto mayor sea el número de estructuras resonantes mediante las que se pueda describir una especie química mayor será su estabilidad. El concepto de estructuras resonantes se puede aplicar en la descripción del nitrometano, que se puede representar mediante las dos estructuras de Lewis que se indican a continuación: C H H H N O O C H H H N O O I II Estructuras resonantes del nitrometano En realidad, el nitrometano no es la estructura resonante I ni tampoco la estructura resonante II, sino la estructura que resultaría al mezclar las características asociadas a la estructura I y a la II, tal y como se indica a continuación: C H H N O O Híbrido de resonancia del nitrometano H El problema de dibujar los compuestos orgánicos como híbridos de resonancia reside en la imposibilidad de contar el número de electrones sobre algunos átomos. Por ejemplo, en la estructura de híbrido de resonancia del nitrometano se hace difícil saber el número de electrones sobre el átomo de nitrógeno o sobre los átomos de oxígeno. Aunque los híbridos de resonancia dan una imagen más real del orden de enlace y de la distribución electrónica de la molécula no se suelen utilizar con asiduidad por el problema acabado de comentar. Una forma de escribir el híbrido de resonancia, que sí permite el contaje de los electrones en cada átomo, consiste en
  • 11. Tema 112 encerrar entre corchetes a todas las estructuras resonantes conectándolas entre sí mediante una flecha de doble punta, tal y como se ha descrito más arriba. 6.1. Contribución de las estructuras resonantes. La mayor o menor contribución de las estructuras resonantes a la descripción de la molécula se puede relacionar con la mayor o menor estabilidad que teóricamente puede atribuirse a cada estructura. De forma cualitativa se puede evaluar esta mayor o menor estabilidad teniendo en cuenta los siguientes puntos: 1. Una estructura resonante será tanto más estable cuanto mayor sea el número de enlaces formales que posea. 2. Las estructuras iónicas con separación de cargas son más inestables que las no cargadas. 3. Entre dos estructuras resonantes con separación de cargas, y en igualdad de otras condiciones, será más estable la estructura con la carga negativa en el átomo más electronegativo. 4. Las estructuras resonantes con octetos completos en todos los átomos de la segunda fila del Sistema Periódico son particularmente estables, aunque ello suponga la presencia de una carga positiva en un átomo electronegativo. 6.2. Cómo dibujar estructuras resonantes. Para dibujar correctamente las estructuras resonantes de un compuesto conviene seguir las siguientes reglas: 1. Dibujar una estructura de Lewis para el compuesto en cuestión. 2. Tomando como base la estructura de Lewis acabada de dibujar se dibuja otra estructura de Lewis de manera que: a) Todos los núcleos mantengan su posición original. b) Se mantenga el mismo número de electrones apareados. A continuación se aplican estas reglas para el dibujo de las estructuras resonantes de la acetamida:
  • 12. Fundamentos de Química Orgánica 13 1. Se dibuja la estructura de Lewis de la acetamida: O C NH2H3C I 2. Tomando como base la estructura de Lewis acabada de dibujar se dibuja otra estructura de Lewis que mantenga los núcleos en la misma posición y que contenga el mismo número de electrones apareados que la primera, tal y como se indica a continuación. O C NH2H3C O C NH2H3C I II El método de las estructuras resonantes permite describir a la acetamida como un híbrido de resonancia entre las estructuras resonantes I y II. De las dos estructuras resonantes la que contribuye en mayor proporción en la composición del híbrido de resonancia es la I porque tiene un mayor número de enlaces y porque no comporta separación de cargas. Sin embargo, la estructura resonante II, aunque contribuye poco a la hora de determinar las propiedades físicas y químicas de la acetamida, pone de manifiesto que el enlace C-N de este compuesto debe tener un cierto carácter de doble enlace, como así ocurre en realidad.